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Abstract
A cubic polynomial with a marked fixed point 0 is called an IS-capture poly-
nomial if it has a Siegel disk D around 0 and if D contains an eventual image
of a critical point. We show that any IS-capture polynomial is on the bound-
ary of a unique bounded hyperbolic component of the polynomial parameter
space determined by the rational lamination of the map and relate IS-capture
polynomials to the cubic principal hyperbolic domain and its closure.

Keywords: complex dynamics, Julia set, laminations, Siegel capture polynomial

Mathematics Subject Classification numbers: primary 37F45, secondary
37F10, 37F20, 37F50.

1. Introduction

A complex polynomialP of any degree is said to be hyperbolic if all of its critical points belong
to the basins of attracting or superattracting periodic cycles. The set of all hyperbolic polyno-
mials in any particular parameter space is open. Components of this set are called hyperbolic
components. The dynamics of hyperbolic complex polynomials is well understood. Accord-
ing to the famous Fatou conjecture [Fat20], hyperbolic polynomials are dense in the parameter
space of all complex polynomials. This explains why hyperbolic components play a prominent
role in complex dynamics.
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By a general result of Milnor [Mil12], every bounded hyperbolic component in the moduli
space of degree d polynomials is an open topological cell of complex dimension d − 1. Hence
it is fair to say that the structure of such hyperbolic domains is known. However, in degrees
greater than 2, the same cannot be said about the closures of hyperbolic components. Arguably,
even in the case of the cubic principal hyperbolic domain PHD3 (defined as the subset of the
cubic parameter space consisting of classes of polynomials with a unique (super)attracting
fixed point and a Jordan curve Julia set), the description of its boundary has proved to be rather
elusive. For example, in a recent paper by Petersen and Lei [PT09] it is shown that the boundary
of PHD3 has a very intricate ‘fractal’ structure that is not fully understood. Thus, understanding
the boundaries of hyperbolic components, in particular understanding the boundary of PHD3,
is an important open problem.

Qualitative changes in the dynamics of polynomials take place on the boundary of the con-
nectedness locus. It is known that boundaries of bounded hyperbolic components are contained
in the boundary of the entire connectedness locus. This provides an additional incentive for
studying boundaries of hyperbolic components.

In our paper we consider these issues in the cubic case. More precisely, we consider the
parameter space of cubic polynomials with a marked fixed point. The corresponding con-
nectedness locus contains many complex analytic disks in its boundary. A typical example
is provided by IS-capture polynomials, i.e., polynomials that have an invariant Siegel domain
around the marked fixed point and a critical point which is eventually mapped into it. In this
paper we study the dynamics of such polynomials and their location in the parameter space;
below we briefly summarize our main results.
Summary of the main results. An IS-capture polynomial f belongs to the boundary of a
unique bounded hyperbolic component with the same rational lamination as f . Moreover, f
belongs to a complex analytic disk lying in the boundary of this hyperbolic component.

We also obtain some corollaries. In [BOPT14a] it was proven that all polynomials from
PHD3 satisfy some simple conditions. We conjecture that these conditions are not only neces-
sary but also sufficient for a polynomial to belong to the closure of PHD3. In the present paper
we show that any polynomial satisfying the above mentioned conditions but not belonging to
the closure of PHD3 must be a polynomial of so-called queer type. This improves our earlier
results [BOPT16a].

To state another corollary of our results, we remind the reader about Brjuno numbers.

Definition 1.1 (Brjuno numbers) . The set B is the set of irrational numbers θ such that∑ ln qn+1
qn

< ∞, where pn
qn

→ θ is the sequence of approximations given by the continued
fraction expansion of θ. Numbers from B are called Brjuno numbers.

The following is a classical result by Brjuno [Brj71].

Theorem 1.2 ([Brj71]) . If a is an irrationally indifferent fixed point of a polynomial f with
multiplier e2πiθ and θ ∈ B, then the point a is a Siegel fixed point.

Another classical result, due to Yoccoz, states that in the quadratic case theorem 1.2 is sharp.

Theorem 1.3 ([Yoc95]) . In the situation of theorem 1.2, if f is quadratic and θ /∈ B is not a
Brjuno number, then a is a Cremer fixed point of f.

A conjecture by Douady states that theorem 1.3 holds for higher degree polynomials too.
We show that if a polynomial P does not belong to the closure of PHD3 and has multiplier
λ = e2πiθ at its fixed point w, where θ is not a Brjuno number, then w is a Cremer fixed point
of P. Thus, if a cubic counterexample to the Douady conjecture exists, it must be a polynomial
from the boundary of PHD3.
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Understanding the structure of the polynomial space in degree greater than two is an impor-
tant problem in complex dynamics. Describing the location of IS-capture polynomials in the
parameter space is a step which will, hopefully, allow one to study the boundaries of hyperbolic
components and their mutual disposition, extending our knowledge about the cubic polynomial
parameter space.

2. Detailed statement of the results

We write C for the plane of complex numbers. The Julia set of a polynomial f : C→ C is
denoted by J( f ), and the filled Julia set of f byK( f ). For quadratic polynomials, a crucial object
of study is theMandelbrot setM2. Let Pc(z) be a quadratic polynomial defined by the formula
Pc(z) = z2 + c. Clearly, 0 is the only critical point of the polynomial Pc in C. By definition,
c ∈ M2 if the orbit of 0 under Pc is bounded (points with unbounded orbits are said to escape).
Equivalently, c ∈ M2 if and only if the filled Julia set K(Pc) is connected. If c /∈ M2, then the
set K(Pc) is a Cantor set.

By classes of polynomials we mean affine conjugacy classes. The class of f is denoted
by [ f ]. The parameters c of Pc(z) are in one-to-one correspondence with classes of quadratic
polynomials. A higher-degree analog of the set M2 is the degree d connectedness locusMd,
i.e., the set of classes of degree d polynomials f all of whose critical points do not escape or,
equivalently, whose Julia set J( f ) is connected.

The structure of the Mandelbrot set is described in the seminal work of Thurston [Thu85]
(see also [DH8485]). In particular, [Thu85] gives a full description of how distinct hyperbolic
components ofM2 are located with respect to each other and what kind of dynamics is exhib-
ited by polynomials from their boundaries. However, for degrees d > 2 studying the set Md

has proven to be a difficult task. Certain full dimensional parts of Md are well understood;
e.g., results of [EY99, IK12] allow to find copies of M2 ×M2 or MK in M3 (here MK is
the set of pairs (c, z), where c ∈ M2 and z ∈ K(Pc)). However, the combinatorial structure of
Md as a whole remains elusive.

The central and, arguably, the simplest part of theMandelbrot set is the (quadratic) principal
hyperbolic domain denoted by PHD2. It is the set of all parameter values c such that the poly-
nomialPc has an attracting fixed point. All these polynomials have Jordan curve Julia sets. The
closure PHD2 of PHD2 consists of all parameter values c such that Pc has a non-repelling fixed
point. It is sometimes called the filled main cardioid. Its boundary Bd(PHD2) is a plane alge-
braic curve, a cardioid called themain cardioid. As follows from the Douady–Hubbard param-
eter landing theorem and from the ‘no ghost limbs’ theorem by Yoccoz [DH8485, Hub93], the
Mandelbrot set itself can be thought of as the union of PHD2 and limbs, connected components
ofM2\PHD2, parameterized by reduced rational fractions p/q ∈ (0, 1).

It is natural to consider analogs of the main cardioid for higher degree polynomials, in par-
ticular for cubic polynomials. This motivates our interest to the boundary of the cubic principal
hyperbolic domain PHD3 defined as the set of classes of cubic polynomials that have an attract-
ing fixed point and whose Julia set is a Jordan curve. A closely related set, the so-called main
cubioid, was studied in a few recent papers ([BOPT14a–BOPT16b]). In this framework an
important task is to describe whether polynomials with certain dynamical properties belong to
the boundary of the main cubioid. This is one of the problems addressed in the present paper.

Let us now concentrate on cubic polynomials. Let F be the space of polynomials fλ,b given
by the formula

fλ,b(z) = λz + bz2 + z3, λ ∈ C, b ∈ C.
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The space F is adapted to studying polynomials with a marked fixed point. Any such polyno-
mial is affinely conjugate to one from F under a conjugacy sending the marked fixed point to
0. All polynomials g ∈ F have 0 as a fixed point. Let the λ-slice Fλ of F be the space of all
polynomials g ∈ F with g′(0) = λ. It is well known that two polynomials fλ,b and fλ,b′ are con-
jugate by a Möbius transformationM(z) that fixes 0 if and only ifM(z) = ±z and b′ = ±b. We
will deal with f ∈ Fλ for someλ and consider only perturbations of f inF . SetFat =

⋃
|λ|<1Fλ

(the subscript at stands for attracting)4. Let us emphasize that Fat is the family of polynomi-
als from F that have the point 0 as an attracting fixed point. For each g ∈ Fat, let A(g) be the
immediate basin of attraction of 0. Denote byFnr the set of all polynomials f = fλ,b ∈ F such
that 0 is non-repelling for f (so that |λ| � 1).

