20

21

22

23

24

25

26

27

28

29

30

31

MENDEL: an automated design tool for DNA
nanotechnology

Jorge Guerrero

Department of Nanoegineering

Joint School of Nanoscience and Nanoengineering
North Carolina A&T State University, United States
jeguerrero@aggies.ncat.edu

Reza Zadegan !

Department of Nanoegineering

Joint School of Nanoscience and Nanoengineering
North Carolina A&T State University, United States
rzadegan@ncat.edu

—— Abstract

Structural DNA nanotechnology is a promising tool for bottom-up self-assembly. Scientists’ imag-

ination and ability to design sophisticated and larger structures inform the applications of the
technology. In response to the need for the advanced design strategies, the community has developed
a number of software to ease DNA nanostructures design process. Majority of the available software
require manual manipulation and detailed visual inspection of the model, which decrease the success
of making complex and large structures and increase the user error. To address these concerns,
we developed an open-source software coined MENDEL that automates the process of designing
nanostructures. MENDEL uses a sequence of commands that accurately and parametrically build
the DNA nanostructure’s geometry, size, and shape. Additionally, the commands are modular and
therefore the construct can grow indefinitely from one repeated layer with a single instruction; hence
MENDEL reduces the time, error, and computational cost of DNA nanostructures designing process.
Also, when run as a module of Blender, MENDEL generates visual representation of the model. For
convenience, MENDEL enables automatic generation of caDNAno and CanDo compatible files. We
aim to keep MENDEL open source to allow community collaboration and the software’s accessibility
to a broader range of scientists.

2012 ACM Subject Classification

Keywords and phrases DNA, Origami, Automated design tool, MENDEL

Digital Object Identifier 10.4230/LIPIcs.DNA26.2020.

------ @ 3 o comontions S Calochon RS040 oo 484173 | 1460604 | Do, 12 Mo 4524 42821

Figure 1 We used the MENDEL library to design a complex triple-layered origami consisting of
25,330 base pairs, in under 22 seconds. Blue and colored ribbons represent the scaffold and staples,
respectively.

L Corresponding author

© Jorge Guerrero and Reza Zadegan;
5v licensed under Creative Commons License CC-BY
26th International Conference on DNA Computing and Molecular Programming.

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:jeguerrero@aggies.ncat.edu
http://nanodetails.com
mailto:rzadegan@ncat.edu
https://doi.org/10.4230/LIPIcs.DNA26.2020.
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

MENDEL: an automated design tool for DNA nanotechnology

1 Introduction

Designing complex DNA nanostructures is a complicated process that requires efficient
software to calculate and populate structural details. Most of the published software require
manual manipulation and careful inspection of the models that increase the time cost and
user error and decrease the flexibility of designing process. We created a python library that
we coined MENDEL as a flexible and robust solution for automatic design of complex DNA
nanostructures. MENDEL receives a set of sequential commands and creates the structures
by following logical steps. Each step instructs the growth of the DNA nanostructure either
by adding new nucleotides or repeating sections of arbitrary size and shape. User is able to
monitor the design progress by executing the commands in Blender software’s scripting mode.
Figure 1 shows an example of using MENDEL library to design a triple-layered origami that
represents the word “MENDEL.”

MENDEL generates the geometry preview, which helps to understand the design details.
Moreover, for convenience, the exported file is compatible with caDNAno [1]. Figure 2 shows
the exported model when opened in caDNAno, and Figure 3 shows the modeling results
obtained from CanDo [2] for different number of layers. Future work include improving
nucleotide twist and rise calculations, supporting honeycomb designs, detecting overlaps,
inserting and skipping nucleotides, and generating molecular file formats such as Protein
Data Bank (PDB).

2 Features

The following are the main features of the MENDEL library:

Open-sourced. The code can be expanded by modifying/adding Python scripts

Scripted design. The commands are stored as scripts and can be shared as separate files
outside of the Blender environment. It is possible to create functions that call the
MENDEL commands and hence parametrically enhance the design and perform with
higher flexibility.

Low level primitives. MENDEL is supported by the basic primitives commands that provide
single step growing of the structures.

Accurate folding location. MENDEL calculates the 3D coordinates of each nucleotide, and
if a strand/layer/shape is added, the software will add enough nucleotides until the last
nucleotide is properly aligned for folding according to arbitrary angles.

