J.-C. Lario et al. Res. Number Theory (2021) 7:32 . H
https://doi.org/10.1007/540993-021-00253-1 O Resea rCh In N um ber Theo ry

RESEARCH

: : : : ®
An inverse Jacobian algorithm for Picard et

curves

Joan-C. Lario’®, Anna Somoza? ® and Christelle Vincent?

“Correspondence:
anna.somoza.henares@gmail.com

2 st herch ‘ : i
nstitut de recherche We study the inverse Jacobian problem for the case of Picard curves over C. More
mathématique de Rennes,

Université de Rennes 1, Rennes, precisely, we elaborate on an algorithm that, given a small period matrix £2 € C3%3
France _ o corresponding to a principally polarized abelian threefold equipped with an
ngi‘l'asg‘Zf;i;heoég%}fﬁgggi';e automorphism of order 3, returns a Legendre-Rosenhain equation for a Picard curve

with Jacobian isomorphic to the given abelian variety. Our method corrects a formula
obtained by Koike-Weng (Math Comput 74(249):499-518, 2005) which is based on a
theorem of Siegel. As a result, we apply the algorithm to obtain equations of all the
isomorphism classes of Picard curves with maximal complex multiplication by the
maximal order of the sextic CM-fields with class number at most 4. In particular, we
obtain the complete list of maximal CM Picard curves defined over Q. In the appendix,
Vincent gives a correction to the generalization of Takase's formula for the inverse
Jacobian problem for hyperelliptic curves given in
[Balakrishnan—lonica-Lauter-Vincent, LMS J. Comput. Math., 19(suppl. A):283-300,
2016].

Keywords: Picard curve, Hyperelliptic curves, Genus 3, Inverse Jacobian, Explicit
algorithm

Mathematics Subject Classification: 14H25, 14H45, 14K25, 14Q05

Abstract

1 Introduction

Let J be the map from the set M, of isomorphism classes of algebraic curves of genus g
defined over C to the set A; of isomorphism classes of complex principally polarized
abelian varieties of dimension g. In this context, the inverse Jacobian problem consists
of identifying a model of the preimage via J of the class of a given principally polarized
abelian variety, if it exists. This is a classic result in the case of curves of genus 1, and has
also been solved for curves of genus 2 [26,36] and genus 3 [2,7,14,34,38,39].

In this paper we present an inverse Jacobian algorithm for the family of Picard curves.
This was initially done by Koike and Weng in [14], but their exposition presents some
gaps and mistakes that we fix here.

In Sect. 2 we give a formula to approximate the x-coordinates of the affine branch points
of a Picard curve in terms of theta constants of its Jacobian, see Theorem 3. The given
formula differs from the result in [14] by a third root of unity, see Remark 1.
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In Sect. 3 we first characterize the image under J of this family of curves, and then
develop the algorithm that takes the Jacobian of a Picard curve C and returns a Legendre—
Rosenhain equation for C, see Algorithm 5. The main step of the algorithm is applying
the formula of Theorem 3, so we first identify the objects needed to apply said formula,
mainly the Riemann constant and the images by the Abel-Jacobi map of the affine branch
points. Our algorithm makes the process of identifying these points explicit in Theorem 4,
see Remark 3 for a comparison with the approach of [14].

Our correction of the algorithm allows us to re-obtain the results of [14] and extend
the list of known maximal CM Picard curves, that is, Picard curves such that their Jaco-
bians have endomorphism ring isomorphic to the maximal order of a sextic CM number
field K. We obtain twenty-three new curves, displayed in Sect. 4, among which we include
all maximal CM Picard curves defined over Q. The corresponding CM-fields are col-
lected from [23]. The computations have been performed using SageMath [35], and an
implementation can be found at [31].

In the appendix, Vincent applies the tools introduced in Sect. 2 to correct a sign in
the generalization of Takase’s formula for the inverse Jacobian problem for hyperelliptic
curves, given in [2].

The present paper is an extension and clarification of our earlier work [16] to include
further improvements of the algorithm, such as Theorem 4.

2 A Thomae-like formula for Picard curves
Let C be a Picard curve defined over C, that is, a genus-3 smooth, plane, projective curve
given by the affine equation y®> = f(x) where f is a polynomial of degree 4. The curve
C has an automorphism p of order 3 given by (x,y) — (x z3y) with z3 = exp (%)
This automorphism fixes the affine branch points (t, 0) with f(¢) = 0. The curve C has a
unique point at infinity, with projective coordinates (0 : 1 : 0), which is also fixed by the
automorphism p.

Up to isomorphism, we can (and do) assume that C is given by a Legendre—Rosenhain

equation
¥ =x(x — D — N — p). (1)

Let H%(wc) be the space of holomorphic differentials of C, let H%(wc)* be its dual
and let H(C, Z) be the first homology group of C. Following the literature, for example
[4, Sect. 11.1], we define the Jacobian of C as J(C) = H%w¢)*/H1(C, Z), and for v =
(w1, ..., wg) a basis of H'wc) and the base point P, = (0 : 1 : 0) we define the Abel-
Jacobi map

Q
a:C—>J(C), Qr> w,
Po

and extend it additively to divisors of C.

Choosing a symplectic basis of H;(C, Z) gives rise to the isomorphism J(C) =~
C3/(273 + 72), where £2 is a matrix in the Siegel upper half-space H3 = {Z € C3*3 :
Z = Z%,Im(Z) > 0}, where (-)* denotes transposition and (-) > 0 denotes positive-
definiteness. We say that £2 is a (small) period matrix for C.

The following two classical theorems, due to Riemann and Siegel respectively, deal with
the zero locus of the Riemann theta functions and the values of a function of an algebraic
curve on non-special divisors. Recall that the Riemann theta function §: C¢ x Hy — Cis
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given by
0(z, 2) = Z exp(min' 2n + 2min'z),
nezf
and that a non-special divisor D is a divisor with £(K — D) = 0 for K a canonical divisor
of C.

Theorem 1 (Riemann’s Vanishing Theorem, see [21, Corollary 3.6]) Let C be a curve
defined over C of genus g, let ] (C) be the Jacobian of C with period matrix 2 € Hy and let
a be an Abel-Jacobi map of C. There is an element A € J(C), called a Riemann constant
with respect to o, such that the function 0( -, $2) vanishes at z € C8 ifand only if there exist

Qu ..., Qg1 € C that satisfy
z=a(Qr+ -+ Q1) — A mod (278 +7Z8).

