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Abstract

The Upland Complex is a widespread terrace of the ancestral Mississippi River. It has
played a central role in studies of the Pliocene Mississippi River drainage, as well as uplift and
seismicity in the central Mississippi River Valley. Previous efforts to date the Upland Complex
have yielded a range of age estimates spanning the Miocene through Pleistocene. We dated
gravels and Fe-oxide cements from quarries of the Upland Complex in Arkansas, Kentucky,
Mississippi, and Tennessee using “°Al/'°Be burial dating and (U-Th)/He geochronology. Our
*°A1/"°Be burial dates revealed possible Pliocene-to-Pleistocene depositional ages, while (U-
Th)/He dating showed that the onset of weathering dates to at least the Pliocene. Taken together,
the *°A1/'’Be and (U-Th)/He age constraints demonstrate that the Upland Complex is at least
Pliocene in age, and likely formed during a prolonged period of base level stability that preceded

Pleistocene glaciations.

Keywords: Upland Complex, cosmogenic, burial dating, (U-Th)/He, geochronology, Pliocene

Highlights
*°A1/"Be and (U-Th)/He dates provide a Pliocene minimum age for the Upland Complex
e The Upland Complex is likely mid-Pliocene and is no older than Late Miocene

e Formation of the Upland Complex may be related to widespread Pliocene aggradation
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1. Introduction

The Upland Complex of the central Mississippi River Valley is a high-level terrace of the
ancestral Mississippi River (Autin et al., 1991; Van Arsdale et al., 2007; Lumsden et al., 2016).
This dominantly sand and gravel terrace deposit has been mapped from Illinois to Louisiana and
has been assigned different names in different states. In Illinois and Missouri it is the Mounds
gravel (Willman and Frye, 1970; Harrison, et al., 1999), in Kentucky the Lafayette gravel
(Potter, 1955a; 1955b) and subsequently the Continental deposits (Olive, 1980), in Arkansas and
Tennessee the Upland Complex (Autin et al., 1991; Saucier, 1994), and in Mississippi the pre-
loess sand and gravel (Dockery, 1996). The Upland Complex is particularly important for
several reasons beyond its significant economic value as the primary source of gravel over its
extent (Van Arsdale et al., 2012; Behrman et al., 2019). It has been interpreted to be the
southern remnant of a much larger Pliocene Mississippi River floodplain and drainage basin that
extended well into Canada (Cox et al., 2014; Cupples and Van Arsdale, 2014; Lumsden et al.,
2016). Van Arsdale and Cupples (2013) used the base of the Upland Complex as a structural
datum to identify Quaternary fault displacement within the central Mississippi River Valley.
Additionally, the base of the Upland Complex’s elevation 70 m above the Holocene Mississippi
River near Memphis, Tennessee, has been attributed to Quaternary isostatic uplift initiated by
Pleistocene sea level decline and commensurate ancestral Ohio and Mississippi river incision.
This regional erosion and isostatic uplift may be contributing to Quaternary faulting and ongoing
seismicity in the New Madrid seismic zone (Calais et al., 2010; Van Arsdale et al., 2019).
Furthermore, Pleistocene erosion of the Upland Complex would have contributed a significant
volume of sediment (>11,460 km®) to the Pleistocene Mississippi River delta (Van Arsdale et al.,

2019).
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The Upland Complex is interpreted to be the remnant of a floodplain that once formed a
continuous ~150 m thick blanket (Van Arsdale et al., 2019), extending at least 100 km east-west
from western Tennessee to Crowley’s Ridge in eastern Arkansas, and 700 km north-south along
the Mississippi River (Saucier and Snead, 1989; Autin et al., 1991; Van Arsdale et al., 2007; Cox
et al., 2014; Cupples and Van Arsdale, 2014; Lumsden et al., 2016). It consists of fluvial gravel
and fine-to-coarse-grained quartz sand with minor silt and clay (Autin et al., 1991). Grain
diameters are generally less than 2 cm, but individual clasts up to 60 cm in diameter are present
(Russell, 1987). Typically, >80% of the gravel consists of well-rounded chert coated with Fe
oxides, with the remainder consisting of well-rounded quartz and quartzite (Potter, 1955a;
Guccione et al., 1990). The polished red-brown patina on the chert shows no percussion
marks, indicating that it is post-depositional (Lumsden et al., 2016). The Upland Complex is
capped by a ~2 m thick, Fe-rich paleosol disconformably buried beneath Pleistocene loess that
dates up to 250 ka (Markewich et al., 1992). At the base of the Upland Complex is a south-
sloping, relatively flat disconformity that overlies Paleogene formations (Saucier, 1994; Van
Arsdale et al., 2007).

