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Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects
cognition and memory. Recent advances have helped identify many clinical sub-types
in AD. Mounting evidence point toward structural polymorphism among fibrillar ag-
gregates of amyloid-f (AP) to being responsible for the phenotypes and clinical mani-
festations. In the emerging paradigm of polymorphism and prion-like propagation of
aggregates in AD, the role of low molecular weight soluble oligomers, which are long
known to be the primary toxic agents, in effecting phenotypes remains inconspicu-
ous. In this study, we present the characterization of three soluble oligomers of AB42,
namely 14LPOs, 16LPOs, and GM10s with discreet biophysical and biochemical
properties generated using lysophosphatidyl glycerols and GM1 gangliosides. The
results indicate that the oligomers share some biophysical similarities but display
distinctive differences with GM10Os. Unlike the other two, GM10Os were observed
to be complexed with the lipid upon isolation. It also differs mainly in detection by
conformation-sensitive dyes and conformation-specific antibodies, temperature and
enzymatic stability, and in the ability to propagate morphologically-distinct fibrils.
GM10s also show distinguishable biochemical behavior with pronounced neuronal
toxicity. Furthermore, all the oligomers induce cerebral amyloid angiopathy (CAA)
and plaque burden in transgenic AD mice, which seems to be a consistent feature
among all lipid-derived oligomers, but 16LPOs and GM10Os displayed significantly
higher effect than the others. These results establish a correlation between molecular
features of AP42 oligomers and their distinguishable effects in transgenic AD mice
attuned by lipid characteristics, and therefore help bridge the knowledge gap in un-

derstanding how oligomer conformers could elicit AD phenotypes.

Abbreviations: 14LPOs, C14 lysophospholipid-derived oligomers; 16LPOs, C16 lysophospholipid-derived oligomers; AR, Amyloid-p; CAA, cerebral
amyloid angiopathy; CMC, critical micelle concentration; GM10s, GM1 ganglioside-derived oligomers; LFAOs, large fatty acid-derived oligomers; LMW,

low molecular weight; ThT, thioflavin-T.

Jhinuk Saha and Dexter N. Dean contributed equally to this study.

© 2021 Federation of American Societies for Experimental Biology

The FASEB Journal. 2021;35:¢21318.

wileyonlinelibrary.com/journal/fsb2 1of 18


www.wileyonlinelibrary.com/journal/fsb2
mailto:﻿
mailto:vijay.rangachari@usm.edu

SAHA ET AL.

M?ASE‘BJOURNAL

1445151 and NRT 1449999; National
Center for Research Resources, Grant/
Award Number: SP20RR01647-11;
National Institute of General Medical
Sciences, Grant/Award Number: 8 P20
GM103476-11

KEYWORDS

phenotypes

1 | INTRODUCTION

Alzheimer disease (AD) is a fatal neurodegenerative disorder
characterized by a progressive and irreversible cognitive de-
cline and memory loss among the elderly. The AD brain is char-
acterized by two pathological hallmarks; intracellular tangles
comprised of hyper-phosphorylated tau protein and extracellu-
lar plaques composed of amyloid-p (Ap) peptide aggregates.'
However, the levels of low molecular weight (LMW) oligomers
of AP correlate better with cognitive decline.”” It has now been
well established that LMW oligomers are the primary toxic
species responsible for early neuronal dysfunction in AD.%®
Therefore, understanding how A oligomers are generated and
what their structural features are, is of significant interest that
may hold the key to the development of therapeutics for AD.

The stochasticity involved in AP aggregation, especially
during early stages, gives rise to multiple pathways of aggre-
gation and with a diverse range of aggregate sizes and confor-
mations.” Because of this, conformational heterogeneity and
structural polymorphism are commonly observed among AP
aggregates.lo'14 Perhaps a profound impact of this is that the
aggregate polymorphism may direct correlate to the clinical
phenotypes observed among AD patients.15 18 Aggregates
with distinct conformations have been identified among both
familial and idiopathic AD brains.'® Differences in the struc-
ture between A fibrils propagated with endogenous seed de-
rived from rapid-onset (rAD) and sporadic AD brains have
reinforced the idea that conformational strains are in part re-
sponsible for different phenotypes observed.'® Therefore, un-
derstanding the relationship between aggregate conformation
and their pathological function, along with the mechanisms
underlying strain generation and propagation, has become
imperative in deciphering AD pathogenesis.

AP aggregation is sensitive to the environmental conditions
and interactions with other biomolecules.”** Being a part of
the transmembrane domain of the amyloid precursor protein
(APP), AP is influenced by membrane lipids during the early
stages of AP aggregation.23'27 Lipid-associated A has also
been observed among AD patients. For instance, a novel mem-
brane-bound Ap species was isolated from postmortem AD
brains that were thought to trigger early stages of disease pa-
thology.zg’29 AP was also observed to be tightly bound to GM1
gangliosides, one of the most abundant gangliosides in the brain
and constitutes a prime component of lipid rafts.* It was later
determined that GM1 binds AP with micromolar (uM) affin-
ity31‘3 % and induces a [-sheet secondary structure transition.>* 3¢
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AP also binds and undergoes a structural transition to -sheet
in the presence of negatively charged lipid bilayer vesicles
(liposomes).37'39 Similarly, micelles made up of spherical
monolayers have also been shown to stimulate Af aggregate
formation.***' Work from our lab has shown that distinct oligo-
mers of AP are generated in the presence of anionic micelles
composed of fatty acids. These oligomers, termed large-fatty
acid-derived oligomers (LFAOs) show many interesting bio-
physical and biochemical properties.9’22’42'45 LFAOs undergo
faithful propagation to fibrils containing repeating oligomer
assemblies in vitro,” and a bilateral injection of these oligomers
into neonatal CRND8 transgenic AD mice selectively induced
AP deposition within the cerebral vasculature, leading to a con-
dition known as cerebral amyloid angiopathy (CAA).* This led
us to hypothesize that the faithful propagation of biophysically
distinguishable A oligomers toward structurally distinct fibrils
may underpin the mechanisms governing clinical manifesta-
tions in AD. In this report, we sought to investigate the effect of
micelle-forming anionic phospholipids on the biophyscial and
biochemical characteristics of oligomers specifically using two
anionic lysophosphatidyl glycerols (LPGs) with varying acyl
chain lengths and a neutral sphingolipid, GM1 ganglioside.
LPGs are good models of micellar phospholipids, while GM1
gangliosides are a major component of membrane lipids and
lipid rafts. We show that the LPG-derived oligomers, 14L.POs
and 16LPOs, share many biophysical properties with LFAOs,
while GMI1-derived oligomers, GM10s show some com-
monality but are more biophysically distinctive than the other
oligomers. They also induce higher degrees of cytotoxicity and
exacerbation of amyloid pathology in CRNDS8 mice brains.
In addition, GM10s and 16LPOs also induce highest level of
CAA phenotype among the oligomers. These results bring to
light how the physiochemical nature of micellar lipids can be
tuned to induce biophysically distinguishable oligomers and
how such properties correlate with their effect in mice brains.
These results also refocus our attention toward unifying and dif-
ferential characteristics of lipid-derived oligomers to potentiate
as “strains” in inducing specific phenotypes in AD.

