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The field of compressed sensing has become a major tool in high-dimensional
analysis, with the realization that vectors can be recovered from relatively very
few linear measurements as long as the vectors lie in a low-dimensional structure,
typically the vectors that are zero in most coordinates with respect to a basis.
However, there are many applications where we instead want to recover vectors
that are sparse with respect to a dictionary rather than a basis. That is, we
assume the vectors are linear combinations of at most s columns of a d X n matrix
D, where s is very small relative to n and the columns of D form a (typically
overcomplete) spanning set. In this direction, we show that as a matrix D stays
bounded away from zero in norm on a set S and a provided map ® comprised of i.i.d.
subgaussian rows has number of measurements at least proportional to the square
of w(DS), the Gaussian width of the related set DS, then with high probability the
composition D also stays bounded away from zero. As a specific application, we
obtain that the null space property of order s is preserved under such subgaussian
maps with high probability. Consequently, we obtain stable recovery guarantees
for dictionary-sparse signals via the ¢;-synthesis method with only O(slog(n/s))
random measurements and a minimal condition on D, which complements the
compressed sensing literature.

Published by Elsevier Inc.

1. Introduction

An important problem in high-dimensional analysis is to recover a signal from undersampled and cor-

rupted measurements. This problem is ill-posed if no further assumptions are imposed on the signal class.

With the breakthrough of compressive sensing (CS) (see [26]), we now know that it is possible to recover sig-

nals from very few (typically noisy) measurements, provided that the signals are sitting in a low-dimensional

structure.
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To make this more concrete, we will use standard CS terminology. We wish to recover a signal zo € R¢
from its undersampled and corrupted linear measurements y = ®zg + e € R, with the noise satisfying
llef]2 < e. The number of measurements m is assumed to be far less than the ambient dimension d, meaning
the system has infinitely many solutions in general. To surpass this hurdle, we assume the signal zy has a
sparse structure, that is, it can be written as the linear combination of only a few atoms from a dictionary.
In other words, if D is the matrix whose columns are the atoms, then zg = Dx( for some sparse vector x.

To recover dictionary-sparse signals, there are mainly two classes of algorithms: convex programming
[13,41,8,25] and greedy algorithms [45,21,16,36]. This paper will focus on convex problems of the following
form:

7 = arg m]iRr}L /p(z), subject to ||y — ®zll2 <, (1)
z€
where fp(z) is a convex function of z. The unified form (1) is not new, see [15] for example. Two questions
of interest when attacking this problem are the following:

(Q1) What dictionaries ensure the existence of a sensing matrix ® to recover zg stably from (1)?
(Q2) Given such a dictionary D, how do we find suitable sensing matrices with number of rows as small as
possible?

We begin by introducing in the next two subsections some currently known results related to answering
these fundamental questions.

1.1. The basis case

Most CS literature focuses on the case when D is the canonical basis, i.e., zg = Xg. A suitable sensing
matrix would mean that ® is able to extract the low-dimensional information off of zy. This is reflected in
popular conditions like low coherence, the restricted isometry property, and the null space property, as well
as their variations. In this case, the most popular method is the ¢;-minimization, also known as the Basis
Pursuit [8,25], where fp(z) = ||2|1:

zZ= argzrré]iRrb |zl|1 subject to |y — ®z2 <e. (2)

Proposed by Candes and Tao [9,10], the restricted isometry property (RIP) is sufficient to recover sparse
signals via (2). A matrix ® € R™*? satisfies the RIP with constant 0 < § < 1 and sparsity s if

(1= 0)llzl3 < [|®2]3 < (1+4)]z]3

for all s-sparse signals z € R%. The smallest 6, > 0 for which the RIP holds is called the restricted isom-
etry constant. This condition ensures that distinct sparse vectors have sufficiently far away measurements,
providing explicit recovery guarantees.

While the RIP is a sufficient condition for recovery guarantees via (2), another property known as the
null space property (NSP) is both necessary and sufficient. A sensing matrix ® € R™*% is said to satisfy the
null space property of order s if for any index set T with |T| < s and any z € ker(®)\{0}, ||zr||1 < ||zrc |1
holds. Here zp denotes the vector having the same entries as z on the support T and zero elsewhere. It
is known that the successful recovery of sparse vectors from Basis Pursuit (2) when ¢ = 0 occurs if and
only if the NSP holds [20,27]. Moreover, it was shown in [3] that the NSP is necessary and sufficient for the
stable recovery via Basis Pursuit. Other than the characterization of Basis Pursuit, another advantage of
this property is that it only depends on the kernel of ®, which means that this property is invariant under
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linear combinations of measurements (the rows of ®). By a compactness argument, the NSP of order s is
equivalent to the existence of 0 < v < 1 such that

lzrll1 < v||zrel1, for all z € ker(®)\{0}. (3)

This is the so-called stable null space property.

The stable NSP is a matrix property. However, we will abuse the notation and say a vector z has the
stable NSP if ||zp|ly < 7||lzrc|l1 for any index set T with cardinality at most s. We let S¢ be the set of
vectors on the unit ball of R? that do not have the stable NSP. Explicitly,

Sff = {x: ||lxr|li > 7|[xre||s for some |T| < s} NS, (4)

Taking the intersection with the unit ball in the definition of S,‘f is mainly for convenience the stable NSP
for ® is equivalent to the existence of a positive lower bound of |®x]|2 on Sg. In summary, ® having the
NSP is equivalent to the existence of 0 < v < 1 and 1 > 0 such that

inf {||®x|| ZXES;I} > . (5)

We will be using the notation S frequently, so we conveniently denote it by S, instead since the dimension
should be clear from context.
Next, we provide a recovery result using (5) that we are not able find in the literature.

