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The field of compressed sensing has become a major tool in high-dimensional 
analysis, with the realization that vectors can be recovered from relatively very 
few linear measurements as long as the vectors lie in a low-dimensional structure, 
typically the vectors that are zero in most coordinates with respect to a basis. 
However, there are many applications where we instead want to recover vectors 
that are sparse with respect to a dictionary rather than a basis. That is, we 
assume the vectors are linear combinations of at most s columns of a d × n matrix 
D, where s is very small relative to n and the columns of D form a (typically 
overcomplete) spanning set. In this direction, we show that as a matrix D stays 
bounded away from zero in norm on a set S and a provided map Φ comprised of i.i.d. 
subgaussian rows has number of measurements at least proportional to the square 
of w(DS), the Gaussian width of the related set DS, then with high probability the 
composition ΦD also stays bounded away from zero. As a specific application, we 
obtain that the null space property of order s is preserved under such subgaussian 
maps with high probability. Consequently, we obtain stable recovery guarantees 
for dictionary-sparse signals via the �1-synthesis method with only O(s log(n/s))
random measurements and a minimal condition on D, which complements the 
compressed sensing literature.

Published by Elsevier Inc.

1. Introduction

An important problem in high-dimensional analysis is to recover a signal from undersampled and cor-

rupted measurements. This problem is ill-posed if no further assumptions are imposed on the signal class. 

With the breakthrough of compressive sensing (CS) (see [26]), we now know that it is possible to recover sig-

nals from very few (typically noisy) measurements, provided that the signals are sitting in a low-dimensional 

structure.
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To make this more concrete, we will use standard CS terminology. We wish to recover a signal z0 ∈ R
d

from its undersampled and corrupted linear measurements y = Φz0 + e ∈ R
m, with the noise satisfying 

‖e‖2 ≤ ε. The number of measurements m is assumed to be far less than the ambient dimension d, meaning 

the system has infinitely many solutions in general. To surpass this hurdle, we assume the signal z0 has a 

sparse structure, that is, it can be written as the linear combination of only a few atoms from a dictionary. 

In other words, if D is the matrix whose columns are the atoms, then z0 = Dx0 for some sparse vector x0.

To recover dictionary-sparse signals, there are mainly two classes of algorithms: convex programming 

[13,41,8,25] and greedy algorithms [45,21,16,36]. This paper will focus on convex problems of the following 

form:

ẑ = arg min
z∈Rd

fD(z), subject to ‖y − Φz‖2 ≤ ε, (1)

where fD(z) is a convex function of z. The unified form (1) is not new, see [15] for example. Two questions 

of interest when attacking this problem are the following:

(Q1) What dictionaries ensure the existence of a sensing matrix Φ to recover z0 stably from (1)?

(Q2) Given such a dictionary D, how do we find suitable sensing matrices with number of rows as small as 

possible?

We begin by introducing in the next two subsections some currently known results related to answering 

these fundamental questions.

1.1. The basis case

Most CS literature focuses on the case when D is the canonical basis, i.e., z0 = x0. A suitable sensing 

matrix would mean that Φ is able to extract the low-dimensional information off of z0. This is reflected in 

popular conditions like low coherence, the restricted isometry property, and the null space property, as well 

as their variations. In this case, the most popular method is the �1-minimization, also known as the Basis 

Pursuit [8,25], where fD(z) = ‖z‖1:

ẑ = arg min
z∈Rd

‖z‖1 subject to ‖y − Φz‖2 ≤ ε. (2)

Proposed by Candes and Tao [9,10], the restricted isometry property (RIP) is sufficient to recover sparse 

signals via (2). A matrix Φ ∈ R
m×d satisfies the RIP with constant 0 ≤ δ < 1 and sparsity s if

(1 − δ)‖z‖2
2 ≤ ‖Φz‖2

2 ≤ (1 + δ)‖z‖2
2

for all s-sparse signals z ∈ R
d. The smallest δs ≥ 0 for which the RIP holds is called the restricted isom-

etry constant. This condition ensures that distinct sparse vectors have sufficiently far away measurements, 

providing explicit recovery guarantees.

While the RIP is a sufficient condition for recovery guarantees via (2), another property known as the 

null space property (NSP) is both necessary and sufficient. A sensing matrix Φ ∈ R
m×d is said to satisfy the 

null space property of order s if for any index set T with |T | ≤ s and any z ∈ ker(Φ)\{0}, ‖zT ‖1 < ‖zT C ‖1

holds. Here zT denotes the vector having the same entries as z on the support T and zero elsewhere. It 

is known that the successful recovery of sparse vectors from Basis Pursuit (2) when ε = 0 occurs if and 

only if the NSP holds [20,27]. Moreover, it was shown in [3] that the NSP is necessary and sufficient for the 

stable recovery via Basis Pursuit. Other than the characterization of Basis Pursuit, another advantage of 

this property is that it only depends on the kernel of Φ, which means that this property is invariant under 
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linear combinations of measurements (the rows of Φ). By a compactness argument, the NSP of order s is 

equivalent to the existence of 0 < γ < 1 such that

‖zT ‖1 < γ‖zT C ‖1, for all z ∈ ker(Φ)\{0}. (3)

This is the so-called stable null space property.

The stable NSP is a matrix property. However, we will abuse the notation and say a vector z has the 

stable NSP if ‖zT ‖1 < γ‖zT C ‖1 for any index set T with cardinality at most s. We let Sd
γ be the set of 

vectors on the unit ball of Rd that do not have the stable NSP. Explicitly,

Sd
γ := {x : ‖xT ‖1 ≥ γ‖xT c‖1 for some |T | ≤ s} ∩ S

d−1
2 . (4)

Taking the intersection with the unit ball in the definition of Sd
γ is mainly for convenience the stable NSP 

for Φ is equivalent to the existence of a positive lower bound of ‖Φx‖2 on Sd
γ . In summary, Φ having the 

NSP is equivalent to the existence of 0 < γ < 1 and η > 0 such that

inf
{

‖Φx‖2 : x ∈ Sd
γ

}
≥ η. (5)

We will be using the notation Sn
γ frequently, so we conveniently denote it by Sγ instead since the dimension 

should be clear from context.

Next, we provide a recovery result using (5) that we are not able find in the literature.

Theorem 1.1. If a sensing matrix A ∈ R
m×n satisfies the stable NSP of order s with

inf {‖Av‖2 : v ∈ Sγ} ≥ η for some η > 0,

then given y = Ax + e with ‖e‖2 ≤ ε, we have

‖x̂ − x‖2 ≤ 2γ + 2

1 − γ
σs(x) +

2ε

η
, (6)

where

x̂ = arg min
x∈Rn

‖x‖1 subject to ‖y − Ax‖2 ≤ ε.

