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ABSTRACT

The present paper develops a graph-based sampling and con-
sensus (GraphSAC) approach to effectively detect anomalous
nodes in large-scale graphs. GraphSAC randomly draws sub-
sets of nodes, and relies on graph-aware criteria to judiciously
filter out sets contaminated by anomalous nodes, before em-
ploying a semi-supervised learning (SSL) module to estimate
nominal label distributions per node. These learned nominal
distributions are minimally affected by the anomalous nodes,
and hence can be directly adopted for anomaly detection. The
per-draw complexity grows linearly with the number of edges,
which implies efficient SSL, while draws can be run in paral-
lel, thereby ensuring scalability to large graphs. GraphSAC
is tested under different anomaly generation models based on
random walks, as well as contemporary adversarial attacks
for graph data. Experiments with real-world graphs show-
case the advantage of GraphSAC relative to state-of-the-art
alternatives.

1. INTRODUCTION

The ever-expanding interconnection of social, email, and me-
dia service platforms presents an opportunity for adversaries
manipulating networked data to launch malicious attacks [1,
2, 3, 4]. Adversarially perturbed or simply anomalous graph
data may disrupt the operation of critical machine learning
algorithms with severe consequences. Detecting anomalies in
graph data is of major importance in a number of contemporary
applications such as flagging “fake news,” unveiling malicious
users in social networks, blocking spamming users in email
networks, and uncovering suspicious transactions in financial
or e-commerce networks [5, 6]. Detecting these anomalous
nodes can be formulated as a learning task over an attributed
graph.

Before positioning our work in context, we highlight dif-
ferent types of graph-based anomalies. Homophilic anomalies
characterize nodes whose attributes are dissimilar to those of
their neighbors [7, 8]. These nodes violate the homophily
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property that postulates neighboring vertices to have similar
attributes, and is heavily employed in semi-supervised learning
(SSL) [9, 10, 11, 12, 13]. In a social network of voters for
example, friends typically belong to the same voting party; see
Fig. 1a. Oftentimes, anomalous nodes may form dense con-
nections giving rise to clustered homophilic anomalies Fig. 1b.
Structural anomalies correspond to nodes with attributes that
are dissimilar to structurally similar nodes [14]. Structural
similarity among nodes suggests that vertices involved in simi-
lar graph structural patterns possess related attributes [15]. In
an academic collaboration network for instance, nodes with
similar graph structure (central nodes) have similar labels (e.g.,
professors); see Fig. 1c.

Todays era of data deluge has grown the interest for detect-
ing anomalies in collections of high-dimensional data [16, 17].
This paper deals with anomalies in data that exhibit inter-
dependencies captured by a graph [5]. The inaccessibility
and prohibitive cost associated with obtaining ground-truth
anomalies motivates the development of mainly unsupervised
techniques.

Methods for detecting anomalies in attributed graphs can
be roughly classified in three categories. Community-based
approaches find clusters of nodes and search for anomalies
within each cluster. A probabilistic method is developed in
[18] that jointly discovers communities, and detects commu-
nity outliers as anomalies. Similarly, [7] identifies anomalies
by measuring the attribute correlation of nodes within each
node’s egonet, meaning the subgraph induced by the node
of interest, its one-hop neighbors, and all their connections.
Subspace-based approaches focus on spotting anomalies in
subspaces extracted from the nodal features [19]. On the other
hand, model-based methods learn an embedding per node and
flag anomalies by measuring the model-fitting error [20, 21]. A
parametric model is developed in [20] to capture the coherence
among the attributes of nodes and their connectivity. A deep
graph autoencoder is advocated in [21] that fuses attributes and
connections to an embedding per node, and identifies anoma-
lies using the reconstruction error at the decoder side. Despite
their empirical success, these contemporary approaches are
confronted with a number of challenges. The computational
overhead associated with community detection, subspace ex-
traction and deep learning, discourages their applicability to
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(a) Social network of voters.

(b) Clustered anomalies.

Professors,
°

(c) Academic network.