Suppose that a is a fixed point of a polynomial f of any degree. Assume that f ′(a) = e2πiθ

where θ is irrational. Then a is said to be an irrationally indifferent fixed point. If f is lineariz-
able (i.e., analytically conjugate to a rotation) in a neighborhood of a, the point a is called
a Siegel fixed point. In this case the rotation in question is well defined and is the rotation
by 2πθ so that θ is called the rotation number. Moreover, this is equivalent to the existence
of an orientation preserving topological conjugacy between f in a neighborhood of a and the
rotation by 2πθ of the unit disk. If a is a Siegel fixed point, the biggest neighborhood of a on
which f is linearizable exists and is called the Siegel disk around a. If f is not linearizable in
any neighborhood of a then the point a is called a Cremer fixed point.

Definition 2.1 (Siegel captures) . Suppose that a polynomial f ∈ F has a Siegel diskΔ( f )
around 0. If a critical point of f is eventuallymapped toΔ( f ), then this critical point is denoted
by ca( f ) (here ‘ca’ stands for ‘captured’), and f is called an IS-capture polynomial, or simply
an IS-capture (here ‘I’ stands for ‘invariant’ and ‘S’ stands for ‘Siegel’). By [Man93], there
exists a recurrent critical point re( f ) of f (here ‘re’ stands for ‘recurrent’) whose limit set
contains Bd(Δ( f )). It follows that the critical points ca( f ) and re( f ) are well-defined and
distinct (evidently, ca( f ) is not recurrent).

Remark 2.2. Generically, maps in the familyF have three fixed points. Any of these points,
not only 0, could have a Siegel disk around it that captures a critical point. However, let us stress
that we only speak of IS-captures when 0 is the Siegel fixed point whose Siegel disk captures
a critical point.

In this paper, we study the location of IS-captures in F relative to hyperbolic components.
An important role here is played by the set P◦ of all hyperbolic polynomials f ∈ F such that
f ∈ Fat and J( f ) is a Jordan curve. Equivalently, f ∈ Fat belongs toP◦ if and only if A( f ), the
immediate basin of attraction of 0, contains both critical points of f. Evidently, P◦ is open in
F . To see thatP◦ is one hyperbolic component ofF , not only ofFat, observe that polynomials
fb,λ = z3 + bz2 + λz with |λ| = 1 are not hyperbolic and that by corollary 4.9, the set P◦ is
connected.

Definition 2.3. The set P◦ is called the principal hyperbolic component of F . We say that
a hyperbolic polynomial f ∈ Fat is an IA-capture polynomial (IA stands for invariant attract-
ing) if a critical point of f, denoted by ω2( f ), is eventually mapped to A( f ) but does not lie
in A( f ) (then the remaining critical point ω1( f ) belongs to A( f ), and no critical point of f
belongs to J( f )). A hyperbolic component U of F is of IA-capture type if U contains an IA-
capture polynomial. Hyperbolic components of IA-capture type will also be called IA-capture
components.

4 The set Fat was denoted by A in [BOPT14b, BOPT16b]. We adopt a more consistent notation in this paper.
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Similarly to remark 2.2, we emphasize that IA-capture polynomials have 0 as their attracting
fixed point. Evidently, both critical points ω1( f ),ω2( f ) are well-defined for an IA-capture
polynomial f . Observe also that, similarly to the above, the fact that polynomials fb,λ = z3 +
bz2 + λz with |λ| = 1 are not hyperbolic implies that any hyperbolic component U of F of
IA-capture type is contained in Fat. Thus, the principal hyperbolic componentP◦ ofF and the
hyperbolic components of F of IA-capture type are subsets of Fat.

We also need the concepts of rational lamination and full lamination. Denote byD the open
unit disk in the complex plane centered at the origin and by S the unit circle which is the
boundary of D. We will identify R/Z with S via x �→ e2πix .

Let f be a monic polynomial of degree greater than 1 and connected Julia set. In this case all
external rays with rational arguments land. Given two rational angles α, β ∈ R/Z, we declare
α ∼ rβ iff the landing points of the corresponding external rays coincide. This defines an equiv-
alence relation on Q/Z. The equivalence classes are finite (see theorems 3.5 and 3.6 with
references). We then consider the collection Lr

f of all edges of the convex hulls (in D) of all
equivalence classes and call it the rational lamination of f .

If the Julia set J( f ) is locally connected, then all external rays land. Given any two angles
α, β ∈ R/Z we declare that α ∼ β if the landing points coincide. This defines an equivalence
relation on R/Z, and in this case too the equivalence classes are finite (see theorems 3.5, 3.6
and 1.1 of [Kiw02]). The collection of all edges of the convex hulls of all classes is denoted
L f and is called the (full) lamination of f . We will refer to the elements of L f as leaves.

We include in each lamination the singletons {e2πiα} and call them degenerate leaves, with
α ∈ Q/Z for Lr

f , resp. α ∈ R/Z for L f . The set C of all possible chords of the unit disk and

singletons in the unit circle is equipped with a natural topology that associates to a chord ab of
S with endpoints a, b ∈ S the pair {a, b} of the symmetric product S× S/(a, b) ∼ (b, a).

Clearly, in the case when J( f ) is locally connected we have Lr
f ⊂ L f and, since L f is

closed (see section 3), we have Lr
f ⊂ L f . Contrary to what one may expect, it is not always

true that Lr
f = L f . A typical example is the case of a quadratic polynomial Q with invariant

Siegel domain and locally connected Julia set. Then Lr
Q consists only of degenerate leaves

and, therefore, coincides with the rational lamination of z2 (abusing the language we will
call such a lamination the empty lamination). For IS-capture polynomials, we relate rational
and full laminations in subsection 3. Recall that a polynomial with connected Julia set that
belongs to a hyperbolic component has a locally connected Julia set and, hence, a well-defined
lamination.

Theorem A. If f ∈ F is an IS-capture polynomial, then there is a unique bounded hyper-
bolic component U in F , whose boundary contains f. Moreover, U ⊂ Fat, for all P ∈ U we
have Lr

f = Lr
P, LP = Lr

f , and there are two possibilities:

(a) the Julia set of f contains no periodic cutpoints, then U = P◦;
(b) the Julia set of f has a repelling periodic cutpoint, then U is of IA-capture type.

A polynomial is said to be J-stable with respect to a family of polynomials if its Julia set
admits an equivariant holomorphic motion over some neighborhood of the map in the given
family [Lyu83, MSS83]. Say that f ∈ Fλ is λ-stable if it is J-stable with respect to Fλ with
λ = f ′(0), otherwise f is called λ-unstable. A component of the set of λ-stable polynomials in
Fλ is called an IS-capture component if some (equivalently, all) polynomials from this compo-
nent are IS-capture polynomials. Thus IS-capture components are complex one-dimensional
analytic disks in the two-dimensional space F . Every such disk is contained in a slice Fλ

represented as a straight (complex) line in coordinates (λ, b) of F .
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In [Zak99, theorem 5.3], Zakeri proved that every IS-capture polynomial belongs to some
IS-capture component. From theorem A it follows that every IS-capture component is con-
tained in the boundary of a unique hyperbolic component U of F . Moreover, U = P◦ or U is
of IA-capture type. Conversely:

Theorem B. Let U be either an IA-capture component or P◦. Then the boundary of U
contains uncountably many IS-capture components lying in Fλ, where λ = e2πiθ, and θ runs
through all Brjuno numbers in R/Z.

Amore precise formulationof theoremB is contained in theorem6.5.Wewill apply theorem
A to the study of P , the closure of P◦ in F . The following are some properties of polynomials
in P .

Theorem 2.4 ([BOPT14a]) . If f = fλ,b ∈ P , then |λ| � 1, the Julia set J( f ) is connected, f
has no repelling periodic cutpoints in J( f ), and all its non-repelling periodic points, except
possibly 0, have multiplier 1.

These properties extend almost verbatim to the higher degree case [BOPT14a]. Theorem
2.4 motivates definition 2.5.

Definition 2.5 ([BOPT14a]) . Let CU be the family of cubic polynomials f ∈
⋃

|λ|�1Fλ such
that J( f ) is connected, f has no repelling periodic cutpoints in J( f ), and all its non-repelling
periodic points, except possibly 0, have multiplier 1. The family CU is called the main cubioid
of F .

Note that P◦ and CU are subsets of F that play a similar role to the principal hyperbolic
component PHD3 and themain cubioidCU in the (unmarked)moduli space of cubic polynomi-
als. However, the difference is that, when definingP◦ and CU , we take into account the special
role of the marked fixed point 0 for polynomials in F . As a consequence, the sets P◦ and CU
are not stable under arbitrary affine conjugacies. By theorem 2.4, definition 2.5 immediately
implies that

P ⊂ CU .

Corollary C. IS-capture polynomials do not belong to CU\P .

We prove corollary C at the end of section 5.
For a compact set X ⊂ C, define the topological hull TH(X) of X as the union of X with all

bounded components of C\X. We write Pλ for the λ-slice of P , i.e., for the set P ∩ Fλ.

Corollary D. IfW is a component of TH(Pλ)\Pλ and f ∈ W , then the following holds.

(a) Any such polynomial f is λ-stable.
(b) Critical points of f are distinct and belong to J( f ).
(c) The Julia set J( f ) has positive Lebesgue measure and carries an invariant line field.

