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ABSTRACT
Gaussian process latent variable models (GPLVMs) are pow-
erful, yet computationally heavy tools for nonlinear dimen-
sionality reduction. Existing scalable variants utilize low-
rank kernel matrix approximants that in essence subsample
the embedding space. This work develops an efficient on-
line approach based on random features by replacing spatial
with spectral subsampling. The novel approach bypasses the
need for optimizing over spatial samples, without sacrificing
performance. Different from GPLVM, whose performance
depends on the choice of the kernel, the proposed algorithm
relies on an ensemble of kernels - what allows adaptation to
a wide range of operating environments. It further allows for
initial exploration of a richer function space, relative to meth-
ods adhering to a single fixed kernel, followed by sequential
contraction of the search space as more data become avail-
able. Tests on benchmark datasets demonstrate the effective-
ness of the proposed method.

Index Terms— Dimensionality reduction, Gaussian pro-
cesses, ensemble learning, random features

1. INTRODUCTION

Dimensionality reduction (DR) refers to the task of obtain-
ing meaningful low-dimensional vector representations (em-
beddings) of observations lying in a high-dimensional space.
This key unsupervised learning task can aid with unveiling
patterns in (unlabeled) data, or, serve as a feature extractor
for downstream learning tasks [4].

GPLVM is a probabilistic approach to nonlinear dimen-
sionality reduction, where the nonlinear mapping from latent
embeddings to observations is modeled using Gaussian pro-
cesses (GPs) [9]. GPLVM is perhaps the most widely used
GP based approach in this context, with applications ranging
from localization [5] to deconfounding time series from sin-
gle cell assays [18]. Thanks to its probabilistic nature, it pro-
vides means for uncertainty quantification, a key advantage
over methods such as kernel PCA.

Although quite powerful, the GPLVM yields the embed-
dings that maximize the likelihood of the observations. As
evaluations of the likelihood and gradients thereof involve the
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inverse of the kernel matrix, the complexity scales cubically
with the number of observations [9]. Scalability is achieved
through the use of low-rank approximations to the kernel ma-
trix. This is typically accomplished by relying on the covari-
ance of a few (relative to the total number of observations)
so termed inducing points [10, 3]. The locations of the in-
ducing inputs are in turn jointly optimized alongside with the
latent embeddings, thereby significantly increasing the num-
ber of optimization variables involved. Furthermore, it is well
known that inducing point based schemes only approximate
well the covariance of the (full) GP for points in the proxim-
ity of the inducing points [12]. Unfortunately, in online setups
one cannot rely on obtaining the inducing point locations in
the initialization phase. Rather, continuous optimization over
the inducing point locations is required, so as to account for
scenarios where different clusters of observations, and thus
latent space regions, are being sequentially revealed. This in
turn implies a recurring computational overhead.

To overcome these issues, we propose an online GPLVM
scheme that relies on random (also known as spectral) fea-
tures [17, 12]. Rather than subsampling the embedding space,
the spectral samples are drawn prior to seeing any data, in a
fashion dictated solely by the functional form of the kernel,
and remain fixed as streaming observations become available.

An additional challenge GPLVM faces is that of kernel
selection, as this critically affects the resultant embeddings.
We will address this issue in an efficient fashion, using the
notion of ensemble learning that involves multiple experts,
each relying on a different kernel. As experts operate inde-
pendently (except for the inexpensive fusion step) the com-
putational burden of kernel exploration is fully parallelizable.
As more data become available, the probabilities associated
with each expert are updated accordingly. This allows for se-
quential refinement of the kernel choice.

Several variants of the GPLVM are available, including
the back-constrained [11], variational GPLVM [3], and a few
online schemes [25, 24, 16]. Regarding random features, this
is to the best of our knowledge the first time they are being
used in the context of GPLVMs. Random features have, how-
ever, been used in the realm of online kernel PCA; see e.g. [6].
With respect to ensemble learning, a GPLVM scheme which
can be broadly categorized in this area is [24], where differ-
ent from the proposed approach the goal is to track the latent
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state of a dynamical system. Ensemble methods are, nonethe-
less, more commonplace in the context of probabilistic PCA;
see [22] for the seminal work and [1] for an online variant.
In these approaches, however, each member of the ensemble
only performs linear dimensionality reduction. The present
paper is inspired by our recent work [14] that highlighted the
benefits of combining random features (RFs) with ensembles
of experts in the context of supervised learning; see also [21]
for (supervised) learning of kernels.