Fig. 1: Nodes in dotted square exhibit (a) (b) homophilic and (c) structural anomalies.

large-scale graphs. The local scope of community-based meth-
ods confines the breadth of the anomaly detector that is further
vulnerable to clusters of connected anomalous nodes. Finally,
all aforementioned approaches ultimately learn an anomaly
score that relies on attributes and connections of all nodes.
However, either the attributes or the network links for some
nodes may be compromised by adversaries [22, 23].

Addressing the aforementioned challenges, we introduce
a graph random sampling and consensus (GraphSAC) frame-
work for detecting anomalous nodes on large graphs. Instead
of directly considering all nodes, our novel method samples
subsets of nodes, and relies on graph-aware criteria to judi-
ciously filter out subsets contaminated by anomalous nodes.
The “clean” sets are utilized by a SSL module that estimates a
nominal class distribution per node. The core intuition behind
GraphSAC is that attributes of anomalous nodes will have poor
predictive performance in a SSL task. The contribution of this
work is fourfold. i) A novel approach to estimating a class dis-
tribution per node that is guaranteed to be minimally affected
by anomalous nodes; ii) A versatile framework that adapts to
different types of anomalies via an application-specific SSL
module (cf. Fig. 1); iii) Scalability to large-scale graphs (com-
plexity is linear in the number of edges); and iv) experimental
evidence confirming that the novel graph anomaly detector out-
performs state-of-the-art approaches in identifying clusters of
anomalous nodes, as well as contemporary adversarial attacks
on graph data.

2. GRAPH-BASED RANDOM SAMPLING AND
CONSENSUS

Consider a graph G := {V, £}, where V := {ny,na,...,ny}
is the vertex set, and £ the edge set of E edges . The connec-
tivity of G is described by an adjacency matrix A € RV*N,
where [A],, s > 0if (n,n') € £. Each node n € V is associ-
ated with one or more scalar labels y,, € {1,...,C} that form
the N x C matrix Y := [y ,...,yA]" with [Y] _=1,if
Yn = ¢, and 0 otherwise. ’

Given A and Y the goal in this paper is to detect K anoma-
lous nodes with indices in the set A := {nq,...,nk}. Such

nodes are expected to violate a certain property such as ho-
mophily. To this end, we require a model that relates the graph
with the labels, and promotes the desired properties.

An immediate approach is to directly consider all nodal
labels and connections in a graph-based model. However,
such a holistic approach will be vulnerable to the inclusion of
anomalous nodes that will bias the learned model and poison
the anomaly detection framework.

Instead, our idea is to sample labels y,, at random subsets
of nodes n € £ C V and prudently discard contaminated
subsets. Given £, we perform SSL to predict the labels across
all nodes. SSL methods utilize the labels at £ along with the
graph connectivity A to predict the labels at the unlabeled
nodes V \ L. We draw inspiration from the random sampling
approach for robust model fitting in image analysis [24]. The
SSL model f(-) utilizes the labels in L to estimate the N x C'
label distribution matrix as follows

P = f({yn}nec, A) (0

where P(nﬁc) € [0, 1] can be interpreted as the probability that
Yn = c. Henceforth, for notation brevity we define the SSL
model as follows f(£) := f({yn}tnec,A). The choice of
f(+) is dictated by specific properties one may want to capture;
see also Fig. 1.

Nevertheless, if LN.A # (), the predicted label distributions
will be affected by the anomalous nodes. To bypass this hur-
dle, we formulate a hypotheses test to assess if anomalies are
present in £ by evaluating the predictive SSL performance in-
stantiated with £, namely f(L£). Our test relies on the premise
that attributes of anomalous nodes will have poor predictive
performance for SSL.