3 Example of commands

Table 1 shows the set of commands provided with MENDEL and a brief explanation of its
use.

J. Guerrero and R. Zadegan

File Edit Plugins
- B &

New Open Save SVG

=
- 0 64
First 1326598
E";i 2 336697
3 134/67100
Last 4356899
513669102
63770101
713871104
83972103
9 4073106
10141 74105
11142 75108
1243 76107
13144 77110
1445 78109
1546 79112
16147 80111
1748 81114
18149 82113
1950 83116
2051 84115
2152 85118
2253 86117
2354 87120
24/55 88119
2556 89122
2657 90121
2758 91124
2859 92123
296093126
306194125
31/62 95128
6396

Rnum

Figure 2 The exported files are compatible and can be opened with caDNAno.

L L L T LT T T T T T T T P P T P T T T T T PP ITPTTT T T I RNN

AC
19

Export Honeycomb Square

AutoStaple AutoBreak

SCAF

Seq

XX:3

DNA26

XX:4 MENDEL: an automated design tool for DNA nanotechnology

1 Layer

2 Layers

3 Layers

4 Layers

Figure 3 Representation of the modeling prediction of the exported files using CanDo; from one
layer to four layers of thickness. The parameter L (number of layers) was the only parameter that
we modified in the script to achieve the presented models.

J. Guerrero and R. Zadegan

Table 1 MENDEL command set

Command Description

Cad = Mendel() Create a new Mendel object named Cad. All commands
should be applied to the object Cad.

Cad.StartAt (position) Define the starting location along the X coordinates.
This gives compatibility to define the initial position in a
caDNAno design. The parameter position is an integer
value, and by default its value is 0.

Cad.AddAt(x,y,2) Add a new nucleotide at a exact location (x,y,z). The

orientation is automatically computed according to the
YZ coordinates. The new nucleotide will start a new
DNA scaffold.

Cad.Add (number) Add a number of nucleotides to the current DNA
scaffold. The next nucleotide will be shifted in the X
coordinates according to the current direction of the
scaffold, which changes each turn.

Cad.UpY() Add a turn in the Y direction. That means, the scaffold
will grow along the X direction until it will be aligned
such that it can turn up in Y coordinates. The next
nucleotides will be added in the opposite X direction

Cad.DownY () Similar to UpY(), but it will turn down in Y coordinates.

Cad.UpZ() Create a turn up in Z coordinates

Cad.DownZ () Create a turn down in Z coordinates

Cad.RectUp(width, height) Create a rectangle in which the width is measured in
nucleotides and height in helices. The turns of the
scaffold are Up in the Y coordinates.

Cad.RectDown(width,height) | Create a rectangle that grows down in the Y coordinates.

Cad.GotoX(location) Grow the scaffold to reach the X coordinate marked by
the parameter location. If a turn is required, it will make
turn down in the Y coordinates.

Cad.GotoXUp(location) Similar to GotoX, but it will make the turn up in the Y
coordinates if it is necessary.

Cad.Split() Breaks the scaffold. The current nucleotide will belong
to the next scaffold strand.

Cad.Clean() Erases all Blender geometry objects.

Cad.RenderRibbons () Creates the Blender geometry that represents the design
as a set of ribbons, including scaffold and staples.

Cad.RenderCylinders() Creates the Blender geometry that represents the design
as a set of cylinders.

Cad.writeCaDNAno(filename) | Export the design to caDNAno compatible format.

Cad.RenderPDF (filename) Create a 2D representation of the design and export it to

PDF.

XX:5

DNA26

XX:6

66

67
68
69

70

71
72

73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
%
91
92
93
04
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

117

MENDEL: an automated design tool for DNA nanotechnology

4 Example code to construct the “MENDEL"” origami

Listing 1 provides the example of the executed file in Blender. Initially it constructs a small
frame, then one loop encloses the code to build each letter and spaces. At the end, the strand
is returned to the origin and starts the next layer. The modifying loop parameter allows for
growth of an arbitrary size and dimension.

Listing 1 Script to generate the word "MENDEL" on DNA

import bpy
import time
filepath = bpy.path.abspath("//Mendel.py")

exec (compile(open(filepath).read(), filepath, ’exec’))

t = time.time () # Start timer

L =3 # Number of layers

Cad = Mendel () # Cad ts the nmame of the wariable
print ("Start") # we use here.