Given the widespread nature of this deposit, its apparent deposition near the Pliocene-
Pleistocene climatic transition, and its proposed triggering relationship with the New Madrid
seismic zone (Van Arsdale et al., 2019), constraining the age of the Upland Complex has
significant implications for the geomorphic and geodynamic history of central North America.
Proposed depositional ages range from Miocene (May, 1981) to Pliocene (Potter, 1955b;
Anthony and Granger, 2006; Van Arsdale et al., 2007; 2019), early Pleistocene (Fisk, 1944;
Doering, 1958), and Pliocene-Pleistocene (Autin et al., 1991; Rovey and Spoering, 2020). In this

paper we present new age determinations for several quarries in Arkansas, Kentucky,
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Mississippi, and Tennessee. We use “°Al/'°Be burial dating to constrain minimum and
maximum depositional times (supplementing previous work of Van Arsdale et al., 2014) and (U-
Th)/He geochronology to provide a minimum age for the terrace from the crystallization of

pedogenic goethite cement.

2. Methods
2.1.1. Cosmogenic “°Al/'°Be burial dating

We directly dated terrace deposits of the Upland Complex using the cosmogenic nuclides
**Al and '"Be. Cosmogenic nuclides are rare isotopes that are produced by the interaction of
high-energy cosmic particles with Earth’s atmosphere and rocks. Most surficial production of
in-situ cosmogenic *°Al and '’Be is driven by spallation caused by cosmic-ray produced
neutrons. In quartz, spallation of silicon forms *°Al (t,, = 0.705 My), while spallation of oxygen
forms '’Be (t1» = 1.389 My) (Nishiizumi, 2004; Chmeleff et al., 2010; Korschinek et al., 2010).
Below ~3 m of rock, production of cosmogenic nuclides via neutron spallation falls below
approximately 1% its surficial value and most production occurs via muon interactions. Muons
are secondary cosmic rays produced in the upper atmosphere, and cosmogenic nuclides may be
produced from high energy muon reactions or capture of low energy muons. Because muons can
penetrate significantly deeper than neutrons — on the order of hundreds of meters — they are an

important consideration for post-burial production of cosmogenic nuclides in buried deposits.

2.1.2. Minimum burial age dating
The simplest form of burial dating works under the assumption that buried sediments

originated from a steadily eroding landscape. In this scenario, the concentrations of Al and
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Be are functions of the cosmogenic nuclide production rates and rock erosion rates. The

preburial concentration of a given nuclide is modeled by the equation:

Pj
Nijinh = 758 (1)

Tt a
where Nj i 1 the inherited (pre-burial) concentration of the nuclide (at/g), P; is the production
rate of the nuclide (at/g/yr), 1 is the radioactive mean-life of the nuclide, p is rock density (~2.6
g/em’), E is the pre-burial erosion rate (cm/yr), and A is the nucleon attenuation length (160
g/cmz). As the pre-burial erosion rate increases, the pre-burial concentration of the nuclide will
decrease. Eq. (1) shows production by only nucleons for simplicity but can be extended to
include muon reactions as well (e.g., Granger and Smith, 2000; Balco, 2017). Following burial,
the nuclide’s concentration will decrease with time:

N; = Njjppe™ "™ ()
where N; is the measured concentration of the nuclide. Combining Egs. (1) and (2) yields a
model of nuclide concentration N; that is a function of pre-burial erosion rate and burial age:

Pj

N; = robg e/ 3)

p=
A

Simultaneously solving Eq. (3) for measured concentrations of Al and '’Be yields both
the burial age and pre-burial erosion rate, with the assumption that no post-burial production of
*°Al or '°Be has occurred. It is appropriate for dating sediments that have been rapidly buried to
depths where production via muons is negligible such as in caves (e.g., Granger et al., 1997), but
this assumption is often violated in the case of terrace deposits, which can undergo significant
post-burial production of cosmogenic nuclides caused by deeply penetrating muons. Post-burial

production raises the measured *°Al/'’Be ratio; as such, burial ages calculated using this

approach are minimum deposit ages.
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2.1.3. Maximum burial age dating