Our iterative algorithm termed GraphSAC is summarized
as Algorithm 1. Per iteration ¢, we first sample S nodes uni-
formly at random from V without replacement, that is

LY ~ Unif(Lg) 2)

where Lg := {£L C V : |L] = S} is the set of all S—size
subsets. Given the labels in £(9, the SSL model (1) outputs

the predicted label distribution matrix f’(c? = f(£®). Nodes
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Algorithm 1 GraphSAC
Input: f(-,-), A, {y }2_1, [, T,i + 0

. Obtain P as in (4)
. Obtain anomaly scores {¢,, }_; asin (5)

1. while 7 < I do

2. Select £() at random

3. Estimate lsg) = f(£®) and consensus set I*

4. If[U*|/N < T then §;(LD) = 0, 0tw. (L) =1
5. t+1i+1

6. end while

7

8

whose labels are correctly predicted by f (E(i)) form the con-
/ o (1)
d = argmax. [P |nc, and y, =

sensus set U* = {n :
c'}.

Next, GraphSAC compares the accuracy of f (L(i)) using
e.g., the ratio of nodes in the consensus set to a prespecified
threshold T. If [U/*|/N > T, GraphSAC decides that £(*)
does not contain anomalies, meaning § f(ﬁ(i)) = 1; otherwise,
the set is contaminated with anomalies and filtered out, that is

§¢(L®) = 0. The following test of hypotheses is performed

{ Ho: (5f(£(z))

=1, if U*|/N>T
Hy: 6;(£9) =0,

otherwise.

3

Essentially, this test filters out subsets that are contaminated
with anomalies £ N A # (), and will bias the learned model.
Hence, 07(-) corresponds to a filter that aims to retain only
“clean” sets i.e. LN A = (). We will elaborate on the perfor-
mance of this filter in Section 3. The resulting sample average
of the nominal label distribution is given by

A I pWs (oo
B, — izt Pa 0 (L) @

Soi1 0 (L)

Even though £(V) are drawn uniformly at random (2), J(-)
introduces a sampling bias towards “clean” subsets. Conse-
quently, Pg is minimally affected by anomalous nodes and
represents the nominal class distribution.

Finally, we select as anomalous the nodes with the largest
distance between their nominal distribution and their actual
labels. GraphSAC estimates an N x 1 anomaly score vector
¢(P¢) with entries

b = dist(pC,y,), VneV 5)

where pC is the n-th row of P, pfﬁ is the n-th row of f’g)
and dist(+, -) is the cross-entropy loss Therefore, ¢,, is larger if
n does not adhere to the graph-related properties promoted by
the SSL model. Hence, we rank the nodes in decreasing order
with respect to ¢,,, and select the first K nodes as anomalous.

Instead of using as many nodes as possible to obtain the
solution, GraphSAC relies on small sets of S nodes and SSL-
aided hypotheses testing to avoid subsets contaminated with

anomalous nodes. The small sample size (S < N) enables
GraphSAC to remain operational even under adverse condi-
tions where K is relative large. GraphSAC’s robustness is
Justified since only one “clean” £ is required for a valid
P 4).

The computational complexity of GraphSAC per ¢ is dic-
tated by the label prediction step f(£) that scales linearly with
the number of edges O(E) for scalable SSL methods [25, 26].
Further, since the draws £ are independent, each Graph-
SAC iteration ¢ can be readily parallelized, thereby ensuring
scalability to large-scale graphs.

Notice that so far f(-) is not specified. Hence, GraphSAC
may adapt to the pertinent type of anomalies (see Fig. 1) by
appropriately choosing the model f(-). Homophilic anomalies
for example, call for SSL methods e.g. diffusion-based clas-
sifiers [25, 26] or contemporary graph convolutional neural
networks (GCN)s [10, 27, 28, 29]. On the other hand, struc-
tural anomalies necessitate models that promote structural
similarities among nodes such as the work in [15]. The fol-
lowing theorem endows the proposed method with analytical
guarantees.

Theorem 1. Let P,,, = E£<i>:ﬁ<i>mA:@[1€’g)] denote the
expected pmf matrix, where f’g) are computed using LD that
do not contain anomalies. It then holds that

. C.
PG — Puom|l1 < C1Pr + 72 (6)

where Py, := Pr(5¢(L®) = 1|{L9NA % 0) is the probability
of false alarms for line 4 of the algorithm and C1,C5 are
constants. Proof in [30] due to space constraints.

