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Abstract

Nearly all current Bayesian phylogenetic applications rely on Markov chain Monte Carlo (MCMC) methods to approx-
imate the posterior distribution for trees and other parameters of the model. These approximations are only reliable if
Markov chains adequately converge and sample from the joint posterior distribution. Although several studies of phy-
logenetic MCMC convergence exist, these have focused on simulated data sets or select empirical examples. Therefore,
much that is considered common knowledge about MCMC in empirical systems derives from a relatively small family of
analyses under ideal conditions. To address this, we present an overview of commonly applied phylogenetic MCMC
diagnostics and an assessment of patterns of these diagnostics across more than 18,000 empirical analyses. Many analyses
appeared to perform well and failures in convergence were most likely to be detected using the average standard
deviation of split frequencies, a diagnostic that compares topologies among independent chains. Different diagnostics
yielded different information about failed convergence, demonstrating that multiple diagnostics must be employed to
reliably detect problems. The number of taxa and average branch lengths in analyses have clear impacts on MCMC
performance, with more taxa and shorter branches leading to more difficult convergence. We show that the usage of
models that include both C-distributed among-site rate variation and a proportion of invariable sites is not broadly
problematic for MCMC convergence but is also unnecessary. Changes to heating and the usage of model-averaged
substitution models can both offer improved convergence in some cases, but neither are a panacea.
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Introduction
Bayesian methods have become extremely popular in phylo-
genetic inference. This is driven by their ability to efficiently
explore complex model spaces, to naturally account for un-
certainty, and to allow for rigorous and coherent model se-
lection using marginal likelihoods (Rannala and Yang 1996;
Yang and Rannala 1997; Huelsenbeck et al. 2001). The poste-
rior distribution is typically the primary object of interest in
Bayesian phylogenetic analyses. This cannot be calculated
analytically due to the intractability of computing the mar-
ginal likelihood that makes up the denominator of Bayes’
theorem. Therefore, most methods approximate the poste-
rior distribution numerically using Markov chain Monte
Carlo, or MCMC (Metropolis et al. 1953; Hastings 1970;
Rannala and Yang 1996; Yang and Rannala 1997). A well-
behaved Markov chain will sample values for parameters of
the model in proportion to their posterior probabilities.
Adequately sampling from the posterior distribution requires
that a chain has successfully moved from its starting param-
eter values, which are typically chosen randomly and have
relatively low likelihoods as a result, to regions of parameter
space with relatively higher likelihoods. This initial movement
from starting values to the chain’s stationary distribution

constitutes the burn-in phase of MCMC. Second, the chain
must mix efficiently and/or run long enough for it to draw an
adequate number of samples to closely approximate the pos-
terior. Markov chains of finite length are generally not guaran-
teed to meet these criteria and so are not generally guaranteed
to provide an accurate approximation of the posterior. Because
the true posterior distribution is typically unknown, users of
MCMC-based methods are therefore faced with the interesting
(or maddening, depending on your perspective and particular
relationship with MCMC) problem of deciding if chains have
performed well enough to produce reliable estimates.

Heuristic diagnostics have been developed to help deal
with the problem of identifying whether chains have per-
formed well. Each of these diagnostics seeks to summarize
the behavior of one or more Markov chains and provide a
statistic that can be used to determine if the chains in ques-
tion have failed to converge. Just as failure to reject a null
hypothesis using a frequentist statistical test does not imply
that the null hypothesis is an accurate representation of re-
ality, failure to identify a lack of convergence does not indicate
that any particular MCMC analysis has adequately converged.
Passing these diagnostic tests increases our confidence that
chains are well behaved, but as is so often the case in life, there
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are no guarantees. Methods for assessing MCMC perfor-
mance can be broadly grouped into two categories: 1) those
that focus on parameter distributions within a single chain,
which we refer to as single-chain diagnostics, and 2) those
that evaluate congruence among multiple chains, which we
refer to as multichain diagnostics. Single-chain diagnostics
seek to determine that a chain is sampling stably from a
distribution without high levels of autocorrelation, trends,
or large, infrequent jumps. This stable sampling is often re-
ferred to as stationarity and reflects chains that are mixing
well and exploring parameter space efficiently. Multichain
diagnostics seek to determine that independent Markov
chains starting from different initial values have reached sta-
tionarity in the same region of parameter space. This provides
evidence that the chains are adequately sampling from the
stationary distribution rather than stochastically becoming
trapped in local optima, although we reiterate that no diag-
nostic or combination of diagnostics can guarantee conver-
gence (Huelsenbeck et al. 2002).

In phylogenetics, effective sample size (ESS; Ripley 1987;
Neal 1993; Kass et al. 1998) is probably the single most com-
monly used diagnostic due to its inclusion in the popular
Tracer program (Rambaut et al. 2018) associated with the
BEAST software (Drummond and Rambaut 2007; Bouckaert
et al. 2014). ESS is a single-chain diagnostic that measures the
number of independent samples that would produce an
equivalent estimate for a parameter distribution as the auto-
correlated samples from an MCMC run (Drummond et al.
2006). As MCMC samples are autocorrelated to some degree,
the ESS for a parameter will typically be less than the full
number of MCMC samples and can be much less if a chain
is not mixing well. The typical goal is to achieve a large enough
number of independent samples per generation, that is, a
high ESS, so that the posterior distribution can be accurately
approximated using a relatively short Markov chain.
Phylogeneticists often consider ESS to be high enough if
they are above an arbitrary cutoff of 200 (Drummond et al.
2006). ESS is typically calculated for continuously valued
parameters but has also been adapted for tree topology by
using tree distances in calculations (Lanfear et al. 2016).
Additional single-chain diagnostics exist for MCMC applica-
tions more broadly, but several of these have not or have only
rarely been applied to phylogenetic applications of MCMC
(reviewed by Brooks and Roberts [1998]).

