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A Deep Reinforcement Learning Framework for
Spectrum Management in Dynamic

Spectrum Access
Hao Song , Lingjia Liu , Senior Member, IEEE, Jonathan Ashdown , Member, IEEE, and Yang Yi

Abstract—Dynamic spectrum access (DSA) has the great
potential to alleviate spectrum shortage and promote network
capacity. However, two fundamental technical issues have to be
addressed, namely, interference coordination between DSA users
and interference suppression for primary users (PUs). These two
issues are very challenging since generally there is no powerful
infrastructures in DSA networks to support centralized control.
As a result, DSA users have to perform spectrum management
individually, including spectrum access and power allocation,
without accurate channel state information and centralized con-
trol. In this article, a novel spectrum management framework is
proposed, in which Q-learning, a type of reinforcement learn-
ing, is utilized to enable DSA users to carry out effective
spectrum management individually and intelligently. For more
efficient process, neural networks (NNs) are employed to imple-
ment Q-learning processes, so-called deep Q-network (DQN).
Furthermore, we also investigate the optimal way to construct
DQN considering both the performance of wireless commu-
nications and the difficulty of NN training. Finally, extensive
simulation studies are conducted to demonstrate the effectiveness
of the proposed spectrum management framework.

Index Terms—Deep Q-network (DQN), dynamic spectrum
access (DSA), echo state networks (ESNs), reinforcement learning
(RL), spectrum management.

I. INTRODUCTION

THE white paper released by CISCO foresees that global
mobile data traffic will witness exponential growth from

2017 to 2022 with a 46% compound annual growth rate and a
sevenfold total increase [1]. Such a tremendous growth makes
spectrum resources extremely scarce and costly, as all mobile
operators seek for spectrum extensions to meet the future
mobile data traffic demand. However, an opposite fact is dis-
closed by relevant practical measurements and investigations
that many precious spectrum resources are underutilized. Even
in some crowded cities, such as New York and Chicago, the
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utilization rate of spectrum resources is low, below 40% [2].
These measurement results spur the Federal Communication
Commission (FCC) to review the legacy static spectrum allo-
cation policy, which limits potential users to obtain spectrum
access opportunities [3]. Hence, a concept of dynamic spec-
trum access (DSA) is raised, where spectrum resources will
be shared by different users rather than just licensed users.
DSA is an enabling and supporting technology for distributed
Internet of Things (IoT) networks, where IoT devices have to
manage their wireless resources individually, including spec-
trum access and transmit power, as no powerful infrastructure
exists to provide centralized control [4].

Many frequency bands are opened up to support DSA. One
of the representative applications of DSA is unlicensed spec-
trum access, such as industrial, scientific, and medical (ISM)
bands, and unlicensed national information infrastructure
(UNII) bands. LTE systems have been encouraged to extend
their system bandwidth by accessing 5.8-GHz ISM bands, such
as licensed-assisted access (LAA) and LTE-unlicensed (LTE-
U) systems [5]. The relevant enabling technologies have been
widely studied, such as resource allocation and co-existence
between LTE-U and Wi-Fi [6], [7]. However, crowded Wi-Fi
devices have made unlicensed bands extremely congested and
detrimental interference environments may be encountered on
these bands. Therefore, the FCC searches for more available
spectrum to satisfy the demand of DSA users by exploring
ultra-wideband millimeter-wave (mmWave) bands. To facil-
itate the use of mmWave, the license of 14-GHz contiguous
mmWave from 57- to 71-GHz bands have been opened up [8].
Unfortunately, effective wireless transmissions on mmWave
bands require complicated and dedicated designed signal pro-
cessing technologies and hardware, causing severe overhead.
Therefore, to provide more DSA opportunities on superior
low-frequency bands, the FCC has decided to further exploit
underutilized licensed bands. For example, in 2015, an auc-
tion was held by the FCC for the license of advanced wireless
services (AWS-3) bands, including 1695–1710-MHz, 1755–
1780-MHz, and 2155–2180-MHz bands. The winner in the
auction is allowed to access AWS-3 bands as secondary
users. In addition, 3550–3700-MHz bands, also referred to as
3.5-GHz bands will be available for DSA in the future [9].

Despite many advantages, DSA on opened licensed bands
is very challenging for the following reasons. First, on most
opened licensed bands, incumbents, also referred to as primary
users (PUs) exist, which possess higher priorities and should
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be protected from harmful interference. For example, on AWS-
3 bands, the federal meteorological-satellite (MetSat) systems
are PUs and should be protected by any DSA user that
intends to access AWS-3 bands [9]. Second, generally, there
is no powerful infrastructure to provide centralized control for
DSA users. DSA users have to conduct spectrum management
individually [10]. As a result, DSA users may suffer from
severe interference. Unfortunately, the interference issue in
DSA networks cannot be addressed by the traditional methods,
such as interference coordination [11] and interference cancel-
lation [12], which depend upon cooperation between users or
accurate channel state information (CSI) estimations for other
users.