We prove it in section 7. Part of it follows from [Zak99, theorem 3.4].
In section 7, we also obtain interesting corollaries of theorem B that help distinguish

between Siegel and Cremer fixed points of a given multiplier.
In the end of this section we include a glossary of non-standard terms and notation used

throughout the paper. We are indebted to one of the referees for the suggestion to include this
glossary.
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2.1. Glossary of important terms and notation

PHD3: the principal hyperbolic domain in M3 consisting of classes of hyperbolic cubic
polynomials with a fixed (super)attracting point and the Jordan curve Julia set.
IS-capture polynomial: a cubic polynomial with invariant Siegel domain and a critical point
that eventually maps to that domain.

F : the space of polynomials fλ,b given by the formula

fλ,b(z) = λz + bz2 + z3, λ ∈ C, b ∈ C.

Fλ: the λ-slice of the space F consisting of all polynomials g ∈ F with g′(0) = λ.
Fat: the union of all Fλ with |λ| < 1.
A(g): the immediate basin of attraction of 0 for g ∈ Fat.
Fnr: the union of all Fλ with |λ| � 1.
Δ( f ): if f ∈ F has a Siegel disk around 0, then we denote this disk byΔ( f ).
P◦: the set of all hyperbolic polynomials f ∈ F such that f ∈ Fat and J( f ) is a Jordan

curve.
P : the closure of P◦ in F .

IA-capture polynomial: a hyperbolic polynomial f ∈ Fat such that a critical point of f is
eventually mapped to A( f ) but does not lie in A( f ).
Component of IA-capture type: a hyperbolic component U of F that contains an IA-capture
polynomial.

re( f ): a recurrent critical point of an IS-polynomial f.
ca( f ): a non-recurrent critical point of an IS-polynomial f; it eventually maps toΔ( f ).
Lr
f : the rational lamination of a polynomial f.

L f : the full lamination of a polynomial f , defined if J( f ) is locally connected.
CU : the main cubioid of F (see definition 2.5).
TH(Z): the topological hull of a set Z.

3. Rays and laminations

Wewill make use of the concepts of the full/rational lamination associated to a polynomialwith
connected Julia set. These concepts are due to Thurston [Thu85] and Kiwi [Kiw97–Kiw04].
In fact, in [Thu85] full laminations are defined independently of polynomials as a combina-
torial concept and are often studied in that setting (see, e.g., [BMOV13]). Laminations are
important tools of combinatorial complex polynomial dynamics. Some of these tools are appli-
cable to polynomials of arbitrary degree, including those with non-locally connected Julia sets.
However, for the sake of brevity in this paper we avoid unnecessary generality and define full
lamination only in the case when P has a locally connected Julia set.

3.1. Rays

Studying periodic external rays of polynomials is a powerful tool in complex dynamics. Given
a polynomial f with connected Julia set we denote by Rf(α) the external ray of f with argument
α. (According to our convention, arguments of external rays are elements of R/Z rather than
R/2πZ.) The arguments of external rays depend on the choice of a Böttcher coordinate near
infinity. For an arbitrary cubic polynomial, such coordinate is defined up to a sign, i.e., up
to the involution z �→ −z. However, for f ∈ F , we can distinguish a linearizing coordinate
asymptotic to the identity. We assume that, whenever f ∈ F , the linearizing coordinate near
infinity is chosen in this way.
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Lemma 3.1 (See, e.g., [Mil06], section 18) . Let f be a polynomial. All external rays of
f with rational arguments land. The landing points eventually map to periodic parabolic or
repelling points. If J( f ) is connected then all rays landing at points that are eventually mapped
to parabolic or repelling periodic points have rational arguments.

Call an external ray smooth if it does not contain an escaping (pre)critical point. The next
lemma can be found in [GM93] (lemma B.1) or [DH8485] (lecture 8, section 2, proposition 3).

Lemma 3.2. Let f be a polynomial, and z be a repelling periodic point of f. If a smooth
periodic ray Rf (θ) lands at z, then, for every polynomial g sufficiently close to f, the ray Rg(θ)
lands at a repelling periodic point w close to z, and w depends holomorphically on g.

By a periodic argument we mean an element of R/Z periodic under the d-tupling map
θ �→ dθ.

Corollary 3.3 (Lemma 4.7 [BOPT14b]) . Suppose that hn → h is an infinite sequence of
polynomials of degree d with connected Julia sets, and {α, β} is a pair of periodic argu-
ments such that the external rays Rhn(α), Rhn(β) land at the same repelling periodic point xn
of hn. If the external rays Rh(α), Rh(β) do not land at the same periodic point of h, then one
of these two rays must land at a parabolic point of h.

Lemma 4.7 of [BOPT14b] is more general and includes (with provisions) the case when
Julia sets of polynomials hn are disconnected.

The following result is purely topological and is based on local behavior of polynomials at
points of the plane. Given a polynomial f with connected Julia set J( f ) and a point z ∈ J( f ),
denote byAz the set of argumentsof rays landing at z. It is known [Hub93] thatAz is finite. Given
a finite set X ⊂ S, the points a, b, c ∈ X are said to be consecutive if the positively oriented
arcs (a, b) and (b, c) are disjoint from X (observe that the order of points in this definition is
essential).

Theorem 3.4 (cf lemma 18.1 [Mil06]) . Let f be a polynomial of degree d > 1 whose Julia
set J( f ) is connected. (We do not assume that J( f ) is locally connected.) Let z ∈ J( f ) be a point
such that Az �=Ø. Then σd|Az is a k-to-1 map between Az and Af(z), and, if z is non-critical, then
k = 1. Moreover, there are two possibilities.

(a) The set σd(Az) = Af(z) is a singleton.
(b) Given any three consecutive points a, b, c in Az, the points σd(a), σd(b) and σd(c) form a

triple of consecutive points in Af(z).

The next result is classical and has a proof using the Schwarz–Pick metric in [DH8485].
Recall that the (pre)periodic external rays are exactly those whose arguments are rational.

Theorem 3.5 (Proposition 2, section 2, lecture 8 [DH8485]) . Let f be a polynomial of
degree d > 1 with connected Julia set. Then all rational external rays for f land, and their
landing points are (pre)periodic points eventually mapped to repelling or parabolic periodic
points.

Theorem 3.6, due to Douady, is a form of converse of theorem 3.5.

Theorem 3.6 (Theorem 1.1 [Hub93]) . Let f be a polynomial of degree d > 1 whose Julia
set J( f ) is connected. Let z ∈ J( f ) be a repelling or parabolic periodic point. Then:

(a) The point z ∈ J( f ) is the landing point of at least one periodic external ray.
(b) Every external ray landing at z is periodic.
(c) All periodic external rays landing at z have the same period.
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(d) There are finitely many external rays landing at z.

Once one proves the first claim, the others follow from it, theorem 3.4 and properties of the
d-tupling map. In [Hub93] there is another proof, using the Yoccoz inequality.

The following nice theorem will not be used in its full strength; we add it for the sake of
completeness. A wandering point in J( f ) is a point whose orbit is infinite: this is the opposite
of being (pre)periodic.

Theorem 3.7 ([Kiw02]) . Let f be a polynomial of degree d > 1 with locally connected Julia
set J( f ). Then there exists an integer k = k(d) independent of f, such that every wandering
point z ∈ J( f ) can be the landing point of at most k external rays.

3.2. Full lamination

For a (finite or infinite) set A ⊂ S, denote by CH(A) its (closed Euclidian) convex hull. A chord
ab between any two points a, b ∈ S is CH({a, b}) and contains the endpoints a and b. If b = a
the chord is called degenerate. Consider a closed set A ⊂ S and its convex hull CH(A). An edge
of CH(A) is a closed straight segment I connecting two points of S such that I ⊂ Bd(CH(A)).
Define the map σd : S→ S by σd(s) = sd; here we assume S ⊂ C. Then the (σd-)image of a
chord ab is by definition the chord σd(a)σd(b). A (σd-)critical chord is a non-degenerate chord
whose endpoints have the same σd-image.

If f is a polynomial of degree d and J( f ) is locally connected, one defines an equivalence
relation ∼f on S by declaring α, β ∈ S equivalent if Rf (α) and Rf (β) land at the same point.
Then J( f ) is homeomorphic to S/∼ f . By theorems 3.6 and 3.7, any ∼f -class is finite. It is
well-known that the graph of ∼f is a closed subset of S× S.

Definition 3.8 is based upon ∼f but is not related to polynomials.

Definition 3.8 (Laminational equivalence relations) . An equivalence relation∼ on the
unit circle S is said to be laminational if:

(E1) the graph of ∼ is a closed subset in S× S;
(E2) convex hulls of distinct equivalence classes are disjoint;
(E3) each equivalence class of ∼ is finite.

By an edge of a ∼-class we mean an edge of its convex hull.

Definition 3.9 (Laminational equivalences and dynamics) . A laminational equiva-
lence relation ∼ is (σd-)invariant if:

(D1) ∼ is forward invariant: for a class g, the set σd(g) is a class too;
(D2) for any∼-class g, the map τ = σd|g extends to S as an orientation preserving covering

map τ̂ such that g is the full preimage of τ (g) under the covering map τ̂ .

To each laminational equivalence relation∼ we associate the corresponding geodesic lam-
ination L∼ defined as the collection of all edges of convex hulls of ∼-classes together with all
points of S. Call the lamination all of whose leaves are singletons in S the empty lamination.