The condition (5) is similar to the so called robust null space property [26, Definition 4.17], and it 

resembles the recovery result of the robust NSP. We include its proof in Section 4.4 for completeness. The 

argument is fairly standard. In fact, a very similar argument can be found in the proof of [19, Theorem 3], 

which uses the robust null space property.

The best answer to (Q2) so far in the basis case is to use random matrices as the sensing matrix Φ. It 

is well-known that random matrices whose entries are drawn from Gaussian or Bernoulli random variable 

satisfy the RIP with high probability, provided that m is only on the order of s log(d/s) [9,39,18]. On the 

other hand, one needs at least O(s log(d/s)) number of measurements to ensure recovery, regardless of the 

decoder [24], and therefore random constructions achieve this minimum. There are many other types of 

random matrices that recover the signal effectively with (2), but do not necessarily have RIP, the Weibull 

matrices [22] for example. This is evidence that RIP is stronger than the NSP, which is explicitly proven 

in [5] using a semi-deterministic construction. The deterministic construction of suitable sensing matrices 

is significantly harder, and it requires many more measurements [4].

Much more can be said about both the history and the theory of CS in the basis case. For those interested 

in learning more, see the book [26] and the survey [24].
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1.2. The general dictionary case

The general setting z0 = Dx0 where D is an arbitrary full rank d × n matrix is much more challenging. 

When d = n, the columns of D form a basis for Rd and it is not hard to see that we can translate this 

to the canonical basis case as described before. However, the difficulty occurs when we assume that n > d

so the dictionary D is overcomplete. In this case, z0 has infinitely many representations in D, including 

possibly more than one sparse representation. There are many applications where the signals are seen 

through such a transformation and the need to understand when stable recovery is achievable is immense 

[38,7,29,2,17,14,23,34].

We note that such an overcomplete dictionary is also often called a finite frame for R
d. The field of 

finite frame theory is rich and has proven to be a powerful asset in many modern, real-world applications. 

We refer the inquisitive readers to [11,12] for a more thorough introduction to the elements of finite frame 

theory.

Perhaps the most reasonable recovery problem to consider in the dictionary setting, since it is the natural 

extension of (2), is the �1-synthesis method:

x̂ = arg min ‖x‖1 subject to ‖y − ΦDx‖2 ≤ ε

ẑ = Dx̂.
(7)

We note that defining ‖z‖KD
:= min{‖α‖1 : Dα = z} gives the following reformulation of the �1-synthesis 

method (7):

ẑ = arg min
z∈Rd

‖z‖KD
subject to ‖y − Φz‖2 ≤ ε. (8)

Specifically, for any convex set K, the Minkowski functional of K is defined as ‖v‖K := inf{λ > 0 :

λ−1v ∈ K} so that in the dictionary setting where D = [d1, · · · , dn] with KD := conv{±di}N
i=1, we have 

‖z‖KD
= min{‖α‖1 : Dα = z} [43]. The Minkowski functional is also known as the gauge of K, or the 

atomic norm associated to K.

One way to guarantee the successful recovery of (7) is to require ΦD to have the NSP or the RIP. The 

work by Rauhut et al. [38] showed that if Φ ∈ R
m×d is a random matrix satisfying a concentration inequality 

with m = O(s log n
s ) and D satisfies the RIP, then the matrix ΦD also satisfies the RIP.

Once the composition ΦD satisfies the RIP, the program (7) (or (8)) will stably recover the sparse 

representation x0, and consequently the signal z0. However, we often only care about the recovery of z0 in 

this dictionary based sparsity problem, in which case we allow x̂ to be far away from x0.

To approach the problem in this new light, the work in [7] instead proposed the model where fD(z) =

‖D∗z‖1 in (1), called the �1-analysis method:

ẑ = arg min
z∈Rd

‖D∗z‖1 subject to ‖y − Φz‖2 ≤ ε. (9)

They showed that successful recovery via (9) is possible when D is a Parseval frame, i.e. DD∗ = Id and 

provided that Φ satisfies a dictionary based RIP, D-RIP. The definition of D-RIP is similar to the usual 

RIP, but with Dx in place of x.

The �1-analysis and �1-synthesis models assume different sparsity to begin with. The analysis model 

assumes the sparsity of the analysis coefficient D∗z, which has applications in imaging where D can be 

the finite difference operator, wavelets, shearlets, etc. [31,30]. The �1-synthesis model assumes one of the 

infinitely many coefficients for z in D is sparse, as introduced at the beginning. This is more inclusive as 

the analysis coefficient is a particular case where the dual frame is the analysis operator (z = DD∗z), see 

[29] for more details. On the technical side, the synthesis approach often imposes more challenges due to 
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its setting, and the fact that we do not know which dual frame of D generates a sparse representation. The 

work by Chen et al. [14] tackled the �1-synthesis problem and aimed to lay a framework for this method. 

They proposed a dictionary based NSP for the sensing matrix, D-NSP for short, which we now define.

Definition 1.2. Let D ∈ R
d×n be a dictionary. A matrix Φ ∈ R

m×d is said to satisfy the D-NSP of order s

if for any index set T with |T | ≤ s and any v such that Dv ∈ ker Φ\{0}, there is some u ∈ ker D so that

‖vT + u‖1 < ‖vT c‖1.

The D-NSP is a characterization of exact recovery of dictionary sparse signals via (7) when ε = 0, and 

therefore is a generalization of the NSP. The following result helps emphasize the general direction of this 

paper.

Theorem 1.3 ([14, Theorem 7.2]). If D is full spark, then Φ has the D-NSP with sparsity s if and only if 

ΦD has the NSP with the same sparsity.

A frame D ∈ R
d×n is full spark if every collection of d frame vectors is linearly independent. Full spark 

is not a strong assumption on dictionaries. In fact, it is quite obvious that if we randomly choose the entries 

of D according to any continuous distribution, then D will be full spark with probability one. More details 

can be found in [1].

As a (surprising) result of Theorem 1.3, if the �1-synthesis method is successful at all, almost always, we 

will recover both x0 and z0, and D will satisfy the NSP since ker(D) ⊂ ker(ΦD). In other words, if we are 

using �1-synthesis to recover z0, then it is very reasonable to assume that D has NSP and the coefficients x0

will be recovered simultaneously. Therefore we will study the properties of the composition ΦD to ensure 

the success of �1-synthesis.