As powerful tools, applying machine learning and deep
learning technologies in the wireless communication field has
been widely studied to improve system performance or effi-
ciency, such as beamforming management [13] and resource
allocation [14]. However, these proposed methods are based
on supervised learning, which require training data. Training
data could be acquired by measurements or generated by the
particular model of application scenarios. However, practi-
cal measurements are very costly, since tremendous amounts
of data need to be collected and processed. Moreover, in a
dynamic system like DSA networks, the model is normally
unknown, as the information regarding network layout and
channel states is unavailable. In this article, a novel frame-
work is proposed to leverage deep reinforcement learning (RL)
in spectrum management, including both spectrum access and
power allocation, in DSA networks. In the proposed frame-
work, Q-learning with the model-free nature is utilized to
enable a DSA user to learn wireless environments, which
are dominated by behaviors of PUs and other DSA users.
Furthermore, a DSA user will carry out spectrum manage-
ment just by interacting with environments without depending
on any CSI and cooperation with other users [15]. Nonetheless,
Q-learning cannot handle large exploration space. With a large
amount of states and actions, the training of Q-learning will
become difficult [16]. For fast convergence, neural networks
(NNs) are utilized to perform Q-learning processes, including
approximating the expected cumulative reward and exploring
optimal state–action pairs, so-called deep Q-network (DQN),
which is a type of deep RL [17]. In our earlier work, a deep RL
approach is introduced for spectrum access in DSA networks,
where power allocation is not considered in [18] and [19]. In
this article, we apply deep RL in both spectrum access and
power allocation of DSA networks. The key contributions of
this article are summarized as follows.

1) A framework of spectrum management is developed
based on DQN for DSA networks, enabling DSA users
to perform proper spectrum management individually
and intelligently without relying on accurate channel
estimations and centralized control. In the DQN, the
spectrum management strategies, including spectrum
access and power allocation, are defined as states, while
the adjustment for spectrum management is defined
as actions, which is conducted based on the reward
obtained through interacting with environments directly.
Additionally, both the co-existence between DSA users

and the protection for PUs are taken into account in the
framework.

2) We provide a comprehensive investigation of the proper
way to constitute DQN. Especially, we focus on study-
ing the performance of echo state networks (ESNs), a
special type of recurrent NNs (RNNs), in spectrum man-
agement of DSA, which possess the temporal correlation
attribute and are easier to be trained compared to tra-
ditional RNNs. Through simulations, comparison, and
analysis, the optimal selection of NNs is found, which
can bring in an excellent performance in terms of both
achievable data rate, PU protection, and convergence
behaviors.

The remainder of this article is organized as follows. In
Section II, the system model of DSA networks is described.
Section III presents the design of interference information
feedback methods to support spectrum management in DSA.
In Section IV, a novel framework of spectrum management
leveraging Q-learning is proposed. Then, a DQN-enabled spec-
trum management scheme is introduced and the selection of
NNs is discussed in Section V. In Section VI, simulation
results are plotted along with performance analysis. Finally,
this article is summarized in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A DSA network consisting of multiple DSA users and PUs
is considered, which is constructed in the distributed fash-
ion without powerful infrastructures and centralized control.
Without loss of generality, it is assumed that there are a trans-
mitter (TX) and a receiver (RX) in each DSA user, so-called
a DSA user pair. DSA users opportunistically access wireless
channels shared with other DSA users and PUs. For simpli-
fication, a reasonable assumption is made that each PU only
uses one wireless channel and PUs occupy different channels
to avoid making interference to each other.

The main notations used in this article are shown
as follows. Let N = {n|n = 1, 2, . . . , N}T and M =
{m|m = 1, 2, . . . , M}T represent the sets of DSA users and
wireless channels, respectively. Under the assumption that
different PUs occupy different channels, the channel set M
can also denote the set of PUs. The sets of channels allo-
cated to DSA user n and DSA users accessing channel m
are denoted by �n = {m|m = 1, 2, . . . , Mn}T and �m =
{n|n = 1, 2, . . . , Nm}T , respectively.

Due to lack of centralized control in DSA networks, DSA
users may suffer from the interference caused by other DSA
users and PUs. Accordingly, the received signals of DSA user
n on channel m are shown in Fig. 1, which could be given by

ym
n = xm

n · hm
nn + xm

m · hm
mn +

∑

j∈�m,j �=n

xm
j · hm

jn + zm
n (1)

where xm
n is the desired signal of DSA user n on channel m,

and xm
m and xm

j denote interference signals from PU m and
DSA user j, respectively. Correspondingly, hm

nn, hm
mn, and hm

jn
stand for the channel gains of the links from the TX to the
RX of DSA user n, from PU m to DSA user n, and from DSA
user j to DSA user n, respectively. Besides, the additive white

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:35:44 UTC from IEEE Xplore.  Restrictions apply. 



