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Abstract— Deep reinforcement learning (DRL) has been shown
to be successful in many application domains. Combining recur-
rent neural networks (RNNs) and DRL further enables DRL
to be applicable in non-Markovian environments by capturing
temporal information. However, training of both DRL and RNNs
is known to be challenging requiring a large amount of training
data to achieve convergence. In many targeted applications, such
as those used in the fifth-generation (5G) cellular communication,
the environment is highly dynamic, while the available training
data is very limited. Therefore, it is extremely important to
develop DRL strategies that are capable of capturing the tem-
poral correlation of the dynamic environment requiring limited
training overhead. In this article, we introduce the deep echo
state Q-network (DEQN) that can adapt to the highly dynamic
environment in a short period of time with limited training data.
We evaluate the performance of the introduced DEQN method
under the dynamic spectrum sharing (DSS) scenario, which is a
promising technology in 5G and future 6G networks to increase
the spectrum utilization. Compared with conventional spectrum
management policy that grants a fixed spectrum band to a single
system for exclusive access, DSS allows the secondary system to
share the spectrum with the primary system. Our work sheds
light on the application of an efficient DRL framework in highly
dynamic environments with limited available training data.

Index Terms— 6G, convergence rate, deep reinforcement learn-
ing (DRL), dynamic spectrum sharing (DSS), echo state networks
(ESNs), fifth generation (5G).

I. INTRODUCTION

IN THE last few years, deep reinforcement learning (DRL)
has been widely adopted in different fields, ranging from

playing video games [1] and playing chess [2] to robotics [3].
DRL provides a flexible solution for many types of problems
due to the fact that it does not need to model complex
systems or to label data for training. Utilizing recurrent neural
networks (RNNs) in DRL, the deep recurrent Q-network
(DRQN) is introduced to process the temporal correlation
of input sequences in a non-Markovian environment [4].
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Even though DRQN is a powerful machine learning tool,
it faces serious issues related to training due to the following
two reasons: 1) DRL requires a relatively large amount of
training data and computational resources to make the learning
agent converge to an appropriate policy, which is a major bot-
tleneck for applying DRL to many real-world applications [5]
and 2) the kernel of DRQN, the RNN, has issues related to
vanishing and exploding gradients that make the underlying
training difficult [6]. Therefore, the difficulties of training DRL
agents and RNNs make the training of DRQNs an extremely
challenging problem and prevent it from being widely adopted
for analyzing time-dynamic applications.

In light of the training challenges, in this work, we exploit a
special type of RNNs, echo state networks (ESNs), to reduce
the training time and the required training data [7]. ESNs sim-
plify the underlying RNNs training by only training the output
weights while leaving input weights and recurrent weights
untrained. Existing research shows that ESNs can achieve
comparable performance with RNNs, especially in some tasks
requiring fast learning [8]. Accordingly, in this work, we adopt
ESNs as the Q-networks in the DRL framework, which is
referred to as deep echo state Q-networks (DEQNs). We will
show that DEQN has the benefit of learning a good policy
with short training time and limited training data.

Fueled by the popularity of smartphones as well as the
upcoming deployment of the fifth-generation (5G) mobile
broadband networks, mobile data traffic will grow at a com-
pound annual growth rate (CAGR) of 46% between 2017 and
2022, reaching 77.5 exabytes (EB) per month by 2022 [9].
A significant portion of these data traffic will be real-time
or delay-sensitive. For example, live video will grow ninefold
from 2017 to 2022, while virtual reality and augmented reality
traffic will increase 12-fold at a CAGR of 63%. This suggests
that future wireless networks will likely face the pressing
demand of being able to conduct real-time processing for large
volume data in an efficient way. In 5G networks, massive
connectivity is regarded as a primary use case with dynamic
spectrum sharing (DSS) as an enabling technology. In fact,
DSS has been announced as the key technology for 5G by
many companies and operators around the world, including
Qualcomm, Ericsson, AT&T, and Verizon [10], [11]. Unlike
the current static spectrum management policy that gives a
single system exclusive right to access the spectrum, DSS has a
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more flexible policy by adopting a hierarchical access structure
with primary users (PUs) and secondary users (SUs) [12].
SUs are allowed to access the licensed spectrum when PUs
receive tolerable interference.

Obtaining control information from the environment is
costly in 5G mobile wireless networks. First, an SU cannot
detect the activities of all PUs simultaneously because
performing spectrum sensing is energy-consuming. Second,
exchanging control information between wireless devices
imposes a control overhead in wireless network operations.
Therefore, the major challenge of DSS is how to optimize
the system performance under limited information exchange
between the secondary system and the primary system. DRL
is a suitable framework for developing DSS strategies because
of its ability to adapt to unknown environment without mod-
eling the complex 5G networks. DRL usually requires tons
of training data and long training time. However, wireless
networks are dynamic due to factors such as path loss, shadow
fading, and multipath fading [13], which largely decreases the
number of effective training data that reflect the latest envi-
ronment. Furthermore, the performance of spectrum sharing
depends on the access strategies of multiple users. If one user
changes its access strategy, then other users have to change
their access strategies accordingly. Under these circumstances,
the number of effective training samples reflected in the latest
wireless environment will be extremely limited. As a result,
designing an efficient DRL framework only requiring a small
amount of training data will be critical for 5G and future 6G
DSS networks. In this work, we introduce DEQN to learn a
spectrum access strategy for each SU in a distributed fashion
with limited training data and short training time in the highly
dynamic 5G networks.