The choice of a base point determines uniquely the Riemann constant A, as shown by
Mumford in Theorem 3.10 and Corollary 3.11 of [21].

Theorem 2 (Siegel [30, Theorem 11.3]) Let C be a curve of genus g over C, and let ¢ be a
function on C with

div(g) = Y "A;— ) B
i=1 i=1

Let P € C and let w be a basis of H(wc) for which the Jacobian J(C) has period
matrix 2 € Hy. Let A be the Riemann constant with respect to the Abel-Jacobi map o with

base point P.
Choose paths from the base point P to A; and B; that satisfy
m A; m 2
Y [lo=Y [ o
i=1 7P i=1 7P

Then, given an effective non-special divisor D = Py + - - - + Py of degree g that satisfies
P; ¢ {A;, B;: 1 < i< m)}, one has
P; A
"0 o~ [ —AR)
¢(D) :=p(P1) - p(Pg) =E[ [ —=2

, 2
. 0( 4 fP/ _ B; — AR ( )
i=1 j=1Jp @ Jpo—492)

where E € C* is independent of D, and the integrals from P to P; take the same paths both
in the numerator and the denominator. O

Observe that in (2) we are evaluating the Riemann theta functions at points of the
Jacobian.

We shall need a version of Theorem 2 in terms of Riemann theta constants. Given
¢ = (c1, cg) with ¢; € RE, the Riemann theta constant (with characteristic c) is the function
6[c]: Hy — C given by

c
0 |: 1:| (2) = exp(mici 2c; + 27TiC'iC2)9(.QC1 + ¢, 2). (3)
()
We use the following two elementary properties of the Riemann theta constants: They

are even in ¢, that is,

0[cl(£2) = 6[—c](£2), (4)
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and they are quasi-periodic in ¢, that is, for m = (my, my) € 7€ one has
Olc + m](§2) = exp(2mic1m2)0[c](£2). (5)
Due to the quasi-periodicity of the Riemann theta constants, we must fix representatives

in R for the points of the Jacobian. Throughout, we consider the composition of the
maps

C—=J(C) ——= R%/7% —— [0, 1) (6)
where « is the Abel-Jacobi map, the map - identifies J(C) with R%/Z% via
Qc1+cy > (c1, ¢2) and~maps a class in R%¢ /Z*€ to its representative with entries in [0, 1).
For P € C we write P instead of @; and in the case of a divisor D = ) npP, we define
D := Y npDP € R%. Note that with this definition for most divisors D we get that D and
a’(\li) are different.

With the definitions above, one can rewrite Theorem 2 in terms of Riemann theta

constants as follows:

Corollary 1 With the notation of Theorem 2, let a; = ((a;)1, (a;)2) (respectively b;) be the
element in R* that satisfies f;i o = 2(a;)1 + (a;)3 (respectively flf" o = 2(b;)1 + (bi)2):
We have

o) =E'[]

6 [D —a; — A](£2)
Lo

[D—b; — A](2)

14

where E' € C* is also independent of D.

Proof Observe that the exponential factor in (3) for Riemann theta constants can be
written as exp(7wiB(x, x)) where B is the symmetric bilinear form given by

£2 id
Bu,v)= u' [ e 2
id, 0
Let Q(u) = B(u, u) and let ¢ = D—A. Forj=1,...,gletx; = I”; and choose a path from
P to P; that satisfies flf’ o = 2(xj)1 + (x)2 € CL.
Let E' € C* be defined by

P; A;
m 8(( le P’a))—[P a)—A,.Q)
E]] ¢ b B; [D— b — A](2)
i=10 ((Zj:l Jp w) —o—4 Q) i=1 !
We want to prove that E’ does not depend on D. By (3) we get
E m
7 =P (m’ ;(Q(C —a) = Qe — bl«))) ,
so it suffices to show that ) " | (Q(c — a;) — Q(c — b;)) does not depend on D. We have

m m

> Qe —a) = Qe — b)) = > _(Qlai) — Q(by) — 2B(c, a; — by)

i=1 i=1
= Q@) — Y _Q(b)—2B (c, > ai— b») :
i=1 i=1 i=1
but we know

m Ai m Bi
Y[ lo=y[
i—1 /P i1 7P
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so in terms of characteristics we obtain ) - (a; — b;) = 0 and then it follows that
m m m
D (Qle—a) = Qle—b) = Qa)— Y _ Qb
i=1 i=1 i=1
does not depend on D. O

Lemma 1 Let C be a Picard curve defined over C given by y> = x(x — 1)(x — A)(x — ),
and consider the branch points Py = (0,0), P = (1,0), Py, = (4, 0), P, = (i, 0), and P, at
infinity. Let J(C) be the Jacobian of C with period matrix 2, let a be the Abel-Jacobi map
with base point Poo, and let A € J(C) be the associated Riemann constant.

Then, for every non-special divisor D = Ry + Ry + R3, we have

61D — o - Z\](:z))3
0[D—-A)2) )’

where £(D) = exp(67ri(5 — 1;0 - Z)l(ﬁo)z), E € C* is a constant independent of D and,

as before, x(D) is the product of the x-coordinates of each point in the divisor.

x(D) = E ¢(D) (

Proof Let w be the basis of holomorphic differentials for which J(C) has period matrix 2.
The divisor of the function x on C is div(x) = 3 Py — 3 Pw, so in order to apply Corollary 1
for ¢ = x and P = P, we choose three times the zero path from Py, to itself, the path y;
from P to Py that for a; = ﬁo satisfies

/ w = 2(a1)1 + (a1)2 € C3,
Y1

and paths y», y3 from P, to Py that satisfy

3
Z/w:om(c? (7)
k=1""k

Let ay, a3 be the elements in R that satisfy
/ w = 2(ay)1 + (ar); fork = 2,3.
Vi

Then, by Corollary 1, we have

3

o 0D —a — A)R)
x(D)_EkE[l 01D — Al(2) ®

for some constant E’ € C* independent of D. Note that for k = 1, 2, 3 we have

Py = (a; mod Z°),
so the differences a; — a; for i # j are integer vectors. Applying the quasi-periodicity
property (5), Eq. (8) becomes

exp2ri(D — Py — A)1(a1 — az + a1 — az)y) 0[D — Py — A](2)