Post-burial production by muons causes Eq. (3) to underestimate the true age. We can
place a maximum bound on the burial age by considering the maximum post-burial production
by muons. If we assume that the sampled deposit was previously thicker and has been eroding
over time, then the present depth of the sample is its minimum depth since the time of
deposition. The production rate by muons at the present depth is therefore the maximum that the
sample has experienced, and we can use its current depth to constrain the maximum depositional
age. The maximum age may be modeled by adding a post-burial component to Eq. (3):

Pi  _i/r. —t/t
Ni=1ige YT+ PLr(1— e7VT) 4)

T A

where P;, is the production rate of a given nuclide at the modern burial depth (at/g/yr). The
value of P;, for a given location may be estimated using exponential approximations (e.g.,
Granger and Smith, 2000; Schaller et al., 2001; Braucher et al., 2013) or computerized models
based on geological calibration sites (e.g., Marrero et al., 2016; Balco, 2017). We calculated
muogenic production rates using the parameters: o = 1, 69,10 = 0.251 pb, 69,26 =4.21 pub (Marrero
etal., 2016). As with the minimum burial age approach, Eq. (4) may also be solved
simultaneously for measured concentrations of Al and '"Be. One complication brought on by
high post-burial production, however, is that the maximum ages may be unconstrained, placing
no upper bound on the true age. We have modified the traditional minimum-maximum burial
dating approach to generate relative likelihood functions for the ages of dated deposits, as

detailed in Section 4.2.

2.1.4. *Al/"°Be sample preparation
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For this study, quartz sand, quartzite clasts, and chert clasts were collected from terrace
deposits at depths ranging from 9-15 m below the contact between the Upland Complex and
overlying loess. We sampled four locations for cosmogenic *°Al/'’Be burial dating: the Drum,
Kuhn, Mid-South, and Tri-County quarries (Fig. 1). Individual clasts that were large enough for
measurement (> 4 g) were manually crushed. Smaller gravels were mixed and crushed in the
cases of VA-MID (m) and VA-TRI (m). Gravels and sands were sieved to 250-500 pm and
rinsed with deionized water to remove fine materials, then run through a magnetic separator and
heavy liquids (lithium heteropolytungstate) to remove contaminant minerals. All samples were
subjected to selective dissolution in heated 1% HF/HNO;. Sample aliquots were subsequently
analyzed via inductively coupled plasma optical emission spectrometry (ICP-OES) to determine
aluminum content as a test of purity.

Sufficiently pure quartz samples received ~260 pg of *Be carrier and were dissolved in
concentrated HF/HNO;. Aliquots were taken from each dissolved solution to measure final Al
content. The samples were then evaporated, and excess Fe/T1 oxides removed via precipitation
at pH ~14 in sodium hydroxide. Al and Be hydroxides were precipitated, rinsed, and redissolved
prior to separation by cation and anion exchange column chromatography. The isolated Al and
Be were converted to aluminum chloride and beryllium nitrate, dried, and decomposed to oxides
by calcination with a propane torch. Al and Be oxide powders were then mixed with niobium
and loaded into stainless steel cathodes. *’Al/*°Al and '°Be/’Be ratios were measured at PRIME
Lab via accelerator mass spectrometry (AMS) against the standards of Nishiizumi (2004) and
Nishiizumi et al. (2007). Total Al, Be carrier, and AMS measurements are available in the

supplementary data section.
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2.2.1. (U-Th)/He dating

