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Abstract

A deep neural network is trained to predict sea surface tem-
perature variations at two important regions of the Atlantic
ocean, using 800 years of simulated climate dynamics based
on the first-principles physics models. This model is then
tested against 60 years of historical data. Our statistical model
learns to approximate the physical laws governing the simula-
tion, providing significant improvement over simple statisti-
cal forecasts and comparable to most state-of-the-art dynami-
cal/conventional forecast models for a fraction of the compu-
tational cost.

Introduction
General circulation models (GCMs) describe the time-
evolution of the atmosphere or ocean using mathematical
models of fluids and thermodynamics. These models are
good at predicting climate variations in the Pacific Ocean
such as the El Niño–Southern Oscillation (ENSO), but the
same models perform poorly in predicting an analogous cli-
mate pattern in the Atlantic Ocean. Indeed one of the most
successful approaches to predicting short term (1-6 month)
climate variability in the Atlantic is just a ”damped persis-
tence” model — i.e. the prediction that the seasonal climate
anomaly will remain constant with a regression (damping)
towards the mean.

Data-driven machine learning methods take a different ap-
proach to climate forecasting. Rather than integrating the
physics equations forward in time, machine learning at-
tempts to learn emergent patterns from data, sacrificing
the interpretability and robustness of first principles in fa-
vor of black-box statistical models. When trained on real
data, these models could capture deficiencies in the physical
models. When trained on simulation data, they can provide
a fast approximation to computationally-expensive simula-
tions. Deep learning with artificial neural networks, a ma-
chine learning approach that is particularly well-suited for
high-dimensional data, has recently shown promise in mod-
eling a variety of fluid flow processes (Wang et al. 2019;
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de Bezenac, Pajot, and Gallinari 2019; Ham, Kim, and Luo
2019).

Figure 1: Example heat map of sea surface temperature
anomalies for a single month. Physics-based models can
forecast variations due to ENSO in the Pacific (center re-
gion), but perform poorly in two regions of interest in the At-
lantic:: the Northern Tropical Atlantic (NTA; 40◦W-10◦W,
10◦N-20◦N) and the eastern equitorial Atlantic (ATL3;
20◦W-0◦, 3◦S-3◦N)

In this work we apply deep learning to the challenging
task of predicting sea surface temperature (SST) anomalies
in two particular regions of the Atlantic (Figure 1) where
GCMs are known to perform relatively poorly: the east-
ern equatorial Atlantic (ATL3), which is subject to pro-
nounced warm and cold events lasting 3-6 months, and the
northern tropical Atlantic (NTA). Deep learning methods re-
quire large data sets for training, and we use simulated cli-
mate processes from Version 2 of the Canadian Earth Sys-
tem Model (CanESM2). The dynamical core of this climate
model is based on the first principles Navier-Stokes equa-
tions for fluid dynamics, with some unresolved processes
such as convection and turbulence represented through pa-
rameterization schemes. The latter introduces a few free pa-
rameters that are tuned to observational data. This tuning,
however, only concerns the mean statistics of the model out-
put and does not provide any information that would allow
the model to forecast particular climate events. Running this
model forward in time produces simulated climate cycles



that demonstrate a range of fluctuations under steady radia-
tive forcing. We use this to test the hypothesis that a deep
learning model trained on GCM simulations can provide a
fast approximation to GCM-based forecasts, and whether
such a model performs better than simple persistence fore-
cast models.

Methods
Data
The training data consists of an 800 year time series from
CanESM2 simulations, represented as a sequence of one
month time steps. The first 600 years are used for train-
ing, years 601-700 are used for early stopping and hyper-
parameters tuning, and years 701-800 are used as a clean
test set for evaluation. After hyper-parameter optimization
a final model is trained on the first 700 years with the fi-
nal 100 years used for early stopping, and we evaluate per-
formance on historical SST anomaly data from years 1958-
2017, pre-processed by subtracting the linear climate change
trend line.