Theorem 1.1. If a sensing matriz A € R™*" satisfies the stable NSP of order s with
inf {||Av]|js : v € Sy} >n  for some n > 0,

then given'y = Ax + e with ||e||2 < ¢, we have

2v+2 2e
os(x) + —, 6
e+ (6)

% = xll2 <
where
X =arg min ||x[[;  subject to |y — Ax|]s <e.
xeRn

The condition (5) is similar to the so called robust null space property [26, Definition 4.17], and it
resembles the recovery result of the robust NSP. We include its proof in Section 4.4 for completeness. The
argument is fairly standard. In fact, a very similar argument can be found in the proof of [19, Theorem 3],
which uses the robust null space property.

The best answer to (Q2) so far in the basis case is to use random matrices as the sensing matrix ®. It
is well-known that random matrices whose entries are drawn from Gaussian or Bernoulli random variable
satisfy the RIP with high probability, provided that m is only on the order of slog(d/s) [9,39,18]. On the
other hand, one needs at least O(slog(d/s)) number of measurements to ensure recovery, regardless of the
decoder [24], and therefore random constructions achieve this minimum. There are many other types of
random matrices that recover the signal effectively with (2), but do not necessarily have RIP, the Weibull
matrices [22] for example. This is evidence that RIP is stronger than the NSP, which is explicitly proven
in [5] using a semi-deterministic construction. The deterministic construction of suitable sensing matrices
is significantly harder, and it requires many more measurements [4].

Much more can be said about both the history and the theory of CS in the basis case. For those interested
in learning more, see the book [26] and the survey [24].
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1.2. The general dictionary case

The general setting zg = Dxg where D is an arbitrary full rank d x n matrix is much more challenging.
When d = n, the columns of D form a basis for R and it is not hard to see that we can translate this
to the canonical basis case as described before. However, the difficulty occurs when we assume that n > d
so the dictionary D is overcomplete. In this case, zg has infinitely many representations in D, including
possibly more than one sparse representation. There are many applications where the signals are seen
through such a transformation and the need to understand when stable recovery is achievable is immense
[38,7,29,2,17,14,23,34].

We note that such an overcomplete dictionary is also often called a finite frame for R%. The field of
finite frame theory is rich and has proven to be a powerful asset in many modern, real-world applications.
We refer the inquisitive readers to [11,12] for a more thorough introduction to the elements of finite frame
theory.

Perhaps the most reasonable recovery problem to consider in the dictionary setting, since it is the natural
extension of (2), is the ¢;-synthesis method:

X =argmin||x|; subject to |y — ®Dx|s <¢
z = Dx. (™)

We note that defining ||z|| kp := min{||a]|; : Da = z} gives the following reformulation of the ¢;-synthesis
method (7):

z= argg}i@ |z||kp subject to |y — @zl <e. (8)

Specifically, for any convex set K, the Minkowski functional of K is defined as ||v|x := inf{\ > 0 :
A~lv € K} so that in the dictionary setting where D = [dy, - ,d,] with Kp := conv{+d;}¥ , we have
lz|| kp = min{|la]|; : Do = z} [43]. The Minkowski functional is also known as the gauge of K, or the
atomic norm associated to K.

One way to guarantee the successful recovery of (7) is to require ®D to have the NSP or the RIP. The
work by Rauhut et al. [38] showed that if & € R™*4 is a random matrix satisfying a concentration inequality
with m = O(slog ) and D satisfies the RIP, then the matrix ®D also satisfies the RIP.

Once the composition @D satisfies the RIP, the program (7) (or (8)) will stably recover the sparse
representation xg, and consequently the signal zy. However, we often only care about the recovery of zg in
this dictionary based sparsity problem, in which case we allow X to be far away from xg.

To approach the problem in this new light, the work in [7] instead proposed the model where fp(z) =
|ID*z||; in (1), called the ¢;-analysis method:

Z = arg znéland |D*z|[; subject to ||y — ®z[2 <e. (9)

They showed that successful recovery via (9) is possible when D is a Parseval frame, i.e. DD* = I; and
provided that ® satisfies a dictionary based RIP, D-RIP. The definition of D-RIP is similar to the usual
RIP, but with Dx in place of x.

The ¢;-analysis and ¢;-synthesis models assume different sparsity to begin with. The analysis model
assumes the sparsity of the analysis coefficient D*z, which has applications in imaging where D can be
the finite difference operator, wavelets, shearlets, etc. [31,30]. The ¢;-synthesis model assumes one of the
infinitely many coefficients for z in D is sparse, as introduced at the beginning. This is more inclusive as
the analysis coefficient is a particular case where the dual frame is the analysis operator (z = DD*z), see
[29] for more details. On the technical side, the synthesis approach often imposes more challenges due to
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its setting, and the fact that we do not know which dual frame of D generates a sparse representation. The
work by Chen et al. [14] tackled the ¢;-synthesis problem and aimed to lay a framework for this method.
They proposed a dictionary based NSP for the sensing matrix, D-NSP for short, which we now define.

Definition 1.2. Let D € R%*" be a dictionary. A matrix ® € R™*? is said to satisfy the D-NSP of order s
if for any index set T' with |T'| < s and any v such that Dv € ker ®\{0}, there is some u € ker D so that

[vr +ullr < [[vrells.