2 | MATERIALS AND METHODS

2.1 | Materials

Lyophilized stocks of synthetic AP42 WT were pur-
chased from the Yale School of Medicine (New Haven,
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CT) and from Dr Chakraborty's lab at the University of
Mississippi. The monoclonal antibody Ab5 was obtained
from Levites lab at the University of Florida (Gainesville,
FL). Size exclusion chromatography (SEC) columns
(Superdex-75 HR 10/30) were purchased from GE Life
Sciences (Marlborough, MA). LPG (C14:0 and C16:0)
and GM1 lipids were purchased from Avanti Polar Lipids,
Inc (Alabaster, AL) while C12:0 NEFA was purchased
from NuCheck Prep, Inc (Elysian, MN). Tris base, Tris
hydrochloride, and sodium dodecyl sulfate (SDS) were
purchased from Sigma-Aldrich (St. Louis, MO). Other
routinely used chemicals, reagents, and consumables were
purchased from either VWR, Inc (Radnor, PA) or Thermo
Fisher Scientific, Inc (Waltham, MA).

2.2 | Purification of Ap monomers

Synthetic AP (0.5-2 mg of lyophilized peptide) was dis-
solved in 490 pL of nanopure H,O (npH,0) and allowed to
stand at 25°C for 0.5-1 hours. Ten minutes before loading
onto a Superdex-75 HR 10/30 SEC column attached either to
an AKTA FPLC system (GE Healthcare, Buckinghamshire)
or a BioLogic DuoFlowTM system (Bio-Rad), NaOH was
added to a final concentration of 10 mM. Monomer was
then purified by loading the sample onto a pre-equilibrated
(20 mM Tris, pH 8.0) column and fractionating at a flow
rate of 0.5 mL/min at 25°C. Fractions of 500 pL were col-
lected, and monomeric AP} was found to elute in between
23 and 27 fractions. Cary 50 UV-vis spectrometer (Agilent
Technologies, Inc; Santa Clara, CA) was used to determine
the molar concentration of AP in each fraction using Beer-
Lambert's law (¢ = 1450 cm™' M~! at 276 nm correspond-
ing to the single tyrosine residue). Matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry
(MALDI-Tof) was used to confirm the purity and integrity
of the peptide. The purified monomers were stored at 4°C
in siliconized Eppendorf tubes to minimize protein reten-
tion on the tubes and used to initiate experiments within
48 hours of purification.

2.3 | Purification of Ap oligomers

Purification of AP oligomers was initiated by incubating
freshly purified Af monomer (50 pM) with the speci-
fied lipid species in the conditions listed below. LFAOs,
5 mM C12:0 NEFA; 14LPO, 0.4 mM C14:0 LPG; 16 LPO,
0.15 mM C16:0 LPG; GM10, 75 pM GM1. Additionally,
50 mM NaCl and 0.01% NaN3 were added to all reac-
tions prior to incubation at 37°C in quiescent conditions
for 48 hours. The samples were then purified via SEC, as
described above, after first pelleting the insoluble peptide
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by centrifugation at 18 000g for 20 minutes. Fractions of
500 pL were collected, and AP oligomers were fraction-
ated in the 18-20 fractions. The molar concentration was
determined by UV-vis spectroscopy, as described above.
Samples were either stored at 4°C in siliconized Eppendorf
tubes and used for experimentation within 72 hours or lyo-
philized and kept at —80°C for extended storage prior to
experimentation.

2.4 | Lyophilization and resuspension of Af
For lyophilization, aliquots of either 1 or 5 pg were made
and flash-frozen by plunging into liquid N2 for 30 seconds
prior to freeze-drying overnight using a FreeZone TriadTM
freeze dry system (Labconco Corp.; Kansas City, MO) main-
tained at 0.420 mBar. Lyophilized samples were then stored
at —80°C until use. To resuspend the lyophilized samples
for experimentation, either nanopure H,O or Tris buffer (pH
8.0) was added to reach the desired molar concentration of
peptide, and the sample was allowed to stand at 4°C for at
least 1 hour prior to centrifugation at 18 000 g for 20 min-
utes. The supernatant was then carefully removed and used
for experiments.

2.5 | Generation of Ap fibrils

AP monomer (100-150 pM) was added to 150 mM NaCl
and allowed to incubate at 37°C in quiescent conditions for
4-5 days for Fon generation. After incubation, the sample
was subjected to centrifugation at 18 000 g for 20 minutes
before carefully discarding the supernatant and resuspending
the pellet in fresh 20 mM Tris (pH 8.0) with 0.01% NaN3.
ThT fluorescence and centrifugation were used to determine
percentage conversion to A fibrils, which was typically
80%-90%. Fibrils were stored at 4°C and used within 30 days.

2.6 | Oligomer seeding reactions

AP monomer (25 pM) was seeded with 5 pM oligomer seeds
in 20 mM Tris (pH 8.0) with 50 mM NaCl and 50 uM ThT.
The reactions were kept in BioTek Synergy 96 well plate
reader at 37°C and ThT fluorescence was monitored up to
48 hours. All experiments were carried out by adding 200 uL.
of the reaction mixture in Corning 96-well plate (black). ThT
fluorescence was recorded after an interval of every 10 min-
utes using excitation at 452 nm and emission at 485 nm at
37°C, shaking samples for 1 second before each read. The
kinetics data were processed by subtracting the blank buffer
reading from the experimental data followed by normaliza-
tion using the OriginLab 8.0 program.
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2.7 | Partially denaturing and PAGE with
immunoblotting

Samples were diluted into 1x Laemmli loading buffer with
1% SDS and loaded without boiling, onto either 4%-12%
NuPAGE or 4%-20% Bis-Tris Bio-Rad TGX gels. Pre-
stained molecular-weight markers (Novex Sharp Protein
Standard, Life Technologies) were run in parallel for MW
determination in denaturing PAGE. For immunoblotting,
proteins were transferred onto a 0.2 pm nitrocellulose
membrane (Bio-Rad). Following the transfer, the immu-
noblot was boiled for 1 minutes in a microwave oven in
Ix PBS, followed by blocking for 1.5 hours at 25°C in 1X
PBS containing 5% nonfat dry milk with 1% Tween 20.
Blots were then probed overnight at 4°C with a 1:6000 di-
lution of Ab5 monoclonal antibody, whose epitope is 1-16
sequence of Af. Following primary incubation, blots were
probed with a 1:6000 dilution of anti-mouse, horseradish
peroxidase-conjugated secondary antibody for 1.5 hours at
25°C before being imaged using a Super SignalTM West
Pico Chemiluminescent Substrate kit (Thermo Fisher
Scientific). Dot blots. Samples (225 ng in 5 puL) were spot-
ted onto a 0.2 pm nitrocellulose membrane and allowed to
dry at room temperature for 1 hour. The blots were blocked
for 1.5 hours with 1x PBS containing 5% nonfat dry milk
and probed overnight at 4°C with 1:2000 and 1:6000 di-
lutions of polyclonal conformational specific antibody OC
(Millipore Inc) and A11, respectively, along with Ab5 mon-
oclonal antibody. Blots were then incubated with anti-rabbit
(for OC and A1l) or anti-mouse (for OC) horseradish per-
oxide (HRP) conjugated secondary antibody for 1.5 hours
and developed with ECL reagent (Thermo Scientific).

2.8 | Curcumin and ANS fluorescence
Curcumin, and  8-anilino-napthalene-1-sulfonic  acid
(ANS) fluorescence were measured on a Cary Eclipse
AQo6fluorometer (Agilent Technologies, Inc) in scan mode.
Fluorescence spectra for curcumin were obtained by excit-
ing the sample at 430 nm, while scanning emission between
470 and 600 nm upon the addition of buffered Ap samples
(5-7 pM) and curcumin (5 pM) in 25% EtOH. The slit widths
for excitation and emission were kept constant at 10 nm.
The data were normalized against the concentrations of the
oligomers and averaged for three independent data sets. For
ANS, AP samples (3 pM) were equilibrated for 2 minutes
with ANS (100 pM) in 20 mM Tris pH 8.00 before measur-
ing the fluorescence using excitation at 388 nm and scanning
emission between 400 and 650 nm. The integrated intensity
was plotted against the wavelength for each sample was plot-
ted as bar-graphs and averaged for three independent data
sets.