$D)=E 0D — A|(2)3

But it follows from (7) that the sum a1 + ay + a3 is zero, so we obtain ay —ay + a1 —as =
3a; = 3]30 and the statement follows. O

The final step is to choose the right non-special divisors.
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Theorem 3 Let C be a Picard curve defined over C given by y> = x(x — 1)(x — A)(x — ),
and consider the branch points Py = (0,0), P1 = (1,0), P, = (4,0), P, = (,0), and Poo
at infinity. Let J(C) be the Jacobian of C with period matrix 52, let a be the Abel-Jacobi
map with base point Pso, and let A € J(C) be the associated Riemann constant. Then, for
n € {A u}, we have

~ ~ ~ ~ 3
) n(H[P1+2P,7—P0—A](Q)> , o)

0[2P1 + P, — Py — A)(£2)
where &, = exp(67i((P, — P1)1(Po)2 + A1(3P1 + 3P, — 24),)).

Proof We apply Lemma 1 twice, to the divisors D; = P1 + 2P, and Dy = 2P + P, which
are non-special as proven in [14, p. 506]. Then, we get

, 01, + 2P, — Py — A(2)\’
E'e(D1) ~ ~——
x(Py)x(P,)? 0P +2Py) — A(2)
n= =
*(PPx(P,) 6128, + B, — By — @)’
0[2P; + P, — Al(£2)

E’E(Dz) (

_e(Dy) (61 + 2B, - By - A)@)  612P + B, - Al2)
T e(D) \ 0P +25, — Al(R) 6012P + P, — Do — AlR) ]
(10)

Moreover, using the symmetry (4) and quasi-periodicity (5) of the Riemann theta con-
stants we also obtain

0[D, — Al(2) = 0[—D, + A)(£2)
=0[D; — A+ 24 — 3P, —3P,)](2)
N——
€76

= exp(27i(Dy — A)1(24 — 3P — 3P,)2))0[D; — A](£2)

so that (10) becomes

(8B +28, - B - @)
1= \oh + P, - R - A12) )

with
£(D1) R
- 27i(Dy — A)1(2A — 3P, — 3P
&y (D) exp(2mi(D; )1( 1 1)2)
67i(Py + 2P, — Py — A)1(P _ e e~
_ e ”f( 1+ 2Py = Po = A (Po)y) exp(67i(Dy — A)1 (24 — 3Py — 35,),)
exp(6mi(2P1 + Py — Py — A)1(Po)2)
= exp(67i((Py — P1)1(Po)a + A1(3Py + 3P, — 24),))
as desired. m|

Remark 1 Compare the above formula in Theorem 3 with the ones given in [14, Eq. 9].
The formulas there are the same as in (9) replacing ¢, by 1, hence in general they do not
hold due to the absence of the precise root of unity.
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However, if we follow the original work by Picard [24, p. 131], then we obtain a particular
form of the period matrix §2 (see also Shiga [27, Proposition I-3]) for which it is always
the case that ¢, = ¢, = 1. In such case, the formulas in [14] hold.

3 The algorithm
In this section we explain how to use the formula in Theorem 3 to obtain an inverse
Jacobian algorithm for Picard curves, that is, an algorithm that, given the Jacobian of a
Picard curve C, returns a model of C.

The following result characterizes the Jacobian of a Picard curve based on work of
Koike—Weng and Estrada.

Proposition 1 Let X be a simple principally polarized abelian variety of dimension 3
defined over an algebraically closed field k. If X has an automorphism ¢ of order 3, then we
have that X is the Jacobian of a Picard curve. Furthermore, let p be the curve automorphism
o y) = (% z3Y), and let p, be the automorphism of the Jacobian that it induces. Then we

get (¢) = (ps).

Proof By Oort—Ueno [22], based on work by Matsusaka [18] and Hoyt [9], we have that
since X is a simple principally polarized abelian variety of dimension 3 over an algebraically
closed field, then it is the Jacobian of a curve. Let C be a curve with X = J(C).

By Torelli’'s Theorem, see Milne [19, Sect. 12], there is some non-trivial automorphism
v of C that satisfies ¢ = +v,. Then the automorphism v, which we call 7, satisfies
ne = (VH)y = (£v) = ¢* = ¢, hence by the uniqueness in Torelli’s Theorem we obtain
that n has order 3.

Therefore, the degree of the map 7: C — C/(n) is also 3, and by the Riemann—Hurwitz
formula one obtains that C/(n) has either genus 0 or 1. But X is simple, so the curve C/(n)
is isomorphic to P! and 7 has 5 ramification points.

Then k(C)/k(C/(n)) is a Kummer extension of degree 3, hence C is given by an equa-
tion of the form y® = h(x) where / has 4 different roots. By Lemma 7.3 in Estrada [8,
Appendix I], we obtain a model for C given by y> = f(x) where f has degree 4 and distinct
roots and 7 is either the automorphism p given by (x, ¥) > (%, z3y) or its square. ]

Remark 2 While the idea behind the proof is the same in Proposition 1 and in [14,
Lemma 1], the assumptions in [14] are in a way more restrictive, as Koike and Weng
focus on maximal CM Picard curves. Moreover, the proof in [14] has a gap, which is fixed
exactly by our reference to Estrada [8, Appendix I].

We provide the proof above as an homage to Koike—Weng, but one could alternatively
use the classifications of plane quartics and genus-3 hyperelliptic curves by their auto-
morphism group to prove the result: by Propositions 1.1 and 1.2 in [17] one concludes
that the only genus-3 curves with order-3 automorphisms that have simple Jacobians are
Picard curves.

It follows from Proposition 1 that one can think of the input of the inverse Jacobian
algorithm for Picard curves to be a period matrix £2 € Hs together with the rational
representation of an automorphism of order 3. To give the curve we will compute the
values of A and u in a Legrendre—Rosenhain equation of the curve.
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First we want to determine the points in C3 /(£27Z3 4 Z3) that correspond to the Riemann
constant A and the image of the branch points via «. The former is given by the following
result due to Koike and Weng.