With every∼-class G′, we associate its convex hull G = CH(G′). The geodesic lamination
L∼ is the set of all edges of all such polygonsG togetherwith all singletons in S. Elements ofL∼
are leaves. A leaf is degenerate if it coincides with a point in S; otherwise it is non-degenerate.
If 
 = ab is a leaf, then, by theorem 3.4, the chord σd(a)σd(b) is a (possibly degenerate) leaf
denoted σd(
). A critical leaf is a leaf that is a critical chord. A gap of L f is the closure of
a component of D\

⋃
L f . For any gap G of L f , define σd(G) as CH(σd(G ∩ S)). A gap G is

invariant if σd(G) = G. If L f has a gap G such that G ∩ S is infinite, then the interior of G is
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disjoint from the convex hulls of all ∼ f-classes. Finally, the geodesic lamination L∼ f = L f is
called the (full) geodesic lamination associated with f.

3.3. Invariant gaps of cubic laminations

Let L∼ be a cubic lamination. The degree of a gap G of L∼ is the maximal number of disjoint
critical chords that fit inG and are not edges ofG, plus 1, except for the case whenG is a triangle
with critical edges in which case the degree of G is 3 (since chords include their endpoints,
disjoint critical chords have distinct endpoints). Degree 2 (respectively, 3) gaps are said to be
quadratic (respectively, cubic).

By [BOPT14a], a quadratic σ3-invariant gap G has a unique longest edge M(G) called the
major (of G). The major M(G) is critical (then G is of regular critical type) or periodic (then
G is of periodic type). For every edge 
 = ab of G, let H
(G) be the arc of S with endpoints a
and b and no points of G in H
(G). Let us normalize the length of S to 1; then the majorM(G)
is singled out by the fact that the length of HM(G)(G) is greater than or equal to 1/3.

Theorem 3.10 ([BOPT16a]) . Consider a polynomial f ∈ Fat\P◦ with locally connected
Julia set J( f ). Then the geodesic lamination L f has a quadratic invariant gap G, and there
are two possibilities.

(a) ThemajorM(G) of G is critical, the corresponding critical point of f belongs toBd(A( f )),
and periodic cutpoints of J( f ) do not exist.

(b) The major M(G) of G is periodic, and the corresponding point of J( f ) is a repelling or
parabolic periodic cutpoint of J( f ).

Corollary 3.11 easily follows.

Corollary 3.11. If f ∈ Fλ, |λ| < 1, is an IA-capture polynomial, then J( f ) is locally con-
nected, the geodesic laminationL f has a quadratic invariant gapGwith periodic majorM(G),
the Julia set J( f ) contains a periodic repelling cutpoint associated to M(G), and f ∈ Fλ\P .

Proof. Since f is hyperbolic, J( f ) is locally connected so that theorem 3.10 applies to f .
Evidently, neither critical point of f belongs to J( f ). Hence case (1) of theorem 3.10 does not
apply to f while case (2) does apply. The cutpoint cannot be parabolic for otherwise f would
not be hyperbolic. This proves all claims of the corollary except for the last one. To see that
f ∈ Fλ\P it remains to apply lemma 3.2 which implies that small perturbations of f will have
a periodic cutpoint in their Julia sets and, therefore, cannot belong to P◦. �

3.4. Rational lamination

Rational laminations Lr
f are introduced by Kiwi (see [Kiw97, Kiw01, Kiw04]) and are based

upon the work of Goldberg and Milnor [GM93].

Lemma 3.12. Let f be a polynomial of degree d � 2with connected Julia set. If a chord is a
limit of leaves 
i ∈ Lr

f and one of its endpoints is periodic, then its other endpoint is periodic
of the same period.

This lemma follows from lemma3.16 of [BOPT16a] sinceLr
f is generated by a laminational

equivalence relation.

Definition 3.13 ([BMOV13]) . A collection of chordsL is sibling σd-invariant provided that:

(a) for each 
 ∈ L, we have σd(
) ∈ L,
(b) for each 
 ∈ L there exists 
1 ∈ L so that σd(
1) = 
.
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(c) for each 
 ∈ L so that σd(
) is a non-degenerate leaf, there exist d disjoint leaves 
1, . . . ,

d in L so that 
 = 
1 and σd(
i) = σd(
) for all i = 1, . . . , d.

Lemma 3.14 ([Kiw97, Kiw01]) . For a polynomial f with connected Julia set the rational
lamination Lr

f is sibling invariant.

We are ready to prove the next lemma.

Lemma 3.15. If f is a polynomial of degree d � 2with locally connected Julia set and there
is no bounded Fatou domain of f whose boundary contains a critical point with infinite orbit,
then Lr

f = L f .

Proof. Recall that always Lr
f ⊂ L f . Suppose that Lr

f � L f . By lemma 3.14, the collection
Lr
f is sibling invariant. Moreover, let x and y be rational arguments. By theorems 3.5 and

3.6, if x ∼ y and x is periodic for σ3, then y is periodic of the same period. By lemma 3.12 it
follows that there are no critical leaves inLr

f with a periodic endpoint.Moreover, it follows also

that if x ∈ S is periodic and xy �= xz are leaves of Lr
f , then σd(xy) �= σd(xz). Sibling invariant

collections of leaves with these properties are called proper; such collections as well as their
closures are studied in [BMOV13]. In particular, it follows from theorem 4.9 of [BMOV13]
that Lr

f is a lamination associated with an equivalence relation, say,≈, on the unit circle. This

means that Lr
f is formed by the edges of the convex hulls of all ≈-classes. Recall that L f is

generated by a specific equivalence relation on S denoted by ∼ f .

Now, by the assumption Lr
f � L f . This implies that there is a gap Ĝ of Lr

f that contains

leaves of L f inside (so that only the endpoints of these leaves belong to the boundary of Ĝ).
The gap Ĝ cannot be finite because then all its vertices must be ∼ f-equivalent, and leaves of
L f cannot intersect the interior of Ĝ. Suppose that Ĝ is infinite. We claim that there are no
infinite gaps H of L f properly contained in Ĝ. Indeed, suppose otherwise. Then an edge 
 of
H must be contained in the interior of Ĝ (except for its endpoints). Observe that any edge of an
infinite gap of any lamination is either (pre)critical or (pre)periodic (cf [BOPT17a, lemma4.5]).
Since 
 ∈ L f \Lr

f , this implies that 
 is (pre)critical with infinite orbit, a contradiction with the

assumption of the lemma. Thus, all gaps of L f in Ĝ are finite.
By [Kiw02, theorem 1.1], all infinite gaps are (pre)periodic. Hence for some n the infi-

nite gap G = σnd (Ĝ) is periodic. By the previous paragraph all gaps of L f in G are finite.
Then the quotient space (G ∩ S)/∼ f is a so-called dendrite, which carries a self-map induced
by σpd where p is the minimal period of G. Theorem 7.2.7 from [BFMOT12] implies that
there are infinitely many periodic cutpoints in this dendrite, hence G contains leaves of Lr

f ,
a contradiction. �

4. Preliminaries to theorem A

In this section, we list various preliminary results. Some of them are well known and therefore
given without proof.

4.1. A perturbation lemma

Consider a sequence λn ∈ D converging to λ ∈ S. We say that λn converges to λ non-
tangentially if all λn belong to a cone with the following properties. The vertex of the cone
is λ. The axis of symmetry of the cone is the radius (radial line) through λ. The angle between
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the edges of the cone and its axis of symmetry is less than π/2. For an open set U ⊂ C and a
holomorphic map g : U→ C with attracting fixed point 0, let A(g) be the immediate basin of
attraction of 0 with respect to g. Recall a part of corollary 2 from [BP08], based on ideas of
[Yoc95, proposition 1, page 66]:

Lemma 4.1 (Corollary 2 of [BP08]) . Suppose that λn ∈ D converge non-tangentially to
λ ∈ S. Let U ⊂ C be an open set, and f :U→ C be a holomorphic map with f(0) = 0 and
f ′(0) = λ. Assume that f has a Siegel disk Δ around 0. If the sequence fn : U→ C satisfies
fn(0) = 0, f′n(0) = λn, and for every compact subset K ⊂ Δ

max
z∈K

| fn(z)− f (z)| = O(|λ− λn|), n→∞,

then any compact set K̃ ⊂ Δ is contained in A(fn) for n large enough.

We now go back to our family F . Below, we define some special perturbations of polyno-
mials in Fnr. Let f (z) = fλ,b(z) = λz+ bz2 + z3 ∈ Fnr so that |λ| � 1. Then denote by fε the
polynomial

f (1−ε)λ,b(z) = (1− ε)λz+ bz2 + z3 ∈ Fat, (4.1.1)

where ε > 0. The following is an easy corollary of lemma 4.1.

Corollary 4.2. If f = fλ,b has a Siegel diskΔ( f ) around 0, then, for every compact set K̃ ⊂
Δ( f ), there exists δ(K̃) > 0 such that every polynomial fε has the property K̃ ⊂ A( fε) for any
0 < ε < δ(K̃).