Common multichain diagnostics applied to phylogenetic
MCMC include the potential scale reduction factor (PSRF),
sometimes referred to as the Gelman and Rubin statistic or R̂
(Gelman and Rubin 1992), and average standard deviation of
split frequencies (ASDSF; Lakner et al. 2008), both of which
are reported by default in the popular program MrBayes
(Huelsenbeck and Ronquist 2001; Ronquist et al. 2012). The
PSRF seeks to assess if continuous parameters from multiple
chains have reached the same distribution by comparing the
ratio of variance among chains to variance within chains. This
ratio decreases toward 1.0 as variance among chains
approaches the variance within chains. A high PSRF consid-
erably above 1.0 (variance among chains exceeds the variance
within chains) indicates that the chains are sampling from

different areas of parameter space and have not adequately
converged. The ASDSF is specifically designed to determine if
tree topologies are consistent among independent chains.
ASDSF is calculated by enumerating all bipartitions in topol-
ogies sampled by multiple chains, calculating the frequency at
which each split appears within each chain, taking the stan-
dard deviation of this frequency across chains, then averaging
these standard deviation values (usually focusing only on
splits that occur at some frequency above a threshold, typi-
cally 0.1). When splits defining the same sets of clades are
identified among multiple runs at similar frequencies, ASDSF
approaches 0 and is commonly considered to be low enough
when it has fallen below 0.01 (Lakner et al. 2008). The “Are We
There Yet?” web interface, more recently adapted into the R
package “R We There Yet?” (RWTY), introduced a straight-
forward way to additionally calculate the correlation of split
frequencies among chains, another way to examine topolog-
ical convergence for multiple chains (Nylander et al. 2008;
Warren et al. 2017). Like single-chain diagnostics, multichain
diagnostics are not guaranteed to detect convergence
problems.

The importance of convergence is widely recognized
among phylogeneticists, and most users of Bayesian phyloge-
netic programs have probably struggled to get an analysis to
perform adequately. Several aspects of phylogenetic inference
can make this a challenging problem. Some parameters in
phylogenetic models are inherently correlated with each
other (e.g., branch lengths, base frequencies, and substitution
rates), parameters may follow complex, multimodal statistical
distributions, and the tree topology itself, often the aspect of
the model that we are most interested in, is less a parameter
than a part of the model’s structure, but one that proposals
act on through the MCMC procedure. The tree topology is
also a discrete and unordered component of the model that
is not easily summarized by means and standard deviations in
the way that continuous parameters are. Therefore, standard
expectations derived from simpler statistical scenarios of how
MCMC diagnostics will perform are not necessarily applicable
to phylogenetic MCMC.

Most of our knowledge about how well phylogenetic
MCMC analyses converge has been derived from a set of
studies focusing on simulated data or a small set of frequently
used empirical data sets, and often focus primarily on a single
aspect of MCMC performance, such as topology proposals
and the exploration of tree space (e.g., Höhna et al. 2008;
Lakner et al. 2008; Ronquist and Deans 2010; Höhna and
Drummond 2012; Whidden and Matsen 2015; Brown and
Thomson 2018). These studies provide useful snapshots of
how MCMC performs, including the expectation that con-
vergence will be harder to achieve for larger data sets that
explore more complex tree landscapes (e.g., Lakner et al. 2008;
Whidden and Matsen 2015; Zhang et al. 2020). Additionally,
several authors have discussed the potential for parameters to
interact and negatively affect inference or MCMC perfor-
mance, particularly with regard to models that combine re-
lated parameters such as a proportion of invariable sites with
C-distributed among-site rate variation (often referred to as I
þ C models) (Sullivan et al. 1999; Mayrose et al. 2005;
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Yang 2006). Parameter interactions such as this have been
variously viewed as potentially pathological, merely unneces-
sary, or of little concern, but have not yet been systematically
studied on a large scale.

Although previous studies have provided valuable infor-
mation about phylogenetic MCMC performance, the field
still lacks a broad survey of how well our most commonly
used MCMC-based analyses perform for empirical data. This
gap leaves researchers to rely on the intuition that they have
gained through their own analyses (which may amount to
only several dozen across the course of a career) and discus-
sions with others, which means that many seemingly
fundamental questions are, so far, unanswered: How frequent
are convergence and mixing problems for empirical data sets?
Do particular aspects of an alignment predict that MCMC
performance will be a challenge? Should we be worried about
I þ C?

We took steps toward answering several such ques-
tions by compiling a data set of MCMC output from
>18,000 empirical phylogenetic analyses derived from a
mixture of earlier studies and new analyses carried out
here. In order to match the most common practices in
phylogenetics, we employed commonly used analysis set-
tings (e.g., two to four independent runs each with four
Metropolis-coupled chains) for widely used Bayesian phy-
logenetic inference software (MrBayes), and assessed con-
vergence using the most commonly employed diagnostics
and thresholds. We used this data set to identify broad
trends in phylogenetic MCMC performance. This in-
cluded characterizing the performance of MCMC across
the analyses according to various convergence diagnos-
tics, examining relationships among different diagnostics
and their relationships to data set properties, investigat-
ing the impact of correlations among parameters, and
attempting to improve the performance of poorly per-
forming analyses. We reiterate that all convergence diag-
nostics are heuristics that can highlight convergence
issues but cannot guarantee that they are absent. This is
the case for all phylogenetic MCMC where the true pos-
terior is unknown, and so the field must rely on conver-
gence diagnostics to provide useful information if we are
to consider any analyses reliable. Broadly, our results high-
light several best practices: Researchers should use all
available convergence diagnostics, and specifically a com-
bination of single and multichain diagnostics that focus
on both topology and non-topology parameters. We also
find that poor MCMC performance usually needs to be
remedied on a case by case basis by determining the par-
ticular cause of the problem. We make several recommen-
dations for increasing the reliability of analyses and
provide a large data set that will be useful for future

work exploring additional aspects of MCMC
performance.