Proposition 2 (Koike—Weng [14, Lemma 10]) Let J(C) be the Jacobian of a Picard curve
C, let p4 be the automorphism of ] (C) induced by the curve automorphism p(x, y) = (x, z3y),

ni1 n12

and let N = € Sp(6, Z) be the transposed rational representation of ps. Then,

11 122
the Riemann constant A € J(C) is the unique 2-torsion point that satisfies

oty L ((ym)o\
A=(N") A+ 2 ((”51”12)0> =: N[4],

where (-)o denotes the diagonal of the matrix as a column vector.
The following step is to identify the image under « of the branch points.

Theorem 4 Let J(C) be the Jacobian of a Picard curve C, let p, be the automorphism
of J(C) induced by the curve automorphism p(x,y) = (, z3y). Let B be the set of affine
branch points of C, let o be the Abel-Jacobi map with base point P, = (0:1:0), let A be
the Riemann constant with respect to o and define

O3 := {x € J(O)[1 — pi] : 0[x + Al(22) = 0}.
Then a(B) and —a(B) are the only subsets T C J(C) of four elements such that:

(i) thesum ), .  x is zero,
(i) 7 is a set of generators of J(C)[1 — p], and
(iii) theset O(T):={d ,cqaxx:ac Zéo, Y yeT Ax < 2} satisfies

Proof We first show that «(B) and —a(B) satisty (i)—(iii), and then we prove that these
are the only possibilities.

That «(B) satisfies (i) follows from div(y) = D p.3 P — 4Poo. That a(B) satisfies (ii) is
proven by Koike and Weng in [14, Remark 8]. Next we prove that a(B) satisfies (iii). On
the one hand, given Q1, Q2 € BU{P} we have @(Q; + Q2) € ®3 by Riemann’s Vanishing
Theorem 1, and since we have a(Py,) = 0, this implies

Zapa(P) ta € Zgo, Zap <2t COs
PeB PeB
To prove the opposite inclusion, let x € ©s. Since x satisfies 6[x + A](£2) = 0, by
Riemann’s Vanishing Theorem 1 there exist Q, Q € C such that we havex = a(Q;+Q3).
Moreover, since x is a (1 — p,)-torsion point, we get

a(Q1 + Q2) = px(a(Q1 + Q2)) = a(p(Q1) + p(Q2)),

hence there exists a function % on C such that div(Z) = p(Q1) + p(Q2) — Q1 — Q.
Note now that a Picard curve is non-hyperelliptic, since one checks that the canonical
map is the embedding (x : y : 1): C — P2. Then we conclude that % is constant, since
otherwise it has degree at most 2, hence the curve would be hyperelliptic. Therefore we
have p(Q1) + p(Q2) = Q1 + Qo, but since p has order 3, the cardinality of the orbit of Q;
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has length 3 or 1, so we obtain p(Q;) = Q;. Therefore Q; and Q; are branch points, so the
other inclusion holds.

It is clear that —«/(B) satisfies (i) and (ii). To see that it satisfies (iii), it is enough to prove
that @3 is invariant under the map x > —x. But this follows from the symmetry of the
Riemann theta constants, see (4).

Next we prove that a(B) and —a/(B3) are, in fact, all the subsets that satisfy (i)—(iii).

Let B denote an ordering of «(13). Given a sequence T = (ty, £y, t3, t4) in J(C)* of
distinct elements such that the set {£), £y, £3, £4} satisfies (i)—(iii), we define the map
y[T]: ]Fg — J(CO)[1 — p4] given by r Z?:l rit;. By Remark 8 in Koike—Weng [14]
we have J(C)[1 — p.] = (Z/3Z)3, thus it follows from (i) and (ii) that y [T is a bijection.

Consider the diagram

M(T)

J(O)L — ps]

F3 F3

where M(T) is the unique invertible matrix in IF gxg that makes the diagram commutative.
Note that choosing a matrix M(T') determines 7 uniquely.

Let ey, ey, e3 be the standard basis vectors of F%, and let e = —e; — ey — e3, so for
i=1,...,4wehave y[T](e;) = t;. Consider

4 4

Oy = {Zﬂiei ta e Z;O,Zai < 2} C ]Fg
i=1 i=1

One can check #0y = 15, and moreover we have y [T1(Og) = O({t1, to, t3, t4}). If the set

of elements of T satisfies (iii), then we have

v[T1(Oo) = O({t1, ta, t3, ta}) = O3 = y[BI(Op),

and thus Oy is stable under M(T).

We checked with SageMath [35] that there are exactly 48 invertible matrices in ngs
that map O to itself. Since a matrix M(T') determines T uniquely, there are 48 sequences
T € J(C)* that satisfy (i)—(iii). However, if we vary o in the symmetric group of 4 letters
and s € {£1}, then so (B) gives 48 sequences, which are different. We conclude that «(B)
and —a/(B3) are the only subsets of J(C) with 4 elements that satisfy (i)—(iii). O

Remark 3 With Theorem 4, we make precise the idea hinted in Corollary 11 of Koike—
Weng [14]. There, they claim the existence of a 4-element set that satisfies (i) and (ii),
prove that «(3) does satisfy (i) and (ii), and assume without further comments that when
one finds such a set, it is a(B).

This is problematic not only because they disregard the case where the set is —a(5) but
especially because they do not consider (iii), since there exist 4-element sets in J(C) that
satisfy (i) and (ii) which are not «(53) or even —a(B5).

In fact, there are # GL3(FF3) = 11,232 possible sequences T € J(C)* that satisfy (i)
and (ii), hence the probability of finding one that corresponds to a permutation of B is
1/468 ~ 0.002.

We now have all the tools to state the algorithm.
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Algorithm 5

Input: A period matriz 2 € Hz of the Jacobian of a Picard curve C, and the
transposed rational representation N € Z8%6 of the automorphism of the
Jacobian p. induced by the curve automorphism p(x,y) = (x, z3y).

Output: The complex values \ and p in a Legendre—Rosenhain equation y> =
x(x — 1)(z — N\)(x — p) for the Picard curve C.