Proof. Assume the contrary. Then there exists a sequence εn → 0 with K̃ �⊂ A( fεn). Set λn =
(1− εn)λ; thenλn converge to λ non-tangentially.To use lemma4.1, observe that for a compact
set K ⊂ Δ( f )

max
z∈K

| fεn(z)− f (z)| = O(|λ− λn|), n→∞

because the left-hand side equals εn maxz∈K |z|while |λ− λn| = εn. This yields a contradiction
with lemma 4.1 and proves the corollary. �

4.2. Blaschke products

Here we deal with the dynamics of Blaschke products. As we do not need Blaschke products
of higher degrees and for the sake of simplicity we only consider quadratic Blaschke products
with fixed point 0. For a complex number a, we let a denote the complex conjugate of a.

Definition 4.3 (Blaschke products) . Let b and s be complex numbers such that 0 < |b| <
1 and |s| = 1. Then the formula

Bb,s(z) = sz
b− z

1 − bz
(4.2.1)

defines a quadratic Blaschke product with fixed point 0. It is not hard to see that the Blaschke
product (4.2.1) is conjugate by a rotation to a so-called normalized quadratic B. product Qa of
the form

Qa(z) = z
a− z
1− az

; (4.2.2)
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for some complex number a with |a| < 1.

Our normalized Blaschke product Qa differs by a sign from the traditional one in which
the numerator is z− a, not a− z. It is well known that Qa is a quadratic rational function that
preserves D, its complementC\D, and the unit circle S. Moreover,

Q′
a(z) =

az2 − 2z+ a
(1− az)2

, (4.2.3)

which implies thatQ′
a(0) = a; an easy computation shows that the multiplier of the fixed point

at∞ is a. Thus, both 0 and infinity are attracting fixed points of Qa. Set Dr = {|z| < r}; then,
by the Schwarz lemma (or directly), we have Qa(Dr) ⊂ Dr. Similarly, |Qa(z)| > |z| if |z| > 1.
Hence the Julia set of Qa is S. In fact, Qa is expanding on S, see [Tis00]. It is easy to see, that

ca =
1−

√
1− |a|2
a

= a
1−

√
1− |a|2

|a|2 =
a

1+
√
1− |a|2

(4.2.4)

is the unique critical point of Qa that belongs to D. Also, by (4.2.4) a and ca belong to the
same radial segment of D so that ca is located between 0 and a. Observe that if a→ s ∈ S,
then ca → s too. To describe the limit behavior of the entire orbit of ca as a→ s ∈ S, we need
lemma 4.4. For a complex number w, set Rw(z) = wz.

Lemma 4.4. Suppose that s ∈ S and K ⊂ C\{s} is a compact set. Then the maps Qa

converge to Rs uniformly on K as a→ s.

Proof. Since |s| = 1, we have ss = 1. Therefore s− z = s− ssz = s(1− sz). Dividing on
both sides by 1− sz, we see that s−z

1−sz = s for all z �= 1
s = s. Since K ⊂ C\{s} is a compact

set, standard continuity arguments imply the conclusions of the lemma. �
This does not yet yield the limit behavior of the orbit of ca as a→ s ∈ S as then ca → s too,

and lemma 4.4 does not apply.

Lemma 4.5. Suppose that s = e2πiθ, where θ is irrational. Let ε be a positive real number
and m be a positive integer. Then there exists δ > 0 such that for any a ∈ D with |s− a| < δ
we have |Qi

a(ca)| > 1− ε for all i = 0, 1, . . . ,m.

In other words, if a = Q′
a(0) is close to s, then the orbit of ca stays close to the unit circle

for any given period of time. The conclusions of the lemma are sensitive with respect to the
point whose trajectory we consider. For example, Qa(a) = 0 so that the orbit of a under Qa

is (a, 0, 0, . . .) and, thus, the limit behavior of the orbits of a and of ca are very different even
though both a and ca converge to s = e2πiθ.

Proof. Wewill use the following notation and terminology.Given a small arcT ⊂ S of length
|T| with endpoints of arguments α and β, denote by UT a ‘polar rectangle’ built upon T with
vertices (in polar coordinates) given by (1− |T|,α), (1+ |T|,α), (1+ |T|, β), (1− |T|, β).

Simple computations show that

Qa(ca) =
(1−

√
1− |a|2)2
a2

= c2a (4.2.5)

Since θ is irrational, there exists a closed arc I ⊂ S symmetric with respect to s such that I,
Rs(I), R2

s (I), . . ., R
m
s (I) are pairwise disjoint circle arcs. By lemma 4.4, we can choose a small

arc T ⊂ Rs(I) centered at s2 such that for all a sufficiently close to s we have that Qi
a(UT) ⊂

URi+1
s (I) for all i = 0, . . . ,m− 1. We can then choose a small neighborhood W of s so that
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ζ2 ⊂ UT provided that ζ ∈ W; by (4.2.4) and (4.2.5) this implies that for any a sufficiently
close to s we have ca ∈ W and Qj

a(ca) ∈ U
R j
s(I)

for every j = 1, . . . ,m. �

4.3. Modulus

A round annulus A(r,R) ⊂ C is an open annulus formed by two concentric circles of radii
r < R. A topological annulus U\K is formed by a simply connected domain U ⊂ C and a
non-separating (i.e., such that C\K is connected) continuum K ⊂ U. If K is not a singleton
and U �= C, then we will call U\K non-degenerate. It is well known [Ahl79] that any non-
degenerate annulus is conformally equivalent to a non-degenerate round annulus and that two
round annuli A(r,R) and A(r′,R′) are conformally equivalent if and only if R

r = R′
r′ [Sch877].

Given a topological annulus Â that is conformally equivalent to the round annulus A = A(r,R),
we define its modulus m(Â) as ln(R)−ln(r)

2π .
By the above results themodulus of an annulus is well defined and invariant under conformal

equivalence. We will use theorem 4.6 in the proof of lemma 5.1; below ρ(X, Y) denotes the
infimum of the distance between points x ∈ X and y ∈ Y for sets X, Y ⊂ C.

Theorem 4.6. Suppose that A ⊂ A′ are two annuli such that A is not null-homotopic in
A′. Then m(A) � m(A′). Moreover, there exists a function ψ :R>0 → R>0 such that ρ(K, S) �
ψ(m(D\K)) for any non-separating continuum K ⊂ D.

The first part of theorem4.6 is well known and can be found in various textbooks; the second
part easily follows, e.g., from [McM94, theorem 2.4] or from [Ahl06, problem 1 of section 1,
chapter 3].

4.4. Hyperbolic components

We will make use of the following result [McS98, corollary 2.10]:

Lemma 4.7. Let f be a hyperbolic rational function. Then the set [ f ]top of rational functions
topologically conjugate to f coincides with the set of rational functions qc-conjugate to f and
is connected.

Suppose now that f and g are hyperbolic polynomials in F with connected Julia sets. Recall
that then J( f ), J(g) are locally connected. A critical orbit relation for f is a constraint of the
form f n(c) = f m(c̃), m �= n, where c and c̃ are critical points of f, not necessarily different. As
in section 3, we can associate geodesic laminations L f and Lg with f and g, respectively.

Lemma 4.8. Let f and g be two degree d > 1 hyperbolic polynomials with connected Julia
sets such thatL f = Lg. If f and g have no critical orbit relations, then f and g are topologically
conjugate.

See [McS98] for very similar statements. The same methods prove lemma 4.8. It follows
that g ∈ [ f ]top. Note however that, in the cubic case, the intersection of [ f ]top with F may be
disconnected.

Corollary 4.9. If polynomials f and g belong to the same bounded hyperbolic component
of F , then L f = Lg. On the other hand, suppose that f, g ∈ Fat are hyperbolic polynomials
with connected Julia sets such that L f = Lg = L. If f and g have no attracting fixed points
except 0, then f, g belong to the same hyperbolic component of F .

Proof. The first claim is a variation of a well-known property of hyperbolic components;
it is left to the reader. To prove the rest, we may assume that neither f nor g has critical orbit
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relations. Indeed, otherwisewe can slightly perturb f and gwithin their hyperbolic components
of F so that the perturbed maps have no critical orbit relations. Then f and g are topologically
conjugate by lemma 4.8. Suppose that f = fλ f ,b f = z3 + b f z2 + λ f z and g = gλg,bg = z3 +
bgz2 + λgz.

By lemma 4.7, there is a continuous family f t, t ∈ [0, 1] of cubic rational functions qc-
conjugate to f such that f0 = f and f1 = g. Indeed, a qc-conjugacy between f and g takes
the standard complex structure on the dynamical plane of g to some invariant qc-structure
on the dynamical plane of f . The latter is represented by a Beltrami differential ν. Con-
sidering the family of Beltrami differentials ν t = tν and using the Ahlfors–Bers theorem,
we obtain a family f t with the desired properties. Observe that all rational functions f t are
hyperbolic.

Let Mt be a complex affine transformation such that ht = Mt ◦ f t ◦M−1
t ∈ F . Since [0, 1]

is simply connected, we may choose Mt to depend continuously on t and so that M0 = id.
Let U be the hyperbolic component of F containing f . Then ht ∈ U for all t by continuity; in
particular, h1 ∈ U . On the other hand, h1 = M1 ◦ g ◦M−1

1 ∈ F and g are affinely conjugate.
This implies that either h1 = g or h1 = z3 − bgz2 + λgz. In the former case, we are done. In
the latter case, observe that h1 and g have the same linearizing coordinate near infinity (this
follows from the fact that z �→ z3 commutes with the involution z �→ −z) while the orbits of g
are obtained from the orbits of h1 by z �→ −z. Therefore, the geodesic lamination of g differs
from the geodesic lamination of h1 by a half-turn.