Results and Discussion

General MCMC Performance Properties
We began by categorizing analyses based on whether they
pass or fail performance thresholds of commonly used diag-
nostics. Considering each diagnostic independently (i.e.,
rather than whether analyses pass multiple diagnostics simul-
taneously), we found that 99% of analyses achieved ESS� 200
for all non-topology parameters, >99% of analyses had cor-
relations among split frequencies across chains�0.9, 98% had
PSRFs < 1.02, and 97% achieved approximate topological ESS
� 200 (table 1). By contrast, only 37% of chains achieved
average standard deviations of split frequencies of <0.01.
Given the prevalence of ESS in determining whether a single
chain has run long enough, we focused considerably on the
properties of ESS across parameters and chains. Most param-
eters reached an ESS above 200 by 5 or 6 million generations,
and all parameters show a similar distribution of when this
threshold is reached (supplementary fig. S1, Supplementary
Material online).

A common intuition in phylogenetics is that effective sam-
pling of the topology is more difficult than the other (con-
tinuously valued) parameters of the model. Counter to this
intuition, we find that topology attained the highest final ESS
on average (fig. 1) for runs of the same length. This seeming
contradiction is explained by the larger number of tree-
related MCMC proposals that MrBayes employs to counter-
act this difficulty, such that overall, the topology accumulates
effective samples at similar or faster rates as the other param-
eters of the model.

The remaining parameters do not show a consistent pat-
tern for total ESS. Autocorrelation times, which are closely
related to ESS, for all parameters were similar and slightly >1,
likely due to the relatively sparse sampling that we used to
make the handling of so many chains manageable (supple-
mentary fig. S2, Supplementary Material online). Topology
has the highest mean autocorrelation, although also the low-
est median autocorrelation because the calculation of auto-
correlation times for topology permits them to take only
integer values, causing a mode at exactly 1.0 and another
peak at exactly 2.0 but no values in between, whereas those
for other parameters may take decimal values. Median accep-
tance ratios for MCMC moves were all in the targeted 20–
70% range for one-dimensional proposals or 15–40% for mul-
tidimensional proposals, with most density centered around
the typical target of 23% (fig. 2; Gelman et al. 1996; Yang
2006). This is expected given that MrBayes autotunes non-
topology proposals to a default target of 25% acceptance.
However, the variation around these medians is highly

Table 1. Proportion of Chains Passing Common Thresholds for Convergence Diagnostics.

ESS > 200 ASDSF < 0.01 Split Freq. Correlation > 0.9 PSRF < 1.02 Topological Approx. ESS > 200

0.988 0.375 0.997 0.980 0.973
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unequal. Moves that act on the tree topology, ExtSPR,
ExtTBR, NNI, ParsSPR, and Nodeslider have the largest varia-
tion across analyses, and range from as low as 0.4% for ExtTBR
up to 98.7% for ExtSPR. This indicates that on average, topol-
ogy proposals achieve desirable acceptance rates, but that this
can vary widely across analyses and appears to be data set
dependent. As a discrete parameter, tree topology has an
upper bound on move acceptance rates that is determined
by the posterior, and this may partially drive the observed
acceptance patterns (Peskun 1973; Yang 2014). Particularly
low acceptance rates for topology moves may occur when
only one or a few trees have high posterior probability, in

which case, nearly all proposed changes to topology would be
rejected. Conversely, when there is little information in the
data to distinguish among topologies, large numbers of to-
pology proposals may be accepted.

Based on these commonly used diagnostics, the majority
of chains pass single-chain diagnostics (ESS and topological
ESS), PSRF, and have high split frequency correlations, but less
than half successfully achieve the targeted ASDSFs. Chains
that did pass all diagnostics rapidly achieved high ESS within
a few million generations post-burn-in (burn-in extends until
generation 2,500). Autocorrelation times are low and move
acceptance rates fall within targeted ranges on average.
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FIG. 1. Density plot showing the frequency of ESS values for each parameter. Median values are denoted by solid vertical lines. The left tail extends
to near zero but has been truncated for space.
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FIG. 2. Density plots showing the frequency of acceptance rates for each move. Median values are denoted by solid vertical lines.
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Analyses that do converge as indicated by all diagnostics do
so rapidly and with targeted acceptance rates, suggesting that
after filtering out poorly converged analyses, these commonly
used MCMC settings allow for broadly satisfactory perfor-
mance, which is reassuring if not unexpected. In preliminary
analyses that we performed for PhyLoTA data sets that in-
cluded more MCMC samples overall (not shown), we found
that the majority of analyses did hit the targeted ASDSF
threshold, suggesting that more of the analyses we present
here might perform satisfactorily if more samples were col-
lected by running longer chains.

Congruence among Diagnostics
Among chains with detectably poor performance, we found
a frequent lack of agreement among convergence diagnos-
tics. There is not strong overlap among chains that have LnL
ESS < 200 and chains that have topological ESS < 200
(fig. 3A). Chains that have a topological ESS < 200 tend
to have at least one non-topology parameter fail to reach
ESS of 200 with an elevated frequency but the majority of
these still achieve high ESS for all non-topology parameters:
85% of analyses that fail topological ESS have ESS > 200 for

all non-topology parameters. This shows that topological
ESS is capturing unique aspects of the MCMC that are
not detected by the LnL ESS, despite LnL broadly summa-
rizing the fit of the model to the data. Topology is a unique
parameter in that it is discrete and not easily summarized in
Euclidean space. As a result, ESS for LnL and non-topology
parameters may not easily detect poorly mixing topologies
(Huelsenbeck et al. 2002; Nylander et al. 2008; Whidden and
Matsen 2015; Lanfear et al. 2016), resulting in the observed
incongruence.

We found that low topological ESS values were much
more likely to have high ASDSF values than they were to
fail other ESS values, with most, but not all, chains that fail
topological ESS also failing ASDSF (fig. 3B). The comparatively
small number of cases in which topological ESS detects failed
convergence but ASDSF does not may indicate cases in which
there is overall concordance among chains, but individual
chains may exhibit high autocorrelation or infrequent, erratic
changes. In contrast, many chains fail ASDSF that do not fail
topological ESS, suggesting that most problems with topolog-
ical convergence are not detectable by examining the within-
chain behavior.

