ON THE SEARCH FOR TIGHT FRAMES OF LOW COHERENCE
XUEMEI CHENT, DOUGLAS P. HARDIN*, AND EDWARD B. SAFF*

ABSTRACT. We introduce a projective Riesz s-kernel for the unit sphere S?~! and
investigate properties of N-point energy minimizing configurations for such a kernel.
We show that these configurations, for s and N sufficiently large, form frames that are
well-separated (have low coherence) and are nearly tight. Our results suggest an algo-
rithm for computing well-separated tight frames which is illustrated with numerical
examples.

1. INTRODUCTION

A set of vectors X = {w;}icr is a frame® for a separable Hilbert space H if there
exist A, B > 0 such that for every x € H,

Allz]* <D [, @) * < Bl
iel
The constant A (B, resp.) is called the lower (upper, resp.) frame bound. When
A = B, X is called a tight frame, which generalizes the concept of an orthonormal

1
basis in the sense that the recovery formula x = 1 Z(x, z;)x; holds for every x € H.
icl
For the finite dimensional space H = H?, where H = R or C, X = {z;}, is a frame
of H? if and only if {2;})¥, spans H?. We shall also use X to denote the matrix whose
ith column is z; and therefore we have

X is tight with frame bound A <= X X* = Al,,

where I is the d x d identity matrix.

Let S(d,N) := {X = {x;}Y, c H? : ||2;|| = 1} be the collection of all N-point
configurations on S*~!, the unit sphere of H%, where || - || denotes the £, norm. If we
have a unit norm tight frame X € S(d, N), then it is well known that the frame bound
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has to be N/d since

N
(1.1) XX'=—1

Benedetto and Fickus show in [4] that frames that attain

. 2
(1.2) e > [ aj)|
i#j
are precisely the unit norm tight frames. We will call the function |{z, y)|? the frame po-
tential kernel. Ehler and Okoudjou [38] generalized this result to the p-frame potential
kernel |(z,y)|’, see also [6] for recent results on p-frames.
Separation is a desirable property of a frame. It is quantified by the coherence £(X)

of a frame defined for X € §(d, N) by
§(X) = max |(z;, z;)].
i#]

The smaller the coherence, the better separated the frame is.
A straightforward method to find well-separated frames is to solve

(1.3) Ev = min {(X) = cduin | max (23, 5],
which has been studied in several works including Welch [68], Conway et al. [32],
Strohmer and Heath [63], and more recently [41, 10]. The problem (1.3) is often referred
as the best line-packing problem because it asks how to arrange N lines in H¢ so that
they are as far apart as possible. Conway et al [32] made extensive computations
on this problem from a more general perspective: how to best pack n-dimensional
subspaces in R™? There are also many other contributions using tools in geometry and
combinatorics [35], and statistics [3]. A minimizer of (1.3) is called a Grassmannian
frame by [63] and we shall use this terminology as well.

Our goal in this paper is to develop methods for generating tight frames with low
coherence using energy minimization on the projective space HP?~!, which consists of
all lines in H? through the origin; namely, sets of the form

(1.4) l(zx):={ax: o€ H},

for some 2 € S, We endow HP?™! with the metric

(1.5) p(l(x), (y) == V2 =2/, ), z,yeST,

which is the ‘chordal’” distance? and utilize kernels on S*' x S*~! of the form:
(1L6)  K(wy) = f (), (W) = £ (V22w y)P), zyes™ CH"
The energy of X = Xy = {x1,..., 25} with respect to the kernel K is given by

(1.7) Ex(Xy) =Y K(x;, ).

i#J

2The chordal distance between the lines £(x) and £(y) is given by min{|z — uy||: u € H, |u| = 1}.
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One seeks the infimum of (1.7) over all possible N point configurations on S*~*. As-
suming K is lower semi-continuous on S ! x S47! so the infimum is attained, we define
the N-point minimal energy of kernel K as

d—1 o .
(1.8) Ex(S“,N) = Xelg(lgm Ex(X).
An N-point configuration that achieves the minimum (1.8) will be denoted by X (K, S*™!)
(or X when there is no ambiguity). So far the minimal energy and optimal config-
uration have been confined to the sphere and generalizes to any compact set A, and
will be denoted as Ex(A, N), X5 (K, A) respectively. Note that the frame potential
|(x,)|? is of the form (1.6) and that the energy minimizers are precisely the unit norm
tight frames. However, in general for N > d, these minimizers may not consist of
well-separated lines.

To achieve well separation of lines our approach is to first consider a class of kernels
that are strongly repulsive and analyze the approximate tightness of their energy min-
imizers relative to their frame potential energy. Specifically, we introduce the Riesz
projective s-kernel

1
log———, s=0

(19) Gs(x,y) — 1 - |1<$ay>|2’

(1= [{z, y)P)**’

for z,y € S* ! and seek solutions to the problem

s>0

1.10 i L)
( ) XGIE(IEN) - GS($17I])

i#]
The kernel G4 is a modification of the classical Riesz s-kernel defined for x,y in a
normed linear space (V)| -||) as

1
log —— =0

y =
(1.11) Ru(z,y) = ||1x al
lz = yll*’

In fact, as we will show in (3.5), the projective Riesz s-kernel G can also be represented
in terms of R, for an appropriate subspace V' of matrices with the Frobenius norm.
Notice that minimizers of (1.10) will avoid antipodal points since the energy in that
case would be infinite. The connection between projective Riesz s-kernels and Riesz
s-kernels is more immediate in the real case R?; since ||z £ y||* = 2 4 2(x, y), we have

1 2°

1=Kz, )2 llo = yllle + gl
Thus the projective Riesz kernel is just the Riesz kernel with the multiplicative factor
|z 4+ y||° to account for antipodal points.

s> 0.
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A major focus of this paper is to exploit connections between G4 and Ry and reduce
solving the projective Riesz s-kernel minimization problem (1.10) to solving

(1.12) min > Ri(x;,25),
i#]

XCD,|X|=N

where we take D to be the projective space, but embedded in a higher dimensional
real vector space (see Section 3.2). There are well established theorems available in the
minimal energy literature for Riesz s-kernels (see e.g. [14]) and we shall review some
of them in Section 2.