2.9 | Fourier transform infrared (FTIR)
spectroscopy

Lyophilized Ap samples were resuspended in D,O to a final
concentration of 1 mM before accumulating spectra on a
Nicolet 6700 instrument equipped with an ATR accessory. A
total of 64 accumulations were collected by scanning 4000-
650 cm™" at a resolution of 4 cm™". Spectra were processed
by blank subtraction (using D,O as the blank) and baseline
correction using the OriginLab 8.0 program.

2.10 | Circular dichroism (CD)
spectroscopy and thermal denaturation

Far UV CD spectra (260-190 nm) for the oligomers (5-8 pM)
were collected on a Jasco (Easton, MD) J-815 spectropo-
larimeter using a 1| mm pathlength cuvette with an average
of 6-16 spectral scans at a rate of 50 nm/min (8 seconds re-
sponse time, 1 nm bandwidth, 0.1 nm data pitch). Averaged
spectra were smoothed using the Savitzky-Golay algorithm
with a convolution width of 15 using the Jasco spectrum
analysis program. Temperature stability analysis was per-
formed using SDS as a denaturant as described prior.*®
Briefly, SDS (1% wt/vol) was added to a solution of AP
oligomers (1 pM) in a 1 cm pathlength cuvette, followed
by heating from 10 to 90°C, while monitoring the signal at
208 nm that corresponds to the emergence of an a-helical
structure. In addition, the far-UV scans of pre- and post-
melt samples were measured. The data were processed by
normalizing from O to 1, where 1 and O represent the fully
melted and unmelted oligomers, respectively. The normal-
ized values of fully melted samples were calculated by cor-
relating the 90°C data with the post-melt scans wherein the
maximum difference in ellipticity between 222 and 208 nm
to be <0.1 was considered to be 100% helix based on estab-
lished observations on SDS-protein systems.47'49 The data
obtained was fit using the Boltzman function in OriginLab
8.0 program to derive T,, values.

Thermodynamic deconvolution of the data was performed
as follows: The equilibrium constant K at a given temperature
is expressed as:

k=0
(D]

where N and D represent native and denatured oligomers,
respectively. The change in.
The fraction denatured, a is expressed as:

L_ D1 _ 16110l
[D1+[N] ~ [6], — [0l
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where 6 is the ellipticity at A,yg and K is expressed as,

As we know,
AG= —RT In K= AH - TAS

From this, we can deduce,

( « > AH | AS
In =222
RT " R

From this equation, linear vant Hoff's plots were gener-
ated from which AH and AS were calculated from the slope
and y-intercept, respectively.

2.11 | Dynamic light scattering (DLS)

DLS was collected by averaging 12 runs of 10 seconds each
with a pre-equilibration time of 30 seconds using a Zetasizer
Nano S instrument (Malvern, Inc, Worcestershire, UK) with
70 uL volume and 1 cm cuvette pathlength. The diameter was
determined using the volume (%) function.

2.12 | Electrospray ionization mass
spectrometry (ESI-MS)

All samples were evaporated to dryness using vacuum evap-
oration followed by resuspension at a concentration of 10 pM
in a H,O:CH;CN:HCOOH (1:1:0.2) solvent. Samples were
analyzed by direct infusion into a FinniganTM LXQTM ion
trap mass spectrometer (Thermo Fisher Scientific) operated
in negative ion mode. Signals were accumulated by scan-
ning the spectrum from 150 to 2000 m/z for a total of 3 min-
utes (~800 total scans) at a constant flow rate of 100 pL/
min. Other instrument parameters were kept as follows: spray
voltage (5 kV), capillary temperature (275°C), capillary volt-
age (—42 V), and automatic gain control (1.5 x 104).

2.13 | Analytical ultracentrifugation

Sample Preparation A 4 mM stock solution of HiLyte 647
in 50% DMSO was diluted to 160 pM aliquot, which was
incubated with 10 pM isolated oligomer (14LPO, 16LPO,
LFAO & GMI10) in 10 mM sodium phosphate buffer at pH
8, and was incubated overnight at 4°C kept with constant
orbital shaking at 80 rpm. The free dye was removed from
the dye-protein mixture using 7 kDa Zeba Spin desalting
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columns in 10 mM sodium phosphate buffer at pH 8 (Thermo
Scientific) by centrifuging samples at 900 g at 4°C for 1 min-
utes. The dye and protein absorbance were measured using
a Cary 50 UV-vis spectrometer (Agilent Technologies, Inc;
Santa Clara, CA) to determine the amount of dye bound
to protein. Sedimentation velocity experiments were per-
formed in a Beckman XL-I centrifuge (Beckman Coulter,
Inc, Indianapolis, IN) using absorbance and interference op-
tics by measuring intensity scans at 280 nm at the Physical
Biochemistry Facility at Florida State University. The ex-
periments were performed at 20°C in two-channel Epon cen-
terpieces with an AN60 Ti rotor at 55, 000 rpm. A 10 mM
sodium phosphate at pH 8.0 buffer was the used for protein
solubilization. Data were processed and analyzed using the
SedFit programso to generate c(S) and MW distributions. The
frictional coefficient (f/f0) value of 1.4 was used for data pro-
cessing and calculations. The partial specific volume at 20°C
of the protein (0.7021 cm® g™') was used that was estimated
from the peptide sequence.

2.14 | Proteinase K (PK) digestion

A 20 mg/mL of PK stock solution from Ambion was diluted
to 57 ng/mL in 20 mM Tris pH 8.0 to digest 451.5 ng of
each oligomer sample (16LPO, 14LPO, GM10, and LFAO)
by shaking at 200 rpm at 37°C for 40, 30, 20, and 10 min-
utes, respectively. The reactions were quenched with 0.5 mM
PMSF for 1 minute. Subsequently, ~337 ng of protein for
each oligomer sample was run on 1% SDS PAGE gel and
we transferred onto a 0.2 pm nitrocellulose membrane (Bio-
Rad) for immunoblotting. Immunoblots were probed with a
1:6000 dilution of Ab5 monoclonal antibody & anti-mouse,
horseradish peroxidase-conjugated secondary antibody, re-
spectively. The immunoblots were imaged using a Super
Signal West Pico Chemiluminescent Substrate kit (Thermo
Fisher Scientific). Oligomer band intensities in the gel were
calculated by choosing a 6 mm’ area between molecular
weight 50-80 kDa and subtracting the intensity of blank on
a similar area of the gel with the help of Image Lab (Bio-
Rad) software. Intensity vs time plots were then plotted using
OriginLab 8.0.

2.15 | Atomic force microscopy

Peptide oligomer and fibril samples were prepared following
our previously published procedure.46 An acidic solution of
3-aminopropyltriethoxysilane (500 uL of APTES in 50 mL of
1 mM acetic acid) was prepared and 150 puL. was deposited
onto freshly cleaved mica. After 20 minutes, the solution was
decanted from the surface and the substrate was washed three
times with 150 pL of nanopure DI H,O. The substrates were
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then dried with a stream of N2 and set in a desiccator for an
hour. AFM samples were then prepared by depositing 150 pL
of oligomer or fibril solution (2 uM in 20 mM Tris-HCI, pH
8.0). After 30 minutes, the solution was decanted and the sub-
strates were dried under a stream of N2. AFM samples were
stored in the desiccator until imaging. Image analysis was
conducted using a Dimension Icon Atomic Force Microscope
(Bruker) in PeakForce Tapping mode equipped with an
SNL-C cantilever (nom. tip radius of 2 nm; nom. resonance
frequency of 56 kHz; nom. spring constant of 0.24 N/m) in a
standard probe holder under ambient conditions. Images were
acquired with 512 x 512 data point resolution in NanoScope
v8.15 software and analyzed in NanoScope Analysis v1.50.