On the other hand, by our construction L coincides with the geodesic lamination of h1.
Thus, L is invariant with respect to the rotation by 180 degrees about the center of the unit
disk. Then, by [BOPT16a], the major of an invariant quadratic gap G in L corresponding to
the basin of immediate attraction of 0 (of either f or g) is 0 1

2 . This implies that there are two
invariant attracting domains of g (or f ), corresponding to G and the 180-degree rotation of G
with respect to the center of the unit disk. A contradiction with the assumption that g (and f)
has only one attracting fixed point. The statement now follows. �

5. Proofs of theorem A and corollary C

Let f be an IS-capture polynomial. We refer to the glossary in the end of section 2. Letmf > 0
be the smallest positive integer for which we have f mf (ca( f )) ∈ Δ( f ). Observe that, given
sufficiently small ε > 0, for all polynomials g close enough to f , there exist a unique critical
point re(g) of g that is ε-close to re( f ) and a unique critical point ca(g) of g that is ε-close
to ca( f ). Notice that the functions re(g) and ca(g) are holomorphic functions of the coeffi-
cients of g. However re(g) is not necessarily recurrent, and g may not have a Siegel invariant
domain.

Lemma 5.1 is based on special perturbations (4.1.1).

Lemma 5.1. Suppose that f is an IS-capture polynomial. Then, for sufficiently small ε > 0,
we have re( fε) ∈ A( fε). In particular, if fε /∈ P◦, then ca( fε) /∈ A( fε).

Proof. Set f = fλ,b. Then λ = e2πiθ, where θ is irrational. Take a closed Jordan disk K and
an open Jordan disk U such that

0 ∈ K ⊂ U ⊂ U ⊂ Δ( f ).

We may assume that f mf (ca( f )) lies in the interior of K.
Observe that if fε ∈ P◦ then re( fε) ∈ A( fε) as desired. In particular, if for sufficiently small

ε > 0 we have that fε ∈ P◦, then we are done. Thus we need to consider the case when there
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are positive values of ε arbitrarily close to 0 and such that fε /∈ P◦. We need to show that
re( fε) ∈ A( fε) for all these values of ε. Observe that in any case at least one critical point
must belong to A( fε) for all ε > 0. Hence, if ca( fε) /∈ A( fε) for some ε > 0, then re( fε) ∈
A( fε) for this ε as desired. Thus, to prove the lemma it would suffice to prove the following
claim.
Claim. For sufficiently small ε > 0, if fε /∈ P◦ then ca( fε) /∈ A( fε).

Proof of the claim. Suppose that there are positive values of ε arbitrarily close to 0 and such
that fε /∈ P◦. Moreover, suppose byway of contradiction that the claim fails. Then there exists a
sequence εn → 0 with fεn /∈ P◦ and ca( fεn) ∈ A( fεn). Since fεn /∈ P◦, then ca( fεn) is the only
critical point in A( fεn). A Riemann map ϕ : A( fεn)→ D with ϕ(0) = 0 conjugates fεn |A( fεn )
with a normalized quadratic Blaschke product Qan , where an ∈ D. Then ϕ(ca( fεn)) = can is
the unique critical point of Qan in D. This yields the following contradiction.

(a) By lemma 4.5, the point Q
mf
an (can) approaches the unit circle as εn → 0.

(b) By corollary 4.2 and by continuity, the pointQ
mf
an (can) is bounded away from the unit circle

as εn → 0.

A more detailed proof follows.

(a) Clearly, the multiplier (1− εn)λ of fεn at 0 converges to λ = e2πiθ. It follows that the
multiplier of Qaεn at 0 also converges to λ. By lemma 4.5, the point Q

mf
an (can) approaches

the unit circle as εn → 0.
(b) On the other hand, take a polynomial fε with small ε > 0. By corollary 4.2, we have

U ⊂ A( fε) for all sufficiently small ε > 0. By continuity, f
mf
ε (ca( fε)) ∈ K if ε > 0 is

sufficiently small. Thus, the point f
mf
εn (ca( fεn)) is separated from Bd(A( fεn)) by the annu-

lus U\K of a definite positive modulus. It follows, by the conformal invariance of the
modulus, that the point Q

mf
aεn (can) must also be separated from S by an annulus of a def-

inite positive modulus. However, this contradicts theorem 4.6 and the conclusions of (a)
above. �

Recall (definition 2.3) that for an IA-capture polynomial f we denote by ω1( f ) its criti-
cal point that belongs to A( f ) and by ω2( f ) its critical point that does not belong to A( f ) but
eventually (after one or more iterations) maps into A( f ). Observe that our notation for criti-
cal points ω1( f ) and ω2( f ) is consistent with definition 2.3. Finally, recall that by potentially
renormalizable polynomials we mean polynomials in F that do not belong to P = P◦.

Corollary 5.2. Suppose that f is an IS-capture polynomial. If f is potentially renormalizable,
then ω1( f ) = re( f ) and ω2( f ) = ca( f ).

Proof. Since f is potentially renormalizable, all maps fε of f are outsideP◦ if ε is small. By
definition and lemma 5.1, re( f ) = ω1( f ) and ca( f ) = ω1( f ). �

Observe that, ifW is a hyperbolic component non-disjoint from Fat such that polynomials
in W have a critical point which maps into a cycle of attracting Fatou domains but does not
belong to it, then W ⊂ Fat is an IA-capture component consisting of polynomials f with an
invariant attracting Fatou domain A( f ) � 0, a well-defined critical point ω1( f ) ∈ A( f ) and a
well-defined critical point ω2( f ) = ca( f ) /∈ A( f ) such that for some minimalmf > 0 we have
f mf (ω2( f )) ∈ A( f ).

Theorem 5.3. If f ∈ Fnr is an IS-capture polynomial, then f belongs to the boundary of
exactly one bounded hyperbolic componentW in Fat. Every polynomial g ∈ W has a locally
connected Julia set so that Lg = Lr

g, and W is either P◦, or an IA-capture component.
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Proof. First we consider maps fε. By lemma 5.1, for some δ > 0 and any ε > 0 with ε <
δ, we have re( f ) ∈ A( fε). By corollary 4.2 and continuity, f mf (ca( fε)) ∈ A( fε). Thus, fε is
hyperbolic, and there is a unique hyperbolic component U of F containing all polynomials fε
with ε < δ. Clearly, U is either P◦, or an IA-capture component.

By way of contradiction, assume now that U and V are different bounded hyperbolic com-
ponents in Fat whose boundaries contain f . All polynomials in U have locally connected Julia
sets, are conjugate on their Julia sets, and give rise to the same cubic invariant lamination LU ;
similarly, all polynomials in V give rise to the same cubic lamination LV (cf corollary 4.9).
Since, for a hyperbolic polynomial, the iterated forward images of a critical point cannot lie
on the boundary of a Fatou component, then, by lemma 3.15, we have LU = Lr

U and LV = Lr
V

where Lr
U and Lr

V are the corresponding rational laminations.
Consider a leaf 
 ∈ Lr

f . It corresponds to a (pre)periodic point in J( f ). Since all periodic
points in J( f ) are repelling, then, by lemma 3.2, we have 
 ∈ LU and 
 ∈ LV . Since this holds
for any 
 ∈ Lr

f , we conclude thatLr
f ⊂ Lr

U andLr
f ⊂ Lr

V . Now consider a leaf αβ ∈ Lr
U . Then

Rg(α), Rg(β) land at the same (pre)periodic point xg, for every g ∈ U . The periodic cycle, into
which the point xg eventually maps, is repelling. Consider a sequence gn ∈ U converging to
f. By corollary 3.3 applied to this sequence, we have αβ ∈ Lr

f . Since αβ is an arbitrary leaf
of Lr

U , we conclude that Lr
U ⊂ Lr

f . Similarly, Lr
V ⊂ Lr

f . Together with the opposite inclusions
proved earlier, this implies that Lr

U = Lr
V = Lr

f . By the first paragraph, it follows that LU =
LV . Finally, by corollary 4.9, we have U = V = W . �
Proof of theorem A. Let f ∈ Fλ be an IS-capture polynomial. By theorem 5.3, there is a
unique bounded hyperbolic component U in Fat with f ∈ Bd(U). A priori, there could exist
a different hyperbolic component V outside of Fat with f ∈ Bd(V). Since for g ∈ V the fixed
point 0 is repelling, there is a periodic angle θ such that Rg(θ) lands at 0 for all g ∈ V . Con-
sider a sequence gn ∈ V converging to f. By lemma 3.1, the ray Rf (θ) lands at a periodic
point y �= 0 (recall that 0 is a Siegel point). By lemma 3.2, the point y is parabolic. However,
an IS-capture has no parabolic periodic points, a contradiction. Thus, U is the only bounded
hyperbolic component in F containing f in its boundary. It remains to observe that, if U is an
IA-capture, then, by corollary 3.11, the polynomial f has a repelling periodic cutpoint in its
Julia set. �
Proof of corollary C. Suppose that f ∈ Fλ with |λ| = 1 is a cubic IS-capture polynomial.
By way of contradiction, assume that f ∈ CU\P . By theorem 5.3, all polynomials fε [see
equation (4.1.1)] for small ε > 0 belong to some IA-capture component U (since f /∈ P , we
have fε /∈ Po for small ε). On the other hand, then, by theoremA, themap f contains a repelling
periodic cutpoint in its Julia set, a contradiction with f ∈ CU . �

6. Existence of IS-capture components

In this section, we find IS-capture components on the boundary of P◦ as well as on the
boundaries of IA-capture components. Thus we will prove theorem B.