(U-Th)/He dating of goethite was used to determine the formation age of Fe-oxide
cement of the Upland Complex. The goethite cement in the interstitial space of this quartz-
dominated sand displays a mostly botryoidal growth texture (see supplementary figures), which
is developed on length scales of tens of micrometers. Poly-crystalline goethite aggregates
typically retain >90% of radiogenic He at earth-surface conditions and on timescales of millions
of years, as shown by previous diffusion experiments and *“He/’He studies (e.g., Shuster et al.,
2005; Vasconcelos et al., 2013; Hofmann et al., 2017). SEM images reveal homogenous
goethitic material without obvious grain boundaries or inclusions of tens to hundreds of
micrometers in diameter. Therefore, the goethite cement of the Upland Complex is a valid target
phase for (U-Th)/He dating. Previous studies on Fe-oxides formed in weathering environments,
most of all duricrusts (e.g. Vasconcelos et al., 2013; Riffel et al., 2016; Allard et al., 2018;
Monteiro et al., 2018), have yielded geologically meaningful ages using similar material.
Analytical procedures, including laser heating, helium measurement, sample dissolution, and
elemental analysis, followed the ones outlined in Hofmann et al. (2020).

These ages provide information on the timescales of post-depositional weathering and
soil formation. Fe-rich surficial systems frequently display dissolution of previous generations
of Fe-oxide and re-precipitation to form new material (e.g., Hofmann et al., 2017; Monteiro et
al., 2018). This cycling of Fe-oxides through dissolution-precipitation reactions leads to an age
distribution skewed towards more recent ages. We therefore dated >100 aliquots to explore the
temporal range of weathering and the earliest phase of post-depositional weathering, which can

yield constraints on the depositional age of the Upland Complex.
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2.2.2. Sample preparation

We sampled the Upland Complex for goethite (U-Th)/He dating in four different
quarries: De Soto quarry, Drum quarry, Kuhn quarry, and Arlington quarry (Fig. 1). Samples
consisted of bulk soil material with Fe-oxide cement and groundwater crusts. Groundwater crusts
were crushed to a grain size of ~200-500 pm. Bulk soil material and crushate was sieved to
remove material <20 um and >2 mm, and then density separated using a sodium polytungstate
(SPT) solution of density ~3050 kg/m>. The material was mixed with the SPT and centrifuged at
3200 rpm for 30 min. The supernatant was discarded, and the settled material was rinsed several
times in distilled water. This process removed most of the quartz and other light minerals and
left material highly enriched in Fe-oxides. Samples of the Kuhn quarry were treated with 0.1
M hydroxylamine hydrochloride at room temperature for four hours to selectively dissolve Mn-

oxide grains (procedure after Chao, 1972).
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Figure 1. Locations of sites dated with cosmogenic %A1/"Be and (U-Th)/He geochronology. Cosmogenic A1/"'Be
burial ages of terraces are shown above (U-Th)/He ages and represent the 16 (analytical uncertainty) minimum and
maximum ages where available; minimum age constraints derived from the oldest (U-Th)/He ages (with 1o
uncertainty) for each site are shown below burial ages. Note that the Mid-South and Tri-County quarries only have

2 A1/"°Be burial ages, whereas the De Soto quarry only has a (U-Th)/He age. ***2-column fitting image***

2.2.3. Analysis

Aliquots of Fe-oxide cement free of visible inclusions and intergrowth with other phases
were picked from this material and loaded into Pt tubes. Aliquots representing the center of
interstitial goethite cement away from neighboring phases were picked to reduce the effect of
possible alpha ejection and implantation. Degassing, “He measurement, dissolution, and ICP-
MS measurement of U, Th, Sm, Fe, Mn, Al, and Si followed the goethite protocol described in
Hofmann et al. (2020). Procedural He blanks were around 1 pcc (~45 amol) and measured He
amounts were at least a factor of three above blank level (>3 pcc). Blanks were interspersed
among sets of 6-12 sample measurements. Reported He measurements were blank-corrected
using these procedural blank measurements.

Aliquots were screened for being pure Fe-oxide by measuring elemental contributions
from substitution for Fe and from other phases. We rejected aliquots based on the following
criteria: (1) the Fe-based mass was significantly lower than expected based on the physical
dimensions of the aliquot, (2) aliquots with an Al, Si, and Mn content above reasonable limits for
goethite stoichiometry, (3) Fe-based mass and trace element concentrations were comparable to
other aliquots of the same sample but contained a much higher He concentration and
subsequently produced ages that were geologically unreasonable. An elevated He concentration

is most likely caused by He implanted from and contained in insoluble mineral inclusions, such
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as zircon, and has been observed in previous studies (e.g., Hofmann et al., 2017; Hofmann,
2019).