The main contributions of our work are as follows.

1) We design an efficient DRL framework, DEQN, to adapt
to highly dynamic environment with limited training
data and provide training strategies for the introduced
DEQN.

2) We apply the DEQN method in the critical problem
of DSS for 5G networks where the system is highly
dynamic and interactive. Compared with existing DRL-
based strategies, our method can quickly adapt to real
mobile wireless environment to achieve improved net-
work performance under limited training data.

3) This work is the first to formulate a DRL strategy that
jointly considers spectrum sensing and spectrum sharing
in the underlying DSS network for 5G.

II. PROBLEM DEFINITION FOR DSS

In this section, we introduce the DSS problem and discuss
its challenges. We consider a DSS system where the primary
network consists of M PUs and the secondary network consists
of N SUs. It is assumed that one wireless channel is allocated
to each PU individually and cross-channel interference is
negligible. We consider a discrete-time model, where the
dynamics of the DSS system, such as behaviors of users and
changes of the wireless environment, are constrained to happen
at discrete time slots t (t is a natural number). Our goal is to

Fig. 1. Desired links, the interference links, and the sensing links when PU1,
SU1, and SU2 are operating on the same channel. PUT/SUT represent the
transmitters of PU/SU and PUR/SUR represent the receivers of PU/SU.

develop a distributive DSS strategy for each SU to increase the
spectrum utilization without harming the primary network’s
performance.

The data of a user are transmitted over the wireless link
between its transmitter and receiver. Signal-to-interference-
plus-noise ratio (SINR) is a quality measure of the wireless
connection that compares the power of the desired signal to the
sum of the interference power and the power of background
noise. The higher the value of the SINR, the better the quality
of the wireless connection. The SINR of the user k’s wireless
connection on channel m at time slot t is written as

SINRk
m[t] =

Pk · |H k[t]|2∑
z∈�k

m
Pz · |H zk[t]|2 + Nm

(1)

where Pk and Pz are the transmit power of the user k and the
user z, respectively, �k

m is the set containing all the users
that are transmitting on channel m except for the user k,
H k[t] is the channel gain of the desired link of the user k,
H zk[t] is the channel gain of the interference link between
the user z’s transmitter and the user k’s receiver, and Nm

is the background noise power on channel m. Note that all
channel gains are changing over time, so SINR is also time-
variant. The desired link is the link between the transmitter
and the receiver of the same user. The interference link is the
link between the transmitter and the receiver of two different
users if these two users are transmitting on the same channel
simultaneously. Fig. 1 shows the complicated association of
desired links and interference links when PU1, SU1, and
SU2 are operating on the same channel. Since cross-channel
interference is negligible, the interference link between two
users operating on different channels is out of consideration.

The radio signal attenuates as it propagates through space
between the transmitter and the receiver, which is referred
to as the path loss. In addition to the path loss, the channel
gain is affected by many factors, such as shadow fading and
multipath fading. Shadow fading is caused by a large obstacle
such as a hill or a building obscuring the main signal path
between the transmitter and the receiver. Multipath fading
occurs in any environment where multiple propagation paths
exist between the transmitter and the receiver, which may
be caused by reflection, diffraction, or scattering. In the
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telecommunication society, the channel model is carefully
designed to be consistent with wireless field measurements.
We generate channel gains based on the WINNER II channel
model [14], which is widely used in industry to make fair
comparisons of telecommunication algorithms.

To enable the protection of the primary network, we assume
that a PU will broadcast a warning signal if its data transmis-
sion experiences a low SINR. There are two possible causes
for low SINR. First, the wireless connection of the desired
link of the PU is in deep fade, which means that the channel
gain of the desired link is low. This leads to a small value
of the numerator in (1), so SINR is low. Second, the signals
from one or more SUs cause strong interference to a PU when
they are transmitting over the same wireless channel at the
same time. This leads to a large value of the denominator
in (1), so SINR assumes a low value again. We called SUs
that “collide” with the PU in this case. The warning signal
contains information related to which PU may be interfered
so that the SUs transmitting on the same channel are aware
of the issue. In fact, this kind of warning signal is similar to
the control signals (e.g., synchronization and downlink/uplink
control) used in current 4G and 5G networks. It is common
to assume that the control signals are received perfectly at
receivers, and otherwise, the underlying network will not even
work. In reality, the control signal can be transmitted through a
dedicated control channel. According to this mechanism, a PU
will broadcast a warning signal once the received SINR is
low, and this is the only control information from the primary
system to the secondary system to enable the protection of
PUs under DSS. Note that a PU may send a warning signal
even when no collisions happen because of deep fade.