The CanESM2 data is represented by a grid of 128 lon-
gitudinal steps (ranging from 180◦W-180◦E) and 22 latitu-
dinal steps (ranging from 30◦S-30◦N). A mask is applied to
cells that do not consist entirely of open ocean. For each
unmasked cell we have sea surface temperature anomaly,
surface wind stress decomposed into longitudinal and lati-
tudinal components τu and τv , and the depth of the 20 de-
gree Celsius isotherm z20, which essentially measures the
upper ocean heat content. The data is normalized by mean-
subtraction and scaling by the standard deviation, with the
mean and variance of each feature calculated over all grid
cells over the entire data set. For masked cells the values of
all input features are filled with zeroes; predictions at these
cells do not contribute to the loss.

Deep Learning
The deep learning approach can leverage global information
to predict SST at any particular location. However, limiting
the information to a local region is advantageous because it
helps prevent overfitting. The size of this “receptive field” is
something that is optimized during hyper-parameter selec-
tion.

In our experiments, a neural network architecture takes in
a (128+k)×(22+k)×T×4 tensor, where k is the kernel size
and T is the number of months to consider when making pre-
dictions. The T × 4 input features at each grid cell are con-
catenated and treated as input channels. The model consists
of a sequence of 2D convolutional layers, with skip connec-
tions concatenating the input SST values to the penultimate
layer (similar to the widely-used U-net architectures (Ron-
neberger, Fischer, and Brox 2015)) and adding them to the
linear output layer (as in a ResNet (He et al. 2016)). The
objective is the Mean Squared Error (MSE) loss computed
over the non-masked grid cells.

Hyper-parameters were optimized using the Bayesian Op-
timisation algorithm implemented in the SHERPA black-
box optimization framework (Hertel et al. 2018). A total
of 400 neural networks were trained, optimizing over the

Hyper-parameter Range Best
Input timesteps 1 - 12 2
Convolution layers 4 - 12 12
Convolution channels 20 - 160 49
Kernel shape (3,3), (5,5), (7,7) (3,3)
Initial learning rate 0.0001 - 0.1 0.0001
Batch size 1, 2, 4 1
Early stopping patience 1 - 10 10

Table 1: Hyper-parameter search space explored and optimal
values selected by SHERPA after training 100 neural net-
works using Bayesian Optimization. Kernel shape and batch
size were treated as categorical variables with the choices
listed.

search space shown in Table 1. The best model consisted
of the maximum number of hidden layers (twelve) in our
hyper-parameter search space. Many of the models over-
fit to the data set, and regularization was important — the
best model used a small batch size, a small kernel size, a
small number of timesteps to consider in the input, and a
small channel size. We tried four other modifications that did
not improve the performance on the GCM validation set, so
were not used in the final model: (1) using locally-connected
layers instead of convolutional layers; (2) passing the land-
mass mask as an input instead of zero-filling; (3) including
the month as an extra input channel; (4) dropping the z20
input channel.

Results
The model is trained to make predictions for the entire
CanESM2 grid, but we focus our analysis on the NTA and
the ATL3 regions. In order to evaluate the generalization
from simulation to observed data, we evaluate performance
on both (1) the final 100 years of the CanESM2 simulation,
and (2) the de-trended historical data. In both test sets and
both regions, the NN predictions beat the persistence model
for lead times of 1-6 months (Figure 2). There is a signifi-
cant increase in RMSE when transferring the model from the
simulation data it was trained on to the historical data, con-
firming that the simulations are only an imperfect approxi-
mation to the real system, but the NN maintains its perfor-
mance advantage.

NTA ATL3
GCM Historical GCM Historical

Persistence 0.27 0.50 0.35 0.51
Deep learning 0.23 0.41 0.26 0.43

Table 2: RMSE on the GCM simulation and historical test
sets, in degrees Celsius, averaged over a six-month lead
time.