The projective Riesz s-kernel for s < 0 defined by G (z,y) == —(1 — |(z,y)|*)™*/? is
also interesting. For such s we will be solving

1.1 i —(1— 2)=s/2 :
(1.13) c&in 2 —(= )l (s <0)

7]

This coincides with (1.2) when s = —2. This paper shall focus on the s > 0 case in the
analysis, but our numerical experiments will include optimal configurations of (1.13).
The contributions of this paper are two-fold:

e Derive minimal energy results for the projective Riesz kernel. See Theorems 4.1,
5.1, and 5.4.

e Develop methods for constructing nearly tight and well-separated frames. See
Theorems 6.3 and 6.4 and numerical results in Section 7.3.

2. MINIMAL ENERGY BACKGROUND

In this section we will introduce some necessary background on minimizing discrete
energy and its relation to the continuous energy.

The discrete minimal energy problem is known to be challenging, and we have very
limited knowledge about the optimal configuration even for the classical Riesz kernel
case (1.12) on the 2-dimensional sphere. The following theorem settles the case when
points are on a circle of a real vector space for a large class of kernels that includes
Riesz kernels.

Theorem 2.1 (Fejes-T6th, [40]). If r > 0 and f : (0,2r] — R is a non-increasing
convez function defined at 0 by the (possibly infinite) value lim+ f@t), then any N
t—0

equally spaced points on a circle of radius r (in R™) minimizes the discrete energy
Ex(Xn) for the kernel K(x,y) = f(||lx —yl|). If in addition, f is strictly convez, then
no other N-point configuration on this circle is optimal.

Less is known regarding optimal configurations for (1.12) beyond S*. For optimality
of configurations with particular cardinality N and dimension d > 1, see [30] and [14].
On the other hand, many asymptotic results (as N — oo) for optimal configurations
on the sphere as well as on R? are known (for examples of recent results, see [7], [48]).

For a set of N points X = {z;},, the separation distance of X is defined as

§(X) := min||z; — z]|.
i#]
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The best-packing problem is to find the N-point configuration on A that maximizes the
separation distance:
2.1 on(A) = a 0(X) = a i i — x4l
(2.1) v(A)= max o(X)= max = minz -z

It is immediate, for example, that the best N-point packing of S € R? consists of
N equally spaced points on the circle.

When s — 0o, the minimization problem with respect to the Riesz kernel Ry(x,y)

min  Fr (X)
XCA,|X|=N

turns into the best-packing problem (2.1); more precisely,

Theorem 2.2 ([14]). If N > 2 and A C R™ is a compact set of cardinality at least N,
then

lim Eg, (A, N)Y* = 1/65(A),
5—00

where Ry is the Riesz kernel defined in (1.11). Furthermore, if X is an optimal config-
uration that achieves Eg (A, N), then every cluster point as s — oo of the set {Xs}s=0
on A is an N-point best-packing configuration on A.

This discrete minimal energy problem is related to a continuous energy problem as
we next describe. Let M(A) be the set of probability measures supported on A. For
a general kernel K, the potential function of a measure u € M(A) with respect to K
is defined as

Ug(z) := /AK(%@/) du(y),

provided the integral exists as an extended real number. The energy of i is defined as
i) i= [ Ukta) duta) = [[ Koy du(o)dnto)
A Ax A

and the Wiener constant is

2.2 Wk(A):= inf [ .
22) k()= | Tlp)

Likewise this infimum can be achieved, and the probability measure that optimizes
the above problem is called the K -equilibrium measure. The K-capacity of the set A

is defined by
1
capg(A) : Wr(d)
A set A has zero capacity means that Wi (A) = oo, which makes the problem (2.2)
trivial since every probabilistic measure generates co energy.
We now present a classical theorem connecting the discrete minimal energy problem
to the continuous one. Before that we introduce the weak™® limit of measures. A

sequence of measures ji,, converges weak™ to u if for every continuous function f on A,

lim fdun:/fdu.

n—oo
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We also define 9, to be the point mass probability measure on the point x. Moreover,
given a finite collection of points X, its normalized counting measure is defined as

Theorem 2.3 ([29], [14, Theorem 4.2.2]). If K is a lower semicontinuous and sym-
metric kernel on A X A, where A C R™ s an infinite compact set, then

23 i S

Moreover, every weak® limit measure (as N — o0) of the sequence of normalized
counting measures v(Xy) is a K-equilibrium measure.

= Wk (A).

The proof of Theorem 2.3 for the case of a Riesz kernel can also be found in the
book by Landkof [56, Eq. (2.3.4)].

We now review two important facts concerning Riesz kernels.

Theorem 2.4 ([60], [13], [14]). Let A C R™ be a compact infinite subset of an «-
dimensional C*-manifold with A of positive a-dimensional Hausdorff measure.

(1) If s € [0, ), then the Rs-equilibrium measure on A is unique. Moreover, if the
potential function U 1’;3 s constant on A, then p is the Rs-equilibrium measure
on A.

(2) If s € [a,00), then A has Rs-capacity zero. Moreover, if Xx(Rs, A) denotes
an Rg-energy optimal N-point configuration for N > 2, then the sequence of
normalized counting measures v(X N (Rs, A)) converges to the uniform measure
(normalized Hausdorff measure) on A in the weak™ sense as N — oo (this is a
special case of the so-called Poppy-seed bagel theorem,).