11210 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 14, JULY 15, 2021

Fig. 1. Received signals of a DSA user.

Gaussian noise (AWGN) received on channel m is denoted
by zm

n .
The corresponding signal-to-interference-plus-noise ratio

(SINR) is given by

rm
n =

pm
n ·

∣∣hm
nn

∣∣2

pm
m ·

∣∣hm
mn

∣∣2

︸ ︷︷ ︸
Interference from
PU m

+
∑
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pm
j ·

∣∣∣hm
jn

∣∣∣
2

︸ ︷︷ ︸
Interference from

other DSA users

+B · N0︸ ︷︷ ︸
noise

(2)

where pm
n , pm

m, and pm
j represent the transmit power of n, m, and

j on channel m, respectively. B and N0 are channel bandwidth
and noise spectral density, respectively. The corresponding
spectral efficiency is log2(1+ rm

n ).
With rm

n , the spectrum management problem in DSA with
respect to variables {pm

n }n∈N,m∈M can be formulated as

max{pm
n }

∑

n∈N

∑

m∈M

log2
(
1+ rm

n

)
,

subject to
∑

n∈N

Im
n ≤ �, for any m ∈M

∑

m∈M

pm
n ≤ P̄, for any n ∈ N

pm
n ≥ 0, for any n ∈ N and m ∈M (3)

where � and P̄ denote the interference threshold on a channel
and the transmit power constraint of a DSA user, respec-
tively. Im

n is the interference received by PU m, which is
caused by DSA user n. In the optimization problem (3), the
objective function aims at maximizing all DSA users’ spectral
efficiency by optimizing power allocations of DSA users on
each channel. The first two constraints are used to restrict the
interference to a PU and the total transmit power of a DSA
user, respectively. It is important to note that with the third
constraint variables (transmit power) could be 0. If pm

n = 0,
this indicates DSA user n will not access wireless channel m.

III. SYSTEM DESIGN

Generally, no powerful infrastructure, such as base sta-
tions (BSs) or control centers, is deployed in distributed
DSA networks to provide centralized control, so that DSA
users have to carry out their spectrum managements individ-
ually. Moreover, a DSA user can only obtain very limited
CSI, only channel states of the link between its own TX
and RX. CSI of other DSA users and PUs is normally
unavailable. Thus, it is difficult for DSA users to perform

Fig. 2. System procedure of interference information feedback.

spectrum management through centralized resource allocation
algorithms, which require accurate CSI. To facilitate DSA
users to make proper spectrum management and protect PUs
from harmful interference, the feedback related to the received
interference should be provided by PUs, which is necessary
for our developed spectrum management framework using
DQN. However, DSA users and PUs may be operated by dif-
ferent mobile systems, which cannot connect to each other
directly. Therefore, two possible interference information feed-
back methods of PUs are analyzed and corresponding system
procedures are designed for viability.

A. Procedure of Interference Information Feedback

The preliminary condition of effective information exchange
between DSA users and PUs is the synchronization in time and
frequency domain. In other words, DSA users need to know
the frequency–time resource blocks that carry interference
feedback information. Therefore, the system procedure of
interference information feedback is designed. It is worth
noting that since DSA users and PUs may be controlled
by different wireless communication systems, the message
exchange between them should be minimal to make the design
interference information feedback processes less complicated
and easy to realize.

Fig. 2 describes the interference information feedback pro-
cess. To ensure that DSA users are aware of configurations
regarding DSA, PUs should add the corresponding information
in their system information (SI) and broadcast it periodically.
SI is a proper carrier for DSA configurations, since SI is
used to carry common control information that are funda-
mental and indispensable for all users to conduct wireless
transmissions, and generally delivered upon fixed wireless
channels [20]. Thus, in our design, when a DSA user attempts
to access a frequency band, it needs to receive the SI from
the corresponding PUs to read DSA configurations. DSA con-
figurations should provide the information related to transmit
power constraints and the dedicated time–frequency resources
to transmit interference feedback information. According to
the received DSA configurations, the DSA user carries out
data transmissions. Then, PUs measure received interference
caused by DSA users and feed the corresponding interference
information back to DSA users through the dedicated time–
frequency resources indicated in DSA configurations. Based
on the interference information feedback, DSA users adjust
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Fig. 3. Broadcast the total interference to all DSA users.

Fig. 4. Feed the specific interference back to each DSA user.

their DSA parameters to improve their own performance and
guarantee PU protections.

B. Interference Information Feedback Method

There is no doubt that DSA users would be able to make
the more appropriate decision on DSA parameter adjustments
if they can obtain more precise interference information feed-
back. However, the accuracy of interference information feed-
back is dominated by the way that PUs measure interference
from DSA users. Here, based on the designed system pro-
cedure of interference information feedback, we discuss two
possible methods of PUs performing interference measure-
ments and the corresponding interference information that can
be attained by DSA users.