The activity of a PU consists of two states: 1) active and
2) inactive. If a PU is transmitting data, it is in active state;
otherwise, it is in inactive state. A spectrum opportunity on
a channel occurs when the licensed PU of that channel is
in inactive state or any SU can transmit on that channel with
little interference to the active licensed PU. Unfortunately, it is
difficult for an SU to obtain the information of activity states
of PUs or the interference that it will cause in the highly
dynamic 5G networks. An SU has to perform spectrum sensing
to detect the activity of a PU, but the accuracy of detection
is based on the wireless link between the transmitters of the
PU and the SU, the background noise, and the transmit power
of the PU. On the other hand, the interference level caused
by an SU is determined by the interference link from the SU
to the PU, the desired link of the PU, transmit powers of
the PU and the SU, and the background noise. Furthermore,
all these factors for determining spectrum opportunities are
time-variant, so control information becomes outdated quickly.
Since obtaining control information is costly in 5G mobile
wireless networks, it is impractical to design a DSS strategy
by assuming that all the control information is known.

SUs should provide protection to prevent PUs from harmful
interference since the primary system is the spectrum licensee.
A commonly used method is that the transmitter of an SU
performs spectrum sensing to detect the activity of a PU
before accessing a channel. Due to the power and complexity
constraints, an SU is unable to perform spectrum sensing

Fig. 2. Time structure of spectrum sensing and data transmission.

across all channels simultaneously. Therefore, we assume that
an SU can only sense one channel at a particular time.
We adopt the energy detector as the underlying spectrum
sensing method, which is the most common one due to its
low complexity and cost. The energy detector of SU n first
computes the energy of received signals on channel m as
follows:

En
m[t] =

t+Ts−1∑
t ′=t

∣∣yn
m[t ′]

∣∣2 (2)

where t is the starting time slot of the spectrum sensing,
yn

m[t ′] is the received signal at time slot t ′, and Ts is the
number of time slots of the spectrum sensing. We consider
the half-duplex SU system where an SU cannot transmit
data and perform spectrum sensing at the same time. We
assume a periodic time structure of spectrum sensing and data
transmission, as shown in Fig. 2. To be specific, the kth sensing
and transmission period contains T time slots from kT + 1 to
(k+ 1)T , the spectrum sensing contains the first Ts time slots
in the period from kT+1 to kT+Ts , and the data transmission
contains the subsequent T − Ts time slots in the period from
kT + Ts + 1 to (k + 1)T .

The received signal yn
m[t ′] depends on the activity state of

PU m, the power of PU m, the background noise, and the
sensing link between the transmitters of PU m and SU n.
When PU m is in the inactive state, the received signal is
represented as

yn
m[t ′] = ωm [t ′]. (3)

When PU m is in the active state, the received signal is
represented as

yn
m[t ′] =

√
Pm · H mn[t ′] + ωm[t ′] (4)

where ωm [t ′] ∼ CN (0, Nm ) is a circularly symmetric
Gaussian noise with zero mean and variance Nm , Pm is the
transmit power of PU m, and H mn[t] is the channel gain of
the sensing link between the transmitters of PU m and SU n.

If the energy computed in (2) is higher than a threshold,
the PU is considered in the active state; otherwise, the PU is
considered in the inactive state. The challenge of designing
an energy detector is how to set the threshold properly. The
value of the threshold is actually a tradeoff between the
detection probability and the false alarm probability. However,
setting the threshold for achieving a good tradeoff is related
to many factors, including the channel gain of the sensing
link, the transmit power of the PU, the noise variance, and
the number of received signals. This information is difficult
to obtain before deploying in the real environment and is
time-variant. Furthermore, setting a threshold is difficult in
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some cases because of the relative positions of transmitters
and receivers. As shown in Fig. 1, the sensing link is between
the transmitters of the PU and the SU, but the interference link
is between the transmitter of the SU and the receiver of the PU.
The discrepancy between the sensing link and the interference
link may cause the hidden node problem, where the sensing
link is weak but the interference link is strong. For example,
the transmitters of an SU and a PU are far away from each
other, whereas the SU transmitter is close to the receiver of
the PU. In this case, the transmitters of the SU and the PU are
hidden nodes with respect to each other. The warning signals
from PUs are designed to provide additional protection to the
primary system for the case where the SU cannot detect the
activity of the PU, thereby mitigating the issues caused by
the hidden nodes. Meanwhile, instead of making the spectrum
access decision solely based on the outcomes of the energy
detector, we developed a DRL framework to construct a novel
spectrum access policy: The DRL agent will use the sensed
energy as the input to learn a spectrum access strategy to
maximize the cumulative reward. The reward is designed to
maximize the spectral efficiencies of SUs while enabling the
protection of PUs with the help of warning signals from PUs.