3. AN OVERVIEW OF THE PROBLEM ON THE SPHERE

3.1. Projectively equivalent configurations. Note that for a kernel K of the form

(1.6), the energy Ex(X), X = {z;}Y, € S(d, N), is invariant under any of the following

operations on X:

(i) Apply a unitary operator (or orthogonal operator if H = R) on X as
Ui }ir )

g1y . Wadse o

(ii) Change the sign of any x;;

(iii) Permute z1,...,xy.

Any configuration Y obtained from X by applying these operations is said to be pro-
jectively equivalent to X. For example, {xq,xs, 23,24} is projectively equivalent to
{UfL'4, Ufg, —Ul’g, UIl}
Theorem 5.1 below states that the configuration of equally spaced points on the
half-circle,
P (N—1)m

(3.2) X](\?) = {e"?, N eiN et~ } C R?,

is optimal for (1.8) for a certain class of kernels K.
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3.2. From sphere to the projective space. The projective space HP*! can be
embedded isometrically into the space of d x d Hermitian matrices, denoted by HM®" ,
as we next describe. Note that HM’ , is a real vector space for both H = R and
H = C with inner product in HM?"_, defined as (M, M,) = Trace(M; M,). This inner
product induces the Frobenius norm || M|| = || M|z on HM" ,. We further note that
HM?"_, with the Frobenius norm can be identified with the Euclidean space R™ where
m = (d* + d)/2 when H = R and m = d* when H = C (e.g., when H = R and
M = (M;;) we take any ordering of the m numbers v2M,; for i < j and M, for
i= 7).

Recalling (1.4), we define ¥ : HP*~! — HM/,_, as ¥({(x)) := p, with p, := x2* and
z € S Clearly, ¥ is well defined (i.e., independent of the choice of the representative
of the line). We denote the range of ¥ by D; that is, D := U(HP* ') = &(S* ') where
®:=Vol.

For x,y € S*, the following well known equality (see, e.g. [31]) establishes that W
is an isometry:

2
(3.3) p(U(2), L(y))" =2 = 2[{z, y)|* = [lp. — pylI7 = |2(2) — @(y)|7-

It is used, for example, in works on phase retrieval, see e.g. [22, 45]. For the reader’s
convenience we note that the middle equality in (3.3) follows using the cyclic property
of the trace:

lpe = pyllF = 2= (Pa, py) — Dy, Pa) = 2~ Trace(y"za’y) — Trace(z"yy"z) = 2—2|(z, y)|*,

from which we also get

(3.4) (P py) = [z ).

Note that (3.3) shows that ¥ is an isometric embedding of HP~" in HIM”_,, and so we
identify HP?! with D. We remark that D is a real analytic manifold whose dimension
dim(D) = dim(HP* ') is d — 1 in the case H = R and 2d — 2 in the case H = C (see
[10] or [57]).

Now we are able to consider a kernel of the form K(z,y) = f <\/2 —2|(z, y)|2> on

ST x §%7! as a kernel K (z,y) = [?(px,py) = f(|lpx — pyll) on D x D. Specifically the
projective Riesz s-kernel (see (1.9)) can be reexpressed as

log =log2+ 2R(ps,py), s=0

P2 =yl
(3.5) Gs(z,y) =
2 kR () 0
T s B s\Dzs Dy ) s> 0.
1p2 — Pyl !

This allows us to reformulate the minimal projective energy problem in terms of the
Riesz minimal energy problem on the set D. This technique was also employed in [27].
In the next two sections we apply results of Section 2 for the problems

3.6 in I
(3.6) min T (1)
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3.7 min Rs(pi,pi).
(3.7) {pi}ﬁchZ (Pi: py)
i#]
Similarly, the Grassmannian problem (1.3) is equivalent to the best-packing problem
(2.1) on the projective space, which is to maximize the smallest pairwise distance
between all the lines (frame vectors). Let P = {p;}., C D. For any point p; € D, we

can find z; € S*! such that p; = z;27. By (3.3),
(3.8) () = minlpi—p [P = min (2 — 2l{es, 2,)]) = 2-2max (s, ;)] = 2-26(X),
1#£] 1#£] 17]

So
(3.9) 6%(D) = max 0*(P)= max (2-2{(X))=2—2y.

{pi}jL,CD {z;}N  CcSd~1

The last equality is from the definition (1.3).

For any Borel probability measure y on the sphere, this embedding also induces the
pushforward (probability) measure fip0; on D C HMZX 4- By definition of a pushfor-
ward measure,

(3.10) tproj(B) == u(®71(B))), for Borel measurable B C D.

We shall also write ®(u) for pipro;.
To better understand pp,o;, we further consider the symmetrization figy, of a measure
p € M(S*) defined as

pB)+p(=B) L o
(3.11) fogm(B) = 2 ,

1 2 0
— “B)df, H =
5 /0 p(e” B)db, C

for Borel measurable B C S¢1.
It is not difficult to show that figm = fisym if and only if the pullback measures pof ™
and fi o £ agree. The injectivity of ¥ then shows

(3.12) (1) = D) <= foym = fisym:

Let 04_; be the uniform measure (normalized surface measure) on S%°'. Then
®(04-1), the pushforward measure of 4,1 under @, is the uniform measure on D.
In fact, ®(o4_1) is the Haar invariant measure induced by the unitary group (see [27,
Section 4.2]).