Steps:

1. Let D be the unique solution of N[D] = D in 375/75.
2. Compute the set

O3 = {x c %ZG/Z6 :N'z =2 and 0]z + D](2) = 0}

of cardinality 15.
3. Let T = {t1,ta,t3,t4} C O3 be a 4-element set that satisfies

L4
iy, t=0,
1. {t1,ta,t3} are linearly independent over Z/3Z, and

i, {305y aiti : (a:); € Z4g, 35, a; < 3} = Os.
4. Compute
ex = exp(6mi((ts — £2)1(£1)2 + (2 + 265 — D)1(2D = 3(f2 + £3))2)),

€y = exp(6mi((ts — ta)1(t1)2 + (t2 + 24 — 13)1(213 —3(ta +t1))2)),

and

(9[52 +26 — 4 —5]((2))3
)\26)\ = p~ = )
9[2t2 +t3 —t1 — D](.Q)

(Sl 2h -6 - DY)
“EE\bh ko h o DI@))

5. Return \ and u.

Remark 4 Algorithm 5 is a mathematical algorithm, but, because it involves infinite sums,
complex numbers and exponentials, it cannot be run on a Turing machine or a physical
computer. To do so one needs to truncate the sum on the Riemann theta constants,
approximate complex numbers and keep track of the error propagation. For implemen-
tation details, we refer the reader to [32, Sect. 1.5].

Proof of Algorithm 5 Let A € J(C) be the Riemann constant with respect to Py, =
(0 : 1 :0) and let B be the set of affine branch points of C. By Proposition 2, the point
A is the only one that satisfies N[A] = A and is a 2-torsion point, that is, it satisfies
Ace€ %Z6/Z6. We conclude D = A.

By Theorem 4, the sequence (1, £, £3, £4) is an ordering of either a(53) or —a(B). In the
former case, the values A, i obtained in Step 4 are the x-coordinates of the affine branch
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points different from (0, 0) and (0, 1). A quasi-periodicity argument similar to those in the
proofs of Lemma 1 or Theorem 3 yields that in the latter case the same holds too. ]

4 Computing maximal CM Picard curves

In this section, we present how to use Algorithm 5 to compute maximal CM Picard curves,
that is, Picard curves such that their Jacobians have an endomorphism ring isomorphic to
the maximal order of a sextic CM-field K.

Since p4 is an automorphism of order 3, the field K contains a primitive 3rd root of
unity ¢3 € K. In fact, the field K is determined by a totally real cubic field Ky that satisfies
K = Ko(¢3).

Van Wamelen [37] gives an algorithm that, given a CM-field K, lists all the isomorphism
classes of period matrices of principally polarized abelian varieties with complex multi-
plication by O. This method is based on the CM theory due to Shimura and Taniyama
(see [29]) and we use the implementation in [33].

Applying said method to a sextic CM-field containing a primitive third root of unity
{3 € K, we obtain a list, say CMk, of period matrices §2 corresponding to principally
polarized abelian threefolds with CM by Ok with an order-3 automorphism associated
to ¢3. By Proposition 1, they are Jacobians of Picard curves. To then obtain the rational
representation N of the order-3 automorphism is a matter of keeping track of the changes
of basis throughout van Wamelen’s method. We use the resulting list of pairs (£2, N) as
input for Algorithm 5.

When computing the Riemann theta constants in the algorithm implementation, we
restrict the sum to a hypercube [—B, B] C Z2 for a certain value B that depends on
the precision required and the minimum eigenvalue of the imaginary part of the period
matrix. For efficiency, we would like the smallest eigenvalue of the imaginary part of 2
to be as big as possible, due to its role in the computation of the bound B. Since the
isomorphism class of a principally polarized abelian variety only depends on the orbit of
§2 under the action of Sp,,(Z), this can be achieved by choosing a representative in a
certain fundamental domain of H,. For this we use the implementation due to Kiliger—
Streng [10] of Algorithm 2 in Labrande—Thomé [15, Sect. 4.1] on our period matrix before
applying Algorithm 5. For more details we refer the reader to [32, Sect. 1.5].

After numerically approximating the x-coordinates of the branch points of C with
Algorithm 5, we obtain a polynomial

Sx) =x(x — D)(x — 1) (x — pn) € Clx]

up to some precision, while the curve is actually isomorphic to y> = h(x) for a certain
polynomial /1 over a number field.
Given the quartic polynomial

plx) = x4+ g2x2 + g3x + g4 with go, g3 # 0

we define the absolute invariants of p(x) as

]’1=é j2=&
% >

In order to find /(x) from f(x), we compute the absolute invariants of C by computing
j1 and j, for an isomorphic curve of the form y = x* + gox® + g3x + g4. We use them to
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obtain a numerical approximation of the class polynomials

Hyx)= [] @x—jie)
2eCMg
which have coefficients in the ring of integers of the moduli field of the curve. Once we
recognize the exact polynomials we recover the pairs (jj, j2) by embedding the roots of
Hj,, Hj, to C and comparing them with the numerical approximations obtained from f.

We then reconstruct an exact model /(x) for each curve from the exact absolute invari-

ants, obtaining

7 = hx) = 2" +j1x® + fix +jijo
Note that in order to be able to recognize the coefficients of H; and Hj, as algebraic
numbers we have to compute A and p with enough precision.

Finally, one can use the algorithm in [5] to compute the endomorphism algebra of the
Jacobian of the curve, confirming that the obtained curves have CM by the maximal order
of the initial CM-field.

The list below contains models for all maximal CM Picard curves whose CM-field
has class number # < 4. We get the sextic fields from [23, Table 3]. The authors of
[13], working off an earlier version of this paper [16], give supporting evidence of the
correctness of our examples. We have now confirmed the correctness of the models using
the implementation of the algorithm in [5].

The examples (1)—(8), (13)—(14) include all the maximal CM Picard curves defined over
Q. The completeness of the list follows from Kiliger [11, Theorem 4.3.1], as well as the
fact that in examples (13)—(14) we also obtain three conjugate curves defined over Kj; see
also [11, Table 3.1].

The examples (9)—(12) are defined over a cubic number field L such that the com-
position KL is the Hilbert class field of K. This follows from Shimura—Taniyama
[28, Main Theorem 1], since we have sx = 3 and the curves are not defined over Q.

Remark 5 Examples (1)—(5) also appear in [14, Sect. 6.1]. Moreover, it is worth mention-
ing the existence of an algorithm to compute maximal CM plane quartics, see [12]. In
particular, this algorithm can be used to compute maximal CM Picard curves, although
less efficiently due to its more general scope. In fact, all the curves defined over QQ that we
give were independently found in [12].