Let U be an IA-capture component in F . Then, for every f ∈ U , we write A( f ) for the
immediate attracting basin of 0. There is a unique critical point ω2( f ) not in A( f ), and we
have f mf (ω2( f )) ∈ A( f ) for some positive integer mf . We may assume that mf is the smallest
positive integer with this property. Observe that mf does not depend on f; it depends only on
U . We call this integer the preperiod of U .
Lemma 6.1. Let U be a hyperbolic component in F that is either P◦ or an IA-capture com-
ponent. In the latter case, let m be the preperiod of U; in the former case, set m = 2. For every

2446



Nonlinearity 34 (2021) 2430 A Blokh et al

Brjuno θ ∈ R/Z and every n � m, there exists a map f ∈ Bd(U) ∩ Fλ, where λ = e2πiθ and
f n(c) = 0 for some critical point c of f. Additionally, it can be arranged that f k(c) �= 0 for
k < n.

Let Xn be the set of all polynomials f ∈ F such that f n(c) = 0 for some critical point c of
f, and n is the smallest non-negative integer with this property. It is clear that Xn is a complex
algebraic curve in F = C2. Define a function μ on Xn as μ( f ) = f ′(0).

Lemma 6.2. Let U be an IA-capture component. Consider a slice Fλ with λ �= 0 such that
Fλ ∩ U �= Ø; then clearly |λ| < 1. Take any integer n � m, where m is preperiod ofU . There is
a polynomial f ! ∈ Fλ ∩ U such that f n! (c!) = 0 for some critical point c! of f!, and f k! (c!) �= 0
for k < n.

Proof. The proof is a standard qc-deformation argument, cf [BF14]. Take any f ∈ Fλ ∩ U .
Then there is a critical point c of f with f m(c) ∈ A( f ). The point v = f(c) is contained in
a strictly preperiodic Fatou component V of f such that f m−1(V) = A( f ). Consider a C1-
homeomorphism h : C→ C that coincides with the identity outside of some compact subset
of V. Taking iterated h ◦ f-pullbacks of the standard complex structure in iterated pullbacks
of V, we obtain an h ◦ f-invariant complex structure on C that coincides with the stan-
dard one outside of iterated pullbacks of V. By the measurable Riemann mapping theorem,
h ◦ f is conjugate to a rational function fh by a qc-conjugacy fixing ∞. Since ∞ is a fixed
critical point of fh of multiplicity 2, we conclude that fh is a polynomial. We may also
arrange that fh ∈ F by an affine change of variables. In a small neighborhood of 0, we have
h ◦ f = f , and f is conformally conjugate to fh. Therefore, f and fh have the same mul-
tiplier at 0, and fh ∈ Fλ. Note that fh depends continuously on h, and fh = f for h = id.
Thus any connected set of homeomorphisms h gives rise to a connected subset of Fλ lying
entirely in U .

We now consider a connected set H of homeomorphisms as above (i.e., all h ∈ H equal
the identity outside of some compact subset of V). LetD be the corresponding set of maps fh,
where h runs through H. Clearly, D is connected. For g = fh ∈ D, define vg as the image of
h(v) under the conjugacy between h ◦ f and fh. Then vg is a critical value of g. We can choose
a homeomorphism h! so that f n−1(h!(v)) = 0 and that f k−1(h!(v)) �= 0 for k < n. Moreover,
we can arrange that f m−1(h!(v)) is any given f n−m-preimage of 0 in A( f ). This chosen homeo-
morphism h! can be included into a connected setH of homeomorphisms. The corresponding
polynomial f ! = fh! has a critical point c! corresponding to the critical point c of h! ◦ f. Set
v! = f !(c!) to be the corresponding critical value; clearly, it corresponds to the critical value
h!(v) of h! ◦ f . We have f n! (c!) = 0 and f k! (c!) �= 0 for k < n. On the other hand, f ! belongs to
a connected set D of hyperbolic polynomials; therefore, f ! ∈ Fλ ∩ U . �

The component P◦ has been extensively studied in [PT09]. In particular, the following is
an immediate corollary of the parameterization of P◦ obtained in [PT09]:

Lemma 6.3. Let λ be any complex number with |λ| < 1, and n be any integer that is at least
2. Then P◦ ∩ Fλ contains a polynomial f! with the following properties: f

n
! (c!) = 0 for some

critical point c! of f!, and f k! (c!) �= 0 for k < n.

Thus, both in the case U = P◦ and in the case where U is an IA-capture component, we
found a certain map f ! ∈ U .

Proof of lemma 6.1. Recall that the function μ : Xn → C was defined by the formula
μ( f ) = f ′(0). We claim that μ(Xn ∩ U) coincides with D, possibly with finitely many punc-
tures. In the case U = P◦, this follows from lemma 6.3. Thus it suffices to assume that U is an
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IA-capture component. The inclusion μ(Xn ∩ U) ⊂ D is obvious. It now suffices to show that
μ(Xn ∩ U) is open and closed in D. It is open by the open mapping theorem and since μ is a
non-constant holomorphic map. Suppose now that λ belongs to the boundary of μ(Xn ∩ U) in
D but not to μ(Xn ∩ U). Then there is a polynomial f ∈ Fλ ∩ Xn ∩ U . In other words, there
is a sequence f i ∈ Xn ∩ U with f i → f ∈ Fλ as i→∞. For every i, there is a critical point ci
of f i with f ni (ci) = 0. Passing to a subsequence, we may assume that ci → c as i→∞, where
c is a critical point of f , and f n(c) = 0. On the other hand, |λ| < 1, hence f is hyperbolic. A
hyperbolic polynomial belongs to the closure of a hyperbolic component U only if it belongs
to U . Therefore, f ∈ U , but then by definition we have f ∈ Xn ∩ U unless f is a puncture of
Xn (which means that f k(c) = 0 for some k < n). The latter case is ruled out for the follow-
ing reason. There is δ > 0 such that f is injective on the δ-disk Dδ around 0, and f(Dδ) � Dδ .
Then, by continuity,Dδ ⊂ A( f i) for all large i. This implies that f k(c) �= 0 for k < n. It follows
that μ( f ) as f runs through X n takes all values in S, in particular, all values of the form e2πiθ,
where θ is Brjuno.

Choose a point f ∈ X n ∩ U with μ( f ) = e2πiθ, where θ is Brjuno. It is clear that f is on
the boundary of U . We will now prove that f is IS-capture. Indeed, f ′(0) = λ = e2πiθ and θ is
Brjuno, hence f has a Siegel disk Δ around 0 (we distinguish between the function μ and its
particular value λ). On the other hand, since f ∈ X n, there is a critical point c of f such that
f n(c) = 0. We have in fact f ∈ Xn (and f k(c) �= 0 for k < n) for the same reason as above. By
definition, this means that f is an IS-capture polynomial. �

The following statement is proved as theorem5.3 in [Zak99] for a different parameterization
of basically the same slices. The only differencewith [Zak99] is that Zakeri considers critically
marked cubic polynomials.

Lemma 6.4. Suppose that f ∈ Fλ, where |λ| = 1, and f has a Siegel disk Δ around 0.
If f n(c) ∈ Δ for some critical point c of f, then there is an IS-capture component in Fλ

containing f.

Proof. The proof is based on the same qc-deformation argument as the proof of lemma 6.2.
We will use the notation introduced in lemma 6.2, in particular, v, H, D and fh. Then D =
{ fh |h ∈ H} a connected subset of Fλ consisting of IS-capture polynomials. Recall that v =
f(c) is a critical value of f . We choose the set H of homeomorphisms so that D = {h(v) | h ∈
H} is open.

For every g ∈ D, we let Δg be the Siegel disk of g around 0. We let Vg denote the Fatou
component of g containing a critical value and such that gn−1(Vg) = Δg. These properties
define Vg in a unique way. We will also write vg for the critical value of g contained in Vg.
Note that, if g = fh, then vg is the image of h(v) under the conjugacy between h ◦ f and fh.
Consider the Riemann map φg :Δg → D such that φ(0) = 0 and φ′(0) ∈ R>0. The map g �→
φg(g

n−1(vg)) takes D to the open set φ f( f
n−1(D)). Indeed, the image of fh under this map is

φ f( f
n−1(h(v))). Thus, an analytic map takes D to some open set. It follows that D contains

an open subset of Fλ. Since D consists of IS-capture polynomials, it is contained in some
IS-capture component. �

Finally, we can prove the main theorem of this section.