4. LARGE N BEHAVIOR OF OPTIMAL CONFIGURATIONS

We first focus on the continuous problem

(4.1) min )//Sd_lxsd_l Gs(x,y) du(z)du(y),

HEM(Sd-1

The results are of independent interest, and will be used in Section 6.
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For future reference, we set

Is(p) := I, (1 //MJ (2, y) du(z)du(y)

)= Ta) = [ Guley) dut@)duty)

As previously discussed, the projective space D embedded in R™ is a smooth (C*°)
compact manifold, so Theorem 2.4 applies with A =D and o = dim(D).

and

Theorem 4.1. For the projective Riesz kernel Gs(z,y), the following properties hold.
(1) If 0 < s < dim(D), then p is a Gy-equilibrium measure on S if and only if
its symmetrized measure [isyy @5 the normalized surface measure o4_; on Sé-1,
(2) If s > dim(D), then S*' has G,-capacity 0.
(3) Let s > 0 and let X3 be a G-optimal N-point configuration on S™' for N > 2.
Then the sequence of normalized counting measures v(®(Xy)) converges weak*
to the uniform measure ®(o4_1) on D as N — 0.

Proof. (1) When s > 0, by (3.5) and the definition of a pushforward measure,

2/s
42) Vg = [ Glaw)duw = [
sd-1 p |lp2 — 1
A similar equality holds for the log case s = 0: UZ (x) = const * Up" (p,) + const.
Thus for s > 0, the uniform measure o04_; produces a constant potential function
with the kernel Gy, so ®(04-1) also produces a constant potential function with the
Riesz kernel R,. By Theorem 2.4(1), ®(04-1) must be the unique minimizer of (3.6).
On the other hand, similar to (4.2),

/Sdl/sdl s(z,y) dp(z)du(y)

22/5
(43) / / Hp D ” d:uproj (p)d:uproj (p,) = const - ]s(/uprOj)'

Again a similar equality holds for the log case. This implies that p is a minimizer
of (4.1) if and only if ®(i) = fipro; is @ minimizer of (3.6), which has to be ®(o4_1).
By (3.12), this is equivalent to figym = (04—1)sym = 0a—1. This proves that p is an
equilibrium measure if and only if its symmetrized measure figym is 04-1.

(2) With the relation (4.3), this is a direct consequence of Theorem 2.4(2).

(3) For the discrete case, similar to (4.3), we have Eq, (Xy) = const - Eg, (®(Xy)) +
const. So X% be a G -optimal N-point configuration on S~ if and only if ®(X}) is
an optimal configuration for the Riesz kernel R, on D.

By Theorem 2.3, we conclude that the normalized counting measure v(®(X}y)) con-
verges to the Rg-equilibrium measure on D in the weak* sense. As shown in part (1),
this unique equilibrium measure is ®(o4_1), when s € [0, dim(D)). When s > dim(D),
by Theorem 2.4(2), we also have v(®(Xy)) converges to ®(o4_1).

dpiproj(p) = const - U}’_-é‘:“’j (pe)-

O
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5. DISCRETE MINIMAL ENERGY PROBLEM

In this section we consider discrete extremal energy problems, for a general class
of projective kernels of the form (1.6). Once again, the optimal configuration is an
equivalent class in the sense of (3.1). Theorem 5.1 is for the 1-dimensional sphere
in the real vector space while Theorem 5.4 is a general result over H. Corollary 5.6
addresses the special projective Riesz kernel case (1.10).

Theorem 5.1. If f : (0, \/5] — R is a non-increasing convex function defined at

zero by the (possibly infinite) value lim f(t), then X](\;l) given in (3.2) is an optimal
t—0

configuration on RP' for the problem (1.8) where K is as in (1.6). If. in addition,

f is strictly convex, then up to the equivalence relation in (3.1), no other N-point
configuration is optimal.

Proof. By (3.3), K(z,y) = f(|[px — pyl|), so we need to consider the minimal energy
problem (1.8) with the kernel function to be f(||z —y||) on the compact set D = ®(S*).
The map @ : S' — RMY, , is precisely

z? xy }
D:(z,y) — .
(z,9) [ Ty y2

As mentioned at the beginning of Section 3.2, RMS, , is identified with R® using the
2
mapping { iy 3;5 ] — (2%, V2zy, y*). This way, D is a circle in R with radius 1/\/§
With r =1/ V/2, the function f satisfies the assumptions of Theorem 2.1, so

Y K(wia) =Y f(lpe; = pa)

i#] i#]
is minimized if p,,, Ps,, ..., Pz, are equally spaced on the circle D. One can easily
show that ® maps equally spaced points on half S' to equally spaced points on D. So
minimizers of (1.8) are precisely the equivalence class of equally spaced points on half
of St. [

Remark 5.2. Tt is well known that RP?"! is a compact Riemannian manifold. However,
RPY! is topologically equivalent to a sphere only when d = 2.

Remark 5.3. The frame potential kernel |(z,y)|* can be written as g(1/2 — 2|(z,y)[?),

where g(t) = 1 —%/2 is not convex on [0,v/2]. As a consequence, Theorem 5.1 cannot
be applied to the frame potential kernel. The conclusion of Theorem 5.1 is however
true, but there is no uniqueness (see [4]).

The discrete minimal energy problem for the Riesz s-kernel is in general very hard
as mentioned previously. The situation is slightly better for kernels that are a function
of absolute value of inner product, as we have the following general characterization
when an equiangular tight frame (ETF) exists. A frame X = {x;}Y, is equiangular if
| <"Ei’ xj) |

zalll| is a constant for all 7 # j. An ETF is a frame that is equiangular and tight.
€T; Z’j



ON THE SEARCH FOR TIGHT FRAMES OF LOW COHERENCE 11

For frames in S(d, N), a necessary condition for the existence of ETF is N < d(d+1)/2
for H=R and N < d? for H = C. The coherence has the famous Welch bound

N —d

(5.1 600 > o=

for all X € S(d,N),

and is achieved by ETFs. This can be easily derived from the relation (cf. [31])

2 Y 2 N 2 N2 N2
(52) N+ NNV -DEXP 2 Y [ a)P = XX = S LE+ = > =

1,7=1

The Welch bound also coincides with the simplex bound of the chordal distance in
[32]. We refer interested readers to [65] for more details and [42] for a table on existing
ETFs. The second inequality in (5.2) also shows that the frame potential is minimized
when the frame is tight.