216 | NMR
The 'H NMR spectra were acquired on the Bruker Advance—
HI-HD 850 MHz NMR spectrometer equipped with a Bruker
TCI cryoprobe at the high field NMR facility of the University
of Alabama, Birmingham. The spectra of the samples (10-
12 pM) in 10 mM phosphate buffer at pH 8.0 with 10% D,O
were collected at 25°C with 6144 or 8192 scans with 14 ppm
sweep width centered around water peak with a D1 delay of
1.0 second. Excitation-sculpting water suppression (zgesgp)
was used. The data were processed using Bruker TopSpin 3.5
analysis software with standard methods with phase corrections.

2.17 | Cell viability XTT assay

SH-SY5Y human neuroblastoma cells (ATCC, Manassas,
VA) were plated in a clear 96 well-plate at a density of ap-
proximately 20 000 cells/well in growth media containing
1:1 mixture of DMEM/F12 medium with 10% fetal bovine
serum and 1% Pen-Strep at 37°C in a humidified atmos-
phere of 5.5% CO2. After 24 hours, media was replaced
with freshly prepared AP oligomers in siliconized tubes re-
suspended in growth media and incubated for 40 hours. Cell
viability assay was performed using 2,3-bis(2-methoxy-4-
nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl] -2H- tetra-
zolium hydroxide (XTT) cell viability assay kit (Biotium).
Absorbance was measured at 475 and 660 nm using Synergy
HTX Multi-Mode Reader- BioTek Instruments.

2.18 | Tg CRNDS mice injections and
immunohistochemistry
2.18.1 | Mice

All animal husbandry procedures performed were approved
by the Institutional Animal Care and Use Committee.

TgCRNDS were maintained as described before,”" transgenic
males were crossed with B6C3F1 ntg females.

2.18.2 | Neonatal injections

TgCRNDS8 mice were injected with 2 pL of 10 pM isolated ol-
igomers (14LPOs, 16LPOs, LFAOs, and GM10s) in 10 mM
sodium phosphate buffer at pH 8.00, ICV into both hemi-
spheres using a 10 mL Hamilton syringe with a 30 g needle
on day PO as described before*®>? and aged till 2 months. Ap
levels from the Ripa, 2% SDS, and 70% FA-extracted sam-
ples were quantified using end-specific sandwich ELISA as
previously described.™ AP40 was captured with mAb 13.1.1
(human AB35-40 specific; TE Golde) and detected by HRP-
conjugated mAb 33.1.1 (human AP1-16; TE Golde). Ap42
was captured with mAb 2.1.3 (human AB35-42 specific; TE
Golde) and detected by HRP-conjugated mAb 33.1.1 (human
AP1-16; TE Golde). ELISA results were analyzed using
SoftMax Pro software.

2.18.3 | Immunohistochemical imaging and
image processing

Right hemibrain was fixed in 4% paraformaldehyde.
Immunohistochemical staining was performed by biotinylated
pan A pan antibody mADbS (1:1500, T. Golde). To detect we
used biotinylated secondary antibody and ABC-horseradish
peroxidase staining kits (Vector Laboratories, Burlingame,
CA). After development by 3,3’-Diaminobenzidine (DAB)
(Sigma-Aldrich) substrate and counterstaining with he-
matoxylin, the slides were coverslipped and images were
scanned by Aperio XT System (Leica Biosystems, Buffalo
Gove, IL, USA) and analyzed using either Aperio positive
pixel count or Imagel] program. Brightness and contrast al-
terations were applied identically on captured images using
Adobe Photoshop CS3.

2.18.4 | Quantification of AP deposition

AP plaque burden and intensity of astrogliosis staining were
calculated using the Positive Pixel Count program (Aperio).
At least three sections per sample, 30 pm apart, were aver-
aged by a blinded observer to calculate plaque burden. For
CAA, three blinded observers reviewed the images and
scored the extent of CAA based on the following criteria;
“3” = more than 50% blood vessels have staining along the
full circumference. “2” = 25%-50% of blood vessels have
substantial staining. “1” = some blood vessels are stained
with anti-pan Ap biotinylated antibody. “0”—no staining ob-
served in blood vessels.
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3 | RESULTS
3.1 | Lysophosphatidyl glycerol and GM1

ganglioside micelles promote the formation of
AP oligomers

AP oligomer formation was investigated in the presence
of LPG micelles containing saturated 14 acyl carbon chain
(C14:0 LPG) or 16 acyl carbon chain (C16:0 LPG) (Figure 1).
Freshly purified Ap monomer (50 pM) buffered in 20 mM
Tris pH 8.0 and 50 mM NaCl was incubated with C14:0 or
C16:0 LPG micelles and allowed to incubate at 37°C under
quiescent conditions. The final concentration of LPG was
kept at least two-fold above the reported critical micelle
concentration (CMC) to ensure the lipids were in a micellar
form.”* After 48 hours of incubation, aliquots of the reactions
were electrophoresed under partial denaturing conditions and
visualized via immunoblotting, which revealed the presence
of 30-60 kDa oligomers formed in the presence of LPG mi-
celles along with some high molecular weight (HMW) bands
(those that do not enter the gel) and monomers (Figure 1A).
Immunoblot of the control reaction in the absence of LPG
contains only a disperse oligomer band corresponding to
~200 kDa and fibrils that failed to enter the gel, suggesting
that LPGs induce the formation of low molecular weight
(LMW) AP oligomers (Figure 1A, lane C). Incubations of
Ap monomers (50 pM) in the presence of GM1 gangliosides
in similar buffer and temperature conditions show oligomer
bands with a bimodal molecular-weight distribution centered
at ~40 and ~56 kDa, respectively (Figure 1A; GM1). Unlike
LPG incubated reactions, no HMW fibrils were observed in
the immunoblot of GM1-derived oligomers.

Fractionation of LPO incubated samples on a Superdex-75
column (Figure 1B-D) showed three A species corresponding
to monomers, oligomers, and fibrils similar to those observed
in the immunoblots. Fractionation of the control sample in
the absence of LPG or GM1 micelles (Figure 1B-D; dotted
lines) showed only fibrils and monomers, further indicating
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that the oligomers are formed only in the presence of the lip-
ids. Similar fractionation of A incubated with GM1 showed
predominantly two fractions (Figure 1E). Immunoblots of
the fractionated 14LPOs and 16LPOs revealed that the peak
close to the void volume (fraction 17) contained fibrils, as
expected (Figure 1B-C; inset). The fractions eluting in more
inclusive volumes at 18-20 contained the soluble oligomers
(Figure 1B-C; inset), while monomers eluted in fractions
at the most included volume (fraction 25). Similarly, im-
munoblots of GM10s (Figure 1D) showed fractions 18-20
containing the oligomers (Figure 1D; inset), and notably,
HMW aggregates in fraction 17 were absent (Figure 1D).
Furthermore, the isolated oligomer samples electrophoresed
under non-denaturing conditions (no heat; no SDS treatment)
showed a differential migration pattern (based on m/z ratio)
for GM10s compared to other oligomers (Figure S1), which
could suggest either the oligomer is different in size, charge
or both, or the migration pattern is affected by the extent of
lipid association in the oligomers.