1,292 124107

Topological ESS < 200

LnL ESS < 200

A

29,502
113

1,286

ASDSF > 0.01

Topological 
ESS < 200

B

35,210
132

1,028

ASDSF > 0.01

PSRF > 1.02
35,700

17

670

ASDSF > 0.01 OR PSRF > 1.02

Any non−topo
  ESS < 200

C D

FIG. 3. Venn diagram showing the number of chains that fail either one or both convergence diagnostics indicated under each circle. Part (A) shows
chains that fail topological ESS, LnL ESS, or both. Part (B) shows chains that fail ASDSF, topological ESS, or both. Part (C) shows chains that fail
ASDSF, PRSF, or both. Part (D) shows chains that fail ASDSF, any non-topological ESS, or both.
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We also identified low congruence between ASDSF and
the correlation of split frequencies between chains. This sur-
prised us because both metrics measure the similarity of tree
topologies among multiple chains in similar ways. ASDSF may
potentially be more sensitive to poor mixing for a small num-
ber of splits, whereas the overall correlation of split frequen-
cies may remain high if only a small number of splits occur at
different frequencies among clades. This indicates that
researchers should visually inspect plots of split frequencies,
available in the RWTY package (Warren et al. 2017), or stan-
dard deviations of specific splits, as output by MrBayes when
generating consensus trees, even when the overall correlation
is high, in order to check for small numbers of outliers.

We identified chains that failed either ASDSF or PSRF, in-
dicating a failure of independent chains to converge onto the
same topologies or distributions of non-topology parameters,
respectively. Many more chains failed ASDSF than PSRF, and
most of the chains that failed PSRF also failed ASDSF (fig. 3C).
Additionally, the vast majority of chains that failed PSRF or
ASDSF achieved ESS values >200 (fig. 3D). This highlights the
potential for individual chains to reach stationarity without
evidence of convergence issues, even when independent
chains are sampling from different regions of parameter or
tree space (Huelsenbeck et al. 2002; Whidden and Matsen
2015).

Different diagnostics assess different properties of MCMC
convergence, and any given diagnostic may not detect failed
convergence in a range of scenarios. It is thus expected that
some chains will fail some diagnostics but not others. Using all
applicable convergence diagnostics is therefore necessary to
have the greatest possible confidence that chains have sam-
pled adequately. This includes using both single- and multi-
chain diagnostics, as well as diagnostics that focus on both
continuous parameters and topologies. In our anecdotal ex-
perience, it is common for researchers to focus almost exclu-
sively on ESS and trace plots for continuous parameter values,
without also considering statistics that focus specifically on
topology. The inclusion of topology-specific diagnostics is
crucial, given the primacy of topology in phylogenetic analysis
and general concerns about the difficulty of sampling topol-
ogies as compared with more standard numerical parameters
(Huelsenbeck et al. 2002; Nylander et al. 2008; Whidden and
Matsen 2015; Lanfear et al. 2016). Furthermore, as we dem-
onstrate here, failing to examine ASDSF may overlook the
most common phylogenetic MCMC failures.

Data Set Characteristics and MCMC Performance
We used multiple regressions to determine if ESS values for
each parameter were correlated with the numbers of taxa or
characters across data sets. We found that the number of taxa
was a significant predictor of ESS values for nearly all param-
eters, but the number of characters was significant only for
ESS of the a parameter of the gamma distribution modeling
among-site rate heterogeneity, the proportion of invariable
sites, and topology. Even then, these regression coefficients
were considerably lower than those for number of taxa (ta-
ble 2). Regression coefficients between numbers of taxa and
parameter ESS values are negative (i.e., indicating worse

convergence as the number of taxa increases) for all param-
eters except proportion of invariable sites, likely a result of the
fact that the proportion of invariable sites should decrease as
the number of taxa increases. The strongest negative corre-
lations are between number of taxa and LnL ESS, ESS for
several substitution rate parameters of the GTR model, and
topological ESS.

The negative associations between the number of taxa in
an analysis and ESS values, particularly LnL ESS and topolog-
ical ESS, suggest that increasing the number of taxa can lead
to considerable challenges with MCMC performance. This is
expected because the size of tree space rapidly becomes enor-
mous for even modest numbers of taxa (Felsenstein 2004)
and exploring that tree space efficiently is one of the key
challenges for phylogenetic inference. By contrast, there is
very little correlation between any ESS values and number
of characters in the analyses. We suspect that this is driven by
the fact that increasing the amount of characters in an align-
ment may simply add congruent signal, leading to a more
peaked stationary distribution that is easier to sample from,
or add heterogeneity and conflict, which can lead to islands in
the stationary distribution and making mixing more difficult.
In addition, increasing the number of characters may simply
add redundant phylogenetic signal that has little impact on
the analysis (Lewis et al. 2016). Therefore, the effect of the
number of characters on MCMC performance will depend on
the specific data set. The impact of the number of characters
may increase for large, genome-scale data sets. However, as
data sets grow to much larger scales, data are typically mod-
eled under more complex models including multiple data
partitions, which are likely to have further effects on conver-
gence that are beyond the scope of this study.

Principal components analysis (PCA) of core conver-
gence diagnostics shows the relationships among ESS val-
ues for all parameters, topological ESS, ASDSF, and PSRF
for all parameters. We find that PC1 explains 6.5% of

Table 2. Regression Coefficients and P Values from Multiple
Regressions Showing the Effect of Numbers of Taxa and Characters
on ESS Values for Various Parameters.

