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ABSTRACT

Relying on a conditional gradient based iteration, the Frank-Wolfe
(FW) algorithm has been a popular solver of constrained convex
optimization problems in signal processing and machine learning,
thanks to its low complexity. The present contribution broadens its
scope by replacing the gradient per FW subproblem with a weighted
average of gradients. This generalization speeds up the convergence
of FW by alleviating its zigzag behavior. A geometric interpretation
for the averaged gradients is provided, and convergence guarantees
are established for three different weight combinations. Numerical
comparison shows the effectiveness of the proposed methods.

Index Terms— Frank-Wolfe method, conditional gradient ap-
proach, convex optimization

1. INTRODUCTION

Consider the following constrained optimization problem

min f(x) (1)

xeX

where f is a convex function with Lipschitz continuous gradient,
and the constraint set X C R< is assumed convex and compact.
Throughout, let x* € X denote a minimizer of (1). For a wide range
of signal processing and machine learning problems, the set X’ has
structure, but it can be difficult or expensive to project onto. Ex-
amples include matrix completion in recommender systems [1] and
image reconstruction [2], where X" represents the nuclear- and the
total-variation-norm ball, respectively. The applicability of projected
gradient descent (GD) in these cases is challenged by the computa-
tional burden of projection, especially when d is large [3].

An alternative to GD for solving (1) is the Frank-Wolfe (FW)
method [4, 5, 6], also known as conditional gradient iteration. FW
circumvents the projection in GD by first solving a subproblem with
a linear loss function, namely minyex (V f(xx), v) to obtain vj41,
and then updating X1 via a convex combination of x5 and V1.
When dealing with a structured X, an efficient or even closed-form
solution for finding vi+1 can be available [5, 7], and can afford a
cheaper implementation than projection. However, when using e.g.
an n-support norm ball, that is, X' := conv{x | ||x|lo < n, ||x|2 <
R} to promote sparse solutions, the complexity per FW iteration is
O(dlogn) [8], while no efficient projection over such a constraint
set is available. Providing easy implementation to effect structured
solutions, justifies the popularity of FW in several applications. Be-
sides those already mentioned, additional ones include structured
SVM [9], video colocation [10], particle filtering [11], traffic as-
signment [12], optimal transport [13], and electronic vehicle charg-
ing [14]. FW also works for nonconvex tasks such as neural network
training [15], and submodular optimization [16].
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While FW avoids the costly projection per iteration, it gives rise
to a zigzag trajectory of the solution over certain constraint sets [6].
To alleviate zig-zagging, which could significantly slow down con-
vergence, a prudent remedy is to adjust the update direction. In this
work, we will introduce three novel options to decide the direction
per iteration by replacing the gradient in FW with the weighted av-
erage of gradients in previous iterations. The price paid for the per-
formance improvement gained by mitigating the zigzag behavior of
FW is minimal — just maintaining the weighted average gradient
that can readily be updated online. Different from [17, 18] however,
where the averaged gradients serve the necessary steps for momen-
tum, here we deal with a generic setup without momentum. Due
to space limitation, we delegate a more detailed case study to Ap-
pendix, where our averaged gradients are shown to provably improve
the convergence of vanilla FW. All in all, our contribution is three-
fold.

i) FW is generalized by replacing the ordinary gradient in the sub-
problem per iteration with a weighted average gradient — a gen-
eralization that can afford a neat geometric interpretation.

ii) Three types of weighted averaging for gradients are proposed
with guaranteed convergence of the resultant iterative solvers.

iii) Numerical tests confirm the effectiveness of the proposed meth-
ods on benchmark datasets.

Notation. Bold lowercase letters denote column vectors; E repre-
sents mathematical expectation; ||x|| stands for the ¢2-norm of x;
and (x,y) for the inner product of vectors x and y. A complete
version of this work with proofs can be found online '.

2. PRELIMINARIES

To better illustrate the intuition behind FW with averaged gradients,
we first outline the vanilla FW on the class of problems we will deal
subsequently.

Assumption 1. (Lipschitz continuous gradient.) The function [ :
X — R has L-Lipchitz continuous gradients; that is, |V f(x) —
VIO < Lix —yll, Vx,y € .

Assumption 2. (Convex objective function.) The function f : X —
R is convex; that is, f(y) — f(x) > (Vf(x),y — x), Vx,y € X.

Assumption 3. (Convex and compact constraint set.) The constraint
set X is convex and compact with diameter D; that is, ||x — y|| <
D, Vx,y € X.