Like the basis case, most work for the dictionary case often uses random measurements. The paper [30]

uses Gaussian measurements for the �1-analysis method, providing both nonuniform and uniform guarantees. 

The work [22] also considers the �1-analysis approach, but instead uses Weibull measurements. As mentioned 

earlier, the work by Rauhut et al. [38] does analyze the �1-synthesis method, however, it requires the 

dictionary D to have the RIP. We again note that there is a gap between the RIP and the NSP [5], so 

we would like to reduce this assumption on D. Additionally, it is known that a subgaussian matrix Φ

satisfies with high probability the D-RIP [7], from which it is not hard to see that if Φ is subgaussian, then 

essentially (with high probability) ΦD has the RIP if and only if D has the RIP. This further solidifies the 

need to weaken the RIP assumption. Another notable work on random measurements in this setting is by 

Vershynin [43], which directly measures the recovery error in expectation. However, the error bound does 

not promote sparsity, and therefore will not provide exact reconstruction for s-sparse representations.

This paper will study the recovery prospects of (7) or (8) when the measurements are chosen at random. 

This kind of model is used in data acquisition when random measurements can be extracted, and is also 

applied in machine learning where data are assumed to have certain distributions. In this paper, we will 

assume the measurements are subgaussian, which we will review in Section 2.2. We wish to justify the 

effectiveness of random sensing matrices for recovering dictionary-sparse signals when �1-synthesis (7) is 

used. As explained, this reduces to verifying the null space property of the composite ΦD. The biggest 

question is how small the number of measurements m can be given n, d, s fixed. If we treat ΦD as a whole 

and focus on recovering the coefficient x0, then this reduces to the basis case and the optimal number of 

measurements is m = O(s log n
s ), which is usually achieved by random construction as is the case in [22,30]. 

So we wish to answer the question:

Given that D has the NSP, find the smallest number of measurements such that
(*)

ΦD has the NSP when the rows of Φ are subgaussian.
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Notice that the NSP requirement on D makes sense and is inevitable since ker(D) ⊂ ker(ΦD).

1.3. Our contribution and organization

The contribution of this paper is twofold. The first main result, Theorem 3.1, states that a certain 

property of an operator/dictionary can be preserved under a subgaussian random map, given that this map 

is projecting to a dimension that is on the order of the square of the Gaussian width of certain set. It 

is not a coincidence that we study this preservability since the problem we wish to solve has this flavor. 

However, this could potentially be used to analyze other properties of compressed sensing matrices, or even 

beyond the scope of sparse analysis. Our second main result is the application of Theorem 3.1 to the null 

space property, thus solving (*). Specifically, Theorem 3.3 states if Φ ∈ R
m×d is a sensing matrix with 

independently drawn rows from a subgaussian distribution, D ∈ R
d×n satisfies the NSP, and the number 

of measurements m is on the order of s log(n/s), then ΦD also satisfies the NSP with high probability. 

Consequently, we get a recovery result stated in Corollary 3.6, which is the first recovery result with only 

s log(n/s) subgaussian measurements that only requires the dictionary to be NSP. As far as the authors 

can tell, this is the first work on the �1-synthesis algorithm with random measurements that only requires 

a minimal condition on D.

The road map is as follows. In Section 2, we provide the required preliminary material and notations 

that will be used throughout the paper. In Section 3, we introduce our main results as described above 

and argue how they are essentially optimal. Furthermore, we obtain as a corollary a more suitable recovery 

guarantee for the �1-synthesis method. We then provide the theory behind our results in Section 4, as well as 

alternative estimates for the Gaussian width. The more specific cases that Φ has rows drawn independent 

from a multivariate normal distribution is addressed in Section 5, wherein we provide better estimates. 

Finally, we end with some conclusions and discussions.

2. Preliminaries

We use ‖ · ‖p for the standard �p norm and we let

S
n−1
p := {x ∈ R

n : ‖x‖p = 1} and B
n−1
p := {x ∈ R

n : ‖x‖p ≤ 1}.

We also denote [n] := {1, · · · , n}. If S ⊂ R
n and D ∈ R

d×n is a dictionary, then we write DS for DS =

{Dx : x ∈ S}. Also, we denote the columns of D by di so that D = [d1, · · · , dn]. For a dictionary D, ‖D‖2

is the operator norm.

We will use the notation X ∼ N(μ, σ2) to mean that a one dimensional random variable X follows a 

normal distribution with mean μ and variance σ2, and X ∼ N(µ, Σ) means a multidimensional random 

variable X follows a multivariate normal distribution with mean vector µ and covariance matrix Σ.

2.1. The Gaussian width

In the proof of our main result, we will need to bound w(DSγ), where w denotes the Gaussian width 

defined as follows.

Definition 2.1. The Gaussian width of a set S ⊂ R
n is defined as

w(S) := E sup
x∈S

〈g, x〉,

where g ∼ N(0, In) is a standard Gaussian random vector.



P.G. Casazza et al. / Appl. Comput. Harmon. Anal. 49 (2020) 451–470 457

The Gaussian width plays a central role in asymptotic convex geometry. In particular, thinking of each 

inner product 〈g, x〉 as a random projection, the Gaussian width measures how well, on average, the vectors 

in S can line up with a randomly chosen direction. For example, the Gaussian width of the unit ball is 

w(Bn−1
2 ) = E‖g‖2 =

√
2Γ(n+1

2 )/Γ(n
2 ), which is on the order of 

√
n. It is in this way that the Gaussian 

width can be thought of as a way to measure the “size” of a set [44]. In terms of CS, bounding the Gaussian 

width is how one obtains the important concentration equality used in the now standard CS proofs [26, 

Chapter 9]. Therefore, it is natural that our proof techniques will make use of it as well. Lastly, we note 

that it is often required that the set S be symmetric about the origin, which Sγ satisfies.

We will need the following result. The argument is given on Page 10 of [37], but we will provide it in 

Section 4.3 for the sake of completeness.

Lemma 2.2. For any map F ∈ R
d×n and any S ⊂ R

n, we have

w(FS) ≤ ‖F‖2w(S).

2.2. Subgaussian vectors

The measurement matrix Φ ∈ R
m×d in our result will have rows drawn i.i.d. from a subgaussian distri-

bution, which we now define following [42].

Definition 2.3. A random vector ϕ ∈ R
d is called a subgaussian vector with parameters (α, σ) if it satisfies 

the following.

(1) It is centered, that is, E[ϕ] = 0.

(2) There exists a positive α such that E [|〈ϕ, z〉|] ≥ α for every z ∈ S
d−1
2 .