The second theorem is for both the real and complex case.

Theorem 5.4. Let f: (0,2] — R be a strictly convex and decreasing function defined
at t = 0 by the (possibly infinite) value lim f(@®), and f : (0,v/2] = R be a strictly
t—0
convex and decreasing function defined att = 0 by the (possibly infinite) value hHﬁ f(t).

t—0
If N and d are such that an ETF exists, then

(i) it is the unique optimal configuration of (1.8) for the kernel K (x,y) =

F(2 =2z, )[*);
(i) 4t is also the unique optimal configuration of (1.8) for the kernel K(x,y) =

(V2 =2/, y) 7).

Proof. (i) From (3.3), K(z,y) = f(||ps —plI?). Let X = {z1,29,..., 25} be an
arbitrary configuration on the sphere and set P; := p,, = x;x;. Then, by (3.4),

=> |IP - B = 222—23,13 :Z( —1>—2Z<Pi7Pj>+2>

i#] i=1 j#i =1 j=1

N
=2N? =2 |(z;,7;)> <2N? — 2N?/d,

ij=1

where the last inequality follows from (5.2). Thus,

En(X) = N(Nl_l) Zf 17 = PlI*)
#J
) > TEZDf (Z mHB - Pjn?) =N -0 (=57
i#J

- () - ()
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The first inequality becomes equality if and only if |(z;,z;)| is constant for i # j;
i.e., X is equiangular. The second inequality becomes equality if and only if X is a
unit norm tight frame. Therefore, if an ETF exists for a given d and N, then this ETF
is the unique K-energy minimizer.

Part (ii) is a direct consequence of (i). Indeed, f(\/2 — 2|{z, y)|?) = g(2—2|{x, y)|*),
where g(t) = f(v/t). Since f is decreasing and convex, the same holds for g, to which
we apply (i). O
Remark 5.5. Theorem 5.4 shows that an ETF is universally optimal (see [30, 31]) in
the sense that it minimizes the energy for any potential that is a completely monotone
function of distance squared in the projective space.

The assumption of Theorem 5.4 (part (i)) is weaker than that of Theorem 5.1 as
reflected in the above proof. For example, Theorem 5.4 part (i) recovers Proposition
3.1 of [38] since |(z,y)|P = f(1 — |(z,y)|*) with f(t) = (1 —t)P/2. It is easy to verify
that f(t) is decreasing and convex on [0,1] when p > 2. However (1 — t?)?/? is not
convex, and therefore part (ii) cannot be used to recover Proposition 3.1 of [38]. We
refer the interested reader to [24] for more results on p-frame potential.

Both Theorems 5.1 and 5.4 apply to the projective Riesz kernel since log1/t and
1/t° are strictly decreasing and strictly convex.

Corollary 5.6. For the projective Riesz s-kernel minimization problem (1.10) when
s € [0, 00),

(i) the configuration X](\?) defined in (3.2) is optimal for S' C R?;
(i) 4f it exists, an ETF is the optimal configuration for S*~* c H.

Remark 5.7. The conclusions of Corollary 5.6 hold for s = co (best line-packing prob-
lem). These results were mentioned in [63] and are also implied by Theorem 6.1.

In particular, the optimal configuration of N = d + 1 points that solves (1.10) is
given by the vertices of a regular d-simplex because it is an ETF. When d = 3, the
results for ETF are well known for small values of N. We summarize these results
in Table 1, where we also compare the optimal configurations of the projective Riesz
kernel and the classical Riesz kernel. They only share the same optimal configuration
for the N = d + 1 case. Moreover, ETF's are optimal configurations for the projective
kernel while nothing is known for the Riesz kernel in general.

We have explained intuitively why the projective Riesz kernels are better at promot-
ing well-separated frames than the Riesz kernel. This is reflected in Table 1. For the
first case S* when N = 4, the optimal configuration for the projective Riesz kernel is
two orthonormal bases with a 45 degree angle, which is a well-separated tight frame,
while the optimal configuration for the Riesz kernel consists of 4 equally spaced points
on S'. For the third row, an orthonormal basis is the optimal frame whereas 3 points
on one great circle is not even a frame. For 6 points on a sphere, the Riesz optimal con-
figuration is again two copies of the same orthonormal bases. More numerical support
can be found in Section 7.

The Grassmannian frame consisting of 5 vectors is constructed by removing an arbi-
trary element of the optimal Grassmannian frame consisting of 6 vectors (ETF). The
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TABLE 1. Optimal configuration comparison on S~ ¢ R?

proj. Riesz kernel Best line-packing Riesz kernel
s € [0, 00) 5= 00 s € [0, 00)
St any N equally spaced points on half circle equally spaced points on S
S?, N =2 two orthogonal points two antipodal points
S?.,N=3 any orthonormal basis vgrtlces of an equllat'eral
triangle on a great circle
S?,N =4 vertices of a regular tetrahedron (simplex)
2 A ) removing any vector from . .
SN =5 open, see Table 2 the 3 x 6 ETF, see [32, 5] partially solved in [61]
Sz, N=6 3 x 6 ETF, or vertices of the icosahedron octahedral vertices
Sdil, N=d+1 vertices of the simplex
ST N d x N ETF when exists \ open

coherence of the Grassmannian frame (in both N = 5 and N = 6) is 1/v/5. We refer
to [32] for more details.

It is not possible for 5 points to be an ETF in R?, and the optimal configuration of
(1.10) remains open to the best knowledge of the authors. The numerical experiments
in Table 2 indicate that optimal configurations have exactly 2 distinct inner products.
These inner products depend on the value s. As s — oo, Theorem 6.1 below implies
that the inner products converge to 1/v/5.