1) Method 1: In a general way, a PU is only able to measure
the total received interference, which can be realized by sens-
ing blank time–frequency slots embedded in their occupied
channels. Then, the PU broadcasts the measurement results to
DSA users. The method is presented in Fig. 3. Obviously, with
this method, the overhead of interference information feedback
is relatively small, while interference information that DSA
users can get is really rare, only the total interference level
that PUs are suffering conveyed.

2) Method 2: As shown in Fig. 4, PUs identify and detect
the interference caused by each individual DSA users, and
feed the specific interference level back to each DSA user.
Unfortunately, PU can only receive the mixed interference sig-
nals of all DSA users sharing the same channels. To distinguish
the interference signals from different DSA users, each DSA

user needs to be configured with user-specific pilots, by detect-
ing which PUs can acquire the specific interference caused
by different DSA users [21]. However, in DSA networks,
there is no powerful infrastructure, like BSs, to conduct cen-
tralized measurement configurations for DSA users and PUs.
Therefore, a low-complexity and efficient user-specific pilot
assignment method is proposed, which is described as fol-
lows. To avoid pilot contamination, the user-specific pilots of
different DSA users should be transmitted on different time–
frequency resource blocks. A PU includes the information
of unused user-specific pilots and the corresponding time–
frequency resource blocks used to send different user-specific
pilots in its SIs and broadcast to all DSA users. If a DSA
user attempts to access the channels occupied by this PU,
it needs to receive and read the PU’s SI first. Then, the
DSA user randomly selects a user-specific pilot and sends
the chosen user-specific pilot on the corresponding time–
frequency resource blocks. The PU needs to keep monitoring
the time–frequency resource blocks used for user-specific
pilot transmissions. If the PU find that a user-specific pilot
is transmitted on the corresponding time–frequency resource
blocks, the PU should remove the user-specific pilot from its
SIs, and measure the user-specific pilot to obtain interference
information. In this way, interference measurements for each
particular DSA user could be achieved without relying on
centralized measurement configurations supported by powerful
infrastructures.

Although this method is able to provide more precise
interference information feedback to DSA users, considerable
overhead would also be aroused. Compared to method 1, more
time and frequency resources are consumed to perform user-
specific pilot assignments, transmissions, and measurements.

IV. REINFORCEMENT-LEARNING-BASED SPECTRUM

MANAGEMENT

To accomplish better performance under the condition of
no centralized control and channel estimations, RL will be
employed, enabling DSA users to perform spectrum manage-
ment individually and intelligently.

A. Reinforcement Learning

Due to the model-free nature, RL has been applied in
many fields, including wireless communications. To be spe-
cific, RL enables agents to learn environments and optimal
actions according to accumulated rewards rather than labeled
data or training data. In RL, the environment is defined as
practical environments where a system practically conducts
its operations. Therefore, the reward information is collected
by taking different actions in practical environments directly.
Moreover, an action may be taken multiple times to attain
the knowledge of the relationship between actions and states.
After fully exploring environments, the action that could bring
in maximum rewards for the current state will be selected [15].

Q-learning, a basic RL method, holds the model-free
attribute and low-complexity process. With Q-learning, agents
learn optimal actions through directly interacting with environ-
ments without relying on any environment model information
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and cooperation with other agents [22]. Besides, the reward
information is represented by the Q-value, which is updated
by iteratively taking various actions into environments. In Q-
learning, there are two main stages, namely, exploration and
exploitation. In the exploration stage, different actions should
be are tried even if an action is known that it is not the
optimal choice for the current state in order to fully collect
the reward knowledge. On the other hand, in the exploitation
stage, only the action that is expected to provide maximum
rewards for the current state will be chosen for an excellent
performance. Apparently, the tradeoff between exploration and
exploitation is very important, both of which directly dominate
the performance of Q-learning.

In some circumstances, the optimal action of the current
state is selected, which could be expressed by the optimal
policy π∗ as

A∗t = arg max
At

Qπ∗(St, At) (4)

where St and A∗t are the current state and its optimal action,
respectively.

However, to fully exploring environments and adapt to the
variation of environments, the actions that have not been tried
or do not have maximum rewards should be taken into envi-
ronments in the exploration stage. The exploration is the key
that Q-learning could be applied in dynamic systems, like DSA
networks, by which Q-values could be updated according to
the change of environments. Here, the ε-greedy method is
employed to carry out the exploration in Q-learning, where
ε ∈ [0, 1] is a predefined probability to control the chance
of randomly selecting actions or following the optimal policy
π∗ [23]. The ε-greedy method could be expressed as

At =
{

arg max
At

Qπ∗(St, At), with the probability of 1− ε,

Randomly select actions, with the probability of ε.