Notation Subscripts in matrices indicate the (temporal) index
of the last entry included, whereas [x]d denotes the d-th entry
of vector x. Superscripts of the form (s) specify quantities
related to expert s. Finally,N (x;µ, σ2) indicates the value of
the probability density function of a Gaussian random vari-
able with mean µ and variance σ2, when evaluated at x.

2. RANDOM FEATURE BASED GPLVM

Consider the problem of dimensionality reduction. Let yt ∈
RD denote the t-th observation and xt ∈ Rq be the corre-
sponding (latent) low-dimensional representation (q < D).
For the associated matrices we have Y := [y1 . . .yT ]> ≡
[y:1 . . .y:D], and X := [x1 . . .xT ]>, respectively.

The mapping from the latent representation xt the to d-th
entry (dimension) of the observation yt is modeled as

ytd = fd(xt) + εtd (1)

where fd is a nonlinear function, and {εtd} are assumed to
be drawn i.i.d. from N (0, σ2

ε ). In the original GPLVM [9],
a GP prior is placed on fd, with a covariance structure de-
termined by a kernel, let κ. Here we will consider a ran-
dom feature based approximation for the kernel [17, 12]. In
short, let κ̄(x̃) = κ̄(x − x′) denote an appropriately normal-
ized version of a stationary kernel κ(x,x′) = κ(x − x′).
It can be shown that by drawing m i.i.d. random vectors
vi ∼ πκ(v) = F(κ̄(x̃)), where F denotes the Fourier trans-
form, and letting

φ(x) =
1√
m

[cos(v>1 x) sin(v>1 x) . . . cos(v>mx) sin(v>mx)]>

a kernel approximation can be obtained as ˇ̄κ(x,x′) =
φ>(x)φ(x′) [12]. Finally, φ(x) is referred to as the random
or spectral feature vector corresponding to x. Consequently,
a parametric form for fd is available. In particular, we have
f̌d(x) = w>d φ(x), where wd is a vector of regression coeffi-
cients1. The corresponding likelihood is given by

p(Y|X,W) =
T∏
t=1

D∏
d=1

N (ytd; w
>
d φ(xt), σ

2
ε ) (2)

1The choice of m impacts the approximation accuracy for the kernel ma-
trix as well as computational complexity; see also [17].

where W := [w1 . . .wD]> ∈ RD×2m. Similar to the dual
form of probabilistic PCA [9, 23], we impose a prior on the
regression weights

p(W) =
D∏
d=1

N (wd; 0, I)

where I denotes the identity matrix. Marginalizing p(Y,W|X)
over W yields

p(Y|X) =
D∏
d=1

N (y:d; 0,Φ
>Φ + σ2

ε I) (3)

where Φ := [φ(x1) . . . φ(xT )].

Remark. Through the RF approximation, per dimension
evaluations of the likelihood and gradients thereof can be
performed in O(Tm2) operations, compared to O(T 3) when
the exact kernel matrix is used. This can be seen by using the
matrix inversion lemma in (3). Leveraging RFs reflects a de-
parture from the inducing-points based approximations used
in GPLVM for reducing computational complexity [9, 10].

Having established the form of the conditional likeli-
hood of the observations given their latent representations,
we can now turn our attention to attaining the latter. In the
GPLVM paradigm X is obtained by minimizing the negative
log-likelihood of the observations Y [9]. Further imposing a
prior on X, we have

X = arg min
χ

− log p(Y|χ)− log p(χ). (4)

Notice that this choice corresponds to seeking the maximum-
a-posteriori (MAP) estimate of X. With regards to the prior,
we will assume hereafter that p(X) =

∏T
t=1N (xt; 0, σ

2
xI).

Following a standard choice in the literature, (4) is solved us-
ing the (scaled) conjugate gradient method [15]. Alternatives
include e.g. stochastic gradient descent with momentum [25].
The latent representations are initialized through a probabilis-
tic PCA (PPCA) embedding. Finally, note that generally the
cost function in (4) is jointly optimized over latent represen-
tations and hyperparameters, such as kernel parameters and
variance σ2

ε ; we have omitted the latter for exposition pur-
poses.