TABLE 2. Optimal configurations for projective Riesz kernel and best
line packing when N =5,d = 3.

‘ s =2 s =10 s=15 s =00
{|(x,,xj>| N ‘ {0.293,0.506} {0.366,0.478} {0.389,0.471} {1/\/3 ~ 0.447}

We conjecture that if X* = {xy, 29, z3, 24,25} is an optimal configuration of (1.10)
for s € [0,00) and N = 5, then the cardinality of the set {|(x;, z;)|,i # j} is 2. We
remark that constructions of biangular tight frames are studied in [23].

6. OPTIMAL CONFIGURATIONS AS FRAMES

We show in this section that frames rising from (1.10) are well-separated and nearly
tight asymptotically. Since the frame vectors will always be on the sphere, it is under-
stood that Eg, (N) refers to g, (ST, N).

The following theorem is the analog of Theorem 2.2 for the projective Riesz s-kernel.
It can be over the real or complex field.

Theorem 6.1. The best line-packing problem is the limit of problem (1.10) as s — oo:

1
I N)YVs = .
Jm Ea. (N7 =1 /1,

If, for s > 0, Xy is an optimal configuration achieving Eg,(N), then every cluster point
as s — oo of the set {Xs}sso s a Grassmannian frame.
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Proof. By (3.5)
Ea,(N) = 2°/2ER (D, N)
Taking the sth root and letting s — oo, we have

. /s _ 1 1/s _ \/§ — 1
Jim &g, (N)'* = Tim V2x, (D, N) onD)  Vi1-é&y

The last two equalities are from Theorem 2.2 and (3.9),
The second assertion is also a consequence of Theorem 2.2 since for any Gs-optimal
configuration {z;} € S*', the configuration {p; = 27} is R,-optimal for D. O

The Grassmannian frames have the best separation by definition, but Theorem 6.1
suggests that we are also able to find well-separated frames by solving (1.10) for large
values of s. We will further show that projective Riesz energy minimizing frames are
well-separated in the sense that their coherence have optimal order asymptotic growth
(Theorem 6.3).

Let B(x,r) C R™ be the ball centered at z with radius r. For a number a > 0 and
a positive Borel measure p supported on A C R™, we say that u is upper a-regular if
there is some finite constant Cy4 such that

(6.1) w(B(z,r)) < Car® forall z € A, 0 < r < diam(A),
and similarly that p is lower a-reqular if there is some positive constant c4 such that
(6.2) w(B(x,r)) > car® for all z € A, 0 < r < diam(A).

It is not difficult to verify that ®(o,_1), the uniform measure on D, is both upper and
lower (dim D)-regular (see the Appendix).

We recall that (D) is the maximum of the separation distance among all possible N
point configurations on D. Since ®(o,4_1) is lower (dim D)-regular, there is a constant
C' < oo such that i (D) < CN ~awD for all N , which follows immediately by observing
that the ®(04_1) measure of an arbitrary packing in D is no more than ®(o,_1)(D) = 1.
Expressing this bound in terms of coherence (recall (3.9)) gives

CQ
(63) €N 1 — 7]\[ dlmD

The above bounds are attained by any sequence of best-packing configurations on D
(e.g., see [14, Chapter 13]).

Based on the above observation, we say that a sequence (Xn) of N-point conﬁgura—
tions in D is well-separated if there is some constant C' > 0 such that I Xn) > CN~ @D
for all N. Equivalently, in terms of coherence, (Xy) is well-separated if

(6.4) E(Xn) <1 SN,

for all N.

We will show that the projective s-Riesz energy minimizing points are well-separated
when s > dimD. This is a consequence of the following known theorem for optimal
configurations on more general sets.
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Theorem 6.2 ([50, Corollary 2]). Suppose A C R™ is compact and supports an upper
a-reqular measure pn as in (6.1). Let s > a, N > 2 be fized. If X5 is an N-point
minimizing configuration on A for the s-Riesz energy minimizing problem (1.12), then

(6.5) §(X%) > C N~ =,
a N\ sant
where Cy = (%1:)(1 - E)) (;) .

We will next apply Theorem 6.2 to obtain the following bound on the coherence of
optimal G configurations.

Theorem 6.3 (Separation). Let s > dimD. If X is an N-point minimizing configu-
ration of (1.10), then

2 :
(6.6) §(X,)<1— TQN—W““D,

where the constant Cs 1s independent of N and, in the case H = R, can be found in
(6.8). Consequently, any sequence of such configurations is well-separated as N — o0o.

Proof. By (3.5), if X, = {;}Y, is an optimal configuration of (1.10), then P, =
{z;27}X | is an optimal configuration of (3.7). Appealing to Theorem 6.2 with A = D,
the projective space embedded in HM”, , and recalling that ®(coy_;) is upper (dim D)-
regular with constant Cp > 0, we have

(6.7) §(P,) > CyN @D,
1 1
1 dimD.\#7? /dimD\*
where Cy = <—(1 —— )) ( — ) . The inequality (6.6) then follows
Cp s S
from (3.8).
In the case H = R, as shown in the Appendix (see (A.4)),

2 20(3)

=TT W orER A

where I'(+) is the Gamma function. Therefore

_[@d=D)(s—d+ OI(ER)T(A/2) (d—1)*
= 2sI(%) ( s ) .

(6.8)

O

It is worth noting in the case H = R that the expected coherence of an i.i.d. random
frame X € S(d,N) generated from the uniform distribution on the sphere satisfies
E[¢(X)] = 1 — CyN = (see Appendix), which is significantly worse than optimal.
This fact is also demonstrated numerically in Section 7 (see Figure 2).

