Visible Light-Induced Pd-Catalyzed Alkyl-Heck Reaction of Oximes
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ABSTRACT: A visible light-induced palladium-catalyzed oxidative C—H alkylation of oximes has been developed. This mild protocol allows
for an efficient atom economical C-C bond construction of alkyl-substituted oximes. Broad range of primary, secondary, and tertiary alkyl

bromides and iodides, as well as a range of different formaldoximes, can efficiently undergo this transformation. The method features visible
light-induced generation of nucleophilic hybrid alkyl Pd radical intermediates, which upon radical addition at the imine moiety and a subse-

quent B-hydrogen elimination deliver substituted imines.
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Addition of alkyl radicals to imines is an established strategy to-
ward synthesis of multisubstituted amines.' Most often, these reac-
tions rely on employment of stochiometric radical mediators in
combination with catalytic Lewis Acid, which is required for activa-
tion of imine moiety towards addition of nucleophilic radical
(Scheme 1a).> With recent development of photoredox catalysis,?
as well as metal-catalyzed hydrogen atom transfer techniques,* a
number of catalytic versions of such transformations appeared in
the literature. Nevertheless, these transformations remain overall
reductive, which limits potential for further functionalization. In
order to retain synthetically attractive imine group upon radical
alkylations, an addition/elimination strategy has been developed
(Scheme 1b).° In 1996, Kim and co-workers introduced oxime 1’
bearing sulfonate as a suitable radical leaving group.* Major prob-
lems with such approach are the lengthy synthesis of starting mate-
rials (1”), and the poor atom economy, as the high molecular
weight byproduct is produced. In addition, with the few excep-
tions,® these methods rely on employment of stoichiometric tin
reagents. Despite these synthetic drawbacks, the discussed proto-
cols remain in demand due to the vast synthetic’® and biological’
relevance of oxime-containing molecules. In this light, the devel-
opment of catalytic oxidative C-H functionalization of oximes 1 is
warranted.'”"" Herein, we report mild and general visible light-
induced Pd-catalyzed method for synthesis of substituted oximes 3
operating via a direct C-H Heck-type alkylation protocol (Scheme
1c).

In recent years, the visible light-induced photoexcited chemistry
of palladium has become an emerging field of study." Particularly,
we" and others" have demonstrated a feasibility of visible light-
induced palladium-catalyzed alkyl-Heck reaction of broad range of
alkyl electrophiles proceeding via hybrid palladium C(sp?)-
centered radical species. Encouraged by this novel mild protocol

1% and motivated by the need of

for generation of alkyl radicals,
new synthetic methods toward substituted oximes,” we aimed at
the development of alkyl imino-Heck reaction. The feasibility of
this transformation was supported by the effectiveness for genera-
tion of nucleophilic alkyl radicals under light-induced Pd-catalyzed
conditions;" affinity of oximes toward nucleophilic alkyl radicals;"
and the propensity of palladium catalysis for the oxidative end-

game.'¢

Toward this end, we investigated the reaction between for-
maldoxime (1) and iodocyclohexane (2) under our standard palla-
dium(II) acetate/Xantphos catalytic system' in the presence of
indium(I1I) chloride additive. Gratifyingly, it was found that

Scheme 1. Radical Reactions of Imines
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under these conditions, the desired coupling product 3 was formed,
albeit in the moderate yield (Table 1, entry 1). The combination of
monodentate and bidentate phosphine ligands'” resulted in a signif-
icant improvement of the reaction efficiency (entry 2). Further
optimization revealed indium(III) acetate to be superior additive
with high reproducibility (entry 3). Control experiments demon-
strated that thermal reaction (entry 4) is much less efficient, and Pd
catalyst is essential for this transformation (entry S). Notably, this
reaction can proceed without Lewis acid additive, however with

lower reproducibility (entry 6).