Taxa Characters

Coefficient P Coefficient P

LnL 20.26 5.1 3 102101 0.00 0.78
TL 20.10 3.63 10217 0.00 0.27
qAC 20.05 2.23 10203 0.00 0.41
qAG 20.17 3.23 10226 0.00 0.44
qAT 20.14 2.73 10220 0.00 0.22
qCG 20.04 1.63 10202 0.00 0.53
qCT 20.16 2.83 10225 0.00 0.40
qGT 20.06 1.3 3 1024 0.00 0.44
pA 20.07 3.4 3 1027 0.00 0.84
pC 20.10 3.23 10214 0.00 0.06
pG 20.10 5.23 10215 0.00 0.81
pT 20.08 2.6 3 1029 0.00 0.61
a 0.00 0.87 0.00 1.6 3 1023

I 0.05 3.0 3 1023 0.00 4.8 3 1023

Topology 20.16 1.6 3 102113 20.01 2.33 10288

j 20.02 0.27 0.00 0.38
LnPr 20.06 2.33 10203 0.00 0.93
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variance with ASDSF strongly loading negatively and PSRF
for multiple parameters loading most positively, indicat-
ing a prime role for multichain diagnostics in separating
out the performance of data sets (fig. 4). Both ASDSF and
PSRF indicate better convergence with decreasing values,
and so the opposing loadings of these two diagnostics
indicates a separation between data sets that converge
comparatively poorly for topology (ASDSF) or non-topol-
ogy parameters (PSRF). PC2 explains 5.8% of variance and
largely positively loads ESS values (TL ESS most strongly)
and negatively loads PSRF values, with high values of PC2
representing high ESS and low PSRF, that is, good conver-
gence, exclusive of the influence of ASDSF, which loads
minimally on PC2. The minimal loading of ASDSF and
only slightly higher loading of PSRF suggests that PC2
reflects primarily within-chain mixing, whereas PC1

largely describes how multiple chains converging onto
the same distributions, and that these two aspects of
convergence are largely independent.

Using multiple regression, we show that the number of
taxa, number of characters, and TL/branch (the average
branch length over a tree) are all highly significant predictors
of PCs 1 and 2, with TL/branch exhibiting the highest regres-
sion coefficient by orders of magnitude (table 3). The overall
adjusted R2 are low, although we expect this given the num-
ber of idiosyncratic factors that influence MCMC behavior for
any given chain. Short branches are one of the hallmarks of
difficult phylogenetic problems (e.g., Jarvis et al. 2014; Leach�e
et al. 2016; Burbrink et al. 2020), and so it makes sense that
ASDSF decreases as TL/branch increases.

In our PCA of acceptance rates, PC1 explains 53% of var-
iation, with topology proposals loading most strongly and

FIG. 4. PCA of core convergence diagnostics showing loadings of variables. Loadings have been rescaled to be visible on the same scale as the PCs.
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chain swaps loading slightly negatively (fig. 5). Number of
taxa, number of characters, and TL/branch are all significant
predictors of acceptance PC1 in a multiple regression, with
TL/branch having a much larger absolute correlation coeffi-
cient than number of taxa or characters (table 3). In this case,
the corrected R2 for the multiple regression is relatively high
at 0.39, indicating that numbers of taxa and characters and
particularly TL/branch are major predictors of the ability of
phylogenetic MCMC to mix effectively. These effects may be
better reflected in the acceptance rates than in the diagnos-
tics partially because we performed analyses on sets of chains
that have met all convergence diagnostic thresholds, perhaps
limiting the variation in these end result diagnostics, whereas
more variation is present in acceptance rates. We also expect
that this is a real pattern, as the acceptance rates directly
reflect the movements of the MCMC through parameter
space, rather than the end result distributions. That is, even
when convergence is harder to achieve and distributions are
more rugged, with enough samples and thinning, good con-
vergence as evidenced by ESS, ASDSF, etc., should still be
achievable, but chains may sample the parameter space less
effectively. Additionally, higher acceptance rates do not nec-
essarily correspond to improved convergence. TL/branch has
a positive correlation with PC1 of diagnostics but negative
correlation with PC1 of acceptance rates, indicating that as
average branch length goes up, ASDSF and topology accep-
tance rates both go down. This can intuitively be explained as
a result of more focused tree posteriors: When branches are
long, there is often unambiguous support for a small number
of trees, leading to low ASDSF but also low acceptance rates
because most tree proposals will be rejected once the few
most probable trees have been found.

To determine how parameters interact with each other in
a chain, we calculated the average correlations among all
parameters. We found a very strong negative correlation be-
tween LnPr and TL of �0.98 (fig. 6). This correlation is
expected, because the tree length prior in MrBayes used for
most analyses here is a C distribution on total tree length
with branch lengths partitioned according to a Dirichlet dis-
tribution. The C distribution places more prior weight on
relatively short trees than long trees (Rannala et al. 2012)
and so drives this correlation. The amniotes data sets used
an exponential prior on tree length, which also places higher
prior weight on shorter trees giving the same expectation. A
strong positive correlation with a median of 0.59 exists be-
tween a, the shape parameter for C-distributed substitution
rate heterogeneity, and I, the proportion of invariable sites in
the alignment. However, high correlations between these

parameters do not seem to strongly affect MCMC sampling
for either parameter, at least as measured by ESS. As the
correlation between parameters of the I þ C model has
been the subject of considerable discussion (Sullivan et al.
1999; Mayrose et al. 2005; Yang 2006), we paid special atten-
tion to these parameters, and explored the effect of using I þ
C versus C in further detail.

Improving Performance
Models with I � versus �
We reanalyzed data sets for which the selected substitution
model included I þ C under a simpler model that included
only C. Of the analyses that originally had poor convergence
of I or C, these analyses failed a median of 5 fewer diagnostic
thresholds (summing the number of failed diagnostics across
chains within each analysis). Analyses that had already passed
all diagnostic thresholds when implementing the I þ C
model did not perform worse when switching to a C-only
model and showed zero median change in the number of
failed diagnostics. Simplifying models from I þ C to C tended
to result in very small changes to tree topologies as measured
by normalized Robinson–Foulds (RF) distances between orig-
inal and reanalyzed chains when considering 95% or 50%
consensus trees (supplementary fig. S3a, Supplementary
Material online). Median RF distance increased when maxi-
mum clade credibility (MCC) trees were compared, as was
expected due to the potential inclusion of poorly supported
clades in such trees that are liable to change among different
analyses.