Therefore, to investigate whether lipids are associated with
isolated oligomers quantitatively, the samples were analyzed
using electrospray ionization mass spectrometry (ESI-MS) in
negative ion mode (Figure S2). Spectra of the controls, C14:0
LPG, C16:0 LPG, and GM1 in the absence of Ap showed the
presence of the —1 ion for both C14:0 and C16:0 LPGs at 455
and 483 m/z, respectively (Figure S2A,B). Multiple signals
were observed with GM1 control (Figure S2C) corresponding
to the varying sphingosine (denoted “d”) and acyl moieties
present in the commercial sample. This primarily included
the 1545 ([(d18:1, C18:0) — 1H]-1) and 1573 ([(d20:1, C18:0)
— 1H]-1) m/z ions, which have been observed previously.SS'57
Also observed were the 1612 and 1680 m/z ions, which were
unassigned derivatives of GM1, consistent with the presence
of multiple GM1 isoforms based on the manufacturer's note
(Avanti Polar Lipids). Control Ap reactions either for mono-
mers or LFAOs yielded a 1503 m/z signal corresponding to
the [M — 3H]>~ AP ion (Figure S2D-E). The [M — 3H]*~
AP ion was also observed in the isolated 14L.PO and 16LPO

(©) cieoLrG+ap (D) Gmi+Ap

(A (B) C14:0LPG + AB
i 2000 T
260- | 5
110- <
60 g
10 ‘.. £ 1000
2
30- S
3
15- : =
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C141618 $ 15 19 23 27
#ofC G
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FIGURE 1

A, SDS-PAGE -immunoblots of the samples of Af (50-60 uM in 20 mM Tris, 50 mM NaCl, pH 8.0 and 0.01% NaNj;) incubated

with C14:0 (400 uM), C16:0 (150 uM), and GM1 gangliosides (75 uM) lipid micelles above their critical micelle concentrations and imaged
after 48 h of incubation. B-D, Fractionation of samples by SEC of the reactions in (A). The dotted lines are fractionation profiles of the control

reaction in the absence of lipids. (insets; B-D) corresponding SDS-PAGE immunoblots of oligomeric fractions (denoted by the black line). Fraction

numbers are labeled at the bottom of the gels
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FIGURE 2 A-C, DLS size distribution profiles of oligomers weight by volume fractions from which hydrodynamic diameter (D) were
determined. Shown are profiles for nine independent samples of 50-60 uM Af in 20 mM Tris, 50 mM NaCl at pH 8.0 and 0.01% NaNj; incubated
with (A) C14:0 LPG (B) C16:0 LPG, and (C) GM1 ganglioside micelles above their respective CMCs in the same buffer for 48 h. D-F, DLS size
distribution profiles for the isolated oligomers after SEC fractionation (six independent samples): (D) 14LPOs. E, 16LPOs and (F) GM1O0s. G, Size
distribution based on sedimentation velocity experiments. H, Far UV circular dichroism of 10-16 uM samples of 14LPOs, 16LPOs, LFAOs, and
GM1Os after SEC fractionation. I, FTIR spectra for 14LPOs, 16 LPOs, and GM10Os after SEC isolation along with fibril and LFAO controls.

samples but not the ones corresponding to the free C14:0
LPG (455 m/z) and C16:0 LPG (483 m/z) lipids (Figure S2F-
G). This suggests that the isolated oligomers have an insig-
nificant amount of lipid association similar to LFAOs as
observed previously.42 In contrast, isolated GM10s showed
the presence of GM1 gangliosides in the sample, and surpris-
ingly no AP signals were observed (Figure S2H), suggesting
that the lipids were associated with the isolated GM1Os. It is
unclear as to why A signals were not observed on the spec-
trum but it could be due to disruption in ionization caused by
GM1 association. The presence of GM1 in isolated GM10s
was then quantified by HPLC (Figure S3), which revealed

the presence of ~20% (molar) of GM1 lipid in the isolated
GMI1Os (2.5 pM in 12 uM oligomer sample).

3.2 | Biophysical
characterization of oligomers

The size and secondary structure of micelle-derived oligom-
ers, LPO and GM10O samples were analyzed by dynamic
light scattering (DLS), circular dichroism (CD), and Fourier
transform infrared (FTIR) spectroscopies (Figure 2). DLS
size analysis of 14LPO, 16LPO, and GM10 samples before
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SEC isolation revealed some degree of polydispersity with
14LPOs, a significant extent with 16LPOs, and a minimal ex-
tent with GM10Os (Figure 2A-C). Both 14LPOs and GM10s
contained predominant species with ~10 nm diameter and to
a lesser extent large species >0.5 pm. Moreover, 16LPOs
showed three distinct species between 10 nm and 10 pm.
Fractionation of the oligomers by SEC resulted in more
monodisperse isolated fractions centered around 10 nm in di-
ameter (Figure 2D-F). Here too, 16LPOs showed variations
in size between 5 and 10 nm between different preparations
(Figure 2E). Unlike LPOs, both prior to and after SEC iso-
lation, GM10Os displayed monodispersity with DLS spectra
centered at 10 nm (Figure 2C,F), again suggesting that fibril
formation may be minimal in the presence of GM1. This in
turn suggests the possibility that the association of GM1 to
Ap could lead to a pathway different from fibril formation.
Overall, the data suggest that all three oligomers have largely
similar hydrodynamic diameters that are in the same range
as of LFAOs,42 which is consistent with the SEC and im-
munoblot data.

More stringent size estimates were performed by
sedimentation velocity experiments. LFAOs showed a
predominant species centered around 5S and a less abun-
dant one around 7S (Figure 2G) corresponding to 60 and
110 kDa (12 and 24mers), respectively, which is consis-
tent with our previous observation.*” The 14LPOs and
16LPOs showed a sedimentation coefficient peak spread
between 5S and 8S (~60-120 kDa) corresponding to 13-
26mers (Figure 2G). The broad peak suggested hetero-
geneity especially in the 16LPO sample which the DLS
data also indicates (Figure 2E). GM10Os showed relatively
discrete peaks with a major species centered around 3S,
along with minor ones at 6.5S and 9S that correspond to
9mers, 18mers, and to a lesser extent, 30mers, respectively
(Figure 2G). The secondary structure of the oligomers was
investigated by both far-UV CD and FTIR spectroscopy
(Figure 2H.I). All oligomers showed CD spectra with a
minimum at 217 nm indicative of f-sheet secondary struc-
ture (Figure 2H). To ascertain the type of the p-sheets
(parallel or anti-parallel), FTIR spectra spanning the am-
ide-I region was investigated (Figure 21).>® FTIR spectra
of control fibrils formed in the absence of lipids (dashed
line) and LFAOs (dotted line) showed an absorbance max-
imum at 1625 cm™', indicative of parallel p-sheets. Nearly
identical spectra were observed for 14LPOs, 16LPOs,
and GM10s with a peak at 1620-1625 cm™" (Figure 2I).
Together with the absence of a peak at 1690 em™! indi-
cates a parallel p-sheet structure for the samples. While
these results differ with some reports of AP oligomers
containing anti-parallel [3-sheets,59'61 they do parallel the
observation for LFAOs,** which brings to focus a unifying
characteristic among lipid-derived oligomers.