The D-NSP is a characterization of exact recovery of dictionary sparse signals via (7) when ¢ = 0, and
therefore is a generalization of the NSP. The following result helps emphasize the general direction of this

paper.

Theorem 1.3 ([14, Theorem 7.2]). If D is full spark, then ® has the D-NSP with sparsity s if and only if
®D has the NSP with the same sparsity.

A frame D € R4*™ is full spark if every collection of d frame vectors is linearly independent. Full spark
is not a strong assumption on dictionaries. In fact, it is quite obvious that if we randomly choose the entries
of D according to any continuous distribution, then D will be full spark with probability one. More details
can be found in [1].

As a (surprising) result of Theorem 1.3, if the ¢;-synthesis method is successful at all, almost always, we
will recover both xo and zg, and D will satisfy the NSP since ker(D) C ker(®D). In other words, if we are
using ¢1-synthesis to recover zg, then it is very reasonable to assume that D has NSP and the coefficients xq
will be recovered simultaneously. Therefore we will study the properties of the composition ®D to ensure
the success of £1-synthesis.

Like the basis case, most work for the dictionary case often uses random measurements. The paper [30]
uses Gaussian measurements for the ¢1-analysis method, providing both nonuniform and uniform guarantees.
The work [22] also considers the ¢1-analysis approach, but instead uses Weibull measurements. As mentioned
earlier, the work by Rauhut et al. [38] does analyze the ¢;-synthesis method, however, it requires the
dictionary D to have the RIP. We again note that there is a gap between the RIP and the NSP [5], so
we would like to reduce this assumption on D. Additionally, it is known that a subgaussian matrix ®
satisfies with high probability the D-RIP [7], from which it is not hard to see that if ® is subgaussian, then
essentially (with high probability) @D has the RIP if and only if D has the RIP. This further solidifies the
need to weaken the RIP assumption. Another notable work on random measurements in this setting is by
Vershynin [43], which directly measures the recovery error in expectation. However, the error bound does
not promote sparsity, and therefore will not provide exact reconstruction for s-sparse representations.

This paper will study the recovery prospects of (7) or (8) when the measurements are chosen at random.
This kind of model is used in data acquisition when random measurements can be extracted, and is also
applied in machine learning where data are assumed to have certain distributions. In this paper, we will
assume the measurements are subgaussian, which we will review in Section 2.2. We wish to justify the
effectiveness of random sensing matrices for recovering dictionary-sparse signals when ¢;-synthesis (7) is
used. As explained, this reduces to verifying the null space property of the composite ®D. The biggest
question is how small the number of measurements m can be given n, d, s fixed. If we treat ®D as a whole
and focus on recovering the coefficient xp, then this reduces to the basis case and the optimal number of
measurements is m = O(slog %), which is usually achieved by random construction as is the case in [22,30].
So we wish to answer the question:

Given that D has the NSP, find the smallest number of measurements such that %)
®D has the NSP when the rows of ® are subgaussian.
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Notice that the NSP requirement on D makes sense and is inevitable since ker(D) C ker(®D).
1.8. Our contribution and organization

The contribution of this paper is twofold. The first main result, Theorem 3.1, states that a certain
property of an operator/dictionary can be preserved under a subgaussian random map, given that this map
is projecting to a dimension that is on the order of the square of the Gaussian width of certain set. It
is not a coincidence that we study this preservability since the problem we wish to solve has this flavor.
However, this could potentially be used to analyze other properties of compressed sensing matrices, or even
beyond the scope of sparse analysis. Our second main result is the application of Theorem 3.1 to the null
space property, thus solving (*). Specifically, Theorem 3.3 states if ® € R™*? is a sensing matrix with
independently drawn rows from a subgaussian distribution, D € R?*™ satisfies the NSP, and the number
of measurements m is on the order of slog(n/s), then ®D also satisfies the NSP with high probability.
Consequently, we get a recovery result stated in Corollary 3.6, which is the first recovery result with only
slog(n/s) subgaussian measurements that only requires the dictionary to be NSP. As far as the authors
can tell, this is the first work on the ¢;-synthesis algorithm with random measurements that only requires
a minimal condition on D.

The road map is as follows. In Section 2, we provide the required preliminary material and notations
that will be used throughout the paper. In Section 3, we introduce our main results as described above
and argue how they are essentially optimal. Furthermore, we obtain as a corollary a more suitable recovery
guarantee for the £;-synthesis method. We then provide the theory behind our results in Section 4, as well as
alternative estimates for the Gaussian width. The more specific cases that ® has rows drawn independent
from a multivariate normal distribution is addressed in Section 5, wherein we provide better estimates.
Finally, we end with some conclusions and discussions.

2. Preliminaries

We use || - ||, for the standard ¢, norm and we let
Sg_l ={xeR":|x[|, =1} and ]B;"_l ={xeR": x|, <1}

We also denote [n] := {1,---,n}. If § C R™ and D € R¥*" is a dictionary, then we write DS for DS =
{Dx : x € S}. Also, we denote the columns of D by d; so that D = [dy, -+ ,d,]. For a dictionary D, ||D]||2
is the operator norm.

We will use the notation X ~ N(p,0?) to mean that a one dimensional random variable X follows a
normal distribution with mean p and variance o2, and X ~ N(u,X) means a multidimensional random
variable X follows a multivariate normal distribution with mean vector g and covariance matrix 3.

2.1. The Gaussian width

In the proof of our main result, we will need to bound w(DS,), where w denotes the Gaussian width
defined as follows.