Although the a parameter for the C-distributed rate het-
erogeneity is generally correlated with the proportion of in-
variable sites when the I þ C model was used, this does not
typically seem to result in problematic inference. Using the C
rather than the I þ C model can improve performance when
MCMC performance is unsatisfactory, but most analyses pass
all diagnostic thresholds even when using the I þ C model.
Tree topologies also change minimally with the use of C
rather than I þ C. These results together suggest that,
when the tree topology is of primary interest, the IþC model
is not generally as problematic as some (including ourselves)
have worried (Sullivan et al. 1999; Mayrose et al. 2005; Yang
2006), but also that using C alone is sufficient to achieve
essentially the same topologies as are inferred when using I
þ C. This coupled with the improved performance when
switching from I þ C to C for those analyses that do initially
have low ESS suggests that there is little benefit to including
both together, and a low risk that doing so will lead to higher
incidence of performance issues. We therefore echo previous

Table 3. Regression Coefficients and P Values from Multiple Regressions Showing the Effect of Numbers of Taxa, Number of Characters, and TL/
Branch on Principal Components of Convergence Diagnostics (first two rows) and Acceptance Rates (third row).

# Taxa # Characters TL/Branch Adjusted R2

Coefficient P Value Coefficient P Value Coefficient P Value

PC1 of diagnostics 27.7 3 10203 1.0 3 102237 27.33 10205 3.33 10217 6.1 7.93 102204 1.6 3 1021

PC2 of diagnostics 24.3 3 10203 4.33 10275 4.93 10205 2.43 10208 23.6 9.3 3 10272 2.1 3 1022

PC1 of acceptances 24.5 3 10203 8.43 10223 21.43 10203 0.00 231.2 0.00 0.39
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researchers and recommend that researchers select C rather
than I þ C as a typical starting point.

Heating and Model Averaging
Heating changes resulted in failing a median of one fewer
diagnostic threshold (mean ¼ 0.95). This is predominately a
result of more chains passing ASDSF (table 4). The use of
model averaging over substitution models (nst ¼ mixed in
MrBayes) provided less improvement to convergence, with a
median change in the number of failed diagnostics of zero
and a mean of 0.42. Again, the predominate change is an
increase in the number of analyses that achieve satisfactory
ASDSF (table 4). Using updated heating or model-averaged
substitution models yielded trees that had low RF distances
from the original trees for 95% and 50% consensus trees, but
higher RF distances when comparing MCC trees

(supplementary fig. S3b and c, Supplementary Material on-
line). Given that heating does not change the model, there
should be no change in tree topologies unless previous anal-
yses had become stuck in local optima. These strategies both
demonstrate the potential to improve convergence but are
clearly not universal cures. Both strategies are useful to con-
sider when attempting to fix convergence issues, but phylo-
geneticists will need to focus on diagnosing the specific causes
of poor performance in their analyses and apply strategies
tailored to these causes.

Manual Diagnosis and Adjustment
For the subset of analyses that we manually examined to
determine causes of convergence failures, we found that
many analyses were erratically sampling values for substitu-
tion and base frequency parameters of the GTR model. This

FIG. 5. PCA of acceptance rates showing loadings of variables. Loadings have been rescaled to be visible on the same scale as the PCs.
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usually indicated a substitution model that was too complex
relative to the variation present in the data. Typically, using a
simpler substitution model (HKY in this study) or empirical
base frequencies improved performance considerably for
continuous parameters. Analyses both failed fewer overall
diagnostic thresholds and had high ESS for more parameters.
However, ASDSF values remained low for most of these anal-
yses (supplementary tables S2–S4, Supplementary Material
online). When using the HKY rather than GTR model, RF
distances for both 95% and 50% consensus trees were slightly

lower than when using GTR models with empirical base fre-
quencies, although we note that the sample size is low (sup-
plementary fig. S4a vs. S4b, Supplementary Material online).
RF distances are generally low when replacing the GTR model
with HKY in these analyses, with the exception of MCC trees,
as in other comparisons above. Unexpectedly, averaging over
substitution models using the Nst ¼ mixed option did not
yield gains similar to switching to an HKY model or empirical
base frequencies. We suspect that this may reflect a lack of
sufficient data to guide the reversible-jump model toward a
simpler, HKY-like model in these data sets. As expected, run-
ning analyses longer also improved performance and with
low RF values as there is no change to the model, simply
more samples from the posterior. Analyses failed fewer diag-
nostic tests and achieved ESS above 200 for many more
parameters in these cases, and notably, three out of the
four analyses that we ran longer without changing any further
parameters achieved desirable ASDSF values. Many chains,
especially for more complex analyses that feature more
taxa, characters, or model parameters than we have
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FIG. 6. Correlation matrix showing the mean of Pearson correlation coefficients for values of pairs of parameters across individual chains.

Table 4. Proportion of a Subset of Chains That Pass Diagnostic
Thresholds before and after Altering Heating or Averaging over
Substitution Models Using the Nst ¼ Mixed Option in MrBayes.

Pass
ESS

Pass Topo
ESS

Pass
ASDSF

Pass
SF Corr

Pass
PSRF

Original 0.92 0.79 0.08 1.00 0.91
Nst 5 mixed 0.90 0.83 0.15 0.98 0.89
New heat 0.94 0.92 0.16 0.99 0.89
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considered here, will require many more than 10M genera-
tions to achieve adequate convergence (Whidden and
Matsen 2015). The most common problems in this set of
analyses therefore seems to be data sets that may have had
low information and been overparameterized with more
complex substitution models, analyses that were larger and
more complex, requiring additional generations to ade-
quately converge, or both.

Conclusions
This survey of MCMC performance yields several lessons that
are broadly instructive for users of Bayesian phylogenetic
methods. The first is the importance of using all available
convergence diagnostics. We find that different diagnostics
detect different failures. The starkest differences are between
topology and non-topology diagnostics; and between single-
and multichain diagnostics. Given that topology is often the
most important target of inference, and that diagnostics fo-
cusing on the continuous parameters in the model routinely
fail to detect MCMC performance problems with topology,
researchers should be motivated to apply topology-specific
diagnostics to their phylogenetic MCMC analyses.
Additionally, single-chain diagnostics cannot identify failures
of independent chains to converge onto the same stationary
distribution, and many chains that pass single-chain diagnos-
tics fail multichain diagnostics. We reiterate the common
recommendation in the field to always run several indepen-
dent analyses and assess congruence between them.