Cad.StartAt (0)

Cad.Add (5) # Definition of the intitial Frame:
Cad.GotoX (30) # Starting location

Cad.RectUp (10,27) # Left border of the frame
Cad.RectUp (440,3) # Upper border

Cad.RectDown (10,31) # Right border

Cad.GotoX (0) # Return to starting location
Cad.UpZ () # Grow a new layer
Cad.Add (10) # Add 10 bases
Begin of the loop: range(L) means it will
for D in range(L): # <create L layers for the word MENDEL
Cad.GotoX (30) # Starting location of M character
M
Cad.RectUp (10,30) # Left arm
for k in range (3): #
Cad.RectDown (8,4) # Diagonal down
for k in range(3):
Cad.RectUp(8,4) # Diagonal up
Cad.RectDown (10,30) # Right arm
Cad.Add (20) # Separation of characters
E ## # Definition of character E
Cad.RectUp (40,7) # Lower horizontal arm
Cad.RectUp(8,6) # Grow up to the center
Cad.RectUp (30,4) # Central horizontal arm
Cad.RectUp(8,6) # Grow up to the upper
Cad.RectUp (40,7) # Upper horzitonal arm
Cad.Add (20) # Separation. Location %s upper
N ## # Definition of character N
Cad.RectDown (10,30) # Location is up, left arm goes down
Cad.RectUp (5,30) # and up to start diagonal

for k in range (5):

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

J. Guerrero and R. Zadegan

Cad.RectDown (8,6) # Diagonal douwn
Cad.RectUp (10,30) # Right arm
Cad.Add (20) # Separation. Location s up
D ## # Definition of character D
Cad.RectDown (10,30) # Left arm goes down
Cad.RectUp (5,30) # and up
Cad.RectDown (10,4) # Upper horziontal line
for k in range(2):
Cad.RectDown (5,6) # Diagonal douwn
Cad.DownY () # Add mew row. Switch direction
Cad.Add (10) # Diagonal down
for k in range(3): #
Cad . Add (5) # moving left
Cad.RectDown (5,4) #
Cad.DownY () # Fill last block
Cad.Add (50) # Align with next letter
E ## # Defintion of second character E
Cad.RectUp (40,7) #
Cad.RectUp(8,6) # Ezact same code of the
Cad.RectUp (30,4) # first E
Cad.RectUp(8,6) #
Cad.RectUp (40,7) #
Cad.Add (20) #
L ## # Definition of character L
Cad.RectDown (10,23) # Left arm
Cad.RectDown (30,7) # Lower horizontal arm
Link to the nexzt layer
Cad . Add (20) # Adds 20 nucleotides as a small bar
if D != L-1 #
Cad.DownY () # Switch direction
Cad.GotoX (0) # Return to initial location
#
if D%2 == 0: # Adjustement for some layers
Cad.Add (20) #
Cad .UpZ () # 1f is an even layer, add another
Cad.RectUp(5,2) # row in Y
else: #
Cad.UpZ () # Otherwise, just add the new layer
Cad.Add (10) #

Cad.writeCaDNAno ("Mendel3D_NL. json") # Ezport file

Cad.Clean () # Clean Blender exzisting geometries
Cad.RenderRibbons () # Create Tibbon representations
elapsed = time.time() - t # Calculate ezecution time

print ("") #

print (str(Cad.GetNumber ()) + " base,pairs created")

XX:7

DNA26

XX:8

177
178
179
180
181

182

MENDEL: an automated design tool for DNA nanotechnology

print ("Elapsed, time")

print (elapsed) # Print elapsed time
—— References
1 Shawn M. Douglas, Adam H. Marblestone, Surat Teerapittayanon, Alejandro Vazquez,

George M. Church, and William M. Shih. Rapid prototyping of 3D DNA-origami shapes with
caDNAno. Nucleic Acids Research, 37(15):5001-5006, 2009. doi:10.1093/nar/gkp436.

Do Nyun Kim, Fabian Kilchherr, Hendrik Dietz, and Mark Bathe. Quantitative prediction
of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Research,
40(7):2862-2868, 2012. doi:10.1093/nar/gkr1173.

http://dx.doi.org/10.1093/nar/gkp436
http://dx.doi.org/10.1093/nar/gkr1173

	Introduction
	Features
	Example of commands
	Example code to construct the “MENDEL” origami