(5)

It is worth noting that during exploration stages PUs may
suffer from considerable interference and DSA users may
experience unsatisfied communication qualities, as inappro-
priate actions may be taken with random selections. To cope
with this issue, the exploration of Q-learning should be trig-
gered and performed only if a DSA user cannot maintain a
preferable communication quality to restrict the frequency of
explorations. Furthermore, PUs could be protected by adjust-
ing the total transmit power constraint in Q-table. For example,
if a PU using a wireless channel is suffering from intolerable
interference, it can mandate DSA users to have stricter transmit
power constraint on this channel.

After taking a selected action in environments, the Q-value
of the selected action and the current state will be updated by

Q(St, At)← Q(St, At)

+ α ·
[

Rt+1 + γ ·max
At+1

Q(St+1, At+1)− Q(St, At)

]
(6)

where Rt+1 is the corresponding reward of taking the selected
action in environments. α ∈ (0, 1) denotes a learning rate
used to control the step size of Q-value update. γ ∈ [0, 1]
stands for a discounted rate used to adjust the weight between

the immediate reward and the future reward. For example, if
the Q-value update should heavily depend on the immediate
reward, a small γ should be adopted. From (6), it can be seen
that the Q-value is used to measure how good an action is
for a state and reflect both the immediate reward if taking an
action under a state and the future expected reward.

B. Spectrum Management Using Q-Learning

Here, a Q-learning-based spectrum management scheme
is proposed. The DSA will be formulated as a Q-learning
problem, in which the essential components of Q-learning,
including agents, states, and actions, are defined. The details
of using Q-learning in spectrum management are elaborated
as follows.

1) Each DSA user will be regarded as an agent that carries
out Q-learning processes independently, including action
selections and Q-value update.

2) The state of DSA user n is defined as the transmit power
on wireless channels, which could be represented by a
transmit power vector, S = (p1, p2, . . . , pM)T , where pi,
i = 1, 2, . . . , M, is the transmit power of the ith channel.
As transmit power is a continuous value, possible states
would be infinite. Here, the number of states is restricted
by discretizing the transmit power into different levels.
For example, assume that the total transmit power of a
DSA user is limited to 300 mW, the transmit power on
a single channel has four levels, which are 0, 100, 200,
and 300 mW.

3) The action of a DSA user is designed as the trans-
mit power change for each channel, which can also be
denoted by a vector, A = (a1, a2, . . . , aM)T , where ai,
i = 1, 2, . . . , M, is the adjustment of the ith channel’s
transmit power. Similarly, the amount of actions should
be restricted. Accordingly, only three types of actions
will be selected, namely, increasing transmit power to
the next higher level, decreasing transmit power to the
next lower level, and no change, notated by In, De, and
Un, respectively.

Based on the configuration of Q-learning, the correspond-
ing Q-table is designed in Table I, where the total transmit
power constraint, the number of channels, and the number of
transmit power levels are assumed to be 300 mW, 2, and 4,
respectively. For fairness, each DSA user accesses at least one
channel, and accordingly the transmit power of at least one
channel is nonzero. It is noticeable that for an initial state,
some actions should avoid been selected, since taking these
actions will make the next state unavailable or out of the scope
of defined states. For example, at state 7 (100 mW, 200 mW),
actions 5, 6, and 9 should not be chosen, which makes the total
transmit power exceeds the constraint. Actions 2, 4, and 8 are
inapplicable for state 1 (100 mW, 0 mW), after taking which
the transmit power of the second channel becomes a negative
value (−100 mW). Therefore, for feasibility, some operating
mechanisms need to be designed to tackle these issues, which
are described as follows.
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TABLE I
Q-TABLE IN A DSA USER

1) The corresponding Q-values of the inappropriate actions
should be set to a very small value, represented by LR in
Table I, to reduce the chance of choosing these actions.

2) If an action will result in the transmit power vector
unable to match any state in the Q-table, the initial state
is adopted as the next state. For example, after taking
action 6 with the state 6 (200 mW, 100 mW) as the ini-
tial state, the transmit power vector will be changed to
(300 mW, 100 mW), which is unavailable in the Q-table.
Therefore, state 6 will be adopted as the next state.

Obviously, the proposed spectrum management based on
Q-learning can provide both spectrum access and power allo-
cation strategies for DSA users. A DSA user will access a
wireless channel only if the transmit power of this channel
in the state is not equal to 0. Moreover, the state expressed
by the transmit power vector could indicate power allocation
strategies directly.

C. Definition of Reward

The definition of reward directly determines the
performance of spectrum management, which should
consider both data rate enhancement and PU protections. In
Section III, two potential interference information feedback
methods are discussed for future DSA networks, based on
which the reward used in Q-learning will be defined.