The mineral phases of samples were identified using Attenuated Total Reflection Fourier-
Transform Infrared (ATR-FTIR) spectroscopy by comparing them to known goethite, hematite,
and quartz samples. Characteristic peaks for goethite are at 795 cm™, 899 cm™, 1662 cm™, and
1793 ecm’’, with an additional broad peak with a center around 3090-3110 cm™. Quartz peaks are

at 1079 cm™ and 453 cm™', with an additional doublet at 783 cm™.

3. Results
3.1.1. Initial *°Al/'°Be geochronology

Van Arsdale et al. (2014) previously dated a remnant of the Upland Complex in Arlington,
Tennessee, 15 km northeast of Memphis using cosmogenic “°Al/'°Be in two samples from a
Memphis Stone and Gravel Company quarry. These samples were collected at a depth of
approximately 10 m below the top of the Upland Complex and processed by G. Balco for AMS
measurement. Gravel sample 12-GG-UC2 yielded a minimum burial age of 1.35 + 0.15 Ma and
a maximum burial age of 2.84 + 0.52 Ma, while sand sample 12-GG-UCIS yielded a minimal
burial age of 1.57 + 0.15 Ma and a maximum burial age of 3.14 + 0.49 Ma (all 1o analytical
uncertainties). These results indicate that this section of the Upland Complex is at least Early

Pleistocene in age and may be Pliocene.

3.1.2. New “°Al/'°Be burial ages
Measured *°Al and '°Be concentrations are provided in the supplementary data. The

minimum ages were generally Pleistocene, with the exceptions of samples VA-DRUM (sand),
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MID-1 (quartz gravel), and VA-TRI-52 (chert). Sample MID-1, a single quartz clast, featured an
unusually old age and low *°Al/'*Be ratio relative to its counterparts at the Mid-South quarry,
indicating that it experienced previous burial. As such, it was excluded from further
calculations. Similarly, the chert clast VA-TRI-52 had an excess concentration of '’Be that
lowered its “°Al/'°Be ratio and increased its apparent age. This was attributed to meteoric '°Be
contamination that commonly occurs with cherts and led to the sample’s exclusion from the final
age estimate. VA-DRUM, being a sand fraction, likely contained minimal reworked material
and yielded a valid Pliocene minimum age of 2.68 + 0.27 Ma (1 analytical uncertainty).
Pre-burial erosion rates were generally low but can be difficult to quantify when significant
post-burial production has occurred. If post-burial production of **Al/'°Be is unaccounted for,
the calculated pre-burial erosion rates will likely overestimate the true values. Conversely,
accounting for maximum post-burial production will potentially yield underestimates of pre-
burial erosion rates (see Fig. 2). Nonetheless, the pre-burial erosion rates that ignore post-burial
production are useful for placing bounds on maximum erosion rates prior to sediment burial (see
supplementary table). Sand fractions yielded generally slow pre-burial erosion rates, ranging
from 6.6-21.8 m/My. Gravel fractions and individual clasts yielded somewhat higher pre-burial
erosion rates, ranging from 7.0-33.9 m/My when the '’Be-contaminated chert clast was ignored.
Although minimum burial ages for the remaining samples were generally Early Pleistocene
and featured low uncertainties, the maximum burial ages were more widely distributed. In most
cases, maximum ages were unconstrained toward infinity. These partial maximum burial ages
aid in identifying more likely burial ages but leave open the possibility of infinite burial ages.
Samples 12-GG-UC2 and 12-GG-UC-18, both from the Arlington quarry, produced the only

completely constrained maximum burial ages. Their respective burial ages permit either a



290

291

292

293

294

295
296
297
298
299
300
301

302

303

304

305

Pleistocene or Pliocene burial age for the Upland Complex at the Arlington quarry. This wide
span of possible ages motivates an additional constraint — (U-Th)/He geochronology — on the
true age of the Upland Complex. The high precision of (U-Th)/He dating on goethite cements

allows a further constraint on the minimum age of Upland Complex deposits.
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Figure 2. Measured samples and their projected pre-burial histories are shown on the exposure-burial diagram.
Simple burial histories that do not account for post-burial production (minimum ages) are represented by straight
lines; burial histories that do account for post-burial production (maximum ages) are represented by curves.
Samples that yielded indefinite maximum ages have unconstrained burial histories represented by dashed lines.
Note that pre-burial erosion rate estimates are lower when post-burial production is incorporated into sample