With the optimized conditions in hand, the scope of alkyl halides
was examined first (Scheme 4). It was found that all linear alkyl
halides tested, including those having distant functional groups,
such as phenyl (3b), ester (3c), alkyl and aryl ethers (3d, 3e), ter-
minal alkene (3g), chloride (3f), cyano- (3h), and ketone (3i),
proven to be capable substrates for this coupling reaction. Interest-
ingly, compound 3j having silicon atom beta to imine could also be



synthesized via this protocol. It is particularly surprising, consider-
ing silyl methyl radicals being more electrophilic compared to sim-
ple alkyl radicals."® Notably, p-D-ribofuranoside derivative 3k, as

well as dipeptide derivative 31, could be accessed via this approach,

Table 1. Reaction Optimization

Pd(0AG), (5 mol%),

5 . | L1 (10 mol%), L2 (20 mol%) . e G
UNGP2 + NG~ N LY
TN O/ Cs,CO; (2 eq) o

PhH (0.1 M)
11 | 12 450 nm, 30 °C 3
(1eq) (11ea 0.1 mmol
Entry L1,L2 additive Yield, %*
1 Xantphos InCls 37
2 Xantphos, PPh; InCls 68
3 Xantphos, PPh; In(OAc); 99*
4¢ Xantphos, PPhs In(OAc); 27
5d Xantphos, PPh; In(OAc); 0
6 Xantphos, PPh; none 90

*GC-MSyield" E/Z 1/1.°80°C, no light.? No Pd(OAc)s.

thus indicating applicability of this method to functionalization
reactions in a more complex setting. Secondary alkyl halides were
found to be the most effective coupling partners. Thus, oximes
possessing acyclic substituents (3m, n), could be obtained in good
yields. Oximes having varied size carbocycles (30-3s) could also be
efficiently synthesized. Oxime, possessing secondary adamantyl
derivative (3t) was obtained in nearly quantitative yield. Saturated
heterocyclic derivatives, such as oxetane (3u), tetrahydropyran
(3v), and piperidine (3w) were also successfully obtained. Intri-
guingly, this reaction exhibited notable halide effect (3p, q). While
efficiencies of processes for alkyl bromides and iodides were comparable,
the use of iodides resulted in products with substantially higher Z iso-
mer content. This counterion effect was observed throughout the
entire scope of the reaction, where alkyl iodides in general resulted
in products with higher amount of Z oxime. Tertiary alkyl halides
3x - 3ab are also capable coupling partners. In the reaction with
tert-adamantyl iodide, however, a substantial amount of non-
separable Friedel-Crafts arylation side product was observed. Ac-
cordingly, the product in reduced form (3ac) was isolated. A sim-
ple tert-butyl derivative 3x was obtained in good yield from both
respective iodide and bromide. As in the cases of primary and sec-
ondary alkyl halides, the reaction gave mixture of E/Z isomers. In
this case, however, it is particularly surprising, as Z isomer contain-
ing bulky tertiary substituent is thermodynamically much less fa-
vorable. On the other hand, cyclobutene-containing product 3ab
formed with almost exclusive E selectivity.

Next, the scope of oxime in reaction with cyclohexyl bromide
was tested. First, benzylic formaldoximes possessing different func-
tional groups at the aryl group were examined. Overall, the process
demonstrated outstanding efficiencies for these substrates (4a-f).
Notably, styrene derivative 4g could be synthesized in an excellent
yield, despite a potential side addition of the alkyl radical at the
double bond leading to a highly stabilized benzylic radical."*'* Lin-
ear molecules possessing various distant functionalities, such as
phenyl (4h), ester (4i), cyano- (4j), and protected primary amine

(4k), all worked well. Synthesis of formaldoximes bearing second-
ary alkoxy groups posed no problem either (4L,m). Gratifyingly,
imines 4n and 40 having easily removable trimethylsilylethoxyme-
thyl (SEM) and benzyloxymethyl (BOM) groups were synthesized
with moderate to good yields, which opens access to O-
unprotected oximes. At this point, attempts to perform this imine-
Heck reaction on aldoximes resulted in reductive radical additions
only. Obviously, the presence of additional substituent hampers the
re-oxidation of amine into imine.