Definition 2.1. The Gaussian width of a set S C R"™ is defined as

w(S) := E sup(g, x),
xeS

where g ~ N(0,1,) is a standard Gaussian random vector.
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The Gaussian width plays a central role in asymptotic convex geometry. In particular, thinking of each
inner product (g, x) as a random projection, the Gaussian width measures how well, on average, the vectors
in S can line up with a randomly chosen direction. For example, the Gaussian width of the unit ball is
w(B3 ') = Ellg|l> = v2I'(ZEL)/I(2), which is on the order of \/n. It is in this way that the Gaussian
width can be thought of as a way to measure the “size” of a set [44]. In terms of CS, bounding the Gaussian
width is how one obtains the important concentration equality used in the now standard CS proofs [26,
Chapter 9]. Therefore, it is natural that our proof techniques will make use of it as well. Lastly, we note
that it is often required that the set S be symmetric about the origin, which S, satisfies.

We will need the following result. The argument is given on Page 10 of [37], but we will provide it in
Section 4.3 for the sake of completeness.

Lemma 2.2. For any map F € R*"™ and any S C R™, we have
w(FS) < |[F[2w(S).
2.2. Subgaussian vectors

Rde

The measurement matrix ® € in our result will have rows drawn i.i.d. from a subgaussian distri-

bution, which we now define following [42].

Definition 2.3. A random vector ¢ € R? is called a subgaussian vector with parameters (a, o) if it satisfies
the following.

(1) Tt is centered, that is, E[¢p] = 0.
(2) There exists a positive a such that E [|(p, z)|] > o for every z € S$ 1.
(3) There exists a positive o such that Pr (|(g,2)| > t) < 2exp(—t%/(20?)) for every z € S~

There are many examples of subgaussian vectors, including vectors with independent Gaussian entries,
or independent Bernoulli entries, as well as independent bounded entries. We list the following two cases in
detail since they are used in corresponding theorems in the next section.

Example 2.4 (Standard Gaussian vector). Let ¢ € R4 ~ N(0,1;) be a standard Gaussian vector. If z € S$1,
then Z := (p,z) ~ N(0,1) and it is well known that

EflZ]] = \/g and  Pr([Z]>1) <exp (—g) ;

so the standard Gaussian vector is subgaussian with parameters o = 1/2/7 and o = 1.

Example 2.5 (Nonstandard Gaussian vector). Suppose that ¢ € R? ~ N(0,X) where the covariance matrix

> has smallest and largest singular values, 02, and o2, respectively. Then v := X~ 1/2p ~ N (0,1I,) and

min max’

we can compute for all z € S§~* that

Ellea)) = [I52.2)] =& [l 5%0)] = 12221 |, Do )] 2 o2

and in a similar fashion

$1/2, t t2
Pr|{p,z)| > t] =Pr H<¢, oRE >‘ > ||21/2z”2] < exp (——202 ) )
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so that ¢ is subgaussian with parameters & = ominy/2/7 and 0 = omax.
2.8. The mean empirical width

If {f;}7*, are independent copies of the random distribution f € R™, then we can define the mean
empirical width of a set S C R™ as

T
Wn(S; ) :=E itelg <x, T ;61f1>,
where {e;}, are independent random variables taking values uniformly over {1} and are independent
from everything else.

The mean empirical width W,,,(.S; f) is a distribution-dependent measure of the size of the set S. Note
that W,,,(S; £) reduces to the usual Gaussian width w(S) when f follows a standard Gaussian distribution,
as shown in Remark 2.7. Estimation of W,,(S; f) for any subgaussian vector f is made in [42], where S
is required to be ngl U K for some cone K. However, the bound can be relaxed to any subset S by the
observation of the generic chaining bound and the majorizing measure theorem [40, Theorem 2.2.18 and
Theorem 2.4.1]. We will state this as a lemma.

Lemma 2.6. If f € R™ is subgaussian with parameters («,0) and S is any subset of R™, then
Wi (S; £) < Cow(S) (10)
for some universal constant C.

The constant C' will appear in the main results. It is a universal constant that does not rely on the choice
of subgaussian distribution. See [40] for precise computations of this constant. However, better estimates
can be made using different techniques as is shown in the next example.

Remark 2.7. When f follows a centered multivariate normal distribution N (0, X), we can take C' = 1. Let
g = X71/%f, ~ N(0,1,), then g = 31" | e;gi ~ N(0,1,) as well, so

zeS z€eS

1« 1«
Win(S;f) = Esup <z,— eifi> =Esup <z,— 5i21/2g1>
o o

1 m
= Esup <El/2z, — 5igi> =E sup (x,9)
7 2

zeS x€EXL/28

= w(El/QS) < Tmaxw(S),
where the last inequality is due to Lemma 2.2.

The mean empirical width appears in the following important result. This theorem was originally stated
in [32] and coined Mendelson’s Small Ball Method by J. Tropp [42]. This will be a primary tool in obtaining
our main estimates.