histories. ***2-column fitting image***

3.2.1. (U-Th)/He Results
We acquired (U-Th)/He formation ages of a total of 102 individual aliquots, of which 18

were rejected based on the criteria outlined in the methods section. The ATR-FTIR spectra (Fig.
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3) of samples analyzed for (U-Th)/He dating show that they mainly consist of goethite. The
spectra also show a minor contribution of quartz in the bulk samples used for ATR-FTIR
analysis. The aliquots picked from this material for (U-Th)/He dating were single grains of pure
goethite with diameters of several hundred micrometers and did not contain any quartz. Since
they are much larger than the mean alpha ejection distance (~20 pm), no correction for alpha
gjection or implantation was applied. A correlation between age and effective uranium
concentration (eU), which would indicate detectable loss of U because of sample heating (see
Hofmann et al., 2020), was not observed.

(U-Th)/He formation ages of goethite cements from the Upland Complex taken on depth
profiles starting just below the “clay gravel” paleosol in the De Soto and Arlington quarries
decline with depth (Fig. 4). All (U-Th)/He dates are given with analytical uncertainties to the 1o
level. The oldest ages (2-3.5 Ma) occur close to the contact with the well-developed paleosol.
About 0.5 m below the contact, ages range from 0.5 Ma to 2 Ma. Ages are <1 Ma at ~1 m below
the contact. A sample of a groundwater crust just above the modern groundwater table
(Arlington-D) yielded a near-zero age.

Groundwater crusts from the Drum quarry yielded ages between 0.4 Ma and 3 Ma. A
goethite cemented boulder from a depth of approximately 15 m beneath the top of the Upland
Complex from the Kuhn quarry yielded ages of 0.1-1.5 Ma, with most ages between 0.2 Ma and

0.4 Ma, and only two aliquots >0.6 Ma.
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(Arlington quarry) have a near-zero age. ***2-column fitting image***

4. Discussion
4.1. Implications of *°Al/'°Be and (U-Th)/He results

Taken together, the *°Al/'’Be and (U-Th)/He geochronology reveal a Late Neogene
history of floodplain and terrace formation followed by post-depositional weathering. Based on
°Al/"°Be ages alone, it appears likely that the Upland Complex formed during the Pliocene or
Pleistocene; however, it is not possible to determine whether all dated terraces are the same age.
The best “°Al/'°Be constraints on the age of the Upland Complex were sourced from the
Arlington quarry, but even these results cannot resolve the Pliocene or Pleistocene age of the

Upland Complex. Our estimates of pre-burial erosion rates from sands indicate generally slow
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erosion rates that support a pre-glacial origin, but do not conclusively demonstrate a Pliocene
age.

The (U-Th)/He ages resulting from this study place basic constraints on the minimum
ages of the dated sites, as in-place goethite formation must have postdated the formation of the
Upland Complex. The similar distributions of (U-Th)/He ages from the Arlington and Kuhn
quarries — mostly Late Pleistocene with rare Early Pleistocene to Pliocene ages — reflect the
likelihood that older goethite deposits have likely been dissolved and reprecipitated, skewing the
distributions toward younger ages (Fig. 5). An additional indication for this process is that the
youngest ages are found close to the modern groundwater table, whereas the oldest ages are
found well above the groundwater table. Some young ages may also be the result of intergrowth
between older and younger material at length scales below that of an individual aliquot or partial
helium-loss in the case of very fine-grained material. This could potentially lead to an
underestimation of the minimum age. Though less evident at the DeSoto and Drum quarries,
skewed age distributions demonstrate a potential limitation of using goethite formation ages as
minimum bounds on the true age of a deposit. Even so, incorporating each site’s oldest (U-
Th)/He age significantly improved age estimates for three of the four sites dated with (U-Th)/He
that featured Pliocene (U-Th)/He ages: De Soto quarry (2.8 £ 0.1 Ma), Drum quarry (2.8 £ 0.1
Ma), and Arlington quarry (3.6 £ 0.1 Ma). Based on (U-Th)/He data alone, it appears that the
Upland Complex is a pre-glacial unit as these ages significantly predate the first major