Remark 6 Itis also possible to use this algorithm to compute maximal CM Picard curves
over finite fields, by obtaining first a rational model, and then reducing it modulo p. An
alternative approach to this problem is given in [1] using the Chinese Reminder Theorem.
In particular, see [1, Sect. 7] for an example using the CM-field in Example (2) and a
comparison of the performance of both algorithms.

3= x* —x,w1th1(o defined by v — 3v — 1.

2 =at —2.72x% + 23 . 72 x — 73, with K defined by v — v2 — 2v + 1.

¥y =x*—2.72.13x%423.5.13-47 x — 5213231, with Ky defined by v® —v2 —4v —1.
y =a* —2.7.31-73x% + 211 .31.47x — 7. 312 - 11593, with K, defined by
v3 4+ 02 —10v — 8.

5. 93 =x*—2.7.432.223x2 +27 - 11-41-43% - 59x — 112 - 433 - 419 - 431, with K
defined by v® — v? — 14v — 8.

=W
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10.

11.

12.

13.

14.

yP=uat—2.32.52.72x2 +2°.72.71x — 3% . 5. 73 . 2621, with K defined by
v3 —21v — 28.

P =uat—22.32.72.374% +5.72.149 . 257 x — 2. 3% . 52 . 73. 2683, with K defined
by v3 — 21v + 35.
yP=x*-2.32.52.7.11-13x% +27 - 11-13-59-149x — 3% .5.7-132 .17 - 17669,
with Ky defined by v3 — 39v 4 26.

For Ko defined by v3 — v2 — 6v + 7, and w® = 19, we obtain the three conjugate

curves

¥® =&t + (10w? — 2w — 70) &® + (96w? — 7w — 496) x + (235w — 215w — 1101).

For K defined by v3 — v2 — 121 — 11, and w® = 37, we obtain the three conjugate
curves

y? = &t 4 (—2366w* 4 490w 4 24626) x* + (—257958w?> — 686928w
+ 5152928) x + (1226851w? — 56922233w + 176054907).
For K defined by v3 — 109v — 436, and w3 = 109, we obtain the three conjugate
curves
y® = x* + (1115888872w? — 4007074778w — 6321528472) x°
+ (—39141 169182336w? + 294349080537984w — 512926132238464) X
+ 816342009554519305w? — 9276324622428605048w
+ 25684086855493144296.
For K defined by v3 — v? — 421 — 80, and w3 = 127, we obtain the three conjugate
curves
y* = &* + (=92075757704w? + 319193013538 + 721950578888) x>
+ ( — 49404281036538240w”> — 182817463505393280w+
2167183294305193600)x + 21690511027003736433025w> —
118803029086722205449800w + 49134882128483485627800.

For Ko defined by v — 61v — 183, we have four curves. The first one is defined over
Q.
yP=x*—2.3.7-612.1289x> +2%.37 . 11-41-53-61%«
—3%.7.11%.61% - 419 - 4663,
and the three conjugates
¥ = a* + (892641 — 547484v — 4059720) x* + ( — 29558196V + 49526073v
+ 772138494)x + 88325678v% — 16281030326V — 72348132021
For Ky defined by v3 — v? — 22v — 5, similarly one gets:
P =x*4+2.7.67-179x>+2%.3%.5.67-137x +52-7-67>-71 -89
and the three conjugates

y® = x* + (122220 — 263088 — 1290744) x* + ( — 19721880v* + 232016400v
+1277237160)x + 1145381917517 — 62791404525V — 447679991475,

32
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Appendix A (by Christelle Vincent)

Let C be a hyperelliptic curve of genus g > 2 defined over C, and denote by x: C — P!
a morphism of degree 2 from C to P!. Then x has 2g + 2 branch points which do not
depend on the choice of x. We fix once and for all an ordering of these branch points, and
denote them by Py, Py, .. ., Pyg 2. Furthermore, for simplicity of notation in what follows
we will denote

a; = x(P)). 1)
The significance of these quantities is the following: If x(P;) # oo for any j, then a model
for C over C is given by
2g+2
7 =[]ex-a), (12)
j=1

whereas if there is k with x(P;) = 0o, a model for C over C is given by

v =[]&-a) (13)
j#k
Our goal in this appendix is to show the following proposition, which generalizes
a formula given by Takase [34, Theorem 1.1]. In the statement we use the notation
la}, am, ay, axo) for the cross-ratio

ax — aj .ﬂoo_am (14)

[ﬂl; Ams Al ﬂoo] = .
Ak —am Aoo — 4]

Proposition 3 Let C be a hyperelliptic curve defined over C, x: C — P! be a morphism
of degree 2 with branch points Py, ..., Pyg12, and 2 be a (small) period matrix for J(C),
the Jacobian of C. Let k, | and m be distinct and belong to the set {1,2, .. .,2¢ + 2}, and fix
Py, a distinguished branch point of x, oo # k, I, m. Then, for aj = x(P;) and 1 an eta-map
associated to 2 and the base point Py, with corresponding U-set Uy, we have

2
O, o(vukin1(£2)0[nu, 0wk 1(82) )

la, am ak, aco] = exp(dmi(nm — n1)1(Mk)2)
" oo P " O, o(v Uy 1($2)0 (M1 0 (w Uk m)) 1 (£2)

(15)
where V and W are any sets that give a disjoint decomposition
{1,2,...,2¢0+1,2¢+2} =VUWU{kIm, o0} (16)

with #V = #W =g — 1.
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As an immediate corollary, if we denote by A; for i = 3,4, ...,2¢g + 1 the Rosenhain
invariants of C, by which we mean the constants appearing in a choice of Rosenhain

model
2g+1
C:y=axx—1) [[@—n) (17)
i=3

for the curve C, we obtain the following formula:

Corollary 2 Let C be a hyperelliptic curve defined over C, and fix a choice of Rosenhain
model for C. Let Py, denote the point of C that is “at infinity” in the Rosenhain model of C,
§2 be a choice of period matrix for ] (C), the Jacobian of C, and n be an eta-map associated
to 2 and the base point P, with corresponding U-set U,. Then forj € {3,4,...,2¢ + 1},
the Rosenhain invariants of C are given by the expression