(3) There exists a positive σ such that Pr (|〈ϕ, z〉| ≥ t) ≤ 2 exp(−t2/(2σ2)) for every z ∈ S
d−1
2 .

There are many examples of subgaussian vectors, including vectors with independent Gaussian entries, 

or independent Bernoulli entries, as well as independent bounded entries. We list the following two cases in 

detail since they are used in corresponding theorems in the next section.

Example 2.4 (Standard Gaussian vector). Let ϕ ∈ R
d ∼ N(0, Id) be a standard Gaussian vector. If z ∈ S

d−1
2 , 

then Z := 〈ϕ, z〉 ∼ N(0, 1) and it is well known that

E[|Z|] =

√
2

π
and Pr (|Z| ≥ t) ≤ exp

(
− t2

2

)
,

so the standard Gaussian vector is subgaussian with parameters α =
√

2/π and σ = 1.

Example 2.5 (Nonstandard Gaussian vector). Suppose that ϕ ∈ R
d ∼ N(0, Σ) where the covariance matrix 

Σ has smallest and largest singular values, σ2
min and σ2

max, respectively. Then ψ := Σ−1/2ϕ ∼ N(0, Id) and 

we can compute for all z ∈ S
d−1
2 that

E [|〈ϕ, z〉|] = E

[
|〈Σ1/2ψ, z〉|

]
= E

[
|〈ψ, Σ1/2z〉|

]
= ‖Σ1/2z‖2 E

[∣∣∣∣
〈

ψ,
Σ1/2z

‖Σ1/2z‖

〉∣∣∣∣
]

≥ σmin

√
2

π

and in a similar fashion

Pr [|〈ϕ, z〉| ≥ t] = Pr

[∣∣∣∣
〈

ψ,
Σ1/2z

‖Σ1/2z‖

〉∣∣∣∣ ≥ t

‖Σ1/2z‖2

]
≤ exp

(
− t2

2σ2
max

)
,



458 P.G. Casazza et al. / Appl. Comput. Harmon. Anal. 49 (2020) 451–470

so that ϕ is subgaussian with parameters α = σmin

√
2/π and σ = σmax.

2.3. The mean empirical width

If {fi}m
i=1 are independent copies of the random distribution f ∈ R

n, then we can define the mean 

empirical width of a set S ⊂ R
n as

Wm(S; f) := E sup
x∈S

〈
x,

1√
m

m∑

i=1

εifi

〉
,

where {εi}m
i=1 are independent random variables taking values uniformly over {±1} and are independent 

from everything else.

The mean empirical width Wm(S; f) is a distribution-dependent measure of the size of the set S. Note 

that Wm(S; f) reduces to the usual Gaussian width w(S) when f follows a standard Gaussian distribution, 

as shown in Remark 2.7. Estimation of Wm(S; f) for any subgaussian vector f is made in [42], where S

is required to be Sn−1
2 ∪ K for some cone K. However, the bound can be relaxed to any subset S by the 

observation of the generic chaining bound and the majorizing measure theorem [40, Theorem 2.2.18 and 

Theorem 2.4.1]. We will state this as a lemma.

Lemma 2.6. If f ∈ R
n is subgaussian with parameters (α, σ) and S is any subset of Rn, then

Wm(S; f) ≤ Cσw(S) (10)

for some universal constant C.

The constant C will appear in the main results. It is a universal constant that does not rely on the choice 

of subgaussian distribution. See [40] for precise computations of this constant. However, better estimates 

can be made using different techniques as is shown in the next example.

Remark 2.7. When f follows a centered multivariate normal distribution N(0, Σ), we can take C = 1. Let 

gi := Σ−1/2fi ∼ N(0, In), then g =
∑m

i=1 εigi ∼ N(0, In) as well, so

Wm(S; f) = E sup
z∈S

〈
z,

1√
m

m∑

i=1

εifi

〉
= E sup

z∈S

〈
z,

1√
m

m∑

i=1

εiΣ
1/2gi

〉

= E sup
z∈S

〈
Σ1/2z,

1√
m

m∑

i=1

εigi

〉
= E sup

x∈Σ1/2S

〈x, g〉

= w(Σ1/2S) ≤ σmaxw(S),

where the last inequality is due to Lemma 2.2.

The mean empirical width appears in the following important result. This theorem was originally stated 

in [32] and coined Mendelson’s Small Ball Method by J. Tropp [42]. This will be a primary tool in obtaining 

our main estimates.

Theorem 2.8 ([42, Proposition 5.1], cf. [32, Theorem 2.1]). Fix a set S ⊂ R
n. Let f be a random vector in 

R
n and let F ∈ R

m×n have rows {f�
i }M

i=1 that are independent copies of f�. Define

Qξ(S; f) := inf
x∈S

Pr

(
|〈x, f〉| ≥ ξ

)
and Wm(S; f) := E sup

x∈S

〈
x,

1√
m

m∑

i=1

εifi

〉
,
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where {εi}m
i=1 are independent random variables taking values uniformly over {±1} and are independent 

from everything else. Then for any ξ > 0 and t > 0, we have

inf
x∈S

‖Fx‖2 ≥ ξ
√

mQ2ξ(S; f) − 2Wm(S; f) − ξt (11)

with probability ≥ 1 − e−t2/2.

3. Main results

3.1. Preservability under subgaussian maps

Theorem 3.1 (Preservability under random maps). Let D ∈ R
d×n be arbitrary, let S ⊂ R

n be such that 

inf {‖Dx‖2 : x ∈ S} ≥ η for some constant η > 0, and assume ϕ ∈ R
d is a subgaussian vector with 

parameters (α, σ). If Φ ∈ R
m×d is a measurement matrix with rows that are independent copies of ϕ� and 

that the number of measurements satisfies

m ≥ 48

η2

σ6

α6
C2w2(DS),

then with probability at least

1 − exp

(
−m

α4

642σ4

)
,

we have

inf
x∈S

‖ΦDx‖2 ≥ Cσw(DS). (12)

Theorem 3.1 is beyond the null space property. It says that if an operator stays bounded away from 0

on some set, then this operator under a random map also stays bounded away from 0 on the same set, 

given that the dimension of the random map is at least proportional to the square of the Gaussian width 

of the related set. This could be potentially useful for other dimension reduction analysis. The proof of 

Theorem 3.1 can be found in Section 4.1. In equation (12), the constant η does not show explicitly, but it 

is reflected in the number of measurements m since Φ is random.

Remark 3.2. Theorem 3.1 can be compared to [6, Proposition 18]. Both statements are about the minimal 

number of measurements related to Gaussian width. However, ours has a dictionary D incorporated.