Pleistocene glaciation at 2.42 + 0.14 Ma (Balco and Rovey, 2010).
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Figure 5. Normal kernel density estimates of (U-Th)/He ages of goethite cements. Individual ages are shown in

gray; overall age distribution is shown in black. Note that the age distribution is skewed toward ages <0.5 Ma,
reflecting the likely dissolution and reprecipitation of older Fe-oxide deposits. Plot created using camelplot.m
MATLAB code by G. Balco, available at http://depts.washington.edu/cosmolab/pubs/gb_pubs/camelplot.m ***2-

column fitting image™***

4.2. Generating relative likelihood functions for dated deposits

To calculate the permissible range of °Al/'°Be ages for each sample, we solved Egs. (3)
and (4) for measured concentrations of *°Al and '’Be. Uncertainties were propagated
numerically assuming normal distributions for the isotope measurements. We constructed a
likelihood function for the total permissible age distribution of each sample by taking the
minimum age from the left (younger) side of the minimum age likelihood function, and the
maximum age from the right (older) side of the maximum age likelihood function. For cases
with minor post-burial production, this approach yielded closed likelihood functions. In cases
where the theoretical post-burial production calculated with Eq. (4) yielded greater
concentrations than actually measured, the maximum age likelihood function was unconstrained
on the high end.

To generate overall age estimates for individual quarry sites with multiple samples, we
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assumed that (1) all sands and gravels of a given terrace deposit were the same age and (2) all
(U-Th)/He ages represented minimum ages for the deposit, since goethite formation post-dated
terrace deposition. We generated a likelihood function for the oldest (U-Th)/He age at each
location that featured constant likelihood for all ages exceeding the (U-Th)/He age. This
likelihood function was then multiplied by all of the *°Al/'°Be likelihood functions at that
location to generate an overall likelihood function for the site. We opted to multiply, rather than
add, likelihood functions to set likelihood to zero in age ranges forbidden by any sample. At
locations where only *°Al/'°Be measurements were available (i.e., Mid-South and Tri-County
quarries), we multiplied all *°A1/'’Be likelihood functions. This yielded one final likelihood
function of permissible ages per quarry, six in total. These likelihood functions were then

normalized for each site to generate relative likelihood functions (Fig. 6).
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Figure 6. Relative likelihood functions for all sites and the Upland Complex as a whole. Each site’s most likely age
is represented by a solid line and was calculated by multiplying the normalized likelihood functions for the *°Al/'°Be
minimum/maximum ages and the oldest (U-Th)/He age at each site, where available. Dashed lines represent
minimum and maximum ages from *°Al/"’Be and (U-Th)/He dating; individual likelihood functions are available in
the supplementary figure. The total sum represents the normalized sum of relative likelihood functions from all
sites, whereas the total product assumes coeval deposition and was calculated from the normalized product of all

relative likelihood functions. ***2-column fitting image***

4.3. Confirming a Pliocene age for the Upland Complex
By combining 2°A1/"°Be and (U-Th)/He geochronology, new age estimates emerge for

several sites. Kuhn, Mid-South, and Tri-County quarries may still be Pleistocene in age, given
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their distributions of **Al/'°Be and (U-Th)/He ages. It is clear, however, that the deposits at the
Arlington, DeSoto, and Drum quarries date to at least the Late Pliocene. Summing all of the
likelihood functions yields a curve that sharply increases during the Late Pliocene and reaches a
maximum value at 3.61 Ma. Given the high uncertainty of most maximum ages, the relative
likelihood function gradually tapers as age increases. If it is assumed that all deposits must be
the same age, multiplying the relative likelihood functions for each site yields a well-constrained
likelihood function for the age of the Upland Complex. This function is strongly controlled by
the likelihood function for the Arlington quarry and also yields a most likely age of 3.61 Ma,
with potential ages ranging from 3.40-4.29 Ma (Fig. 6). Whether or not the deposits were
coevally formed, these models indicate that the Upland Complex is likely a Pliocene deposit.