We next show that the optimal configurations of (1.10) are nearly tight.
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Theorem 6.4 (Nearly tight). Let s > 0. If Xy = {z1,...,2n} € S(d,N) is any
optimal configuration for (1.10) for N > 2, then (treated as a matriz)

1 1
(6.9) lim XX = Sl
N
Proof. Theorem 4.1(3) states that v(®(Xy)) = Z 0o (z,) converges weak™ to ®(oq—1).

=1
Thus for every continuous function f defined on D,

lim / Fdv(®(Xy)) = /D FdD(oa_r).

N—o0 D

By the definition of a pushforward measure, this can be simplified to

lim fod dv(Xy) = / fod dog_q;
Sd—1

N—oo Sd—1
that is,
(6.10) lim 30 /@@) = [ @)z

Let f(®(x)) = za™ be a vector-valued function. Then (6.10) implies
N

(6.11) ]%1_I)noo N Z:L‘le = /Sd_l xx*dog ;.

We need to integrate every entry of the right-hand side. Let z = (2(1),2(2),...,2(d))" €
S, so that zz* = (2(i)x(j)). Then,

1
iz /|as Pdows =3 [P+ + o) Phdoas = 5

if i # 7, /x(i)x(j)dadl = 0 by symmetry.

N
1
Since Xy Xy = N lexj, from (6.11) we deduce that
=1

1 1
Jim =Xy X = Lo,

O

Theorem 6.4 says that the optimal configurations are nearly tight asymptotically as
N — o0 in relation to (1.1). More desirable would be a stronger result of the form

=O(N™), ¢>0.

N
(6.12) HXNX;, .y
d F

The numerical experiments in Section 7 (left side of Figure 3) do indeed suggest a
result like (6.12) holds at least for small values of s. The work [18] provides a partial
explanation for this phenomenon. It studies the convergence rate of (6.10) for f in a
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Sobolev space (which is the case for every entry of zx*). The numerical experiments
therein suggests that the s-Riesz minimizing configurations (when s = 0, 1) achieve the
optimal order quasi Monte Carlo error bounds.

Regarding random tight frames, it is shown in [37, Corollary 3.21] that

F>:N(1_é>7

which grows as N grows. Section 7 (right of Figure 3) shows that optimal configurations
of (1.10) also outperforms random configurations on tightness.

N
E (HXNX;(, ~ =l

7. NUMERICAL EXPERIMENTS

The numerical experiments conducted consider points in the real vector space, and
were executed in Matlab. When solving (1.10) (or (1.13) for negative s), spherical
coordinates are used so that the command fminunc (unconstrained minimization) can
be employed. Four experiments were performed.

The first and the second experiments deal with the separation and tightness of the
optimal configurations of (1.10) or (1.13), and are explained in Sections 7.1 and 7.2.
Since the objective function has lots of local minima, in both experiments, we run
fminunc with multiple random initializations to obtain a putative minimum. We then
test whether the optimal configurations are nearly tight or have small coherence (well-
separatedness).

The third experiment presents an algorithm for obtaining tight frames with good
separation. As explained in Section 7.3, it is crucial to use a well-separated frame as
an initialization.

7.1. Good separation. The first experiment explores the asymptotic behavior of the
coherence &(X) = max |(z;, z;)| of projective Riesz minimizing points for various values
i#j

of s as N gets larger. The result displayed in Figure 1 is for d = 3 with points on S?.
The number of points N ranges from 3 to 100. The separation result Theorem 6.3
only applies to s > 2, but our numerical experiment shows that the log case and s =1
case are achieving smaller coherence. The s = —2 (frame potential) case has the worst
behavior as its minimizers could contain repeated (or antipodal) points. Notice that
the coherence gets smaller as s increases which is consistent with Theorem 6.1. Finally,
the coherence curve was fit with y = 1 — 3/, which reflects Theorem 6.3.

The second experiment computed the coherence of the projective Riesz minimizing
points for d = 6 and relatively small values of N (from 6 to 40), as shown in Figure
2. Various s are computed and compared with the Welch bound (5.1), the Levenstein
bound [58, 70]

3N —d? —2d
X)> , it N>dd+1)/2,
3 >_\/(d+2)(N_d) (@+1)/
and the Sloane database http://neilsloane.com/grass/. The Sloane database has the
best known line-packings or the smallest coherence given d, N, among which some are
only putatively known. Figure 2 also includes uniform random configurations. For each
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FIGURE 1

N, we display the coherence that is averaged over 20 samples. We again observe that
larger s produces better separated frames, and s = —2 (frame potential case) produces
highly correlated frames. For all values of s except for -2, (1.10) achieves the Welch
bound when N = 6,7, 16 (these are all the ETFs and thus universally optimal), and it
achieves the Levenstein bound when N = 36. The 36 point configuration in R® is the
6-dimensional lattice Eg [41] and is also known to be universally optimal [31] although
not an ETF. We further remark that our numerical experiments suggest that the Sloane
grassmannian configurations for d = 6 and N = 12 and N = 22 may be universally
optimal. This might also be anticipated from Figures 2 and 4. These figures might
also suggest the universal optimality of the Sloane configuration for N = 21, however
this turns out not to be the case.

7.2. Nearly tight. We addressed the tightness of the optimal configurations by com-

N
puting || X X7 — EIdH . We reuse the points generated from the first experiment

with d = 3 and N ranging from 3 to 100. Figure 3 (left) shows the results for
s =—2,-1,0,1,2,3. The s = —2 (frame potential) case recovers tight frames since by

N
(5.2), Riesz (—2)-energy is equal to || XXT — EIdH% plus a constant. Unfortunately,

the separation property deteriorates as s decreases while the tightness property im-
proves. This is further validated by the poor tightness of the Sloane points as they
correspond to the s = oo case. A least squares curve fitting was also performed for the
peaks (least tight) for s = 1, which exhibits an N~? decay, a better rate than what
Theorem 6.4 guarantees. Notice that the right side of Figure 3 also includes uniform
random vectors for comparison. The randomly generated configurations exhibit worse
behavior for both coherence and tightness. This has also been observed in [18].