If method 1 as shown in Fig. 3 is applied, PUs are merely
able to broadcast total received interference to all the DSA
users, the reward of DSA user n is defined as

Rn =
∑

m∈�n

log2

⎛

⎜⎜⎜⎝1+
∣∣hm

nn

∣∣2 · pm
n

∣∣hm
mn

∣∣2 · pm
m+

∑
j∈�m,j �=n

∣∣∣hm
jn

∣∣∣
2 · pm

j +B · N0

⎞

⎟⎟⎟⎠

− κ ·
∑

m∈�n

e
Im

Îm
(7)

where the first term and the second term are spectral effi-
ciency and the penalty caused by the interference to PUs,
respectively. The penalty is determined by κ . Im and Îm are
the total interference suffered by the PU m and the reference
interference level, respectively. The penalty will exponentially
increase with the growth of Im. κ is a weight to adjust
the influence of the penalty on the reward. Apparently, for
a DSA user, the only information needed to calculate the
defined reward is the interference feedback from PUs, while
its spectral efficiency can be monitored by itself.

Under method 2, a DSA user can obtain more detailed
interference information feedback from PUs, namely, the spe-
cific interference caused by it. Accordingly, the reward of DSA
user n is defined as

Rn =
∑

m∈�n

log2

⎛

⎜⎜⎜⎝1+
∣∣hm

nn

∣∣2 · pm
n

∣∣hm
mn
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where Im
n is the interference received by PU m, which is caused

by DSA user n. Îm
n denotes the reference interference level of

DSA user n on channel m.
For feasibility and practicability, the feedback processes of

spectral efficiency information and the interference to PUs
need to be designed. Spectral efficiency information could
be fed back to DSA TXs along with channel measurement
and acknowledgment (ACK) feedback, which are used to
preserve communication quality and assist packet retransmis-
sions, respectively. On the other hand, a feasible and simple
way to achieve interference feedback is that PUs broadcast
interference information on their fixed broadcasting channels
with fixed modulation and coding schemes, so that DSA
users can retrieve interference information by listening PUs’
broadcast channels periodically. Since interference information
normally only comprises limited data, the corresponding over-
head to both PUs and secondary users can be restricted in
a low level. Relatively, the interference information feed-
back method 2 will cause more severe overhead, where more
broadcasting resources need to be occupied, as more detailed
and specific interference information is fed back. Besides,
method 2 has more complicated system procedures especially
in interference measurement, which has been designed and
described in Section III. However, method 2 can provide more
precise interference information feedback to each DSA user,
facilitating more efficient and accurate Q-learning process. To
alleviate the overhead of interference information feedback,
unnecessary feedback should be avoided. For example, a PU
will feed interference information back to DSA users only
when its received interference is measured to be changed. For
a DSA user, if it does not receive a new interference feedback,
the DSA user will keep using the latest interference feedback
to calculate the reward.
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Fig. 5. Q-learning-based spectrum management.

D. Process of Q-Learning-Based Spectrum Management

Based on the aforementioned design, the system procedure
of the spectrum management using Q-learning is described as
follows. As shown in Fig. 5, a DSA user selects an action
(transmit power changes) according to its current state (its
transmit power vector) and Q-table, as well as the applied
policy expressed by (5). With the chosen action, the DSA
user adjusts its transmit power and updates its transmit power
vector, based on which wireless transmissions are performed
in wireless environments. Then, the updated transmit power
vector will be used as the next state, and a reward is calculated
based on the performance of its wireless transmission and the
interference information feedback from PUs according to (7)
or (8). Finally, the next state substitutes the initial one to be the
current state of the DSA user, and the Q-value related to the
initial state and the selected action in the Q-table is updated
according to (6). Obviously, the training of Q-learning could
be integrated into the real wireless transmissions of DSA users,
which does not require any extra training process or training
data with limited system overhead, low complexity, and high
feasibility.

V. DEEP Q-NETWORK-BASED SPECTRUM MANAGEMENT

Since Q-learning is processed by Q-value updates, Q-
learning is not able to handle the Q-table with a large size.
The large size of Q-table makes Q-learning very hard or even
impossible to converge [16]. Thus, powerful NNs will be uti-
lized to address this issue and support efficient Q-learning
processes, also referred to as DQN.

A. Deep Q-Network

The DQN process of a DSA user is illustrated in Fig. 6, in
which two NNs are utilized, including an evaluated NN and a
target NN. It is assumed that the initial state is St and there are
totally L actions in Q-table. After inputting the initial state St

into the evaluated NN, the Q-values of St with respect to all the
actions, Q(St, A1), Q(St, A2), . . . , Q(St, AL), will be output.
Afterward, according to the applied policy, an action At is cho-
sen, which is taken to updated the transmit power vector and
determine the next state St+1. Then, the DSA user carries out
wireless transmissions in environments based on the updated
transmit power vector and obtain the reward according to the

Fig. 6. Iteration of DQN.

reaction of environments, including its spectrum efficiency and
interference feedback from PUs. The next state St+1 is input
into the target NN to generate Q-values of St+1 with respect
to all the actions, Q(St+1, A1), Q(St+1, A2), . . . , Q(St+1, AL).
With the generated Q-values of St+1 and the obtained reward,
the Q-value of the initial state St and the selected action At,
Q(St, At), is updated according to (5). The updated Q-value
Q(St, At) will be regarded as a target value used in the train-
ing of the evaluated NN with the backpropagation method. The
target NN is updated periodically by employing the evaluated
NN as a new target NN [17], [24].