As discussed in the introduction, oximes enjoy vast synthetic ap-
plications.”® There is a number of reported protocols highlighting
transformations of oximes 3 obtained via our alkyl Heck-type alkyl-
ation protocol and its derivatives (Scheme 2). Primarily, these fea-
ture the construction of different nitrogen containing heterocycles
8-10."” Diverse additions to electrophilic carbon of oxime are also
well-established (11, 12).2° We have also found that 3 could under-
go partial (6) or exhaustive (7) dehydrogenation upon exposure to
different amounts of N-bromosuccinimide .

Scheme 2. Synthetic Utility of Obtained Products
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Notably, in contrast to the thermal® and visible light-induced">'*
alkyl-Heck protocols, which exclusively or predominantly deliver
the thermodynamically more stable E isomers, the alkyl-Heck reac-
tion of oximes shows broadly varied stereoselectivity: from nearly
exclusive E (3ab) to preferentially Z (3u). As alluded above, the
stereochemistry depended on the halide used. In addition, it was
found to be base-dependent (Scheme 3).*” It seems apparent that,
in the case of alkyl bromides, the size of the base (c.f. CsOAc vs
CsOPiv) rather than the basicity governs the stereochemical out-
come of the reaction. This may imply that the classical -hydride
elimination process, where the base is only required for scavenging
acid from HPdX for the catalyst regeneration,” is an unlikely end-
game scenario in the alkylation of imines with alkyl bromides. Pos-
sibly, a base-assisted elimination takes place, which is responsible
for the observed base-dependent selectivity. In contrast, this effect
is muted for alkyl iodides, suggesting a potential switch of the
mechanism.

Scheme 3. Impact of Base and Halide on E/Z Selectivity
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Scheme 4. Scope of Alkyl Heck-type Coupling of Oximes®
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Based on the relevance to alkyl-Heck reaction of alkenes
above-mentioned observations, the following plausible mechanism
is proposed for the novel alkyl-Heck reaction of imines (Scheme S).
First, a hybrid alkyl Pd-radical species A is formed either via a direct
SET from the generated in situ photoexcited Pd(0) complex or via
oxidative addition of alkyl halide with Pd(0) complex, followed by
homolysis of the C-Pd bond. The radical nature of this transfor-
mation was supported by radical clock,- radical trapping,- and spin-
trapping experiments.** Next, the well-established addition of alkyl
radical to oxime takes place," resulting in the formation of the hy-
brid nitrogen centered radical B. A direct hydrogen atom transfer
(HAT) by palladium would result in the formation of the reaction
product 3 (path a). In alternative scenario (path b), the radical
recombination would produce Pd(II) complex C, which could be
in equilibrium with alkoxyamine D and PdX; salt. Pd(II) complex
C may either undergo classical -hydride- (path b-1) or base assist-
ed elimination process via a classical bimolecular (E2) or a concert-
ed ligand-assisted elimination path (path b-2).>

Scheme S. Proposed Mechanism
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The feasibility of path b was supported by the observation of
small amounts of intermediate D by early stage GC/MS analysis of
the reaction mixtures. This was further validated by the test exper-
iment, where benzyloxyamine 13 produced substantial amounts of
oxime derivative 3q under our standard alkyl-Heck reaction of
oximes (1—3p, eq. 1). At this point, none of the proposed path-
ways can be reliably ruled out. It is likely that the reaction path is
governed by the nature of counterion X at Pd, contingent to the
choice of halide and base used. Obviously, more detailed studies
are required to establish a concise mechanism for this novel alkyl
imino-Heck reaction.?
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In conclusion, the first example of visible light-induced palladi-
um-catalyzed Heck-type alkylation of oximes has been developed.
In this transformation, the affinity of oximes to nucleophilic car-
bon-centered radicals, combined with the oxidative nature of palla-
dium catalysts, allowed for new C-H functionalization protocol. It

is anticipated that this mild visible light-induced method will find
application is synthesis and will stimulate development of new C-
H functionalization methods.
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