Theorem 1 shows that the distance of PG with the desired
pmf matrix that is not affected by anomalies decreases as the
Ps, becomes smaller and the number of draws [ increases.

3. EXPERIMENTS

In this section, we compare GraphSAC with state-of-the-art
alternatives under different anomaly generation models based
on random walks, as well as contemporary adversarial attacks
for graph data.

The baselines used in this experiment include Amen [7],
graph neural network encoder (GAE) [21], Radar [20],Average
degree [31], Cut ratio [32], Flake [33], and Conductance [34].
The different methods are evaluated using the area under the
curve (AUC) of the receiver operating characteristic (ROC)
curve. The ROC curve plots the rate an anomaly is detected
(true positive) against the rate a node is miss-classified as
anomalous (false positive). The AUC value represents the
probability that a randomly chosen abnormal node is ranked
higher than a normal node.

Datasets. The 7 benchmark labeled graphs are Cora (N =
2708, C = 7), Citeseer (N = 3327,C = 6), Pubmed (N =
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Fig. 2: AUC values for increasing number of anomalies |A| =

Flake - -® = Conductance --«-- Radar

K. (Top left) Pubmed, (Top middle left) Cora, (Top middle

right) Citeseer, (Top right) Polblogs, (Bottom left) Blogcat, (Bottom middle) Wikipedia (Bottom right) PPI.

Table 1: AUC values for detecting adversarial attacks.

Dataset Citeseer Polblog Cora Pubmed
GraphSAC 0.75 0.98 0.80 0.82
Gae 0.64 0.51 0.50 0.69
Amen 0.73 0.89 0.75 0.62
Radar 0.67 0.76 0.77 0.44
Degree 0.58 0.48 0.40 0.57
Cut ratio 0.49 0.51 0.35 0.55
Flake 0.47 0.61 0.46 0.60
Conductanc 0.35 0.39 0.61 0.59

19717,C = 3), Polblogs (N = 1224,C = 2), Blogcat
(N = 10312,C = 39), PPI (N = 3890,C = 50), and
Wikipedia (N = 4733, C = 39). The nodes in the last three
graphs are multilabel ones. For graphs with multilabeled nodes
adversarial attacks are not defined and hence, these graphs are
not included in the respective experiments.

3.1. Adversarial attacks

We generated anomalies using the adversarial setup in [22],
where attacks are effected on attributed graphs targeted for
GCNs. We focus on structural attacks, which means that edges
adjacent to the targeted node are added or removed; that is,
we select a random subset of targeted nodes .4, and alter their
connectivity by a sequence of structural attacks [22].

Table 1 reports the AUC values for competing state-of-the-
art techniques in detecting adversarial attacks with K=10 tar-
geted nodes. As GAE relies on a deep graph autonencoder [21],
it is maximally affected by the adversarial attacks. Our novel

method outperforms all alternatives in detecting the attacked
nodes. These promising results suggest that GraphSAC can be
effectively employed as a preprocessing step to flag adversarial
input to a graph neural network.

3.2. Random walk-based anomalies

We test the algorithms in identifying homophilic random-walk
based anomalies. To generate these we select a subset of |.A|
nodes at random, and alter their labels. For each n € A, we
perform a random walk of length £ = 10, and replace y,, with
the label of the landing node. Hence, we modify the labels
of the targeted nodes in A as prescribed by the random walk
model. The resulting nodes violate the homophily property.

Fig. 2 plots the AUC values of various methods with
increasing K on 6 benchmark graphs. Evidently, GraphSAC
outperforms alternatives while the performance of all methods
degrades slightly as K increases.

4. CONCLUSION

We introduced a graph-based random sampling and consensus
approach to effectively detect anomalous nodes in large-scale
graphs. Rigorous analysis provides performance guarantees
for our novel algorithm, by bounding the number of random
draws involved. GraphSAC outperforms competing algorithms
in detecting random walk-based anomalies, clustered anoma-
lies, as well as contemporary adversarial attacks for graph
data. Our future research will leverage GraphSAC to guard
semi-supervised learning algorithms from adversarial attacks.
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