%ASEBJOURNALJ—

3.3 | Lipid-derived oligomers have ring-
like morphology

Morphological features of the isolated oligomers were in-
vestigated by atomic force microscopy (AFM). All the oli-
gomers showed morphology resembling spherical, punctate
dots (Figure 3A,E,I). The 14LPO samples showed largely a
uniform size with height centered at 1.5 nm with a few larger
ones with 3.5 nm (Figure 3C). The 16LPO samples displayed
a mixture of different sizes ranging between 2, 2.5, and 5 nm
(Figure 3G), which is consistent with the heterogeneity ob-
served in DLS (Figure 2E) and sedimentation velocity data
(Figure 2G). GM10Os showed the most homogenous dis-
tribution of spherical particles with a height of 2.5-3.0 nm
(Figure 3K), which is also consistent with DLS (Figure 2F).
Sizes of these oligomers are slightly smaller than those ob-
served for LFAOs which were 5-6 nm in height.***® The
phase images of the oligomers showed a presence of depres-
sion in the middle of the spherical dots, suggesting a ring- or a
doughnut-shape for all the oligomers species (Figure 3B,F,J).
The phase measurements were made as precise topographical
analyses were limited by the large size of the AFM cantilever
tip. The phase analysis describes the energy dissipation and
how the tip interacts with the samples by detecting differences
in the probe's oscillation in reference to the excitation oscilla-
tory signal, while maintaining a constant amplitude. Physical
features that would cause the phase lag to include differences
in surface stiffness, viscoelasticity, adhesion, or topographi-
cal variations,®® as we have shown previously.%’““ The data
thus derived were further confirmed by the cross-sectional
analysis of the oligomers (Figure 3D,H,L), which is similar
to those observed for LFAOs.*

3.4 | Stability of AB oligomers

Thermodynamic stability of the oligomers was determined
by assessing their ability to resist denaturation by detergent
(1% SDS) as a function of temperature. Upon the addition of
SDS to the oligomers (1 pM), the conformational change from
[B-sheet to a-helix was monitored as a function of increasing
temperature (Figure 4A-F). Panels a-e in Figure 4 show far-
UV CD spectra for pre- and post-melted oligomers and fibrils
at 10 and 90°C, respectively, which show this conformational
transition. The melting profiles were generated by monitor-
ing the transition at A208 nm, while sweeping the temperature
from 10 to 90°C. Oligomers and fibrils show two-state melting
profiles with a sigmoidal denaturation pattern (Figure 4F). Up
to ~40°C, no changes in the ellipticity was observed for any
of the oligomers (Figure 4F), displaying their ability to resist
denaturation at physiological temperatures. However, some
distinguishable differences were observed in the denaturation
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pattern among oligomers and fibrils. First, all oligomers melted
into different degrees of a-helical structures as determined by
the difference between ellipticities at wavelengths 222 and
208 nm. Although the debate on whether the relative intensity
of ellipticity ([f]) between Ay, and A, indicates the extent of
a-helix or 3, helix seem to be unsettled,65 it is clear that in the
presence of SDS denaturant, helix displays a value of [6],,,
— [0ly05 < 1.0.*7* This criterion was used in normalizing the
data (see Methods). Based on this analysis, GM10Os displayed
complete melting followed by 14LPOs, while LFAOs and
16LPOs, which showed partial melting but to the same extent
of the helix (Figure 4F). As expected, fibrils resisted melting
to the largest extent with only ~25% of f-sheet melting into
an o-helix (Figure 4F). Differences were also observed for the
mid-point of transition corresponding to the melting tempera-
ture (T,,), defined as the temperature at which half of the pro-
tein is denatured ([N]/[D] = 0.5). From this analysis, GM10Os
showed the lowest T,,, with 60°C followed by 75, 69, and 70°C
for 14LPOs, 16LPOs, and LFAOs, respectively. Further de-
convolution of the data showed that the denaturation transition
is largely entropy-driven for GM10s as compared to others im-
plicating the presence of exposed hydrophobic surfaces on the
oligomers in part by the complexed lipid (Figure S3).

In parallel, the stability of oligomers toward enzymatic
digestion was also probed by proteinase K (PK) treatment.

The oligomers were incubated with (57 ng/mL) of PK and
the stability was assessed based on the disappearance of
the oligomer band from immunoblot as a function of time
(Figure 4G,H). Each oligomer was incubated in small ali-
quots with PK in the buffer for 10, 20, 30, and 40 minutes
and was subjected to electrophoresis on partially denatur-
ing SDS-PAGE followed by western blotting with mono-
clonal antibody AbS5. With all oligomers, an immediate
decrease in the band intensity and molecular weight was
observed within 10 minutes of incubation as compared to
the control (C) (Figure 4G). In addition to the reduction in
oligomer band intensity, all oligomers except LFAO con-
trol resulted in the generation of fragmented monomers
(Figure 4G; 3.0-4.0 kDa bands). A decrease in the oligo-
mer band intensity was observed with an increase in the
incubation time with PK (Figure 4H). All the oligomers
showed nearly complete digestion within 20 minutes but
GM10s showed the most susceptibility to PK with com-
plete digestion within 10 minutes (Figure 4H). These re-
sults indicate that all the oligomers show somewhat similar
stability toward PK digestion. However, slightly increased
susceptibility for GM10s may suggest a less compact
structural organization for GM10s as compared to the
other oligomers which parallel the thermal denaturation
experiment observed (Figure 4F).
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3.5 | Conformation-sensitive dyes and
antibodies reveal subtle structural differences
among oligomers relatable to cytotoxicity

The natural product curcumin has been known to bind am-
yloid aggregates.66'68 Recently, Condello and co-workers
showed that curcumin discriminates between wild-type and
mutant AP deposits derived from familial AD and CAA brain
tissue based on the intensity and emission wavelength of the
fluorescence spectrum.66 Similarly, other fluorescent dyes
such as polythiophenes have been shown to display different
fluorescent properties upon binding to the sample tissues from
varying etiological subtypes of AD.'” We evaluated curcumin
fluorescence in the presence of A monomers, oligomers, and
fibrils to explore if any differences in the spectroscopic prop-
erties could be discerned (Figure 5). The addition of curcumin
(5 pM) to a solution of monomeric AP showed an emission
spectrum centered at 560 nm (Jll; Figure 5A). All oligomers
such as LFAOQOs, 14LPOs, 16LPOs, and GM10s, as well as
control fibrils, showed blue shifts to varying degrees, with

N W b

Intensity (a.u)

o

10 20 30 40
Time (min)

GM10s showing the maximal shift (Figure 5A,B). In addition,
the oligomers showed variations in the intensity of florescence
upon binding to the dye 8-anilino-1-naphthalenesulfonic acid
(ANS), which is known to bind solvent-exposed hydrophobic
surfaces (Figure 5C). LFAOs, 14LPOs, and 16LPOs showed
identical increases in the intensity, while GM1Os showed
nearly double the intensity compared to the rest of the oligom-
ers (Figure 5C). We rule out that the increase is due to the lipid
associated with GM10s as compared to the blank lipid sample
(data not shown). However, the contributions of lipid-induced
structural changes leading to the exposure of hydrophobic sur-
faces cannot be ruled out. 1D "H NMR spectra of the amide re-
gion for the oligomers indicated significant differences in the
spectra of GM10s as compared to the others with many amide
resonances shifted or unobserved (Figure 5D), suggesting dif-
ferent dynamics of conformational exchange and structure for
the oligomers. Immunodetection by conformation-specific
antibodies, A1l (oligomer-specific) and OC (fibril-specific)
indicate that LFAOs, as previously known, and 14LPOs show
OC-positivity (Figure SE). While 16LPOs and GM10Os also
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FIGURE 5 A, Normalized fluorescence emission scans for curcumin (5 pM in 25% EtOH) binding to 5-10 uM A monomers (ll), LFAOs

(%), 14LPOs (@), 16LPOs (O), GM10s (V) or fibrils (<]). B, Shifts in the emission maximum from that of the monomers (AAg,, ™" ) of the
samples in (A). C, Blank corrected intensities of Ag,, ™" for ANS dye (100 pM in 20 mM Tris pH 8.0) binding to 3 pM oligomers. D, 1D '"H NMR
spectra of the amide region for the oligomers that show backbone structural differences and similarities between the oligomers. E, Dot blots for

the oligomers and monomers using sequence-specific Ab5 monoclonal antibody and conformation-specific monoclonal antibodies A11 (oligomer-

specific) and OC (fibril-specific). F, Viability for SHSY5Y neuroblastoma cells measured by XTT assay upon incubating with oligomers expressed

in terms of % of dead cells. n = 3 independent cell cultures on isolated oligomers; *, ** and *** P < .05 based on one-way ANOVA analysis

show OC-positive detection, they also showed a somewhat di-
minished Al1-positive character (Figure SE). To see whether
the differences observed for GM10s manifest in their cellular
toxicities, the viability of SHSYS5Y neuroblastoma cells upon
treatment with the oligomers were investigated by XTT assay.
After 40 hours of treatment, nearly 60% of the cells died due
to GM10 exposure, while only ~40% were dead upon expo-
sure with other oligomers (Figure SF). Together, the data sug-
gest that the biophysical differences between the oligomers
correlate with their respective cellular toxicities.