The strong dependence of our age estimate on the ages from Arlington quarry is an
important consideration when estimating the overall age of the Upland Complex. If the
**Al/'°Be and (U-Th)/He ages from Arlington are discarded when estimating the Upland
Complex’s age, a slightly different age distribution is revealed. Because of the Pliocene (U-
Th)/He ages for goethite deposits at the DeSoto and Drum quarries, it remains likely that the
Upland Complex is indeed at least Pliocene in age. The lack of Pliocene goethite at the Kuhn,
Mid-South, and Tri-County quarries may reflect dissolution of older generations of cement at
those sites and does not preclude a Pliocene minimum age for those locations. Although the
uncertainties of **Al/'’Be maximum ages at the remaining sites remain high, the maximum age
distributions for the Drum, Kuhn, and Mid-South quarries all indicate a likely Messinian — but
possibly Tortonian — maximum age (Fig. 6). As such, it appears likely that the Upland Complex
is at least Pliocene in age and no older than Late Miocene, even in the absence of the

measurements at the Arlington quarry.
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These age ranges overlap within uncertainty with cosmogenic *°Al/'°Be burial ages for
the Grover Gravel deposits in southern Missouri (Rovey et al., 2016) that have been argued to
represent the transition from the late Pliocene to the early Pleistocene (Rovey and Spoering,
2020). Our age estimate could correspond to a period of normal or reverse magnetic polarity
(Cande and Kent, 1995), so it is not possible to compare with the observation of Rovey and
Spoering (2020) that the Grover Gravel was deposited during a period of normal polarity. Our
evidence is compatible with the Grover Gravel and Upland Complex being equivalent but does

not unequivocally demonstrate this hypothesis.

4.3. The Upland Complex floodplain and Pliocene sea level

Prior to the formation of the Upland Complex, a higher elevation Mississippi River
deposited a floodplain mapped as the Citronelle Formation (Dockery and Thompson, 2016),
preserved in southern Mississippi. Dockery and Thompson (2016) report that the Citronelle
Formation is the remnant of a vast fluvial deposit preserved on drainage divides and is probably
Pliocene in age. Near Crystal Springs, Mississippi, the base of the Citronelle is 141 m above msl
and slopes south at ~1 m/km. The top of the Upland Complex at the latitude of Crystal Springs
is ~115 m amsl, thus illustrating that these do not represent the same level of the ancestral
Mississippi River. We hypothesize that incision through the Citronelle Formation and
establishment of an Upland Complex floodplain may have been controlled by an Early Pliocene
base level drop, perhaps coincident with a currently unidentified continental glaciation.

Our range of possible Pliocene burial ages for different deposits of the Upland Complex
may reflect its gradual formation during a prolonged period of base level stability. At the De

Soto, Drum, Kuhn, Mid-South, and Tri-County Quarries, we observed overlapping age
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distributions during the mid-to-late Pliocene that postdate the Arlington Quarry deposit’s
formation at ~3.6 Ma. We propose that, given its broad areal extent and thickness, the Upland
Complex was gradually deposited during the Pliocene. This gradual mechanism of formation
yields similar yet asynchronous age distributions for different dated sites of the Upland Complex,
as represented by a broad plateau on the sum of likelihood distributions for all quarries (Fig. 6).
The late Pliocene featured generally high sea levels (Miller et al., 2020) and included the
mid Piacenzian Warm Period (mPWP), a well-documented period of elevated temperatures and
high sea level (Robinson et al., 2018). Similar conditions were likely responsible for the
formation of numerous erosional and aggradational features in North America. Along the east
coast of North America, widespread wave-cut shorelines provide evidence of a sea level high
stand from ~3.3-2.9 Ma (Rovere et al., 2015). In the Shenandoah Valley, Virginia, *°Al/'°Be
dating of alluvial fans and terraces has revealed widespread aggradation at ~3.3 Ma followed by
gradual incision (Odom et al., 2019). It appears likely that the Upland Complex also formed as a

result of Pliocene aggradation resulting from prolonged base level stability and a high sea level.

5. Conclusion

The age of the Upland Complex has been debated for decades. Previous efforts to date
the Upland Complex with cosmogenic “°Al/'’Be improved age constraints but were unable to
discern a Pliocene or Pleistocene age. Our combination of *°Al/'°Be burial dating with (U-
Th)/He dating of goethite cements demonstrates that the Upland Complex predates the
Pleistocene and is very likely Pliocene in age. This supports the hypothesis that the Upland

Complex was deposited prior to Pleistocene glaciation.
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