3. ONLINE RF-BASED GPLVM

Our discussion so far involved obtaining an RF-based coun-
terpart to the GPLVM. As a first step towards an online al-
gorithm consider an out-of-sample observation y∗, and the
corresponding latent representation x∗. Using identities for
Gaussian conditionals, the associated likelihood turns out to
be given by p(y∗|Y,X,x∗) = N (y∗;µ∗, σ

2
∗I) where

[µ∗]d = φ>(x∗)A
−1Φy:d (5a)

σ2
∗ = σ2

ε + σ2
εφ
>(x∗)A−1φ(x∗) (5b)
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Algorithm 1 Online RF-based GPLVM

Draw vectors {vi}mi=1 ∼ πκ(v)

Embed Yt0 → Xt0 and obtain hyperparameters (cf. (4))
Φt0 = [φ(x1) . . . φ(xt0)]

Bt0 = Φt0Yt0

Rt0 = CholeskyFactor(Φt0Φ
>
t0 + σ2

ε I)

for t = t0 + 1, t0 + 2, . . . do
Receive datum yt

. Embed yt → xt

xt = arg min
x

− log p(yt|Yt−1,Xt−1,x)− log p(x)

φt =
1√
m

[cos(v>1 xt) sin(v>1 xt) . . .

cos(v>mxt) sin(v>mxt)]
>

. Update B, R

Bt = Bt−1 + φty
>
t

Rt = CholeskyUpdate(Rt−1,φt)

end for

with A := ΦΦ> + σ2
ε I. The initially unknown embedding

x∗ is obtained as the MAP estimate, by solving

x∗ = arg min
x

− log p(y∗|Y,X,x)− log p(x). (6)

In practice, (6) is initialized at the embedding corresponding
to the point in Y that is the nearest neighbor of y∗. Observe
now that the key quantities in (5) can be updated in a recursive
fashion. In particular, letting BT = ΦTYT we have

BT+1 = BT + φ(xT+1)y>T+1.

Furthermore, A also admits rank-one updates as AT+1 =
AT +φ(xT+1)φ>(xT+1). Since computations involve A−1,
however (cf. (5)), it is more convenient to perform the updates
on the corresponding Cholesky factor (CF), let R, where A =
R>R [8]; see also [7].

Summarizing, for each incoming sample, an instance of
(6) is solved yielding the associated latent representation,
followed up by rank-one updates on R and B. The above
procedure is summarized in Alg. 1, where t0 denotes the
number of samples used in the batch initialization phase,
CholeskyFactor computes the CF of its argument and
Cholesky Update performs a rank-one CF update. Fi-
nally, note that upon receiving a datum, Alg. 1 yields the
corresponding low-dimensional representation; additionally,
one could update the embeddings of e.g. all of the k-nearest
neighbors (kNNs) of the aforementioned datum.

4. ENSEMBLE ONLINE RF-BASED GPLVM

Obtaining a high quality embedding through Alg. 1 heavily
relies upon the kernel κ being appropriately selected. Due to
the online nature of the problem, however, it is hard to make
a suitable choice a priori. Intuitively, a more realistic route
is to start from a highly expressive model class, that is one
employing several kernels, and refine the model, in terms of
kernel selection, as more data become available.

Towards this end, we will now consider an extension of
Alg. 1 inspired by the ensemble learning paradigm. As a start-
ing point, consider an ensemble (set) of S experts, where each
member, let s, is associated with a kernel κs and the corre-
sponding RF mapping φ(s)(·). More specifically, each expert
runs an instance of Alg. 1, albeit with a different kernel, and
our short-term goal is to choose the “best” embedding across
experts, for each incoming sample.

Formally, let x
(s)
t denote the embedding of sample yt

according to expert s. With the corresponding likelihoods
{p(yt|Yt−1, s, X

(s)
t−1,x

(s)
t )}Ss=1 at hand (cf. (5)), the MAP

solution2 for the “best” embedding across experts, let x
(s∗)
t ,

is given by

(x
(s∗)
t , s∗) :=

argmax
x,s

p(yt|Yt−1, s,X
(s)
t−1,x) p(s|Yt−1, {X(σ)

t−1}
S
σ=1) p(x)

where p(s|Yt−1, {X(σ)
t−1}Sσ=1) denotes the posterior probabil-

ity of the model associated with expert s, given the observa-
tions y1, . . . ,yt−1. Notice that the main computational bur-
den in the above optimization problem (i.e., solving subprob-
lems of the form (6)) is decoupled across experts and hence
fully parallelizable. The posterior probabilities, which can
also be viewed as expert weights, are in turn updated in a re-
cursive fashion. Dropping common terms, we have

p(s|Yt,{X(σ)
t }Sσ=1) ∝

p(s|Yt−1, {X(σ)
t−1}Sσ=1) p(yt|Yt−1, s,X

(s)
t−1,x

(s)
t )

for s = 1, . . . , S. Intuitively, in the long run, we expect
the probability mass to concentrate at the experts whose em-
beddings best describe the observed data. In other words,
our scheme is effectively performing online kernel selection,
adapting to the data as they become available.