III. DRL FRAMEWORK FOR DSS AND DEQN

A. Background on DRL

RL is one type of machine learning method that provides
a flexible architecture for solving many types of practical
problems because it does not need to model complex systems
or to label data for training. In RL, an agent learns how
to select actions to maximize the cumulative reward in a
stochastic environment. The dynamics of the environment is
usually modeled as a Markov decision process (MDP), which
characterized by a tuple (S,A,P, R, and γ ), where S is the
state space, A is the action space, P is the state transition
providing Pr(st+1|st , at ), R is the reward function providing
rt = R(st , at ), and γ is a discount factor for calculating
cumulative reward. Specifically, at time t , the state is st ∈ S,
the RL agent selects an action at ∈ A by following a policy
π(st ) and receives the reward rt , and then, the system shifts to
the next state st+1 according to the state transition probability.
Note that the action at affects both the immediate reward rt

and the next state st+1. Consequently, all subsequent rewards
are affected by the current action. The goal of RL agent
is to find a policy π to maximize the cumulative reward,
Eπ [∑∞t=1 γ t−1rt ].

In RL, a model-free algorithm does not require state
transition probability for learning, which is useful when the
underlying system is complicated and difficult to model.
Q-learning [15] is the most widely used model-free RL
algorithm that aims to find the Q-function of each state-action
pair for a given policy, which is defined as

Qπ(st , at ) = E

[ ∞∑
t ′=1

γ t ′−1rt ′ | s1 = st , a1 = at

]
. (5)

Q-function represents the cumulative reward when taking
action at in the state st and then following policy π .
Q-learning constructs a Q-table to estimate the Q-function of

each state–action pair by iteratively updating each element of
the Q-table through dynamic programming. The update rule
of the Q-table is given as follows:
Q(st , at )← Q(st , at )

+ α[rt + γ max
a

Q(st+1, a)− Q(st , at )] (6)

where α ∈ (0, 1) is the learning rate. The policy π that
selects action is the ε-greedy policy as follows:

at =
⎧⎨
⎩

argmax
a

Q(st , a), with probability 1− ε

random action, with probability ε
(7)

where ε ∈ [0, 1] is the exploration probability. However,
Q-learning performs poorly when the dimension of the state
is high because updating a large Q-table makes training
difficult or even impossible.

Deep Q-Networks (DQNs) [1] is introduced to solve
high-dimensional state problems by leveraging a neural net-
work as the function approximator of the Q-table, which is
referred to as the Q-network. Specifically, the Q-network takes
the state st as input and outputs the estimated Q-function of
all possible actions. One key approach of DQN to improve the
training stability is by creating two Q-networks: the evaluation
network Q(s, a; θ) and the target network Q(s, a; θ−). The
target network is used to generate the targets for training the
evaluation network, whereas the evaluation network is used
to determine the actions. The loss function for training the
evaluation network is written as

(rt + γ max
a

Q(st+1, a; θ−)− Q(st , at ; θ))2 (8)

where rt + γ maxa Q(st+1, a; θ−) is the target Q value. The
weights of the target network θ− are periodically synchronized
with the weights of the evaluation network θ . The purpose is to
fix targets temporarily during training to improve the training
stability of the evaluation network.

An improvement of DQN to prevent overestimation of
Q values is called double Q-learning [16], where the eval-
uation network is used to select the action when computing
the target Q value, but the target Q value is still generated
by the target network. Specifically, the target Q value for the
evaluation network is calculated by

rt + γ Q(st+1, a′; θ−) (9)

where a′ = argmaxa Q(st+1, a; θ). Double Q-learning can
improve the accuracy in estimating Q-function, thereby
improving the learned policy.

B. Existing DRL-Based Strategies for DSS

DRL-based methods have recently been applied in dynamic
spectrum access (DSA) networks [17]–[19] where the focus
is exclusively on the “access” part of the problem with
oversimplified network setup. To be specific, Wang et al. [17]
considered a single SU that selects one channel to access
in the multichannel environment, and the goal is to max-
imize the number of selecting good channels for access.
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Naparstek and Cohen [18] assumed that the available spec-
trum channels are known a priori and developed a central-
ized spectrum access algorithm for multiuser access. Both
Wang et al. [17] and Naparstek and Cohen [18] assumed that
one channel can only be used by one user at any particular
time. Although Chang et al. [19] considered multiple SUs
that can access a channel at the same time, an SU cannot
access a channel that a PU is using. Chang et al. [19] also
assumed that each SU can sense all channels simultaneously
and the collision between a PU and an SU can be perfectly
detected. In this work, in order to provide a comprehensive
study for the impact of DEQN on relevant DSS networks
for 5G, we consider practical situations of DSS where mobile
users cannot conduct spectrum sensing perfectly, mobile users
cannot sense multiple channels at a particular time, there are
multiple PUs and multiple SUs in a DSS network, and a
channel can be shared by multiple users if the interference
between them is weak. Furthermore, unlike previous work that
utilizes binary ACK/NACK feedback as the reward function,
we calculate the practical reward based on the spectral effi-
ciency of each mobile link. To be closely in line with the
real wireless environment, the spectral efficiency of a mobile
link is calculated using the transmission procedure defined
in the telecommunication standard. In this way, we can train
and evaluate the underlying DEQN-based DRL strategies in
realistic 5G application scenarios. It is important to note that
in our work, we treat the unprocessed soft spectrum sensing
information as the input states of the DRL agent. Soft spectrum
sensing information can be directly obtained from spectrum
sensing sensors. Through the soft spectrum sensing input,
the DRL agent will learn an appropriate detection criterion for
each SU that adapts to different mobile wireless environments,
geometry of mobile users, and activities of mobile users. This
is indeed the first work to study DSS that combines soft
spectrum sensing information and spectrum access strategies
through the DRL framework.