We find that when MCMC performs poorly, adjusting
heating of Metropolis-coupled chains using coarse rules, or
utilizing reversible-jump model averaging over substitution
models can provide improved convergence, but do not alone
surmount the problem in a majority of cases. Instead, hunting
down the culprits of failed MCMC will often require case by
case examination to identify the specific causes, which are
likely to be idiosyncratic. Because of this, additional compu-
tational tools that help automate this time intensive task
would be a major benefit for the field. Although we have
focused on cases where MCMC has failed and how to identify
and rectify it, we would like to close by pointing out that the
pursuit of MCMC convergence does not appear to be partic-
ularly bleak, at least for the simple and commonly employed
Bayesian phylogenetic analyses that we examine here. For
larger data sets containing multiple gene regions, or mixtures
of data types, MCMC performance issues are expected to be
more pervasive and difficult to solve. Similarly, these issues
become more pronounced as inference models become more
complex and hierarchical, as is the case for joint inference of
divergence times and phylogeny or inference of species trees
under the multispecies coalescent model. A large set of re-
lated topics might be explored using the data set we have
assembled here, or similar data sets derived from the litera-
ture. These areas include exploring the performance of diag-
nostics that see wide use in Bayesian statistics generally, but
little use in phylogenetics (e.g., Geweke’s test, the
Heidelberger and Welch diagnostic); other basic techniques
for assessing MCMC performance generally (e.g., comparing

the divergence between the prior and posterior distributions);
focusing in more detail on behaviors of Metropolis-coupled
chains (e.g., Brown and Thomson 2018); and additional strat-
egies for optimizing MCMC performance, such as further
optimizing acceptance rates, including using guided and
adaptive tree proposals (Höhna and Drummond 2012;
Meyer 2019; Zhang et al. 2020). As analyses become more
complex, more complex strategies will be needed to detect,
diagnose, and resolve the difficulties.

Materials and Methods
We assembled MrBayes v3.2.2 and 3.2.5 (Huelsenbeck and
Ronquist 2001; Ronquist et al. 2012) MCMC output from
three previous studies (Barley and Thomson 2016; Brown
and Thomson 2017; Richards et al. 2018) and conducted a
new set of 10,382 MrBayes v3.2.5 analyses using data sets
assembled from the PhyLoTA database (Sanderson et al.
2008), for a total of 18,588 analyses that span many clades
across the tree of life and widely different time scales. These
previous studies carried out analyses of a large number of
alignments in order to investigate information content across
the amniote phylogeny (Brown and Thomson 2017), how
model fit impacts DNA barcoding efforts among closely re-
lated taxa (Barley and Thomson 2016), and the extent of
systematic error in analyses of mitochondrial genomic data
within the major lineages of amniotes (Richards et al. 2018).

MrBayes 3.2.2 was used in analyses from Barley and
Thomson (2016) and Brown and Thomson (2017) and
MrBayes 3.2.5 was used in Richards et al. (2018). The default
branch length prior for MrBayes in v3.2.2 was an exponential
prior, and this was used for analyses in Brown and Thomson
(2017), whereas a compound Dirichlet prior was used in anal-
yses from Barley and Thomson (2016) and Richards et al.
(2018) (Yang 2007; Rannala et al. 2012). This updated branch
length prior was developed to combat issues of pathologically
long trees sometimes being recovered when the exponential
prior was used (Brown et al. 2010; Marshall 2010). We note
that this problem is more common in partitioned analyses
(Brown et al. 2010), and so we do not expect this to be
common issue in the data sets from Brown and Thomson
(2017) as these and the data sets that we collected from the
two other studies are all unpartitioned, single-gene analyses.
We used default topology proposals, which were the same in
both versions of MrBayes: extended tree bisection regrafting
(abbreviated ExtTBR in MrBayes), extended subtree pruning
regrafting (SPR; abbreviated ExtSPR in MrBayes), parsimony-
biased SPR (abbreviated ParsSPR in MrBayes), and nearest
neighbor interchange (NNI in MrBayes and elsewhere). All
analyses from previous studies executed two independent
runs of four Metropolis-coupled chains. In each study, best
fit substitution models for each data set were identified using
external software. Barley and Thomson (2016) additionally
informed compound Dirichlet branch lengths priors based
on maximum-likelihood estimates, including and adjusted
heating of Metropolis-coupled chains for some analyses to
improve convergence.
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For each study, we gathered the Nexus input file used to
run the analysis, the MrBayes .t and .p files containing the tree
and parameter samples recorded through the Markov chain
for both of the independent runs, the .log files (not available
for Brown and Thomson 2017), and other associated output
files. For the new MrBayes analyses conducted here, we ana-
lyzed all data sets from the PhyLoTA database that contained
between 25 and 250 taxa. We downloaded data sets, aligned
the data using Muscle (Edgar 2004), trimmed ragged ends
containing more than 75% missing sites using the trimEnds
function of the R package ips (Heibl 2019: https://cran.r-proj-
ect.org/web/packages/ips/), chose a substitution model for
each alignment using the AICc criterion in JModelTest select-
ing only among models that are implemented in MrBayes
(Posada 2008), generated MrBayes input files, and ran all
analyses in MrBayes on the University of Hawaii HPC cluster
using a set of custom scripts. We selected models of substi-
tution using JModelTest in order to replicate what is perhaps
the most common historical choice for model selection. We
ran four independent Metropolis-coupled (one cold chain
and three heated chains) MCMC runs for 10 million gener-
ations and thinned the chains to retain 1,000 MCMC samples
for further analysis. The scripts and further detail about the
settings used in this pipeline are available in the github re-
pository associated with this study (https://github.com/sean-
harrington256/MCMC_convergence). We also pruned
samples from the chains that arose from previous studies
so that they match the analyses from the PhyLoTA database.
To do so, we removed samples after 10 million generations
and thinned the remaining samples to retain 1,000 samples.
This was done so that chains could be directly compared
among the studies. Here, we are less interested in ensuring
that all chains have converged than in the differences among
convergence properties for different data sets under similar
analytical conditions.