2

argmax
xt,s

p(xt, s|yt,Yt−1, {X(σ)
t−1}

S
σ=1)

≡ argmax
xt,s

p(yt,xt, s|Yt−1, {X(σ)
t−1}

S
σ=1)

≡ argmax
xt,s

p(yt|Yt−1, s,X
(s)
t−1,xt) p(s|Yt−1, {X(σ)

t−1}
S
σ=1) p(xt)

3192

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 05:15:36 UTC from IEEE Xplore.  Restrictions apply. 



100 101 102 103

Runtime (sec)

0.05

0.1

0.15

0.2

0.25

0.3

C
la

ss
ifi

ca
tio

n 
er

ro
r r

at
e

eRF-GPLVM

varGPLVM

onGPLVM

GPLVM

online PCA

kernel PCA

0 1000 2000 3000 4000
Runtime (sec)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

C
la

ss
ifi

ca
tio

n 
er

ro
r r

at
e

eRF-GPLVM

varGPLVM

onGPLVM

GPLVM

online PCA

kernel PCA

Fig. 1: Classification error versus runtime plots for the oil
(a), and USPS (b) datasets.

5. NUMERICAL TESTS

In order to assess the performance of the proposed approach,
tests were performed on two benchmark datasets, namely
oil flow data (D = 12) [2], and the USPS handwritten
digits set (D = 256). The latter was limited to digits 0−4 for
ease in their two-dimensional visualization. These datasets
were also used in the original GPLVM paper [9].

Several competing alternatives were considered. GPLVM
based methods comprise the original GPLVM [9, 10], a vari-
ational inference based scheme (varGPLVM) [3], as well as
an online GPLVM variant (onGPLVM); see Alg. 2 in [25].
PCA based alternatives encompass online PCA [19, 13], and
(batch) kernel PCA [20].

The embedding dimensionality was set to q = 2, and
the results presented correspond to the median across 11 tri-
als. Regarding the proposed scheme, 2m = 100 random fea-
tures were used, each expert relied on a radial basis function
(RBF) (also known as Gaussian) kernel with variance taken
from the set {2k}3k=−3, t0 was set to 10% of the number of
samples, and (4) was additionally optimized over σ2

ε . For the
GPLVM based methods, the RBF kernel was used, 100 induc-
ing points were utilized, and the maximum number of itera-
tions was set to 1, 000. Initializations were provided by means
of PPCA embeddings. Finally, for kernel PCA (kPCA), a
grid search was performed over RBF kernels with variances
in {2k}10k=−10 and the lowest error rate achieved is reported.
Note that for kPCA the reported runtime does not include the
time required for the grid search.

The error rate of the nearest neighbor classification rule
was used as the performance metric, when applied to the re-
sultant embeddings; see e.g. [9]. The results are summarized
in Fig. 1, in the form of error rate versus runtime plots. In
the oil dataset the proposed eRF-GPLVM scheme achieves
similar error rate (less than 1%) to GPLVM and varGPLVM,
while being more than one and two orders of magnitude

Fig. 2: Visualization of the embedding attained by the pro-
posed approach on the USPS dataset. Colors represent differ-
ent digits.

faster, respectively. In the USPS set, our approach achieves
the lowest overall error rate. The only schemes that achieve
error rates in the same order of magnitude, namely onGPLVM
and varGPLVM have runtimes that are 14 and 21 times
higher, respectively. Finally, in both experiments, PCA based
schemes, although computationally efficient, yield high error
rates. Due to space limitations, a visualization of the embed-
ding attained is only provided for the proposed approach on
the USPS dataset (Fig. 2). We can observe that good sepa-
ration between clusters of different digits is achieved, in line
with the low classification error rate in Fig. 1.

6. CONCLUSIONS

The present work put forth a novel online approach to non-
linear dimensionality reduction. Unlike existing GPLVM
schemes, scalability is accomplished through the use of ran-
dom features, a choice that allows for circumventing the need
for recurring optimization over inducing points. Furthermore,
the ensemble learning scheme our algorithm is endowed with,
allows for parallelized kernel exploration. The result is a
highly effective and scalable GPLVM scheme that achieves
runtimes that are typically one or more orders of magnitude
lower than the competing GPLVM alternatives on benchmark
datasets.
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