B. Selection of Neural Networks

The selection of NNs is crucial for the performance of
DQN, which should be chosen based on application scenarios.
Feedforward NNs (FFNNs) have been widely applied in vari-
ous fields, which possess a simple structure and are easy to be
trained [25]. Nevertheless, RNNs may be able to bring in better
performance for DSA networks due to their temporal corre-
lation attribute. In an RNN, activation values of neurons are
determined not only by current input data but also by previous
activation values of recurrent neurons and output neurons.
These feedback connections make RNNs capable of capturing
temporal correlations, which are very useful and meaningful in
a system with dynamic environments [25], [26]. For instance, a
typical application of RNN is the natural language processing,
as languages normally need to be comprehended considering
both current words and previous words [27]. In DSA networks,
it is better for DSA users to make the decision on spectrum
management based on a series of environment status rather
than the environment at the current moment. However, the
complicated structure makes RRNs very hard to train [16]. To
cope with that, ESNs, a simplified type of RNNs, is intro-
duced, the structure of which is plotted in Fig. 7. In an ESN,
the weights of input and reservoir layers are predefined and
fixed, while only the weights of an output layer need to be
trained [28], [29]. As a result, compared to traditional RNNs,
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Fig. 7. Echo state network.

ESNs are easier to train, meanwhile, the temporal correlation
attribute could be preserved.

VI. SIMULATION RESULTS AND ANALYSIS

Through simulations, the performance of our proposed spec-
trum management scheme is investigated. Additionally, the
optimal way to constitute DQN is studied through simulations,
which will take into account both system performance and the
convergence of machine learning/deep learning methods.

A. Simulation Setup

In the simulation, a DSA network consisting of two wire-
less channels and four DSA users is considered. Moreover,
four DSA users and four PUs are randomly distributed in a
150 m × 150 m area. For fairness, it is assumed that each DSA
user is at least access one channel and the transmit power con-
straint for a DSA user is 300 mW. The WINNER II channel
model and the Rician channel model are adopted to calculate
channel gains [30]. According to the aforementioned analysis,
the ε in the ε-greedy method is a critical parameter, which
dominates the tradeoff between exploration and exploitation
of Q-learning or DQN. In the simulation, the total number
of training is 8000, in which 4000 times training is used for
exploration with a relatively large ε, 0.5, facilitating DSA
users to sufficiently explore all the possible spectrum man-
agement strategies. Then, ε will be adjusted to be 0 to let
DSA users select their spectrum management strategies with
optimal rewards. The detailed simulation parameters are listed
in Table II. For comparison, Q-learning, FFNN-based DQN,
and ESN-based DQN will be used to simulate the proposed
spectrum management scheme, respectively. All the simula-
tions are conducted by Python and Tensorflow is utilized to
execute the training of NNs. For the Q-value update in (6), the
learning rate α and the discounted rate γ are set to be 0.01
and 0.9, respectively.

B. Performance With the Total Interference Broadcast

First, the performance of the proposed spectrum manage-
ment scheme is investigated under the condition that only
the total interference broadcast can be provided by PUs as
shown in Fig. 3. Accordingly, the reward of a DSA user is
given by (7) and the reference interference level Îm is set to
8×10−6 mW. Fig. 8 presents the total reward, the summation
of all DSA users’ rewards, versus training steps. Obviously,

TABLE II
SIMULATION PARAMETERS

Fig. 8. Total reward with the total interference broadcast.

ESN-based DQN has a better performance on the reward, as
owning to the temporal correlation nature of ESN, DSA users
can learn dynamic wireless environments better and make the
more appropriate decision on spectrum management. Besides,
it can be seen that after the exploration stage the total reward
of ESN-based DQN becomes stable, indicating the excellent
convergence behaviors of ESN-based DQN.

Fig. 9 illustrates the total data rate of all DSA users with the
unit of Mbits/s. Due to no centralized control, each DSA user
attends to acquire more benefits in the competition with others.
As a result, when a DSA user is experiencing the low reward,
it may take the action of raising transmit power to boost its
data rate. However, afterward, the DSA user may encounter
more severe interference from other DSA users, causing low
data rate. This is because the high transmit power of a DSA
user will incur more serious interference to other DSA users,
which may also use the same method of rising their transmit
power to preserve communication quality. Hence, the spec-
trum management scheme should enable DSA users to reach
a balance on transmit power rather than unboundedly raising
transmit power against serious interference. It can be observed
from Fig. 9 that ESN-based DQN is able to let DSA users
reach a balance fast. In addition, spectrum management with
ESN-based DQN could bring in higher data rate, indicating
that an excellent balance is achieved between DSA users.