3.6 | Lipid-derived Ap oligomers
show differential seeding resulting in
morphologically different fibrils

Structural differences among oligomers often manifest in the
morphology of their seeded fibrils. To see if the oligomers
show differences in fibril morphologies generated upon seed-
ing monomers, reactions were initiated by seeding A mono-
mer (25 uM) with 5 uM (20%) of 14LPOs ((}), 16LPOs (V)
or GM10s (O) seeds individually. Reactions were buffered
in 20 mM Tris (pH 8.0) with 50 mM NaCl and were main-
tained under quiescent conditions at 37°C. The aggregation
reactions were deliberately initiated with high seed amounts
(20%) and under quiescent conditions to minimize nucleated

aggregation reaction among monomers and to maximize tem-
plated, seeded aggregation by the oligomers. The samples
were centrifuged after 30 days of incubation at 37°C, and the
sedimented pellets were washed with buffer and subjected to
analysis by AFM. Samples for 14LPOs, 16L.POs, and GM10s
showed fairly smooth fibrils on the mica grid (Figure 6A,D,G,
respectively). Detailed analysis of the morphologies, how-
ever, revealed that both 14LPO-seeded and 16LPO-seeded
fibrils displayed periodic repeats of crests and troughs along
the length of the fibril (Figure 6A,D; white arrows) with 3.0-
4.5 nm heights (Figure 6B,E; right panels). These heights
are identical to those observed for individual oligomers
(Figure 3), leading us to conjecture that the fibrils were com-
prised of individual oligomer units that give rise to “repeat
morphology.” Identical morphology was observed previously
for LFAO-seeded fibrils.” The cross-sectional analysis per-
pendicular to the fibril axis (colored lines) showed heights of
~4.0 and 6.0 nm for 14LPO-seeded and 16L.PO-seeded fibrils,
respectively (Figure 6D,G; right panels). This was consistent
in many different fields in the mica grid (Figure 6J). In sharp
contrast, GM10-seeded fibrils did not show such a repeat
morphology but showed a cross-sectional height of ~5 nm
(Figure 6G,H,LI). Together, these results indicate that both
14LPOs and 16LPOs are able to generate fibrils of similar
morphologies, GM10s showed significant deviations both in
temporal profiles and fibril morphology.
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FIGURE 6 A, D, G, AFM images of A fibrils generated from
obtained from aggregation kinetics of A monomers (25 pM) seeded
with 5 pM of 14LPOs, 16LPOs or GM10s in 20 mM Tris, pH 8.0,
with 50 mM NaCl and 50 pM ThT at 37°C under quiescent conditions
after 30 days of incubation. Scale bar is 200 nm. Statistical height
analysis along cross-sectional and longitudinal axes on the AFM
images indicated by colored lines and arrows, respectively, for; (B-
C) 14LPO-seeded, (E-F) 16LPO-seeded, and (H-I) GM10-seeded
fibrils. J, Cross-sectional height analysis of the fibrils visualized on at
least twelve different fields from at least three independent data sets.
The data obtained from these also show no “repeat morphology” for
GM10s, unlike other two oligomers

3.7 | ApB oligomers injection into Tg CRNDS
mice induce amyloid pathology and vascular
amyloid deposition

Based on the aforementioned biophysical data and the previ-
ously observed effects of LFAOs on amyloid accumulation
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and CAA formation in CRNDS8 mice,9 we set to test whether
the introduction of the oligomers to the neonatal brains of
AD transgenic mice will result in the extended propagation
of oligomers and fibril deposition. Thus, 4 pL of 10 pM
preparations of 14LPOs, 16LPOs, and GM10s along with
AP42 monomers and LFAOs as controls were bilaterally
injected into the cerebral ventricles of three litters of new-
born Tg CRNDS8 mice. After three months, the mice were
euthanized and brains were extracted. One hemibrain was
frozen for further biochemical analysis, while the other
was fixed in 4% paraformaldehyde, paraffin-embedded,
and processed for immunostaining. Upon analysis, the con-
trol mice injected with AP42 monomer exhibited a sparse
number of small amyloid deposits both in the cortex and
hippocampus, whereas the injection of LFAO resulted in
increased levels of AB40 and Ap42 in both SDS and for-
mic acid (FA) fractions similarly to what was shown in
(Figure 7A-F).” LFAO administration also expedited the
accumulation of amyloid in the CAA as previously ob-
served (Figure 7G.1).° Interestingly, injection of 14LPOs
did not alter AP levels in the SDS fraction significantly but
did so in the FA-soluble fractions, suggesting that the oli-
gomers induced insoluble fibrils deposition. It also did not
affect the accumulation of CAA in the vasculature. In con-
trast, 16LPO injection resulted in increased levels of AB42
in SDS-soluble fraction as well as increased AP40 and
Ap42 in FA-soluble fraction. The oligomers also induced
an increased burden of CAA-laden vessels (Figure 7G,I).
GMI10O administration to neonatal CRNDS8 mice also re-
sulted in increased AP levels in both SDS and FA fractions,
similar to LFAOs and 16LPOs (Figure 7C-F). Overall, we
demonstrate a twofold increase in AB40 and Ap42 in SDS-
soluble and SDS-insoluble FA-soluble fractions of GM10s
compared to the monomer control. Furthermore, GM10Os
induced widespread CAA in cerebral vasculature and over-
all AP burden (Figure 7G-I). However, injection of all the
oligomers samples at lower concentrations (1 pM) did not
result in significant amyloid accumulation in the brains
(Figure S5). Together, these suggest that LFAOs, 16LPOs,
and GM10s propagate and induce amyloid deposition in
parenchyma and cerebral vasculature with GM10Os and
16LPOs showing the maximal effect.

4 | DISCUSSION

Monomeric AP peptides self-associate to form large fibril-
lar aggregates that deposit as insoluble, protease-resistant
plaques in AD. NMR structures of fibrils propagated in vitro
using brain-derived amyloid seeds as templates have revealed
structural differences between morphologically distinguisha-
ble aggregates.ls’69 Similarly, conformation sensitive fluores-
cent dyes have also identified the presence of heterogeneous
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FIGURE 7 Oligomers induce widespread amyloid deposition and CAA in TgCRNDS8 mice. Newborn CRNDS8 mice were injected with

4pL aliquots of Ap42 monomers, LFAOs, 14LPOs, 16LPOs, and GM10s (10 pM) in the cerebral ventricles. Three months later, brains were
extracted and one hemibrain was frozen, while another was fixed and stained with anti-pan- A} mAbS5 Biotin antibody. A-F, Biochemical analyses
of sequentially extracted AB42 and AP40 levels by end-specific sandwich ELISA show significantly increased SDS soluble and FA soluble

AP levels in LFAOs, 16LPOs, and GM10Os injected mice compared to monomer injected mice. Data represent mean + sem. n = 6-10 mice

per group. N = 6-10, *P < .05, ¥*P < .01, ***P < .001, ****P < .0001, one-way ANOVA). G, Amyloid staining of plaques and CAA in the
representative paraffin sections is shown in the cortex and meningeal vessels of injected mice. Scale Bar, 500 pm (cortex), 100 pm (hippocampus).