As an application of Theorem 3.1, we let S = Sγ , as defined in (4), and compute the Gaussian width of 

DSγ . This is a key step in this paper and is not a simple task. See Theorem 4.7 on bounding the Gaussian 

width. Recall that Sγ is the set of vectors that violates the stable NSP. Theorem 3.1 and Theorem 4.7 imply 

the following theorem on preserving the null space property.

Theorem 3.3. Assume Φ ∈ R
m×d is a sensing matrix comprised of rows drawn i.i.d. from a subgaussian 

distribution with parameters (α, σ). Take D ∈ R
d×n to be a dictionary satisfying the stable NSP of order s

with inf {‖Dx‖2 : x ∈ Sγ} ≥ η for some η > 0 and satisfying max
{

‖di‖2
2 : i ∈ [n]

}
≤ ρ. If the number of 

measurements satisfies

m ≥ 36 · 48

η2

σ6

α6

ρ

γ2
C2s log(

√
2n

s
), (13)
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then with probability at least

1 − exp

(
−m

α4

642σ4

)
,

the composition ΦD also has the stable NSP of order s with inf {‖ΦDx‖2 : x ∈ Sγ} ≥ Cσw(DSγ).

Remark 3.4. Theorem 3.3 only requires a minimal condition on D. If ΦD has the NSP, then D must also 

have the NSP (hence some kind of stable NSP) since ker(D) is a proper subspace of ker(ΦD). Thus, D

having the NSP is a very reasonable condition if we want stable recovery through �1-synthesis.

Remark 3.5. The constants in (13) are well controlled. The ratio σ
α reflects how well the distributions behave 

and is the condition number of Σ if ϕ ∼ N(0, Σ). To reiterate, the constant C that appears in the above 

results is a universal constant. A more precise estimate can be made when ϕ follows the multivariate normal 

distribution. Furthermore, ρ also equals one when each frame vector has unit norm, which is often the case. 

The constants η and γ reflect the null space property of D.

3.2. Sparse recovery via the �1-synthesis method

As a consequence of Theorem 3.3, we obtain a uniform recovery result using Theorem 1.1 with A replaced 

by ΦD. We will use the standard notation

σs(x) := inf{‖x − v‖1 : v is s-sparse},

to denote the �1-error of best s-term approximation to a vector x. This infimum is achieved by taking 

v := xT , where T is the index set containing the indices where the s-largest absolute value entries of x

occur.

Corollary 3.6. Suppose Φ ∈ R
m×d is a sensing matrix comprised of rows drawn i.i.d. from a subgaus-

sian distribution with parameters (α, σ) and suppose D ∈ R
d×n has the stable NSP of order s with 

inf {‖Dx‖2 : x ∈ Sγ} ≥ η for some η > 0 and satisfies max
{

‖di‖2
2 : i ∈ [n]

}
≤ ρ. Let z0 = Dx0, and 

the measurements y satisfying ‖y − Φz0‖2 ≤ ε. If the number of measurements satisfies

m ≥ 36 · 48

η2

σ6

α6

ρ

γ2
C2s log(

√
2n

s
),

then with probability at least 1 − exp

(
−m

α4

642σ4

)
, the �1-synthesis method (7) provides a stable recovery 

for both the coefficients x0 and the signal z0 as

‖x̂ − x0‖2 ≤ 2γ + 2

1 − γ
σs(x0) +

2ε

Cση

‖ẑ − z0‖2 ≤ ‖D‖2
2γ + 2

1 − γ
σs(x0) +

2ε‖D‖2

Cση
.

4. Proofs of the results

We will apply Mendelson’s Small Ball Method in our setting. Most of the work will be in properly 

estimating two important quantities, which will further lead to the need to estimate the Gaussian width 

w(DSγ). This is what makes up Sections 4.1 and 4.2. In doing so, we will obtain the bound on the number 
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of measurements in Theorem 3.3 and its corollaries that forces ΦD to have the NSP with high probability 

given that Φ is a matrix made up of independent copies of a subgaussian vector and D satisfies the NSP. 

In Section 4.3 we prove Lemma 2.2 and use it to obtain a different estimate for the Gaussian width than in 

Section 4.2. Lastly, in Section 4.4, we provide a stable recovery result with stable NSP for completeness.

4.1. Preservability under a random map

Notice that if the rows of Φ are independent copies of a random vector ϕ, then the rows of ΦD are 

independent copies of the random vector D�ϕ. We will apply Theorem 2.8 with ΦD in place of F and the 

random vector D�ϕ in place of f , which in turn will require us to estimate the quantities Q2ξ(S; D�ϕ)

and Wm(S; D�ϕ).

In the proof of Theorem 4.2, we will use the following lemma to bound Q2ξ(S; D�ϕ). The proof can be 

found in [42, Section 6.5].

Lemma 4.1. If f ∈ R
n is a subgaussian vector with parameters (α, σ), then

Pr [|〈x, f〉| ≥ t] ≥ (α − t)2

4σ2

for any 0 < t < α and x ∈ S
n−1
2 .

Theorem 4.2. Let D ∈ R
d×n be arbitrary, let S ⊂ R

n be so that inf {‖Dx‖2 : x ∈ S} ≥ η for some constant 

η > 0, and let ϕ ∈ R
d be a subgaussian measurement with parameter (α, σ). If Φ ∈ R

m×d has rows that are 

independent copies of ϕ�, then

inf
x∈S

‖ΦDx‖2 ≥ αη

43

(α

σ

)2 √
m − 2Cσw(DS) − αη

4
t (14)

for any t > 0 with probability at least 1 − e−t2/2.

Proof. We first apply Mendelson’s Small Ball Method, Theorem 2.8, with F replaced by ΦD and therefore 

f replaced by D�ϕ to obtain the bound

inf
x∈S

‖ΦDx‖2 ≥ ξ
√

mQ2ξ(S; D�ϕ) − 2Wm(S; D�ϕ) − ξt. (15)

By Lemma 4.1, provided we choose ξ to satisfy 2ξ/η < α, we obtain for any x ∈ S

Pr (|〈Dx, ϕ〉| ≥ 2ξ) = Pr

(∣∣∣∣
〈

Dx

‖Dx‖2
, ϕ

〉∣∣∣∣ ≥ ξ

‖Dx‖2

)

≥ Pr

(∣∣∣∣
〈

Dx

‖Dx‖2
, ϕ

〉∣∣∣∣ ≥ ξ

η

)
≥ (α − 2ξ/η)2

4σ2
(16)

and therefore

Q2ξ(S; D�ϕ) = inf
x∈S

Pr
(
|〈x, D�ϕ〉| ≥ 2ξ

)
= inf

x∈S
Pr (|〈Dx, ϕ〉| ≥ 2ξ) ≥ (α − 2ξ/η)2

4σ2
.