Assumptions 1 — 3 are standard for FW and its variants, and they
are assumed to hold true throughout.

https://www.dropbox.com/s/7d91f5ry3alo5ka/
AvgFW_icassp_with_proofs.pdf?dl=0
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Fig. 1. Supporting hyperplanes (SH) of f(x), and their average for
the logistic loss function (black curve). The red (blue) line is the
tangent SH of f(x) at the red (blue) point. The green tangent is the
average of the red and blue SHs.

FW for solving problems satisfying Assumptions 1 — 3 is sum-
marized in Alg. 1. A subproblem with linear loss function hav-
ing coefficient V f(xy) is solved per iteration to obtain the auxiliary
variable vi4+1 (cf. line 3). With reference to Fig. 1, the aforemen-
tioned linear function f(xx) + (V f(xx), X — X) is the supporting
hyperplane (SH) of f(x) at x; and thus it lower bounds f(x) due
to convexity; see e.g., the red and blue lines in Fig. 1. Variable vi41
minimizes this lower bound over X'. Devoid of projection, the FW
iterate is then updated as the convex combination of x; and vi41;
thus, the update direction in the kth iteration is vi4+1 — Xi. The

most commonly used step size for FW is n, = %ﬁ, which ensures

convergence of the error f(xx) — f(x*) = O(LTDZ) [5].

It turns out however, that the update direction in Alg. 1 does not
always lead to the best empirical performance. Indeed, it has been
observed that improved numerical results are obtained when the di-
rection is found using matching pursuit [19]. In addition, if the loss
function is strongly convex and the constraint set is a polytope, linear
convergence is ensured by relying on “away steps” that move iterates
away from the original FW updated direction [6]. These considera-
tions motivate well the investigation of alternative update directions
per FW iteration. This is the subject of the ensuing section.

3. FW WITH WEIGHTED AVERAGE GRADIENTS

This section introduces our FW approach based on averaged gra-
dients, along with its geometric interpretation, and relevant conver-
gence claims.

3.1. Averaged gradients

To have options for the update direction while maintaining FW’s ge-
ometric interpretation, we will rely on the average of gradients from
previous iterations. A generic form of FW with averaged gradients
is summarized in Alg. 2, where the vector g1 is the key difference
with vanilla FW. Clearly, with §;, = 1, Alg. 2 boils down to FW. As
we will see shortly, varying J; yields different FW iterations. But
before that we will gain insights through a detailed interpretation
per subproblem of the proposed algorithm.

Geometric i;lterpretation. Consider the weighteg average gradient
8r+1 = D o WiV f(xs), where wi = o-[[;_ (1 —d;) >

0, V7 > 1, and w)) = H§=1(1 — d;) > 0. It can be easily verified

Algorithm 1 FW [4]

1: Initialize: xo € X

2. fork=0,1,..., K —1do
3 Vig1 = argming ¢, (V f(xz), )
4 Xpgr = (1= n)Xk + M6 Vit
5
6

: end for
: Return: xx

Algorithm 2 A generic form of FW with averaged gradients
: Initialize: xo € X, go = V f(x0)

1

2: fork=0,1,..., K —1do

3 gi+1 = (1 — dk)gk + 6,V f(xk)
4: Vi41 = arg ming ¢ v (8k+1,X)

5 X1 = (1 — Mk) Xk + Me Vit

6: end for

7: Return: xx

that Zi:o wy = 1, Vk > 0. Then, define a sequence of linear
functions {®y41(x)} as

k
Dpp1(x) =Y wi [f(x7) + (VF(x:),x = x)], VE >0 (2)

which represents a weighted average of the supporting hyperplanes
of f(x) at {x,}¥_,; see the green line in Fig. 1. Properties of
®j41(x), and its relevance with the proposed algorithm are summa-
rized in the next lemma.

Lemma 1. For the linear function ®y11(x) in (2) it holds that: i)
Vi1 minimizes P41 (x) over X; and ii) ®+1(x) is a global lower
bound for f(x), that is, Pr1+1(x) < f(x).

Similar to the vanilla FW, Lemma | establishes that v mini-
mizes a global lower bound of f(x) even for general weighted aver-
age gradients.

3.2. Parameter choices

Next, we will provide three different choices for the parameters to
ensure convergence. The first one we shall consider is

4k

FW-SA: (5k = 4]{3—H

2
,nk—k+2,\ﬂ€20- 3
As k grows, a larger weight is applied to the current gradient
V f(xr) when computing gr+1, while the weights for previous
gradients decay rapidly. We thus term Alg. 2 with parameters in (3)
as FW with short-term averaged gradients (FW-SA). Clearly, when
k is sufficiently large, the averaged gradients g1 in FW-SA will
approach the gradient V f(xj) in the vanilla FW, thereby yielding
similar update directions. In contrast, the following two parameter
choices will lead to update directions that are markedly different
from those of the vanilla FW.