C. DRL Problem Formulation for DSS

We now formulate the DSS problem using the DRL frame-
work, where all SUs in the secondary system learn their
spectrum access strategies in a distributed fashion through
the interactions with the mobile wireless environment. To be
specific, we assume that each SU has a DRL agent that takes
its observed state as the input and learns how to perform
spectrum sensing and access actions in order to maximize
its cumulative reward. The reward for each SU is designed
to maximize its spectrum efficiency and to prevent harmful
interference to PUs.

The state of SU n in the kth sensing and transmission period
is denoted by

sn[k] = (En[k], Qn[k]) (10)

where k is a nonnegative integer, En[k] is the energy of
received signals, and Qn[k] is a one-hot M-dimensional vector
indicating the sensed channel from time slots kT+1 to kT+Ts .
If the index of the sensed channel is m, then the mth element
of Qn[k] is equal to one, whereas other elements of Qn[k]

TABLE I

SINR AND CQI MAPPING TO MODULATION AND CODING RATE

are zeros. On the other hand, En[k] is equal to En
m[kT ] that

is calculated by (2).
The action of SU n in the kth sensing and transmission

period is denoted by

an[k] = (qn[k], zn[k]) (11)

where qn[k] ∈ {0, 1} represents SU n that will either access
the current sensed channel (qn[k] = 1) or be idle (qn[k] = 0)
during the data transmission part of the kth period (from time
slots kT+Ts+1 to (k+1)T ) and zn[k] ∈ {1, . . . , M} represents
SU n that will sense channel zn[k] during the sensing part
of the (k + 1)th period (from time slots (k + 1)T + 1 to
(k + 1)T + Ts). In other words, SU n makes two decisions:
qn[k] decides whether to conduct data transmission in the
current sensed channel of the kth period and zn[k] decides
which channel to sense in the (k + 1)th period. Therefore,
the dimension of each SU’s action space is 2M . Note that
the sensed channel in the kth period may be different from
that in the (k + 1)th period.

In our work, we use a discrete reward function that is
similar to the existing DRL-based DSS methods. Compared
with a simple binary reward (0 and +1 and −1 and +1)
in [17] and [18], we consider a more relevant and com-
prehensive reward design that is based on the underlying
achieved modulation and coding strategy (MCS) adopted in
the 3GPP LTE/LTE-Advanced standard [20]. To be specific,
a receiver measures SINR to evaluate the quality of the
wireless connection and feedback the corresponding channel
quality indicator (CQI) to the transmitter [21]. In this work,
we follow the method presented in [22] to map the received
SINR to the CQI. After receiving the CQI, the transmitter
determines the MCS for data transmission based on the CQI
table specified in the 3GPP standard [20]. The SINR and
CQI mapping to MCS is given in Table I for reference.
Accordingly, the achieved spectral efficiency can be calculated
by (bits/symbol) = (modulation’s power of 2) × (code rate)
representing the average information bits per symbol. This
critical metric is utilized as the reward function of our design.
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To jointly consider the performance of the primary and the
secondary systems, the reward function corresponding to SU n
accessing channel m depends on both the spectral efficiencies
of SU n and PU m. During time slots kT +Ts+1 to (k+1)T ,
the average spectral efficiency of SU n, ēn[k], and the average
spectral efficiency of PU m, ēm[k], are calculated by

ēn[k] = 1

T − Ts

(k+1)T−1∑
t ′=kT+Ts

en
m[t ′]

ēm[k] = 1

T − Ts

(k+1)T−1∑
t ′=kT+Ts

em
m [t ′] (12)

where en
m [t ′] and em

m [t ′] represent the spectral efficiency of
SU n and PU m on channel m at time slot t ′, respectively.

The reward of SU n in the kth transmission period is defined
as

rn[k] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2, if ēm[k] < 1.5

−1, if SU n is idle in the kth period

0, if ēm[k] ≥ 1.5 and ēn[k] < 1

1, if ēm[k] ≥ 1.5 and 1 ≤ ēn[k] < 2

2, if ēm[k] ≥ 1.5 and 2 ≤ ēn[k] < 3

3, if ēm[k] ≥ 1.5 and ēn[k] ≥ 3.

(13)

To enable the protection for the primary system, PU m will
broadcast a warning signal if its average spectral efficiency
is below 1.5, and then, the reward received by SU n that
accesses channel m is set to −2. To motivate SUs to explore
spectrum opportunities, the reward rn[k] is set to −1 if SU n
decides to be idle in the kth transmission period. When PU m
does not suffer from strong interference (the average spectral
efficiency of PU m is larger than 1.5), we increase the reward
rn[k] from 0 to 3 as the average spectral efficiency of SU n
increases [see (13)]. Note that the low spectral efficiency of a
PU or an SU does not necessarily mean collisions because
the underlying wireless channels are changing dynamically
over time. If the channel gain of the wireless link is small,
the spectral efficiency of the user will be low even if there is
no collision. Therefore, the reward function and the warning
signal are introduced since it is impossible to detect collisions
perfectly in practical wireless environments.