H, Quantification of AP positive immunostaining shows significantly increased amyloid plaque burden (immunostained with anti-pan-Af
mADbS5Biotin). Data represent mean + SEM. n = 6-10/group. **P < .01, ***P < .001, one-way ANOVA. I, Quantification of CAA. AP positive
blood vessels in the meninges and throughout the brain tissue were evaluated in a blind manner and given a qualitative score from O to 3. Vessels
with scores 0, 1, 2 or 3 were counted. Data represent mean + sem. n = 6-10 per group. ***P < .001, one-way ANOVA

aggregate conformations in the brain that correlate with di-
verse phenotypes in AD such as those corresponding to late
or early onset, rapidly progressing or anatomical region of
deposition.”’66 Top-down discoveries such as these have un-
equivocally established that differences in aggregate struc-
tures may lead to different phenotypes in the brain. Since
low molecular weight soluble oligomers are known to be the
primary toxic species in the aggregation pathway, a question
then arises as to whether conformationally distinct oligom-
ers are capable of faithful propagation of their structures to-
ward distinguishable fibril morphologies, and if so, whether
such a propagation will manifest in phenotypic differences in
the AD brains. Here, we approached to answer this question
bottom-up by generating distinct oligomer sub-types and cor-
relating their biophysical properties with observable effects
in transgenic AD mice brains. We have earlier demonstrated
that LFAOs generated in the presence of fatty acid propa-
gate their structure toward distinct fibrils on the mesoscopic
scale and selectively induce CAA in a transgenic AD mouse
model.” Here, we used micelle forming phospholipids and a
sphingolipid to generate stable oligomers, characterize their
biophysical differences and similarities, and correlate them
with the phenotypes induce in C8ND8 mice.

The results obtained here bring forth several salient infer-
ences. First, the micellar anionic phospholipids promote the
formation of disperse ~60-120 kDa (5-8S) Ap42 oligomers,

which corresponds to a 12-26mer species. Despite being
somewhat heterogenous, this size is comparable to the ear-
lier characterized LFAOs,** which suggests that the carbon
chain length variations (12, 14, or 16 carbon acyl chains) do
not seem to have a noticeable effect on the size of the oligo-
mer generated. However, LFAOs were generated with fatty
acid near its CMC and not above, which implicates the sig-
nificance of micelles in the case of phospholipids. Second,
micelles of the neutral sphingolipid GM1 ganglioside induce
the formation of slightly smaller and more discrete ~40 and
80 kDa (3 and 6.5 S) species corresponding to 9 and 18mers.
The slightly different sizes obtained from GM1 lipids could
be attributed to neutral charge, longer acyl chains (18,20),
carbohydrate moiety, or all three.

Among the isolated oligomers reported here, GM10Os
stand out as a distinct outlier on the observed biophysical and
biochemical attributes. GM10s do share similarities on par-
allel B-sheet secondary structure and a ring-like morphology
as well as the size range. However, they show stark biophysi-
cal differences too (Figure 8). For example, the amide region
of the "H NMR spectra indicates structural dynamics and
assembly differences in GM10Os which is corroborated by
the greater degree of exposed hydrophobic surfaces by ANS
binding and decreased enzymatic and thermal stabilities.
Similarly, GM10s and 16LPOs show reactivity toward both
conformation-specific A1l and OC antibodies unlike the
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other two which show only OC specificity. Such differences
are also manifested in their ability to propagate morpholog-
ically distinct fibrils; 14LPOs and 16LPOs but not GM1Os,
generate fibrils containing a “repeat” morphological feature
similar to LFAOs.” These observations are summarized in
Figure 8 that show biophysical differences among the oligo-
mers investigated in this study. Such biophysical differences
also have direct and correlatable manifestations in vivo. Cell
viability assays indicate that GM1Os to be the most po-
tent in cellular toxicity as compared to the other oligomers.
Similarly, in CRND8 mice too, GM10s showed profound
effects on both the induction of total Ap burden and CAA.
Surprisingly, despite significant biophysical differences,
GM10s, 16LPOs, and LFAOs show high but comparable ef-
fects on amyloid deposition in CRNDS8 mice.

There can be several features within the lipid that are attrib-
utable to the generation of AP oligomers and their observed
properties. It is possible that the development of pathology
following Ap seeding depends tightly on the size and solubil-
ity of initial seeds and not on their biochemical properties.70
The oligomers compared here have somewhat similar sizes;
however, the lipid characteristics are different; in comparison
to the anionic LPGs used in this study, GM1 gangliosides dif-
fer in acyl chain lengths, charge, and head groups, which may
confer GM10s their distinctive properties. A recent report on
the interactions of AP with synthetic glycopolymer mimics
revealed the selective induction of AP oligomers by glyco-
polymers containing purely glucose pendant groups,71 which
implicates that sugar distribution in GM1 ganglioside is im-
portant for oligomer generation. In addition, ~20% of isolated
GM10Os contain GM1 lipid which could also have a role to
play in their behavior in mice. The increased hydrophobic
character is consistent with the lipid-bound oligomer form,
which may manifest in its lipid solubility, bioavailability, and
seeding in vivo. It is also rational to conjecture that a stable
oligomer strain is more likely to be present in a lipid-bound
form than in a purely homogenous form. Such a contention is
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also consistent with earlier reports on Ap oligomers isolated
from postmortem AD brains that were associated with GM1
gangliosides.28’29 GMI1 gangliosides are important compo-
nents of lipid rafts that have been known to play important
roles in AD.* Therefore, it is comprehensible that lipid asso-
ciation to the isolated GM10Os could play a role in their bio-
physical and biochemical distinctions. The slightly decreased
PK stability of GM10s seems to be counter-intuitive to their
effect on mice brains. It is possible that the lipid association
is partly responsible for the exposure of polypeptide back-
bone for increased enzymatic cleavage, but the lipid associa-
tion could also increase the lipophilicity of the oligomers to
effectively propagate in parenchyma, meninges, and cerebro-
spinal fluid.

The results presented here demonstrate that oligomers
with distinct properties can be tuned by changing the phys-
iochemical properties of lipids and support the hypothesis
that varying lipid environments could play important roles in
the generation of conformeric oligomer strains.”* Along the
same lines, these also lead to the conjecture that while oligo-
mers may have different structures to present themselves as
conformational “strains,” they may also possess common
features and traits such as those observed for oligomers de-
rived from anionic lipids. Despite the numerous challenges
these oligomers present, understanding the atomic details of
their structures would be essential to further decipher their
mechanisms and functions. Furthermore, understanding the
physiological relevance of lipid-derived oligomers by inves-
tigating their in vivo behavior in detail would be essential. In
addition, the ability of these oligomers to propagate cell-to-
cell transmissions needs to be assessed to assess their pro-
pensity to truly behave like infectious prions or “strains”.”>7°
Although the in vitro oligomers presented here clearly show
pathology in mice, ascertaining whether and how they rep-
resent those present in human brains is important. Recent
reports on the structure of in vitro fibrils generated by the
propagation of brain-derived seeds have made a significant
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leap in this regard. However, it is non-trivial to investigate
oligomers derived from brain samples due to their transiency,
heterogeneity, and difficulty to isolate. Despite these issues,
characterizing them continues to remain as a major focus in
ours and other laboratories. Nevertheless, the data presented
here as such showcase the generation of biophysically dis-
tinct oligomers by modulating the lipid characteristics, and
one that correlates to their biochemical proprieties in vivo.
Establishing such structure-phenotype correlations are im-
perative to decipher the mechanisms by which oligomers im-
part strain-like properties.
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