2
O1nur,0(vup,2)1(82)0 [ﬁu,,o(wuu,z})](ﬂ)) 18)

Aj = exp(4mi(nj — 12)1(m)2)
! ! O, o(vuin,in1(£2)0 w0 (w1 ($2)

where V and W are two sets of cardinality g — 1 such that

VUW =({3,4,...,2¢g +1}\ {j}, (19)
and the notation o denotes the symmetric difference of two sets: For S, T C {1,2,...,2¢+2},
we have

SoT=(SUT)\(SNT) (20)

We now discuss briefly the history of this result and why this publication is necessary.
In his work [34], Takase gives the formula presented in Proposition 3 in the special case
where a5, = 00, and only for certain choices of period matrix §2 for the Jacobian of C.
These period matrices are those given by Mumford [20], using his “traditional” choice
of symplectic basis for the first homology group of the Jacobian. This work was notably
used by Weng in [39] to give models of hyperelliptic curves whose Jacobian has complex
multiplication. Since our software [3] did not allow us to make the same choice of period
matrix, for our computations we needed a more general result. Our earlier article [2,
Theorem 4.5] claimed to give the formula for all period matrices (retaining the assumption
that s, = 00), but unfortunately we found out later that there remained a mistake in the
sign of X;, which had not been corrected to account for the general case.

The mistake was originally found by the authors of [12] as they worked to complete the
list of curves of genus 3 defined over Q whose geometric endomorphism ring is a maximal
order in a sextic field. For a specific period matrix in their list, the code provided in [3]
did not yield a correct model for the hyperelliptic curve. Somoza, an author of this article,
pointed out the “third root of unity” issue she had found and fixed in the Picard case, and
after some trial and error we found that we had the same issue in the hyperelliptic case,
with the exception that we were missing instead a second root of unity, or a sign.

The formula we finally give here is valid for all period matrices, and gives the correct
value for ;. We note that the software available at [3] has been updated to be correct. As
mentioned before, in addition to correcting the sign of A;, the formula given here is more
general than that given by Takase, because here we do not assume that a., = oo, which
explains why we compute the cross-ratio [a;, du, ai, dso] rather than the simpler quotient
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ak—aj
ak—am
given by Takase, though it is possible to follow his method to arrive at the same result

as Takase does. As far as the proof is concerned, our proof does not follow that

(though still with the assumption that as, = o0) as was done independently by Ionica
in unpublished work. We note that this is not simpler or shorter than the proof we give
here. The corrected formula has since been used in [6] to compute hyperelliptic class
polynomials in genus 3.

A.1 Preliminaries

Following the technique used in the body of the paper, we will use Siegel’s Theorem 2
applied to a suitable choice of function ¢: C — P! to obtain our results. To apply Siegel’s
Theorem, we first need a non-special divisor on C:

Lemma 2 Let C be a hyperelliptic curve defined over C, x: C — P be a morphism of
degree 2 from C to P, and Py, . . . Pag 1o bethe branch points of x. Let I C {1,2,...,2g + 2}
be any subset of cardinality g. Then

D=>)"P (21)
iel
is a non-special divisor on C. In other words, any sum of g distinct branch points of x is a
non-special divisor on C.

Proof We recall that a divisor D is non-special if £(K — D) = 0, where K is a canonical
divisor on the curve C.
Fix Po, a branch point that is not in the support of D, and a model

s> =f(t) (22)

for the hyperelliptic curve, where f is of degree 2g + 1 and Py is the point at infinity. Then

div(s) = Z P, — (2g+ 1)Ps, and valp,(div(z)) = —2. (23)
i#00
We may then use
div(dt) = Y " P; — 3P (24)
i#00

as a canonical divisor. Now suppose by way of contradiction that ¢(div(dt) — D) > 1, so
there exists a function f on C with

div(f) > D — div(dt). (25)
Then certainly we have
div(sf) > D — div(dz) + div(s) = Y _ P; — (2g — 2)P (26)
iel

Now functions on C are rational functions in s and ¢, and functions on C with poles
only at co must be polynomials in s and ¢. Since valp_ (s) = —(2g + 1), the function sf is a
polynomial in ¢, of degree less than or equal to g — 1. However, such a polynomial cannot
have g zeroes, one at each of the points in the support of D. From this contradiction we
conclude that (K — D) = 0 and D is non-special. ]

Secondly, to connect our result to the established literature on hyperelliptic curves, we
will need an eta-map associated to a period matrix £2 and a base point Py,. We refer the
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interested reader to either Poor’s work [25] or our earlier work [2] for more details on these
maps, and present here only the barest of facts necessary to keep this appendix readable.
Let Ps be an arbitrary but fixed branched point of the degree 2 morphism x: C — P!
fixed above, and recall that we have labeled the branch points of x to be Py, Py, ..., Pyg12
(one of these is of course also labeled Pw,). As in the body of the paper, fix « an Abel-Jacobi
map for C with base point P. Then forj € {1,2,...,2¢g + 2}, we write

- %
nj="Pje {0: 5} (27)

where ~ is the map given in equation (6), and as in the body of the paper we denote the
composition of the three maps by the last. The fact that the coordinates of ; for each j are
half-integers follows from the fact that P; — Py is two-torsion in J(C), see [20, Corollary
2.11]. Furthermore, for any subset S C {1,2,...,2g + 2}, we write

ns =y (28)

jes

Note that we use the same convention as in the body of the paper regarding summation
of characteristics; see the paragraph immediately following Eq. (6) for a discussion of this
convention. Because of this, it follows that

ns = 5;, (29)
for
Ds =) P, (30)
jes

We note that the dependence of the eta-map on the period matrix £2 happens explicitly
via the map .
Under these assumptions, there exists a subset U, € {1, 2, ..., 2g + 2} such that
nu, =A (mod Z%) (31)
where A is the Riemann constant associated to the choice of Abel-Jacobi map « that we
made. We note that in fact there are several such sets; it is customary to choose one of
even cardinality, and we have adopted in earlier work the convention that I/, should also

contain oo. This determines the set U/, uniquely. We call this set a L/-set corresponding to
n. Finally, one can show that if S is the complement of T inside of {1,2, ..., 2¢g + 2}, then

ns = nr. (32)