D. Efficient Training for DEQN

To capture the activity patterns of PUs, which are usu-
ally time-dependent, applying DRQNs is a natural choice.
Although DQNs are able to learn the temporal correlation
by stacking a history of states in the input, the sufficient
number of stacked states is unknown because it depends on
PUs’ behavior patterns. RNNs are a family of neural networks
for processing sequential data without specifying the length of
temporal correlation.

However, the training of RNNs is known to be difficult that
suffers from vanishing and the exploding gradients problems.
Furthermore, the required amount of training data for achiev-
ing convergence is large in the DRL scheme since there are no
explicit labels to guide the training and the agents have to learn

Fig. 3. Time-variant channel gain of a wireless link.

from interacting with its environment. In the wireless envi-
ronment, the channel gain of a wireless link changes rapidly,
which is shown in Fig. 3. Note that the environment observed
by an SU is affected by other SUs’ access strategies because of
possible collisions between SUs, and all SUs are dynamically
adjusting their DSS strategies during their training processes.
As a result, in the DSS problem, the duration for a learning
environment being stable is short and the available training
data is very limited.

The standard training technique for RNNs is to unfold
the network in time into a computational graph that has a
repetitive structure, which is called backpropagation through
time (BPTT). BPTT suffers from the slow convergence rate
and needs many training examples. DRQN also requires a
large amount of training data because a learning agent finds
a good policy by exploring the environment with different
potential policies. Unfortunately, in the DSS problem, there
are only limited training data for a stable environment due
to dynamic channel gains, partial sensing, and the existence
of multiple SUs. To address this issue, we use ESNs as the
Q-networks in the DRQN framework to rapidly adapt to the
environment. ESNs simplify the training of RNNs significantly
by keeping the input weights and recurrent weights fixed and
only training the output weights.

We denote the sequence of states for SU n by
{sn[1], sn[2], . . .}. Accordingly, the sequence of hidden states,
{hn[1], hn[2], . . .}, is updated by

hn[k] = (1− β) · hn[k − 1]
+ β · tanh

(
W n

insn[k] + W n
rechn[k − 1]) (14)

where W n
in is the input weight, W n

rec is the recurrent weight,
and β ∈ [0, 1] is the leaky parameter, and we let hn[0] = 0.
The output sequence, {on[1], on[2], . . .}, is computed by

on[k] = W n
outu

n[k] (15)

where un[k] is a concatenated vector of sn[k] and hn[k] and
W n

out is the output weight. Note that the output vector on[k]
is a 2M-dimensional vector, where each element
of on[k] corresponds to the estimated Q value of selecting
one of all possible actions given the state sn[1], . . . , sn [k].
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Algorithm 1 Training Algorithm for DEQN
Initialize the wireless environment with M PUs and N SUs.
Set the sensing and transmission period to T time slots and the sensing duration to Ts time slots.
Set the buffer size to Z , the training iteration to I , and the exploration probability to ε.
Randomly initialize an evaluation network DEQNn

θ and a target network DEQNn
θ− with the same weights for each SU n.

Each SU n randomly selects one channel (= zn[0]) to sense for Ts time slots and then computes the state sn[1].
for q = 1, . . . do

Initialize an empty buffer Bn
q for each SU.

for z = 1, . . . , Z do
Let k = (q − 1)Z + z.
Each SU n inputs sn[k] to DEQNn

θ , calculates the hidden state hn
θ [k], and outputs on

θ [k].
Each SU n decides action an[k] = (qn[k], zn[k]) based on ε-greedy policy, where an[k] is the index of the maximum
element of on

θ [k] with probability 1− ε and an[k] is chosen randomly with probability ε.
Each SU n accesses channel zn[k − 1] if qn[k] = 1 or does not access if qn[k] = 0 for T − Ts time slots.
Each SU n obtains the reward rn[k] according to Equation (13).
Each SU n senses channel zn[k] for Ts time slots and then computes the state sn[k + 1].
Each SU n inputs sn[k + 1] to DEQNn

θ− , calculates the hidden state hn
θ−[k], and outputs on

θ−[k].
Each SU n stores (sn[k], hn

θ [k], an[k], rn[k], sn[k + 1], hn
θ−[k]) in Bn

q .
end for
for iteration = 1, . . . , I do

Each SU n samples random training batch (sn[k], hn
θ [k], an[k], rn[k], sn[k + 1], hn

θ−[k]) from Bn
q .

Each SU n inputs sn[k] and hn
θ [k] to DEQNn

θ to calculate on
θ [k]

Each SU n inputs sn[k + 1] and hn
θ [k + 1] to DEQNn

θ− to calculate on
θ−[k]

Each SU n updates DEQNn
θ by performing gradient descent step on

(
rn[k] + γ on

y,θ−[k + 1] − on
y,θ [k]

)2
, where y is the

index of the maximum element of on
θ [k + 1].

end for
Each SU n synchronizes DEQNn

θ− with DEQNn
θ .

end for

The double Q-learning algorithm [16] is adopted to train
the underlying DEQN agent of each SU. As discussed in
Section III-A, each DEQN agent has two Q-networks: the
evaluation network and the target network. Let the output
sequence from the evaluation network and the target network
be {on

θ [1], on
θ [2], . . .} and {on

θ−[1], on
θ−[2], . . .}, respectively.