In the NTA, the NN predictions also beat the damped per-
sistence model on both test sets. Figure 2 breaks down the
performance on the 1958-2017 historical data by lead time
for predictions made on February 1st of each year, showing
that the forecasting ability degrades with longer lead times



Figure 2: Anomaly correlation coefficient (ACC) and RMSE
in degrees Celsius of deep learning approach vs. persistence
model and damped persistence model on the Northern Trop-
ical Atlantic from 1958-2017. The climate change trend has
been removed from the data. All predictions are made from
February 1st.

(i.e. farther into the future). However, the NN is no bet-
ter than the damped persistence approach on the historical
ATL3 data (Figure 3), reflecting the challenge in modeling
this region.

Figure 4 compares the sea-surface temperature prediction
skill of the NTA model with a range of other approaches. In
addition to the persistence forecast, we compare to a linear
inverse model (LIM) and GCM-based predictions. Linear in-
verse modeling is a technique that assumes that the evolution
of a system can be approximated by a linear operator with
white noise forcing. In practice, the linear operator is typi-
cally calculated in principal component space using multi-
variate regression at a fixed time lag (Penland and Sardesh-
mukh 1995). LIMs are usually derived from observational
data but here we use a LIM derived from the output of the
CanESM2 GCM. The other forecast models are GCM based,
i.e. they use complex atmosphere-ocean models initialized

with observations to predict the evolution of the system. The
GCM forecast models include the SINTEX-F, a prediction
model used at the Japan Agency for Marine-Earth Science
and Technology (Luo et al. 2005), and 8 models from vari-
ous forecast centers that participated in the Climate-system
Historical Forecast Project (Tompkins et al. 2017); see also
(Kirtman and Pirani 2009). These GCM forecast models
were selected to illustrate the performance of complex pre-
diction systems. The performance of the NN is competitive
with these state-of-the-art methods.

Conclusion
We demonstrate the use of deep learning for forecasting
monthly sea surface temperature variations in the Atlantic
Ocean with a lead time of 1-6 months, a problem known to
be significantly harder than forecasting the ENSO in the Pa-
cific. Training on CanESM2 climate model data and testing
on historical data, the deep learning approach performs as
well as the best GCM physics models on the northern trop-
ical atlantic region with much less computation. However,
on the equatorial Atlantic, our model does no better than a
simple damped persistence model.

In this work we restricted ourselves to only training on
GCM simulation data at a fixed grid size, and thus we only
expect the model to perform as well as the simulation it was
trained on. We expect the NN approach to do better if it is
given a chance to learn from historical data, since then it
could learn to correct for deficiencies in the GCM. Fine tun-
ing the model on historical data is an opportunity for future
work, although there is a significant danger of overfitting
given the limited amount of historical data.
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Tompkins, A. M.; Ortiz De Zárate, M. I.; Saurral, R. I.; Vera,
C.; Saulo, C.; Merryfield, W. J.; Sigmond, M.; Lee, W.-S.;
Baehr, J.; Braun, A.; et al. 2017. The climate-system his-
torical forecast project: Providing open access to seasonal
forecast ensembles from centers around the globe. Bulletin
of the American Meteorological Society 98(11):2293–2301.
Wang, R.; Kashinath, K.; Mustafa, M.; Albert, A.; and Yu, R.
2019. Towards physics-informed deep learning for turbulent
flow prediction. arXiv preprint arXiv:1911.08655.



Figure 4: Comparison of deep neural network model (NN CanEMS2, blue line) and dynamical models from the CHFP inter-
comparison for years 1982-2010 in the NTA region. The performance of the linear inverse model trained on CanESM2 output
(LIM CanESM2) is shown in yellow-green. All predictions are initialized on February 1. The metric shown is the anomaly
correlation coefficient (ACC), which is calculated as the correlation of predicted and observed deviations (anomalies) from the
mean climate.