Theorem 2.8 ([}2, Proposition 5.1], cf. [32, Theorem 2.1]). Fiz a set S C R™. Let £ be a random vector in
R™ and let F € R™ ™ have rows {f;" }M, that are independent copies of £'. Define

xeS

Qe(S; f) = )i(relgPr <<x,f>| > 5) and Wy, (S; f) := Esup <x, \/—1% ;gifi>,
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where {g;}™, are independent random variables taking values uniformly over {£1} and are independent
from everything else. Then for any £ > 0 and t > 0, we have

)1(r€1fs |Fx|l2 > &v/mQae(S; £) — 2W,,(S; £) — &t (11)
with probability > 1 — e~ /2,
3. Main results
3.1. Preservability under subgaussian maps

Theorem 3.1 (Preservability under random maps). Let D € RY*™ be arbitrary, let S C R™ be such that
inf {|Dx|2: x € S} > n for some constant n > 0, and assume ¢ € R? is a subgaussian vector with
parameters (o, o). If ® € R™*4 js a measurement matriz with rows that are independent copies of p' and
that the number of measurements satisfies

48 56
m > —20—60211)2(DS)7
n? «

then with probability at least

a4
1-— exp <—mm) y

we have
infS |®Dx||2 > Cow(DS). (12)
x€

Theorem 3.1 is beyond the null space property. It says that if an operator stays bounded away from 0
on some set, then this operator under a random map also stays bounded away from 0 on the same set,
given that the dimension of the random map is at least proportional to the square of the Gaussian width
of the related set. This could be potentially useful for other dimension reduction analysis. The proof of
Theorem 3.1 can be found in Section 4.1. In equation (12), the constant n does not show explicitly, but it
is reflected in the number of measurements m since ® is random.

Remark 3.2. Theorem 3.1 can be compared to [6, Proposition 18]. Both statements are about the minimal
number of measurements related to Gaussian width. However, ours has a dictionary D incorporated.

As an application of Theorem 3.1, we let S = S, as defined in (4), and compute the Gaussian width of
DS, . This is a key step in this paper and is not a simple task. See Theorem 4.7 on bounding the Gaussian
width. Recall that S, is the set of vectors that violates the stable NSP. Theorem 3.1 and Theorem 4.7 imply
the following theorem on preserving the null space property.

Theorem 3.3. Assume ® € R™*? s a sensing matriz comprised of rows drawn i.i.d. from a subgaussian
distribution with parameters (a,a). Take D € R4*™ to be a dictionary satisfying the stable NSP of order s
with inf {||Dx||2 : x € Sy} > n for some n > 0 and satisfying max {||d;||3 : i € [n]} < p. If the number of
measurements satisfies

36 - 48 o6 p \/_n
m>—; 021 g(—), (13)

T2 abq2
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then with probability at least

a4
1— exp <—mm) y

the composition ®D also has the stable NSP of order s with inf {||®Dx|s : x € S} > Cow(DS,).

Remark 3.4. Theorem 3.3 only requires a minimal condition on D. If ®D has the NSP, then D must also
have the NSP (hence some kind of stable NSP) since ker(D) is a proper subspace of ker(®D). Thus, D
having the NSP is a very reasonable condition if we want stable recovery through ¢;-synthesis.

Remark 3.5. The constants in (13) are well controlled. The ratio Z reflects how well the distributions behave
and is the condition number of ¥ if ¢ ~ N(0,X). To reiterate, the constant C' that appears in the above
results is a universal constant. A more precise estimate can be made when ¢ follows the multivariate normal
distribution. Furthermore, p also equals one when each frame vector has unit norm, which is often the case.
The constants 1 and «y reflect the null space property of D.

3.2. Sparse recovery via the {1-synthesis method

As a consequence of Theorem 3.3, we obtain a uniform recovery result using Theorem 1.1 with A replaced
by ®D. We will use the standard notation

os(x) := inf{||x — v||; : v is s-sparse},

to denote the ¢1-error of best s-term approximation to a vector x. This infimum is achieved by taking
v := xp, where T is the index set containing the indices where the s-largest absolute value entries of x
occur.

Corollary 3.6. Suppose ® € R™*? js q sensing matriz comprised of rows drawn i.i.d. from a subgaus-
sian distribution with parameters (a,o) and suppose D € R¥*" has the stable NSP of order s with
inf {|Dx|2: x € Sy} > n for some n > 0 and satisfies max {||d;||3 :i € [n]} < p. Let zg = Dxo, and
the measurements 'y satisfying ||y — ®zol|2 < €. If the number of measurements satisfies

36-4% o ) f 2n
= 72 E_C slog(——),
at
then with probability at least 1 — exp (—m642—4), the £1-synthesis method (7) provides a stable recovery
o

for both the coefficients xo and the signal zg as

~ 2y +2 2e
_ < e
[x = x0l[2 < 1—VJS(XO)+CU17
2y 42 22(|D)3
— < ||D s —_—.
12— 2ol2 < [IDll2—— — (x0) + Con

4. Proofs of the results

We will apply Mendelson’s Small Ball Method in our setting. Most of the work will be in properly
estimating two important quantities, which will further lead to the need to estimate the Gaussian width
w(DS,,). This is what makes up Sections 4.1 and 4.2. In doing so, we will obtain the bound on the number
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of measurements in Theorem 3.3 and its corollaries that forces D to have the NSP with high probability
given that ® is a matrix made up of independent copies of a subgaussian vector and D satisfies the NSP.
In Section 4.3 we prove Lemma 2.2 and use it to obtain a different estimate for the Gaussian width than in
Section 4.2. Lastly, in Section 4.4, we provide a stable recovery result with stable NSP for completeness.

4.1. Preservability under a random map

Notice that if the rows of ® are independent copies of a random vector ¢, then the rows of ®D are
independent copies of the random vector D" ¢p. We will apply Theorem 2.8 with ®D in place of F and the
random vector DT ¢ in place of f, which in turn will require us to estimate the quantities Q26 (S; D' yp)
and W,,,(S; DT ).

In the proof of Theorem 4.2, we will use the following lemma to bound Q¢ (S; DT ). The proof can be
found in [42, Section 6.5].