The loss function for training the evaluation network of SU n
is written as(

rn[k] + γ on
y,θ−[k + 1] − on

y,θ [k]
)2 (16)

where on
y,θ−[k+1] and on

y,θ [k] are the yth element of on
θ−[k+1]

and on
θ [k], respectively, y is the index of the maximum element

of on
θ [k + 1], and rn[k] + γ on

y,θ−[k + 1] is the target Q value.
To stabilize the training targets, the target network is only
periodically synchronized with the evaluation network.

The input weights and the recurrent weights of ESNs are
randomly initialized according to the constraints specified by
the echo state property [23], and then, they remain untrained.
Only the output weights of ESNs are trained, so the training
is extremely fast. The main idea of ESNs is to generate a
large reservoir that contains the necessary summary of past
input sequences for predicting targets. From (14), we can
observe that the hidden state hn[k] at any given time slot k
is unchanged during the training process if the input weights
and recurrent weights are fixed. In contrast to conventional
RNNs that usually initialize the hidden states to zeros and
waste some training examples to set them to appropriate values

in one training iteration, the benefit of ESNs is that the hidden
states do not need to be reinitialized in every training iteration.
Therefore, the training process becomes extremely efficient,
which is especially suitable for learning in a highly dynamic
environment. Compared to storing (s[k], a[k], r [k], s[k + 1])
in conventional DRQN framework, we also store hidden states
(h[k], h[k + 1]) because hidden states are unchanged. In this
way, we do not have to waste lots of training time and
data to recalculate hidden states in every training iteration.
It largely boosts the training efficiency in the highly dynamic
environment since we can avoid using BPTT and only update
the output weights of networks. Furthermore, we can randomly
sample from the replay memory to create a training batch,
whereas conventional DRQN methods have to sample contin-
uous sequences to create a training batch. Thus, the training
data can be more efficiently used in our DEQN method. The
training data stored in the buffer will be refreshed periodically
in order to adapt to the latest environment. Therefore, our
training method is an online training algorithm that keeps
updating the learning agent. The training algorithm for DEQNs
in the DSS problem is detailed in Algorithm 1.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

We set the number of PUs and SUs to 4 and 6, respectively,
and the locations of PUs and SUs are randomly defined in a
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Fig. 4. DSS network geometry. PUT/SUT represent the transmitter of PU/SU.
PUR/SUR represent the receiver of PU/SU.

2000 m × 2000 m area. The distance between the transmitter
and the receiver of each desired link is randomly chosen
from 400 to 450 m. Fig. 4 shows the geometry of the DSS
network, where PUT/SUT represent the transmitters of PU/SU
and PUR/SUR represent the receivers of PU/SU. The channel
gains of desired links, interference links, and sensing links
are generated by the WINNER II channel model widely used
in 3GPP LTE-Advanced and 5G networks [14]. In this case,
there are 4 desired links for PUs, 6 desired links for SUs,
30 interference links between different SUs, 24 interference
links between SUTs and PURs, 24 interference links between
PUTs and SURs, and 24 sensing links between PUTs and
SUTs. Totally, 112 wireless links are generated in our sim-
ulation, which establishes a more complicated scenario than
the existing DRL-based DSS strategies [17]–[19]. Specifically,
[17] considers each channel only has two possible states
(good or bad) without modeling the true wireless environment;
[18] assumes that the collision between users can be perfectly
detected without considering the dynamics of interference
links; Chang et al. [19] assumed that SUs are forbidden to
access a channel when a PU is using without considering the
actual interference links between PUs and SUs.

For each channel, the bandwidth is set to 5 MHz and the
variance of the Gaussian noise is set to −157.3 dBm. The
transmit powers of PUs and SUs are both set to 500 mW. We
set the sensing and transmission period T to ten time slots and
the sensing duration Ts to two time slots, where one time slot
represents an interval of 1 ms. We list all the parameters to
generate the wireless environment in Table II.

For the activity pattern of PUs, we let two PUs be in active
state every 3T (PU1 and PU3) and two PUs be in active state
every 4T (PU2 and PU4). Each SU trains its DEQN agent and
updates the policy accordingly after collecting 300 samples in
the buffer. The buffer will be refreshed after training, so we
only use training data from the latest 3 s. The total number
of training data is 60 000, which requires 600 s to collect all
the training data. The initial exploration probability ε is set

TABLE II

VALUES OF PARAMETERS FOR GENERATING
THE WIRELESS ENVIRONMENT

Fig. 5. Network architecture of DEQN.

to 0.3, and then, it will gradually decrease until ε is 0. We
first train the Q-network with a learning rate of 0.01, and then,
the learning rate decreases to 0.001 when ε is less than 0.2.