The MCMC chains we have included here are broadly
similar in that they were all run with MrBayes (differing
only by minor version), all utilize Metropolis coupling, are
single-gene (or potentially genes and associated flanking
sequences in the case of the PhyLoTA analyses) with varying
numbers of taxa and characters (supplementary fig. S5,
Supplementary Material online), are unpartitioned, and use
predominately default priors, with few differences in priors
(e.g., substitution models vary, branch length priors differ
between analyses between Brown and Thomson [2017] and
other studies). We chose this set of analyses due to a combi-
nation of availability (full output files from MCMC chains are
almost never reported), comparability among chains, and
computational considerations for the amount of disk space,
processing power, and time needed to store and analyze the
chains. Although many studies now include genome-scale
data sets and more complex models, understanding how
MCMC chains behave empirically in these relatively simple
cases is an important preliminary step. We expect the lessons
learned here to translate to more complex data sets with the
caveat that interactions among properties of the data sets
and chains will only become more complex as larger data sets

and more complex models such as molecular clocks and
partition models are included.

We used custom R v3.3.2 (R Core Team 2016) scripts to
calculate an array of convergence diagnostics along with sev-
eral features of the data and analyses from each set of
MrBayes output, then summarized broad patterns in these
diagnostics across all data sets. These 16 total diagnostics and
features are listed in supplementary table S1, Supplementary
Material online. In general, we calculated ESS for each param-
eter in the model, as well as the log likelihood (LnL), log prior
(LnPr). We recognize that these last measures are not param-
eters in the model, although we occasionally refer to them as
such for convenience when discussing, for example, trends in
ESS across parameters sampled in the MCMC. A fixed 25%
burn-in was removed before calculating all diagnostics.
Diagnostics were calculated using functions from or modified
from the RWTY (Warren et al. 2017), CODA (Plummer et al.
2006), tracerer (Bilderbeek and Etienne 2018), and BONSAI
(https://github.com/mikeryanmay/bonsai, last accessed
February 2018) packages, or were extracted directly from
the MrBayes output.

We investigated the effects of data set properties (includ-
ing numbers of taxa and characters) on convergence diag-
nostics using multiple regressions. We also used PCA (using
the pcaMethods package in R: Stacklies et al. (2007) to gain a
more complete picture of the correlations among conver-
gence diagnostics. We performed one PCA on what we refer
to as “core diagnostics”: ESS values for all parameters, topo-
logical ESS, ASDSF, and PSRF for all parameters. We per-
formed a second PCA on acceptance rates of MCMC
moves and the acceptance rate of chain swaps between the
cold chain and first heated chain. We performed this second
PCA excluding the amniotes data set of Brown and Thomson
(2017) as we did not have access to files necessary to extract
acceptance information for these analyses. Input data were
centered and scaled to unit variance prior to PCA. We used
multiple regression to determine the effect of number of
characters, number of taxa, and average branch length across
each tree (tree length per branch, TL/branch) on the first and
second principal components of our core diagnostics PCA as
metrics and separately on PC1 of the PCA on acceptance
rates.

We used correlations to examine the relationships among
parameters through chains, paying particular attention to the
correlation between the proportion of invariable sites and the
a parameter for C distributed among-site rate heterogeneity
in models that contained both parameters (I þ C models)
due to the concerns surrounding the potential interaction of
these parameters discussed in the introduction. All correla-
tions among parameters were calculated as Pearson correla-
tions. All relationships among MCMC properties and data set
characteristics were investigated only on chains that passed
all relevant convergence diagnostics.

After summarizing convergence diagnostics across these
data sets, we identified a subset of analyses with potentially
poor MCMC performance (n¼ 1,979) and binned them
according to the following criteria: 1) ESS < 200 for at least
one continuous parameter, 2) topological ESS (as
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approximate topological ESS [Lanfear et al. 2016]) < 200 and
LnL ESS < 200, 3) topological ESS < 200 but LnL ESS > 200,
and/or 4) ASDSF > 0.01. To attempt to determine if broad-
scale recommendations could be made to improve perfor-
mance of these analyses, we implemented two sets of rean-
alyses. Metropolis coupling can be useful in improving the
exploration of parameter space (Geyer 1991; Altekar et al.
2004), and so we first altered the heating of each analysis to
determine if this could result in improved performance across
the selected analyses. We used the acceptance rates of the
proposed swaps between the cold and heated chains to guide
heating changes by first coarsely dividing poorly performing
analyses into high (>0.5) and low (<0.5) acceptance rate
categories. We doubled the heating for the high category,
as high acceptance rates indicate that chains may be trapped
in similar areas of parameter space and that these analyses
may benefit from bolder proposals. We halved the heating for
the low acceptance category, as low acceptance indicates that
the heated chains may be spending too much time in low-
probability areas of parameter space leading to inefficient
mixing. Second, we changed the substitution models for
the same set that we altered heating for to implement model
averaging over all subsets of the GTR model (retaining the
original modeling of invariable and/orC distributed site rates)
by using the reversible-jump nst ¼ mixed option in MrBayes
(Huelsenbeck et al. 2004). Upon reanalyzing the data sets
using each of these strategies, we compared convergence
diagnostics of the original and reanalyzed output. We also
compared RF tree distances (Robinson and Foulds 1981)
among the original and reanalyzed chains to check if these
changes affected estimates of topology.

We also selected a set of analyses (n¼ 1,060) that had
originally been analyzed using a model that incorporated
both invariable sites and C-distributed rates (I þ C) to rean-
alyze using only C, as this can account for extremely low-rate
sites while avoiding potential interaction among the two
parameters. As above, we compared convergence diagnostics
and tree topologies of the original analyses including I þ C to
those of the analyses including C only.

Finally, we sought to reanalyze a smaller set of poorly
performing analyses individually. We selected 20 analyses
that had ESS values below 200 for large numbers of param-
eters. We then manually examined trace plots and conver-
gence diagnostics for each of these analyses individually to try
to determine the specific cause of the problem. We reana-
lyzed each of the data sets using a strategy targeted toward
what seemed to be the most probable culprit, including using
simpler substitution models or simply running chains longer.
Following these reanalyses, we compared the convergence
diagnostics and topology to the original chains.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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