Lemma 2.6 readily gives the estimate

Wm(S; D�ϕ) = Wm(DS; ϕ) ≤ Cσw(DS).

Placing these two bounds into (15) and choosing ξ to satisfy 2ξ/η = α/2 gives the bound in (14). �
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Remark 4.3. Notice that Theorem 4.2 is a generalization of [42, Theorem 6.3]. In this generalization, it is 

crucial that D has NSP as is evident in (16).

Finally, we can provide the proof of our first main result, Theorem 3.1.

Proof of Theorem 3.1. Theorem 4.2 implies that

inf
x∈S

‖ΦDx‖2 ≥ αη

43

(α

σ

)2 √
m − 2Cσw(DS) − αη

4
t := a − b − αη

4
t.

Picking m and t to satisfy a ≥ 2b and (αη/4)t = (a − b)/2 gives

inf
x∈S

‖ΦDx‖2 ≥ a − b − (a − b)/2 = (a − b)/2 ≥ b/2 = Cσw(DS).

All that is left is to rewrite these conditions in terms of m and t. We have

a ≥ 2b ⇔ αη

43

(α

σ

)2 √
m ≥ 4Cσw(DS) ⇔ m ≥ 48

η2

σ6

α6
C2w2(DS)

and

αη

4
t =

a − b

2
≥ a

4
=

αη

44

(α

σ

)2 √
m ⇔ t ≥ 1

64

√
m
(α

σ

)2

⇔ − t2

2
≤ −m

α4

642σ4
,

proving the result. �

4.2. Estimating the Gaussian width

In order to prove Theorem 3.3, we apply Theorem 3.1 to the null space property, i.e., let S = Sγ . Therefore 

the last ingredient of the proof of Theorem 3.3 is to suitably bound the Gaussian width w(DSγ). Note that 

it is pivotal to have a relatively optimal upper bound on w(DSγ) since the number of measurements m is 

on the order of the square of this width.

Recall that

w(DSγ) := E sup
z∈DSγ

〈g, z〉 = E sup
x∈Sγ

〈D�g, x〉, (17)

where g ∈ R
d is a standard Gaussian vector.

We again point out that bounding w(DSγ) is not an easy task. At first glance, one may naively estimate 

w(DSγ) using its geometric properties. We have

w(DSγ) = w(conv(DSγ)) = w(D conv(Sγ)) ≤ w(DB
n−1
2 ),

where conv(S) denotes the convex hull of S. By Lemma 2.2, we obtain the crude estimate

w(DB
n−1
2 ) ≤ 2‖D‖2w(Bn−1

2 ) ≈ 2‖D‖2

√
n.

This is far less than ideal with 
√

n and the potential dimension dependency from ‖D‖2.

The approach we will use is inspired by [26, Section 9.4], which estimates w(Sγ), the width in the basis 

case. It is worth noting that the generalization w(DSγ) is nontrivial, as will be explained in the proof of 

Theorem 4.7.
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First, we introduce the convex cone

Kγ,s :=

{
u ∈ R

n : u� ≥ 0, � ∈ [n],
s∑

�=1

u� ≥ γ
n∑

�=s+1

u�

}

and its dual cone

K∗
γ,s := {z ∈ R

n : 〈z, u〉 ≥ 0 for all u ∈ Kγ,s} .

Also, recall the nonincreasing rearrangement of a vector x ∈ R
d is the vector x∗ ∈ R

d for which

x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
d ≥ 0

and x∗
i =
∣∣xπ(i)

∣∣ for some permutation π.

We can now state the following lemma. It has a proof that is similar to that of [26, Proposition 9.31], 

but we provide it for the sake of completeness.

Lemma 4.4. If D ∈ R
d×n is an arbitrary matrix and g ∈ R

d ∼ N(0, Id), then

w(DSγ) ≤ E min
z∈K∗

γ,s

‖(D�g)∗ + z‖2.

Proof. Elements in Sγ are invariant under permutation of indices and entrywise sign changes, so

max
x∈Sγ

〈D�g, x〉 = max
x∈Sγ

〈(D�g)∗, x〉 = max
u∈Kγ,s∩Sn−1

〈(D�g)∗, u〉 ≤ min
z∈K∗

γ,s

‖(D�g)∗ + z‖2, (18)

where the last inequality follows by the duality

max
x∈K,‖x‖2≤1

〈−g, x〉 ≤ min
z∈K∗

‖g − z‖2,

as given in [26, (B.39)]. Taking the expected value of (18) completes the proof. �

The following Lemma is similar to [26, Remark 9.25], but here we assume a general variance.

Lemma 4.5. If a ∼ N(0, σ2), then

ES2
t (a) ≤ σ4

√
2

πe
t−2e−t2/(2σ2),

where St is the soft thresholding operator defined by

St(u) :=

⎧
⎪⎨
⎪⎩

u − t if u > t

0 if |u| ≤ t

u + t if u < −t

.

Proof. We compute

ES2
t (a) =

2√
2πσ2

∞∫

0

S2
t (u)e−u2/(2σ2) du
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=
1

σ

√
2

π

∞∫

t

(u − t)2e−u2/(2σ2) du

=
1

σ

√
2

π

∞∫

0

v2e−(v+t)2/(2σ2) dv

= e−t2/(2σ2) 1

σ

√
2

π

∞∫

0

v2e−v2/(2σ2)e−vt/σ2

dv

= e−t2/(2σ2)

√
2

π

∞∫

0

( v

σ
e−(v/σ)2/2

)
ve−vt/σ2

dv

≤ e−t2/(2σ2)

√
2

π
e−1/2

∞∫

0

ve−vt/σ2

dv

= e−t2/(2σ2)

√
2

π
e−1/2 σ4

t2

= σ4

√
2

πe
t−2e−t2/(2σ2)

as desired. �

The following Lemma is a key step in suitably bounding the Gaussian width. It is inspired by [35, 

Lemma 3.5].

Lemma 4.6. If D ∈ R
d×n is any matrix with max

{
‖di‖2

2 : i ∈ [n]
}

≤ ρ and g ∈ R
d ∼ N(0, Id), then

E

√√√√1

s

s∑

�=1

((D�g)∗
� )2 ≤

√
4ρ log(

√
2n/s).