Our second choice of parameters is (cf. (3))

C

FW-EA: —_—
k+ko'

5k:57 Ne = V]CEO (4)
where § € (0,1), and ¢ and ko are constants to be specified later.
With §;, = ¢, the average gradient g1 amounts to an exponentially
moving average of previous gradients, thus the abbreviation FW-EA
when Alg. 2 utilizes the parameters in (4). The moving average
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Fig. 2. A glance of FW with averaged gradients using logistic re-
gression with an £2-norm ball constraint on dataset mushroom. (a)
The optimality error; (b) ||gk+1 — V.f(xx)]; (c) the angle between
k+1 and Vf(xk)

gradient was also adopted in [16] for stochastic optimization in order
to reduce the variance of the noisy gradient. Clearly, our use here is
for a different purpose.

Our third choice of parameters is

2 Yk > 0. (5)

FW-LA: —
kE+ 2’ =

Ok =Mk =
With . as in (5), it can be verified that wy, = O({z). Hence, recent
gradients in g1 are weighted less compared to (3) and (4). We
term Alg. 2 with the parameters chosen by (5) as FW with long-term
averaged gradients (FW-LA).

Before moving on to convergence analysis, it is instructive to
check how the averaged gradient differs from the one in the vanilla
FW. To this end, we carried numerical tests using logistic regression
over an {2-norm ball constraint. The convergence results are de-
picted in Fig. 2(a). As expected, FW-SA shows performance com-
parable to the vanilla FW, while FW-LA outperforms the vanilla one
by a significant margin. Fig. 2(b) shows how the amplitude differ-
ence between g1 and V f (x) decreases with k. This is intuitively
reasonable since more weight is put on recent gradients. Moreover,
we can deduce from Fig. 2(c) that the direction of g1 is consid-
erably different from that of V f(x;) in FW-LA, and sometimes the
pertinent angle becomes obtuse. Such differences eventually lead to
different update directions that speed up convergence.

3.3. Convergence of FW-SA

Next, we analyze the convergence of the FW-SA, FW-EA, and FW-
LA algorithms. The following lemma is essential for analyzing FW-
SA, because it upper bounds the distance between the weighted av-
erage gradient g, and the gradient V f(x) for any x € X.

Lemma 2. If f(x) has L-Lipschitz gradient, it holds for Vx € X
and Vk > 1, that
lgx — Vf(x)|| < LD. (©)

Building upon Lemma 2, the convergence rate of FW-SA is es-
tablished in the following theorem.

Theorem 1. With go = V f(x0), dk = %, and n, = ki_ﬂ the
optimality error of FW-SA satisfies for Vk > 1 that
. LD?
F0) = (") = O(5=). ©

Theorem 1 asserts that the convergence rate of FW-SA coincides
with that of FW, which also agrees with our observation in Fig. 2(a).

3.4. Convergence of FW-EA

The next lemma demonstrates that ||gr+1 — V f(xx)||? in the FW-
EA iteration converges faster than that in FW-SA of Lemma 2.

Lemma 3. Let go = V f(xo0), and np, = in the FW-EA

iteration. If there is a constant cg satisfying
(ko +1)°
kg
the weighted average gradient in FW-EA then obeys
AL?D?
(k+ ko)

To avoid the burden of choosing constants, consider the instance
where ko = 2,5 = 0.8, ¢1 = 2, and ¢p ~ 3.05, which can be readily
verified that they satisfy (8). Lemma 3 then ensures that the distance
between gr41 and V f(xx) will converge with rate O(+); see also
Fig. 2(b). Thus, FW-EA can be proved convergent by leveraging
Lemma 3.

Theorem 2. With go = V[f(x0), Nk = 733, and § = 0.8, the
optimality error (convergence rate) of FW-EA satisfies Vk > 1 that
. LD?
fo0) = (") = 0( =)

Clearly, Theorem 2 establishes that the FW-SA iteration con-

verges with rate O(LTDz), which is the same as that of FW-SA.

c1
ktko+1

d<|1-(1-9) scp ®)

gkt — VFxx)|” <

3.5. Convergence of FW-LA

Recall that @1 (x) in (2) lower bounds f(x) over X'. We rely on
this fact to prove convergence of the FW-LA iteration next.