Fig. 10 shows the simulation results of total interference to
PUs caused by DSA users. According to (7), the interference is
regarded as a penalty in the defined reward utility. DSA users
are encouraged to lower their transmit power. Apparently, with

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 18:35:44 UTC from IEEE Xplore.  Restrictions apply. 



11216 IEEE INTERNET OF THINGS JOURNAL, VOL. 8, NO. 14, JULY 15, 2021

Fig. 9. Total data rate with the total interference broadcast.

Fig. 10. Total interference with the total interference broadcast.

ESN-based DQN, DSA users are capable of effectively sup-
pressing the interference to PUs in a relatively low level. The
reason is that the powerful ESN could enable DSA users to
learn the interference tolerable level of PUs through interacting
with environments and the received reward, so that more
proper spectrum managements are performed to protect PUs
from detrimental interference.

C. Performance With the Specific Interference Feedback

We also study the performance of the proposed spec-
trum management when DSA users can get more accurate
interference feedback from PUs as shown in Fig. 4. In this
case, the reward is calculated according to (8) and the refer-
ence interference level Îm

n is set to 2× 10−6 mW. Figs. 11–13
show the simulation results of total reward, the total data rate,
and the total interference, respectively. It is easy to observe
that ESN-based DQN can converge immediately once stepping
into the exploitation stage, since ESN promotes the environ-
ment learning ability of users and an excellent balance between
users can rapidly be achieved. Additionally, ESN-based DQN
possesses the higher reward and the lower total interference
than other methods. It is noted that in Fig. 12 the total data rate
of ESN-based DQN is lower than that of FFNN-based DQN
with two hidden layers. This phenomenon manifests that ESN-
based DQN can make better use of interference information
feedback from PUs when the feedback is more specific and

Fig. 11. Total reward with the specific interference feedback.

Fig. 12. Total data rate with the specific interference feedback.

Fig. 13. Total interference with the specific interference feedback.

detailed. For the reward enhancement, ESN-based DQN miti-
gates the interference to PUs by reducing transmit power and
sacrificing the data rate.

D. Optimality Evaluation

To investigate the optimality of the proposed framework
in this article, centralized optimization is employed as a
compared method for performance comparison. Through cen-
tralized optimization, global optimal or suboptimal can be
achieved, which could be deemed as “upper bound” for the
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Fig. 14. Optimality evaluation through total reward.

proposed framework. Note that it is impossible to realize
centralized optimization in distributive DSA, which requires
powerful infrastructures, centralized control, and accurate
and instantaneous channel estimations. The simulation results
of the centralized optimization are obtained by solving the
optimization problem (3), where � and P̄ are set to be 8×10−6

and 300 mW, respectively, same with the setup of the proposed
framework. As the optimization problem (3) is not convex,
the iterative water filling is used to solve the optimization
problem [31].

Fig. 14 shows the simulation results of our proposed spec-
trum management framework and the compared method on
the defined reward, which can reflect the performance of
both spectral efficiency of DSA users and the interference
to PUs. The reward is calculated according to (7). For the
proposed framework, the simulation is conducted under the
condition of PUs broadcasting total interference to all DSA
users. Besides, the simulation results are the average values
of 1000 times training of exploitation after exploration. Note
that a negative value will be represented by a bar below 0 in
Fig. 14. It can be observed that the centralized optimization
has the best performance on the total reward compared to
others. Apart from global optimal/suboptimal achieved by cen-
tralized optimization, another reason is that with centralized
optimization each DSA user can be served with accurate power
allocation leading to global optimal/suboptimal. However, in
distributive DSA, power allocation is rougher, where the trans-
mit power is discretized into different levels and a DSA
user can only transmit with one of these levels to limit
the size of Q-learning states. Clearly, the performance of
the proposed framework using ESN-based DQN is closest
to that of the centralized optimization, indicating that it is
able to enable an excellent balance between different DSA
users and effective PU protection, resulting in a better system
performance.

VII. CONCLUSION

In a DSA network, the spectrum management is very chal-
lenging, as lack of centralized control makes DSA users have
to carry out the spectrum management independently. To
enable effective spectrum management in DSA, in this arti-
cle, a spectrum management scheme leveraging Q-learning is

proposed, in which DSA users carry out their spectrum man-
agement, including both spectrum access and power allocation,
by directly interacting with environments without depending
on channel estimations and training date. However, a new
challenge arises that Q-learning is not able to handle a large Q-
table size. In other words, when a DSA network consists of a
large amount of wireless channels and DSA users, Q-learning
is very hard to be trained, causing instability. Thus, the ESN,
a type of RNN, is adopted to realize Q-learning, named the
DQN, for better performance, efficient training, and fast con-
vergence. Through extensive simulation studies, it has been
proven that the proposed spectrum management scheme with
ESN-based DQN can achieve the higher reward with both the
achievable data rate and PU protections considered. In addi-
tion, using ESN in the proposed scheme has better convergence
behaviors.
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