Proof. Setting ai := (D�g)i gives ai ∼ N(0, σ2
i ) with σi = ‖di‖2, so

E exp(
a2

i

4σ2
i

) =

∫

R

1√
2πσ2

i

e
− x2

2σ2
i e

x2

4σ2
i dx =

∫

R

1√
2πσ2

i

e
− x2

4σ2
i dx =

√
2.

It follows from Jensen’s inequality that

E
2

√√√√1

s

s∑

�=1

((D�g)∗
� )2 ≤ E

1

s

s∑

�=1

(a∗
� )2 = E

1

s

s∑

�=1

4(σ∗
l )2 log

(
exp

(a∗
l )2

4(σ∗
l )2

)

≤4ρE
1

s

s∑

�=1

log

(
exp

(a∗
l )2

4(σ∗
l )2

)
≤ 4ρE log

(
1

s

s∑

l=1

exp
(a∗

l )2

4(σ∗
l )2

)

≤4ρ log

(
1

s

s∑

l=1

E exp
(a∗

l )2

4(σ∗
l )2

)
≤ 4ρ log

(
1

s

n∑

l=1

E exp
a2

l

4σ2
l

)
= 4ρ log(

1

s

√
2n).

Taking the squared root of this inequality yields the desired result. �
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Theorem 4.7. If D ∈ R
d×n is any matrix with max

{
‖di‖2

2 : i ∈ [n]
}

≤ ρ, then

w(DSγ) ≤ 6γ−1

√
sρ log(

√
2n/s).

Proof. Define

Fγ,s :=
⋃

t≥0

{z ∈ R
n : z� = t, � ∈ [s], zk ≥ −γt, k = s + 1, . . . , n}

which satisfies Fγ,s ⊂ K∗
γ,s by Lemma 9.32 of [26]. The minimum over a smaller set can only be larger so 

we obtain w(DSγ) ≤ E min
z∈Fγ,s

‖(D�g)∗ + z‖2 by Lemma 4.4. By the definition of Fγ,s and concavity of the 

square root function, we get

w(DSγ) ≤ E min
z∈Fγ,s

‖(D�g)∗ + z‖2

≤ E min
t≥0

z�≥−γt,�∈[n]\[s]

⎛
⎝
√√√√

s∑

�=1

((D�g)∗
� + t)2 +

√√√√
n∑

�=s+1

((D�g)∗
� + z�)2

⎞
⎠

Now fix t ≥ 0 to be chosen later. Again by concavity, and since (D�g)∗
� has mean zero we obtain

w(DSγ) ≤ E

√√√√
s∑

�=1

((D�g)∗
� + t)2 + E

√√√√ min
z�≥−t

n∑

�=s+1

((D�g)∗
� + z�)2 (19)

≤ E

√√√√
s∑

�=1

((D�g)∗
� )2 +

√√√√2t

s∑

�=1

E(D�g)∗
� + t

√
s + E

√√√√ min
z�≥−t

n∑

�=s+1

((D�g)∗
� + z�)2 (20)

≤ E

√√√√
s∑

�=1

((D�g)∗
� )2 + t

√
s + E

√√√√
n∑

�=s+1

S2
γt((D

�g)∗
� ), (21)

where St is the soft thresholding operator defined earlier. Note that Inequality (21) holds because of how 

the zl are defined.

We have so far exactly followed the proof of [26, Proposition 9.33], but if one tries to estimate the first 

term of (21) in the same fashion as in [26, Proposition 8.2], a 
√

d factor would result, causing the estimate 

to be too large. Instead, we apply Lemma 4.6, and get

E

√√√√
s∑

�=1

((D�g)∗
� )2 ≤

√
4ρs log(

√
2n/s).

Next, we bound the last term in (21) by

E

√√√√
n∑

�=s+1

S2
γt((D

�g)∗
� ) ≤

√√√√E

n∑

�=s+1

S2
γt((D

�g)∗
� ) ≤

√√√√E

n∑

�=s+1

S2
γt((D

�g)�),

where we used the fact that {(D�g)∗
� : � = s + 1, · · · , n} are the n − s smallest entries in magnitude to 

obtain the second inequality.
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To estimate the second moment of the soft thresholding operator, we again use the fact that ai := (D�g)i

gives ai ∼ N(0, σ2
i ) with σi = ‖di‖2 and so Lemma 4.5 implies

ES2
γt(ai) ≤ σ4

i

√
2

πe
(γt)−2 exp

(−(γt)2

2σ2
i

)
≤ ρ2

√
2

πe
(γt)−2 exp

(−(γt)2

2ρ

)

Finally, combining all of these estimates of the quantities in (21) gives

w(DSγ) ≤
√

4ρs log(
√

2n/s) + t
√

s +

√

(n − s)ρ2

√
2

πe
(γt)−2 exp

(−(γt)2

2ρ

)
.

Choosing t = γ−1
√

4ρ log(
√

2n/s) and using the fact that γ−1 ≥ 1 gives

w(DSγ) ≤
√

4ρs log(
√

2n/s) + γ−1

√
4sρ log(

√
2n/s) +

√
ρ

(n − s)s2

2n2

√
2

πe

1

log(
√

2n/s)

≤
√

4ρs log(
√

2n/s)
(
1 + γ−1

)
+

√
ρs

≤ 3γ−1

√
4ρs log(

√
2n/s). �

4.3. Proof of Lemma 2.2

Recall that a Gaussian process {Xt}t∈T for some index set T (which can be uncountably infinite) is 

a sequence of random variables Xt so that any finite linear combination follows a Gaussian distribution. 

Slepian’s lemma [28] gives a way to compare such processes.

Lemma 4.8 (Slepian’s Lemma). If {Xt}t∈T and {Yt}t∈T are Gaussian processes so that for any s, t ∈ T ,

E|Xs − Xt|2 ≤ E|Ys − Yt|2

holds, then

E sup
t∈T

Xt ≤ E sup
t∈T

Yt.

Proof of Lemma 2.2. We define the Gaussian processes {Xu}u∈S and {Yu}u∈S

Xu := 〈Fu, g〉 = ‖Fu‖2

〈
Fu

‖Fu‖2
, g

〉
and Yu := ‖F‖2〈u, g〉,

where g ∼ N(0, Id). We notice

E |Xu − Xv|2 = ‖F(u − v)‖2
2 ≤ ‖F‖2

2‖u − v‖2
2 = E |Yu − Yv|2 .

Thus, Lemma 4.8 gives

w(FS) = E sup
u∈S

Xu ≤ E sup
u∈S

Yu = ‖F‖2w(S). �
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4.4. Sparse recovery with stable NSP

Proof of Theorem 1.1. Let h := x̂ − x and T be the support of the biggest s entries of x in magnitude. 