Lemma 4.1. If f € R" is a subgaussian vector with parameters («, o), then

(o —t)?

Pr(l(x,£)] > 4 > <]

-1
forany 0 <t<aandxeS) .

Theorem 4.2. Let D € RYX™ be arbitrary, let S C R™ be so that inf {||Dx||2 : x € S} > n for some constant
n >0, and let p € RY be a subgaussian measurement with parameter (o, o). If ® € R™*¢ has rows that are
independent copies of @, then

. an [a\? an

> (= _ _ =
;22||(I)Dxl|2 =E (U) vVm —2Cow(DS) 1 t (14)
—t%/2

for any t > 0 with probability at least 1 — e

Proof. We first apply Mendelson’s Small Ball Method, Theorem 2.8, with F replaced by ®D and therefore
f replaced by D¢ to obtain the bound

inf | 8Dx|2 > €4/imQac(S; D) — 2W,(S; D) — . (15)

By Lemma 4.1, provided we choose ¢ to satisfy 2£/n < «, we obtain for any x € S

P (D%, 220 =P (| )| 2 ou)

2P (o) 23) 2 S (19

and therefore

_9 2
Que(S: D7) = inf Pr (|(x.D" )] > 26) = inf P (|(Dx 9} > 26) > 2/

Lemma 2.6 readily gives the estimate
Wi (S; D) = W,,,(DS; ) < Cow(DS).

Placing these two bounds into (15) and choosing ¢ to satisfy 2¢/n = «/2 gives the bound in (14). O
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Remark 4.3. Notice that Theorem 4.2 is a generalization of [42, Theorem 6.3]. In this generalization, it is
crucial that D has NSP as is evident in (16).

Finally, we can provide the proof of our first main result, Theorem 3.1.

Proof of Theorem 3.1. Theorem 4.2 implies that

) an [a\?2 an an
> (= - ——lti=a—b-——Lt.
;22”¢DXH2 > 5 <a> vVm —2Cow(DS) Tl b 1!
Picking m and ¢ to satisfy a > 2b and (an/4)t = (a — b)/2 gives
122 |®Dxl|ls >a—b—(a—b)/2=(a—1b)/2 >b/2 = Cow(DS).

All that is left is to rewrite these conditions in terms of m and t. We have

2 8 6
a>2 & %<g) vm > 4Cow(DS) & mZ%%CQu)?(DS)

43 \o
and
an.  a—-b _ a cm(a)2 1 (a)2 12 at
My >4 _Ae & t>— 2 e < eme——
4 2“4 4 \g) V" > 51Vm 5 2 = " 642gt

proving the result. O
4.2. Estimating the Gaussian width

In order to prove Theorem 3.3, we apply Theorem 3.1 to the null space property, i.e., let S = S,. Therefore
the last ingredient of the proof of Theorem 3.3 is to suitably bound the Gaussian width w(DJS,). Note that
it is pivotal to have a relatively optimal upper bound on w(DS.,) since the number of measurements m is
on the order of the square of this width.

Recall that

w(DS,) :=E sup (g,z) =E sup (DTg,x>7 (17)
zeDS, XESy

where g € R? is a standard Gaussian vector.
We again point out that bounding w(D.S,) is not an easy task. At first glance, one may naively estimate
w(DS,) using its geometric properties. We have

w(DS,) = w(conv(DS,)) = w(D conv(S,)) < w(DBy ),
where conv(S) denotes the convex hull of S. By Lemma 2.2, we obtain the crude estimate
w(DB; ') < 2|D2w(B3 ") = 2| D]2vn.

This is far less than ideal with \/n and the potential dimension dependency from || D]||s.

The approach we will use is inspired by [26, Section 9.4], which estimates w(S,), the width in the basis
case. It is worth noting that the generalization w(DS,) is nontrivial, as will be explained in the proof of
Theorem 4.7.
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First, we introduce the convex cone

K, = {uER”:uKZOJE[nLZugZ’y Z ug}
(=1

l=s5+1

and its dual cone
Ky ={zcR":(z,u)>0forallue K, }.
Also, recall the nonincreasing rearrangement of a vector x € R? is the vector x* € R¢ for which
xfzay > >a;>0

and z} = |xw(i)‘ for some permutation 7.
We can now state the following lemma. It has a proof that is similar to that of [26, Proposition 9.31],
but we provide it for the sake of completeness.

Lemma 4.4. If D € R™™ is an arbitrary matriz and g € R ~ N(0,1,), then

w(DS,) <E min |[(D7g)" + 2.

Proof. Elements in S, are invariant under permutation of indices and entrywise sign changes, so

}ggj@Tg,@ = ggj((DTg)*a@ = ueKTsagSn,_l<(DTg)*» w < min (D g)* + 2|2, (18)

where the last inequality follows by the duality

ma —g.x) < min ||lg—z
xeK,Hx}lT2§1< & >*ZEK* g — zl2,

as given in [26, (B.39)]. Taking the expected value of (18) completes the proof. O
The following Lemma is similar to [26, Remark 9.25], but here we assume a general variance.