B. Network Architecture

As shown in Fig. 5, our DEQN network consists of L
reservoirs for extracting the necessary temporal correlation to
predict targets. The number of neurons in each reservoir is set
to 32 and the leaky parameter β is set to 0.7 in (14). During
the training process, the input weights {W (1)

in , . . . , W (L)
in } and

the output weights {W (1)
rec , . . . , W (L)

rec } are untrained. To find
a good policy, only the output weight Wout is trained to
read essential temporal information from the input states
and the hidden states stored in the experience replay buffer.
Existing research shows that stacking RNNs automatically
creates different time scales at different levels, and this stacked
architecture has better ability to model long-term dependencies
than single-layer RNN [24]–[26]. We also find that stacking
ESNs can indeed improve the performance in our experiment.

C. Results and Discussion

We evaluate our introduced DEQN method with three
performance metrics: 1) the system throughput of Pus; 2) the
system throughput of SUs; and 3) the required training time.
The throughput represents the number of transmitted bits
per second, which is calculated by (spectral efficiency) ×
(bandwidth), and the system throughput represents the sum
of users’ throughput in the primary system or secondary
system. A good DSS strategy should increase the throughput
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Fig. 6. System throughput of PUs.

Fig. 7. System throughput of SUs.

of SUs as much as possible, while the transmissions of SUs
do not harm the throughput of PUs. Therefore, each SU has
to access an available channel by predicting the activities of
other mobile users. We compare with the conventional DRQN
method that uses long short-term memory (LSTM) [27] as the
Q-network. For a fair comparison, we also set the number of
neurons in each LSTM layer to 32. The training algorithm
of DRQNs is BPTT and double Q-learning with the same
learning rate as DEQNs. Since each SU updates its policy for
every 300 samples, we show all of our curves in figures by
calculating the moving average of 300 consecutive samples
for clarity.

DEQN1 and DEQN2 are our DEQN method with one and
two layers, respectively, and DRQN1 and DRQN2 are the con-
ventional DRQN method with one and two layers, respectively.
The system throughput of PUs is shown in Fig. 6, and the
system throughput of SUs is shown in Fig. 7. We observe that
DEQNs have a more stable performance than DRQNs, which
empirically proves that the DEQN method can learn efficiently

Fig. 8. Average reward versus time.

with limited training data. Note that one experience replay
buffer only contains 300 latest training samples. After updating
the learning agent of each SU using the 300 data in the buffer,
the DSS strategy of each SU changes, so the environment
observed by one SU also changes. Therefore, we have to erase
the outdated samples from the buffer and let SUs collect new
training data from the environment. Fig. 8 shows the average
reward of SUs versus time. We observe extremely unstable
reward curves of both DRQN1 and DRQN2, so it proves that
DRQNs cannot adapt to this dynamic 5G scenario well with
few training data.

We observe that DEQN2 has a better performance than
DEQN1 in both the system throughput of PUs and SUs, which
shows that deep structure (stacking ESNs) indeed improves
the capability of the DRL agent to learn long-term temporal
correlation. As for DRQNs, we observe that DRQNs do not
have improved performance as we increase the number of
layers in the underlying RNN. The main reason is that more
training data are needed for training a larger network, but even
DRQN with one layer cannot be trained well.

The top priority of designing a DSS network is to prevent
harmful interference to the primary system. To analyze the
performance degradation of the primary system after allowing
the secondary system to access, we show the system through-
put of PUs when there is no SU existing in Fig. 6. We observe
that DEQN2 can achieve almost the same performance as
the system throughput of PUs. A PU broadcasts a warning
signal if its spectral efficiency is below a threshold. For each
PU, we record the frequency of (the PU sends a warning
signal and it is received by some SUs)/(number of the PU’s
access), which is called as the warning frequency. Fig. 9 shows
the average warning frequency of each PU versus time. We
observe that every PU decreases its warning frequency over
time, meaning that each SU learns not to access the channel
that will cause harmful interference to PUs.

We compare the training time of different approaches
in Table III when implemented and executed on the same
machine with 2.71-GHz Intel i5 CPU and 12-GB RAM.
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Fig. 9. Average warning frequency of each PU versus time.

TABLE III

COMPARISON OF TRAINING TIME OF DIFFERENT

NETWORK ARCHITECTURES

The required training time for DRQN1 is 23.4 times that
for DEQN1, and the required training time for DRQN2 is
42.8 times that for DEQN2. This huge difference shows the
training speed advantage of our introduced DEQN method
against the conventional DRQN method. DRQN suffers from
high training time because BPTT unfolds the network in time

to compute the gradients, but DEQN can be trained very
efficiently because the hidden states can be prestored for many
training iterations.

V. CONCLUSION

In this article, we introduced the concept of DEQN, a new
RNN-based DRL strategy to efficiently capture the temporal
correlation of the underlying time-dynamic environment
requiring a very limited amount of training data. The DEQN-
based DRL strategies largely increase the rate of convergence
compared with conventional DRQN-based strategies. DEQN-
based spectrum access strategies are examined in DSS, a key
technology in 5G, and future 6G networks, showing significant
performance improvements over state-of-the-art DRQN-based
strategies. This provides strong evidence for adopting DEQN
for real-time and time-dynamic applications. Our future work
will be focused on developing methodologies for the design of
neural network architectures tailored to different applications.
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