Then by a standard compressed sensing argument, we have

‖hT C ‖1 ≤ ‖hT ‖1 + 2σs(x), (22)

where σs(x) = ‖x − xT ‖1.

If h/‖h‖2 ∈ Sγ , then

η‖h‖2 ≤ ‖Ah‖2 ≤ 2ε. (23)

On the other hand, if h/‖h‖2 /∈ Sγ , then the vector h itself has the stable NSP and therefore ‖hT ‖1 <

γ‖hT C ‖1. Combined with (22), we have

‖hT ‖1 ≤ 2γ

1 − γ
σs(x). (24)

The equations (22), (24), and the fact that ‖h‖1 = ‖hT ‖1 + ‖hT C ‖1, we get

‖h‖2 ≤ ‖h‖1 ≤ 2γ + 2

1 − γ
σs(x). (25)

Combining the two cases (23) and (25), we get the desired result (6). �

5. Estimates for Gaussian distributions

The Gaussian distributions are important special cases of subgaussian distributions, so we list this special 

cases of Theorem 3.3 below, using the estimates in Example 2.5, as well as Remark 2.7. In Corollary 5.1, 

κ := σ2
max/σ2

min is the condition number of Σ.

Corollary 5.1. Suppose Φ ∈ R
m×d is a sensing matrix with rows drawn i.i.d. from a Gaussian distribution 

N(0, Σ) in which the covariance matrix Σ has condition number κ, and suppose D ∈ R
d×n has the stable 

NSP of order s with inf {‖Dx‖2 : x ∈ Sγ} ≥ η for some η > 0 and satisfies max
{

‖di‖2
2 : i ∈ [n]

}
≤ ρ. If 

the number of measurements satisfies

m ≥ 9 · 215π3

η2

ρκ3

γ2
s log(

√
2n

s
),

then with probability at least

1 − exp

(
−m

κ2

45π2

)
,

the composition ΦD also has the stable NSP of order s with inf {‖ΦDx‖2 : x ∈ Sγ} ≥ σmaxw(DSγ).

The following theorem is an improvement on Corollary 5.1 in terms of the condition number κ. The 

techniques are the same ones used in proving Theorem 3.3, but for the Gaussian distribution we can 

improve Lemma 4.1 and hence improve the estimate on the marginal tail Qξ. See (26) below.
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Theorem 5.2. Suppose Φ ∈ R
m×d is a sensing matrix with rows drawn i.i.d. from a Gaussian distribution 

N(0, Σ) in which the covariance matrix Σ has condition number κ, and suppose D ∈ R
d×n has the NSP of 

order s with inf {‖Dx‖2 : x ∈ Sγ} ≥ η for some η > 0 and satisfies max
{

‖di‖2
2 : i ∈ [n]

}
≤ ρ. If the number 

of measurements satisfies

m ≥ 18 · 29πe

η2

ρκ

γ2
s log(2n),

then with probability at least

1 − exp

(
−m

1

128eπ

)
,

the composition ΦD also has the NSP of order s.

Proof. Let ϕ ∈ R
d ∼ N(0, Σ) be the vector that generates Φ. The random vector ϕ has the same distri-

bution as Σ1/2g, where g ∼ N(0, Id). Therefore,

〈Dx, ϕ〉 = 〈Dx, Σ1/2g〉 = 〈Σ1/2Dx, g〉 = ‖Σ1/2Dx‖2

〈
Σ1/2Dx

‖Σ1/2Dx‖2
, g

〉
= ‖Σ1/2Dx‖2 Z

where Z ∼ N(0, 1). Therefore, we obtain

Q2ξ(Sγ ; D�ϕ) = inf
x∈Sγ

Pr (|〈Dx, ϕ〉| ≥ 2ξ)

= inf
x∈Sγ

Pr

(
|Z| ≥ 2ξ∥∥Σ1/2Dx

∥∥
2

)

≥ Pr

(
|Z| ≥ 2ξ

ησmin

)

≥ ησmin

4ξ
· 1√

2π
exp

(
− 2ξ2

η2σ2
min

)
(26)

where we used the well-known lower bound

Pr(Z > t) ≥ 1

2t

1√
2π

e−t2/2, for any t ≥ 1

with the assumption that 2ξ/(ησmin) ≥ 1. We also have

Wm(Sγ ; D�ϕ) = Wm(DSγ ; D�ϕ) ≤ σmaxw(DSγ)

by Remark 2.7. Theorem 2.8 hence implies that

inf
x∈Sγ

‖ΦDx‖2 ≥ ξ
√

mQ2ξ(Sγ ; D�ϕ) − 2Wm(Sγ ; D�ϕ) − ξt

≥
√

m
ησmin

4
√

2π
exp

(
− 2ξ2

η2σ2
min

)
− 2σmaxw(DSγ) − ξt

=: a − b − ξt

with probability ≥ 1 − e−t2/2. Picking m, ξ, t such that a ≥ 2b and ξt = (a − b)/2 gives
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inf
x∈S

‖ΦDx‖2 ≥ a − b − (a − b)/2 = (a − b)/2 ≥ b/2 > 0,

guaranteeing the null space property of ΦD.

Lastly, we rewrite these conditions choosing 2ξ = ησmin and invoke Theorem 4.7 to get

a ≥ 2b ⇔
√

m
ησmin

4
√

2π
e−1/2 ≥ 4σmaxw(DSγ) ⇔ m ≥ 18 · 29πe

η2

ρκ

γ2
s log(2n)

and

ησmin

2
t =

a − b

2
≥ a

4
=

√
m

ησmin

16
√

2π
e−1/2 ⇔ t ≥

√
m

8
√

2πe
⇔ − t2

2
≤ −m

1

128πe

as desired. �

6. Conclusions and discussions

This paper generalizes recovery guarantees for �1-synthesis with dictionary sparsity, which is of interesting 

in the field of compressed sensing. In particular, the recovery result Corollary 3.6 states that O(s log(n/s))

subgaussian measurements are enough while only imposing minimal conditions on D, if D is full spark. As 

far as the authors can tell, such work is first of its kind. In proving the result, the first step is a rather classical 

application of the Mendelson’s small ball method. The second step, the Gaussian width computation, is the 

main technical contribution.

Similar recovery results for the basis case D = I was generalized to random distributions far beyond 

subgaussian [19,33]. It would be interesting to consider more general random matrices such as subexponential 

distributions. Another related direction of future work in the non-standard Gaussian case is to explore 

redefining the inner product as xT Σ−1/2y. Similar results as obtained above might hold true in this non-

isotropic setting without extensive adjustments to our arguments.
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