Lemma 4.5. If a ~ N(0,0?), then

ES?(G) < ot /%t—ZG—tz/(2o2)’

where Sy is the soft thresholding operator defined by
u—t ifu>t
Si(u) :=< 0 if luf <t .
u+t ifu<—t

Proof. We compute

oo
2 = /S’tz(u)e_“Q/(Qaz) du
mo? )

ES?(a) = Noro
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_1/2 /(u _ )2t/ gy,
g T
t
127
_ _\/j / V2o (0HD?/(20%) gy
g T
0
_ e—tz/(202)l\/?/,UQe—vz/(Qo?)e—vt/a2 do
ag ™
0

_ /e 2 / (Ee%v/a)?m) ve—t17 gy
0

3

g

< o 1*/(20%)

2w

oo

_ _ 2

e 1/2/’[}6 vt/o dv
0

_ et2/<202>\/561/204
T t2
I B )
me

as desired. O

The following Lemma is a key step in suitably bounding the Gaussian width. It is inspired by [35,
Lemma 3.5].

Lemma 4.6. If D € R*™ is any matriz with max {||d;||3 : i € [n]} < p and g € R* ~ N(0,14), then

S

E éz((DTg);y < \/4plog(v2n/s).

{=1

Proof. Setting a; :== (D'g); gives a; ~ N(0,02) with o; = ||d;||2, so
3

40 \/2 2mo?

a2 1 _ﬁg ng 1 _122
E exp( 12):/ ~e 207 e 493 dsc:/ e 7 dr = /2.
i o,
R R

It follows from Jensen’s inequality that

B[ £ 3 (07w < EL S (0 = EL Yoo (enp L)

1 S (a*)z 1 S (a*)2
<4pE-) 1 L < 4pElog [ = L
>ap 5 2:: og (eXp 4(07)2) < 4pli log (s Zexp 4(07)2

=1

1< (a})? 1 — a? 1
<4plog (E g E exp 4(01;)2 <plog B E E exp ﬁ =4p log(g\/in).
=1 =1

Taking the squared root of this inequality yields the desired result. O
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Theorem 4.7. If D € R¥™" is any matriz with max {||d;||3 : i € [n]} < p, then
w(DS,) < 6y~ 1/splog(v/2n/s).
Proof. Define

F, s ::U{ZER":ZthJE[s],sz—’yt,k:s—i—l,...,n}
>0

which satisfies F, s C K7 ; by Lemma 9.32 of [26]. The minimum over a smaller set can only be larger so
we obtain w(DS,) < E m}in [(DTg)* +z||2 by Lemma 4.4. By the definition of F, ¢ and concavity of the
zEly s

square root function, we get

w(DS,) <E min [(DTg)* + 2|
zEF%S

<E i Tg); +1)? g); ?
< 1;n>161 Z((D g)e + t) + Z ((D g)é + Zf)
2g> =t telnl\[s] =1 £=s+1

Now fix t > 0 to be chosen later. Again by concavity, and since (D" g); has mean zero we obtain

w(DS,) <E,| > ((DTg); +#)2+E, | min > (DTg); + 2)? (19)
=1 e
<E,|> (DTg);)?+ |2t Y EDTg); +t/s+E min (DTg)s +2)%  (20)
=1 =1 ezt T
<E, D (DTg;)?+tV/s+E | > S2%((DTg);), (21)
=1 {=s+1

where S; is the soft thresholding operator defined earlier. Note that Inequality (21) holds because of how
the z; are defined.

We have so far exactly followed the proof of [26, Proposition 9.33], but if one tries to estimate the first
term of (21) in the same fashion as in [26, Proposition 8.2], a v/d factor would result, causing the estimate
to be too large. Instead, we apply Lemma 4.6, and get

E,|> ((DTg);)? < \/4pslog(v2n/s).
(=1

Next, we bound the last term in (21) by

E | Y S%4((DTg)) <, |E Y S%4(DTe)) <, |E Y S%L((DTe)),

{=s+1 l=s5+1 l=s+1

where we used the fact that {(D"g); : £ = s+ 1,--- ,n} are the n — s smallest entries in magnitude to
obtain the second inequality.
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To estimate the second moment of the soft thresholding operator, we again use the fact that a; := (D"g);
gives a; ~ N(0,02) with o; = ||d;||2 and so Lemma 4.5 implies

[2, - —(yt)? 2 - —(yt)?
2 4 2 2 2
EST(ai) < o; %(Wf) exp ( 207 <p %(Vt) exp 2
Finally, combining all of these estimates of the quantities in (21) gives
2 —(t)?
w(DS,) < y/4ps log(\/ﬁn/s) +t/s+ 1/ (n—s)p? —6(77f)—2 exp % .
T
Choosing t = v~ 14/4p log(ﬂn/s) and using the fact that v~' > 1 gives

n—s 52
w(DS’Y) < Y 4ps IOg(ﬁn/s) + 771 Y 4sp IOg(\/in/S) + \/ﬂ( 2n2) \/glog(\/lin/s)

< \/4pslog(V2n/s) (1 +~71) + /ps
< 3y 1/4pslog(v2n/s). O

4.8. Proof of Lemma 2.2

Recall that a Gaussian process {Xi}ier for some index set T' (which can be uncountably infinite) is
a sequence of random variables X; so that any finite linear combination follows a Gaussian distribution.
Slepian’s lemma [28] gives a way to compare such processes.
Lemma 4.8 (Slepian’s Lemma). If {Xi}ier and {Yi}ier are Gaussian processes so that for any s,t € T,
E|X, - X* <E|Y, — Y2

holds, then

Esup X; < Esup Y.
teT teT

Proof of Lemma 2.2. We define the Gaussian processes {Xy }ues and {Yu}ues

Fu

X = (Pu.g) = [Fula (o

) and Yui= [Flafug)
where g ~ N(0,1;). We notice

2 2 2

E Xy =X = [Fu=v)[l; < [Fl3[u—v]; =E[Yu - Y[

Thus, Lemma 4.8 gives

w(FS) =Esup Xy <Esup Yy = ||Fllaw(S). O
ucs ues
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4.4. Sparse recovery with stable NSP