The tightness for d = 6 with N ranging from 6 to 40 is illustrated in Figure 4 where
the points generated from the second experiment are reused. The figure displays a
clear pattern of improved tightness as s decreases.
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7.3. Achieving good separation and exact tightness. In this section we present
experiments based on a simple algorithm for obtaining frames with good separation
and exact tightness. For the frame potential minimization problem (s = —2 of (1.13)),
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Tightness of optimal configuration, d=
T T T T
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FiGURE 4. Tightness for d = 6.

recall that every local minimizer is a global minimizer; i.e., a tight frame [4]. The output
of fminunc is certainly affected by the initial input. As seen in Figure 1 and Figure 2,
the tight frames found by minimizing the frame potential using random initializations
generically have poor separation. We propose the following approach for generating
well-separated tight frames in S(d, N) for given d and N.

(1) Generate a random frame X € S(d, N).

(2) Using X as an initial configuration, use an optimization algorithm (such as
gradient descent) to find a local minimizer Y for (1.10) for some s > d — 1.
Motivated by Theorems 6.3 and 6.4 the minimizer Y is expected to be well-
separated and nearly tight.

(3) Minimize (1.13) with s = —2 using Y as the initial configuration. The exper-
iments presented below suggest that the resulting frame is well-separated and
tight.

Variations on this approach such as iterating steps 2 and 3 or minimizing Riesz-s
energy restricted to the manifold of tight frames will be explored in future work.

Figure 5 shows the performance of the optimal configuration of minimizing frame
potential with the initialization being the optimal configuration obtained through solv-
ing (1.10). The numerics indicate that these optimal tight configurations are indeed
well-separated. The left graph of Figure 5 should be compared to Figure 2 (the values
of s used in step 2 of the above algorithm are indicated in the figure and include values
of s < d—1). Numerically, this is a promising way to find well-separated tight frames,
which has many applications including signal transmission [44, 52].

The set of finite unit norm frames is topologicaly connected, and an irreducible
variety [19], but our experiment suggests that for a local minima of (1.10), there will
be a tight frame close to it. This can perhaps be explained by the recently solved
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Paulsen Problem [47], which implies that for a nearly tight unit norm frame F', there
exists a unit norm tight frame nearby since we have shown that a local minima of (1.10)
is nearly tight. This suggests that step 3 will result in a nearby tight configuration if
the configuration from step 2 is nearly tight as indicated in Theorem 6.4 for N large.

To further see how the initializations impact the frame potential problem, Figure 6
compares the coherence of the optimal configuration of solving (1.13) (s = —2) with
different initializations. The results are similar, but note that starting with Sloane
points, the best separated points among the three, does not necessarily end up with
the best separation.
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APPENDIX A

A.1. Uniform measure. Given the hypersphere S, let C, (x) be the hyperspherical
cap centered at x, with r being the Euclidean distance of the furthest point to x. That
is,

Cr(z) ={y €St [l —yl < 7}
Recalling that o,_; denotes the normalized surface measure, the following asymptotic
formula holds:

(A.1) 001 (Cr(x)) = =77 + O, (r = 0),
and also the estimate

(A.2) 0a1(Cy(x)) < - i '

where

(A.3) L(d/2)

YT T (- 1)/2)T(1/2)

Both estimates can be found in Section 3 of [54].

T

FIGURE 7. F~Y(B(ps,7))

Lemma A.1. When H = R, the uniform measure on D is (d — 1)-regular. Moreover,
we have the estimate

(Ad)  ®(041)(B(ps,7)) <

vgr®,  for any p, € D,0 < r < diam(D)

d—1
Proof. D is the projective space embeded in RMZX 4- D and p, are furthest away if
z Ly, so diam(D) = v/2.

For any point p, = F(z) € D and any r < diam(D) = V2, suppose in the set
B(ps,m) N D, p, is the point that is furthest away from p,. We can pick y so that

(z,y) > 0. Then ® '(B(p,,r)) is the union of the spherical cap centered at z with
boundary point y together with its antipodal image, see Figure 7. By (3.3),

[z, )|? =1 — |lpe — pyl|3/2 > 1 —17/2,
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|z — gyl =2 —2(z,y) <2—2/1—-712/2<2—-2(1—7%/2) =72
By (A.2),

(041)(B(par 7)) = 04r(® (B (2, 1)) = 2041(C (1)) < ——rpar®™?

d_l’YdT

O

A.2. Expected value of coherence. Let X = {x;} € S(d, N) be a random config-
uration on the sphere where each point is selected from a uniform distribution on the
sphere. Let © = n;éln arccos(x;, r;), so

i#j

(A.5) 6(X) = max | (ai,2;)] > max(ay, o) = cos© > 1 - 622
1] 1]

It is proven in [20, Theorem 2| that Fy(t) := Pr(N¥“ V@ < t) — F(t) where

Flt)=1— exp(—ﬁ

In order to compute the expected value of ©, we define Gy (s) := Pr(N*@-1D@? <
s) = Fy(v/s) = F(y/s). By a similar argument as the one in [17, Corollary 3.4], we
get

1) is supported on (0, c0).

o0

lim E(N*¥@-Y@?) = lim (1—Gy(s))ds
N—o00 N—oo /g
o0 o0 1 1
= / 1 — F(y/s)ds = / exp(—§/£dsd7) =Cy
0 0

By (A.5), we have

E(¢(X)) > E(L - 6%/2) ~ 1 - SN s
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