Theorem 3. Under Assumptions 1-3, and upon choosing 0y, = ni. =
%H’ the so-termed generalized optimality gap of the FW-LA itera-
tion satisfies for Vk > 1 that

LD?
F) = @r(vi) = O( =)

This generalized FW gap broadens the standard definition of FW
gap in e.g., [5]. Note that Theorem 3 is even stronger than that of [5,
Theorem 2], because our result here holds for every £ > 1.

Relative to the optimality gap, the generalized one satisfies

f(xx) = Pr(vi) > f(xk) — Pr(x") > f(xx) — f(X)  (9)

where the inequalities follow because @y (vy) < Pp(x*) < f(x™)
(cf. Lemma 1). As a result, convergence of the generalized FW gap
directly implies convergence of the optimality gap.

Corollary 1. With parameters as those in Theorem 3, FW-LA guar-
antees for Vk > 1 that

. LD?
Jea) = 1(x") = 0( =)
Proof. The proof relies on Theorem 3 and (9). O

As with the standard FW gap, the generalized one can also be
used as a stopping criterion. Specifically, if f(xr) — Pr(ve) < €
for some prescribed accuracy €, (9) directly implies that f(xx) —
f(x*) <e
Other averaging schemes. One can also let 0, = %, Vk > 1,
which boils down to FW with uniformly averaged gradients (FW-
UA) [20]. Such a choice with g+ formed by the average of previ-

ous gradients, slows down convergence to a rate O(%). This
explains why FW-SA, FW-EA, and FW-LA, all outperform FW-UA.
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Fig. 3. Performance of FW with averaged gradients on different datasets.
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Fig. 4. Zigzag phenomenon on dataset w7a.

4. NUMERICAL TESTS

Having established the convergence rates of FW-SA, FW-EA and
FW-LA, we proceed here to test their performance numerically. Lo-
gistic regression for binary classification is employed for the tests
with an ¢2-norm ball constraint (that is, X = {x | ||x|| < R}) to
enhance generalization.

With x collecting the classifier weights, the loss function is

Flx) = % St (14 exp(-bias, x))) (10)

where (a;, b;) is the (feature, label) pair of datum 4, and N is the
number of data. It can be verified that Assumptions 1 — 3 are satis-
fied. Benchmark datasets from LIBSVM? are used in the numerical
tests. Details regarding the datasets are summarized in Table 1.

As for the baselines, we use vanilla FW with standard step size
e = ,%2 (labeled FW), and a step size variant from [1] to guar-
antee per iteration descent (FW-d). The performance of FW with
uniformly averaged gradients (FW-UA) [20] is also plotted for com-
parison. For the proposed methods, the parameter choices for FW-
SA and FW-LA are the same as those in Theorems 1 and 3. Whereas,

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets/binary.html.

FW-EA uses the parameters 6 = 0.8 and § = 0.5, which are denoted
as FW-EA1 and FW-EA2, respectively.

Fig. 4 illustrates how averaged gradients reduce zigzagging in
the oscillating optimality error. The experiment is conducted on
dataset w7a for the first 50 iterations, and the results are displayed
on a linear scale. It can be deduced that the proposed algorithms ex-
hibit milder oscillation compared with vanilla FW, and they are able
to converge faster to a lower stability level. These results further val-
idate our assertion that averaged gradients can alleviate zigzagging,
hence improving empirical performance over vanilla FW.

Performance of the proposed algorithms relative to baselines are
shown in Fig. 3, where all curves are smoothed for display. It can
be seen that in all tests, most of the proposed approaches converge
faster than vanilla FW and FW-d. This observation also corrobo-
rates that the gradient is not always the ‘best direction’ to employ in
the FW subproblem. Additional tests on ¢;-norm ball and ¢-.-norm
ball constraints can be found in the Appendix, where the proposed
algorithms again outperform vanilla FW and FW-d.

5. CONCLUSIONS AND FUTURE WORK

Frank-Wolfe solver with improved performance for constrained
optimization problems was pursued here using weighted averages
of gradients to update the per-iteration direction. Three types of
weights offering complementary characteristics were introduced
with the corresponding algorithms abbreviated as FW-SA, FW-
EA, and FW-LA. Convergence guarantees and their speeds were
established for all three options, along with insightful geometric
interpretations. Numerical tests confirmed the efficiency of the
proposed approaches.

Our future research agenda includes investigating convergence
guarantees for the generalized FW gap of FW-EA, and also crafting
per-step descent step sizes for FW with averaged gradients.
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