Proof of Theorem 1.1. Let h := X — x and T be the support of the biggest s entries of x in magnitude.
Then by a standard compressed sensing argument, we have

lhre 1 < [[hrly + 205(x), (22)

where 04(x) = ||x — x7||1.
If h/|/hj2 € Sy, then

nlhllz < [[Ah][z < 2e. (23)

On the other hand, if h/||h|j2 ¢ S, then the vector h itself has the stable NSP and therefore ||hr|/; <
Y|lhre (1. Combined with (22), we have

[hrll; < 1

2y

os(X). 24
— (%) (24)
The equations (22), (24), and the fact that ||h||; = ||hr|]1 + ||hre]l1, we get

2y +2
e < bl <

os(x). (25)

Combining the two cases (23) and (25), we get the desired result (6). O
5. Estimates for Gaussian distributions

The Gaussian distributions are important special cases of subgaussian distributions, so we list this special
cases of Theorem 3.3 below, using the estimates in Example 2.5, as well as Remark 2.7. In Corollary 5.1,
K= 02,./02%;, is the condition number of 3.

Corollary 5.1. Suppose ® € R™*? is a sensing matriz with rows drawn i.i.d. from a Gaussian distribution
N(0,X) in which the covariance matriz ¥ has condition number r, and suppose D € R¥*™ has the stable
NSP of order s with inf {|Dx||2 : x € S} > n for some n > 0 and satisfies max {||d;||3 : i € [n]} < p. If
the number of measurements satisfies

9. 2157.(.3 p/<;3

" nt 2

s og(@%

then with probability at least

/i2
1-— exp —m@ 5

the composition ®D also has the stable NSP of order s with inf {||®Dx||s : x € S} > omaxw(DS,).

The following theorem is an improvement on Corollary 5.1 in terms of the condition number . The
techniques are the same ones used in proving Theorem 3.3, but for the Gaussian distribution we can
improve Lemma 4.1 and hence improve the estimate on the marginal tail Q¢. See (26) below.
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Theorem 5.2. Suppose ® € R™*¢ is a sensing matriz with rows drawn i.i.d. from a Gaussian distribution
N(0,%) in which the covariance matriz X has condition number r, and suppose D € R¥" has the NSP of
order s with inf {||[Dx||2 : x € S, } > 1 for some n > 0 and satisfies max {||d;||3 : i € [n]} < p. If the number
of measurements satisfies

18- 29
m > 27T€pHI ( )
] 72

then with probability at least

1
1-— _
eXp( m12867r>’

the composition ®D also has the NSP of order s.

Proof. Let ¢ € R? ~ N(0,X) be the vector that generates ®. The random vector ¢ has the same distri-
bution as 3'/2g, where g ~ N(0,1,). Therefore,

»1/2px

D — (Dx.2Y2g) — (21/2D — I=/2D S ——
(Dx, ¢) = (Dx, g) = ( x,g) = | x|l [=1/2Dx||

,g> = [I="/*Dx]» Z
where Z ~ N(0,1). Therefore, we obtain

Q2e(Sy; D7) = inf Pr(|(Dx, p)| > 2¢)

— i 2
- 1t (1412 i)

2
Pr <Z > % >
MO0 min

namin ]- 252 )
> T 26
> e (< 2

where we used the well-known lower bound
L1 pep
2t /o ’

with the assumption that 2/(nomin) > 1. We also have

Pr(Z > t) >

for any t > 1

Win (S DT‘P) = Win(DSy; DT‘F’) < Omaxw(DS,)
by Remark 2.7. Theorem 2.8 hence implies that

nf [|®Dx||2 > £v/mQae(Sy; D) = 2Win(Sy; D) - £t

min 2 2
ZJ_ZJ_ ( %)—QUmaxw(D&y)—ft

=ta—b—¢t

with probability > 1 — e~t"/2. Picking m, £, ¢ such that a > 2b and &t = (a —b)/2 gives
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iI€1fSH'I’DX||2 >a—-b—(a—0)/2=(a-0)/2>b/2>0,

guaranteeing the null space property of ®D.
Lastly, we rewrite these conditions choosing 2§ = noi, and invoke Theorem 4.7 to get

. 18 - 297re pk

710 min -1/2
a>2b & Jm——e > 4o paxw (DS s om > —slog(2n
= 421 2 40max(DSy) n” o2 s(2n)
and
"70'min a— b a namin _1/2 v m t2 1
t= > —=vm e s D & —— —-m
2 2 — 4 16+/2m T 8V 2me 2 = 1287me

as desired. O
6. Conclusions and discussions

This paper generalizes recovery guarantees for ¢1-synthesis with dictionary sparsity, which is of interesting
in the field of compressed sensing. In particular, the recovery result Corollary 3.6 states that O(slog(n/s))
subgaussian measurements are enough while only imposing minimal conditions on D, if D is full spark. As
far as the authors can tell, such work is first of its kind. In proving the result, the first step is a rather classical
application of the Mendelson’s small ball method. The second step, the Gaussian width computation, is the
main technical contribution.

Similar recovery results for the basis case D = I was generalized to random distributions far beyond
subgaussian [19,33]. It would be interesting to consider more general random matrices such as subexponential
distributions. Another related direction of future work in the non-standard Gaussian case is to explore

—1/2

redefining the inner product as 7% y. Similar results as obtained above might hold true in this non-

isotropic setting without extensive adjustments to our arguments.
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