Theorem 6.5. Let U be a hyperbolic component of F that is either P◦ or an IA-capture
component. In the latter case, set m to be the preperiod of U; in the former case set m = 2. For
every Bjuno θ ∈ R/Z and every n � m, there exists an IS-capture component D in Bd(U) ∩
Fλ with λ = e2πiθ such that, for all g ∈ D, we have gn(cg) ∈ Δ(g) for some critical point
cg of g.
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Recall that Δ(g) is the Siegel disk of g around 0.

Proof. By lemma 6.1, for any Brjuno θ ∈ R/Z and any n � m, there is a cubic polynomial
f with the following properties:

(a) we have f ∈ Fλ, where λ = e2πiθ;
(b) there is a critical point c of f with f n(c) = 0;
(c) we have f k(c) �= 0 for k < n.

By lemma 6.4, there is an IS-capture componentD in Fλ containing f. By theorem A, the
componentD belongs to the boundary of a unique hyperbolic component V of F . Moreover,
by theorem 5.3, the polynomial f lies on the boundary of a unique hyperbolic component.
But f is in the boundary of U . It follows that V = U , hence D is contained in the boundary
of U . �

Theorem 6.5 establishes the existence of many analytic disks on the boundary of the cubic
connectedness locus. Observe that lemma 6.4 and theorems 6.5 imply B.

We conclude this section with a remark which relates our results concerning IA-capture
components and laminations. A cubic invariant lamination L is said to be an IA-capture
lamination if the following assumptions hold:

(a) there is an invariant Fatou gap A such that σ3|A∩S is two-to-one;
(b) there is a Fatou gap V �= A such that σ3|V∩S is two-to-one;
(c) we have σmL

3 (V) = A, where mL = m is the minimal integer with this property.

The number m is called the preperiod of L. It is well-known (and easy to see) that any IA-
lamination is the closure of its restriction upon all the rational angles (i.e., the closure of the
corresponding rational lamination).

It follows from the appendix to [Mil12] written by Poirier that, for each IA-capture lamina-
tion L, there exists a unique IA-capture component UL ⊂ F with the following property. No
matter which f ∈ UL we take, the lamination generated by f coincides with L. The result of
[Mil12] is stated in the language of Hubbard trees and so-called reduced mapping schemes,
however, a straightforward translation of this result into the language of laminations yields
the claim stated above. Similarly, if L is the empty lamination, then we set UL = P◦. Evi-
dently, theorem 6.5 can be restated to emphasize the role of IA-capture laminations, e.g., as
follows.

Theorem 6.5′. Let L be the empty lamination or an IA-capture lamination. In the latter
case, set m to be the preperiod of L; in the former case set m = 2. For every Brjuno θ ∈
R/Z and every n � m, the hyperbolic component UL contains an IS-capture componentD in
Bd(UL) ∩ Fλ with λ = e2πiθ such that, for all g ∈ D, we have g◦n(cg) ∈ Δ(g) for some critical
point cg of g, and n is the least such integer.

7. The main cubioid of F

In this section, we prove corollary D and obtain corollaries related to the problem of dis-
tinguishing between Siegel and Cremer fixed points. Recall that the main cubioid CU was
introduced in definition 2.5.

Let W be a component of TH(Pλ)\Pλ, where |λ| � 1. It is called a queer domain (or is
said to be of queer type) if there exists a polynomial f ∈ W so that all of its critical points
are in J( f ). Polynomials from such W are also said to be of queer type. Observe that IS-
polynomials and polynomials of queer type have connected Julia sets. If f is an IS-polynomial,
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then ca( f ) is a critical point of f that does not belong to J( f ), hence f is not a polynomial of queer
type.

The following theorem relies on [Zak99, theorem 3.4], where the most difficult case is
worked out.

Theorem7.1 ([BOPT14b]) . LetW be a componentofTH(Pλ)\Pλ of queer type. Then, for any
polynomial f ∈ W , the Julia set J( f ) has positive Lebesgue measure and carries an invariant
line field.

Properties of polynomials from P listed in theorem 2.4 are inherited by polynomials from
the topological hulls TH(Pλ).

Theorem 7.2 ([BOPT14a]) . Suppose that |λ| � 1. We have

TH(Pλ) ⊂ CU .

Moreover, all components of the set TH(Pλ)\Pλ, where |λ| � 1, consist of λ-stable
polynomials.

In [BOPT14b], we consider components of the set TH(Pλ)\Pλ, where |λ| � 1. Let us
describe some results of [BOPT14b, BOPT16b]. A cubic polynomial f ∈ Fλ\P = Fλ\Pλ

with |λ| � 1 is said to be potentially renormalizable. A critical point c of a potentially renor-
malizable polynomial f is said to be principal if there is a neighborhoodU of f inF and a holo-
morphic function ω1 : U → C defined on U such that c = ω1( f ), and, for every g ∈ U ∩ Fat,
the point ω1(g) is the critical point of g contained in A(g).

Theorem 7.3 ([BOPT14b]) . A potentially renormalizable polynomial has a unique principal
critical point.

By theorem 7.3, if f ∈ Fnr is potentially renormalizable, then the point ω1( f ) is well-
defined; let the other critical point of f be ω2( f ). It is easy to see that ω1( f ) ∈ K( f ). It imme-
diately follows from [BOPT16a] that an IA-capture polynomial g has a repelling periodic cut-
point of the Julia set J(g). Hence an IA-capture polynomial g is not in CU , thus not in P , i.e., it
is potentially renormalizable, and the notation for its critical points ω1(g), ω2(g), introduced in
definition 2.3, is consistent with the just introduced notation for all potentially renormalizable
polynomials.

Recall that, by theorem 7.2, all polynomials in a componentW of TH(Pλ)\Pλ are conjugate
on their Julia set. Moreover, if some polynomial in W is an IS-capture, then it is easy to see
that so are all polynomials inW . This inspires the following definition. LetW be a component
of λ-stable polynomials, where |λ| � 1. ThenW is said to be of IS-capture type if any f ∈ W
is an IS-capture polynomial. We also say in this case thatW is an IS-capture component. It is
easy to construct examples of IS-captures in Fλ\TH(Pλ).

Theorem 7.4 ([BOPT14b]) . LetW be a component of TH(Pλ)\Pλ, where |λ| � 1. ThenW
is either of IS-capture type or of queer type.

By theorem B the first possibility listed in theorem 7.4 is impossible.
Corollary D now follows from theorem 7.4.
For the sake of completeness we also prove the next lemma.

Lemma 7.5. The only hyperbolic component of F intersecting CU is P◦.

Proof. Assume, to the contrary, that there exists a hyperbolic component V �= P◦ inter-
secting CU . Set Vλ = V ∩ Fλ and CUλ = CU ∩ Fλ. Choose λ with Vλ ∩ CUλ �= Ø. We must
have |λ| � 1 since otherwise CUλ = Ø. From Vλ �= Ø, it follows that V ∩ Fat �= Ø. But then
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V ⊂ Fat and |λ| < 1. Note also that, since polynomials in CU have connected Julia sets, all
polynomials in V have connected Julia sets, i.e., the component V is bounded.

Take g ∈ Vλ ∩ CUλ. Then J(g) is locally connected; let L be the corresponding geodesic
lamination. There is a gap G of L corresponding to A(g). By theorem 3.10, the majorM of G
is either critical or periodic. The former implies that a critical point of g belongs to Bd(A(g)), a
contradiction. Therefore,M = αβ is periodic. The rays Rg(α), Rg(β) land at the same periodic
point x of g. Since g is hyperbolic, x must be repelling. Thus g has a repelling periodic cutpoint
of J(g), a contradiction with g ∈ CU . �

A question as to whether a fixed irrationally indifferent point of a polynomial is Cremer or
Siegel depending on the multiplier at this point is addressed in a conjecture by Douady. Let us
now state a related corollary based upon results of Perez-Marco.

Below we verify this for cubic polynomials fλ,b = λz + bz2 + z3 except for polynomials
that belong to the set Pλ. An important ingredient of our arguments is a result of Perez-Marco
[Per01]; again for brevity we state only a relevant corollary of Perez-Marco’s theorem reduced
to our spaces of polynomials (the actual results of [Per01] are much stronger and much more
general).

Corollary 7.6 (Corollary 1 [Per01]) . Suppose that λ = e2πiθ and θ is irrational. Then the set
of parameters b for which fλ,b has 0 as a Siegel fixed point is either the entireFλ, or, otherwise,
has Hausdorff dimension 0 (in particular, it has empty interior).

Combining these results with our tools we prove corollary 7.7.

Corollary 7.7. If θ /∈ B is not a Brjuno number and λ = e2πiθ, then the fact that f ∈ Fλ\Pλ

implies that 0 is a Cremer fixed point of f.

Proof. Suppose first that f = fλ,b /∈ TH(Pλ). Then, by [BOPT16b], the map is immediately
renormalizable; moreover, 0 belongs to the filled quadratic-like Julia set K∗ ⊂ K( f ) of f. By
theorem 1.3, this implies that 0 is a Cremer point of f . By corollary 7.6, it follows then that
the set of parameters b for which fλ,b has 0 as a Siegel point has empty interior. Since, by
[BOPT16b], in each component of TH(Pλ)\Pλ the polynomials are conjugate, then polyno-
mials in those bounded domains cannot have 0 as their fixed Siegel point. This completes the
proof. �
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