A.2 Proof of the formula
With this notation and preliminaries in place, we may begin the proof. We begin with an
auxiliary result:

Lemma 3 Let P; and Py be two distinct branch points of the morphism x, o be an Abel—
Jacobi map with base point Poo, and y be a path from P, to P such that if 7’,' = n; (Where
the map~is as in Eq. (6)), then

[ =2+ o (33)
14

In this case there exists a second path Y from Py, to Pj such that

fcu—{—/w:O in C&. (34)
14 v
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Proof We have that ﬁj =1 € {0, %}Zg (see Eq. (27) and the discussion surrounding it for
this fact). From this it follows that if Lo = 272 + 7€ is the lattice attached to the period
matrix §2, we have that

1
/ we =L, (35)
, 2
or

2 /y w€ Lo. (36)

Asaconsequence, . , @ and — | , @ differ by an element of L;, and since every L, -translate
of [ , @ is f; o for some other path y from P, to P;, it follows that there is  from P, to
P; such that

‘/y‘”:/f”' (37)

O
We can now give the crucial part of the proof:

Lemma 4 Let C be a hyperelliptic curve defined over C, x: C — P! be a morphism of
degree 2 with branch points P1, . . ., Pyg 2, and $2 be a period matrix for ] (C), the Jacobian
of C. Let k, | and m be distinct and belong to the set {1,2,...,2¢ + 2}, and fix Py a
distinguished branch point of x, with oo # k, I, m. Then, for aj = x(P;), and n an eta-map
associated to §2 and to the base point P with corresponding U-set U,, we have

S I
where

ek b, m) = exp(di(im — 1)1 (10)2) (39)
and forj = |, m, we have

T =V U{j) (40)
and

Sj=T; Uk} =V U{jk}, (a1)

where V is any set of cardinality g — 1 such that V C {1,2,...,2¢ + 2}, kL, m oo ¢ V.

Proof To begin, fixoo € {1,2,...,2¢ + 2}, 00 # k [, m, and let

x(P): C — P! (42)
be given by
_ x(P) — x(Py)
P = ) (P 4

Then the cross-ratio we seek is given by

x(Py)

[all Ams A ﬂoo] = .
X1 (Prn)
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Next we fix a subset V' C {1,2,...,2¢ + 2} of cardinality g — 1 such that k, [, m, 00 ¢ V.
(Note that this is possible since 2¢ — 2 > g — 1 for ¢ > 1.) Then the quantity which
interests us is given by

x,(Pp) l_[ieV x(P;)

(ay, dms a, doso] = . (45)
T @) Tiey 24P
In addition, for j = /, m, the divisor

ieV
is a sum of g distinct branch points of x, and therefore an effective non-special divisor by
Lemma 2.
Using the notation of Siegel's Theorem 2, we have

xk(Dy)
lap, am ay, ax] = ’ (47)
" = %4(Dpm)
and now wish to apply Corollary 1 to compute the quantities x;(D;) and x (Dy,,).
To do so, we note that
div(xy) = 2P; — 2Pss (48)

and that the supports of the divisors D; and D,, avoid the support of div(xy). As in the
previous section, we denote by A the Riemann constant for the Abel-Jacobi map « of C
with base point P. In the application of Siegel’s Theorem, we will choose the paths from
P to Py to be the trivial paths. As in Lemma 3, we fix a path y from Py to Py such that

/ © =B = 2001 + (102 (49)
Y

and denote by ¥ the path from Py to Py, such that

/a)+f~a)=0. (50)
¥ ¥

We have then that
/ 0 =—By. (51)
¥y

Finally, to simplify the notation, we further let
Tj =V Ui} (52)

for j = I, m, and replace the notation D; with the notation 7;, using our convention for
sums.

After these preliminaries, a straightforward application of Corollary 1 to xx(D;) and

%k (Dyy,) yields
D
[ﬂz, Ams Al ﬂoo] - ;C]:(((l)ri,)) 3 3 (53)
_ (e[nn — e — ANR)0 I, + nc = A](Q))
Olnr, — A)(£2)2
. (9[m — k= ANRn7,, + 1 — Z](fz)) (54)
' 0n,, — Al(82)? '
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To use the quasiperiodicity property of the theta function, we write
Si=T; Uik} =V U{jk} (55)
for j = [, m, so that we have
nT; + Nk = 1Ns; (56)
since k ¢ T;. Then for j = [, m, the characteristics
ns, — A—2n and 75— A (57)

differ by an integer vector, namely —2ny.
Applying the quasi-periodicity property of the Riemann theta constant with character-
istic given in equation (5), we obtain

Olns, — A — 2ni](82) = exp(di(A — n5)1(nk)2)0 [ns; — AN(S2). (58)

Therefore we have

((expami(A — ns)1(n)2)0 Ins, — A)(82)*
i @ o] = 0lnz, — Al(2)
. (exp<4ni(2 — 15, )1(0)2)0ns,, — Z](sz)z)
' 0lnt,, — Al(2)?

~ ~ 2
= explait i) (o U= i) (59
0lns,, — Al(£2)0[n1, — Al(82)

We finally handle the quantity A. First, we note that since A is a vector with half-integer
entries, A and —A differ by a vector with integer entries. Furthermore, as noted in Eq.
(31), nu, and A differ by a vector with integer entries. Therefore —Aand nu, differ by a
vector with integer entries, say n:

~A=ny, +n (60)
Recalling our notation for the symmetric difference of two sets given in Eq. (20), we
have that
ns, — A = ns, +nu, + 1= nseu, + 20500, + 1 (61)
and
N1, — A =g, + nu, + 1 = n10u, + 207,00, + 1 (62)

forj = [, m. Once again we thus apply the quasi-periodicity property of the Riemann theta
constant with characteristic to remove the integer vectors appearing in each characteristic.
This time around, we note that since all of characteristics appearing above are half-
integers, the sign exp(2mix1my) from the transformation formula will be £1. Since all of
the theta constants are now squared in the formula, the signs vanish and we finally obtain:

e[ns,oun](me[nTmounJ(m)Z )

a1, ams @ aco] = exp(Ai(nm — n)1(nk)2) (9[ns @0 1(2)

This completes the proof. O
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To finish the proof of Proposition 3, it remains now only to rewrite it so that the
characteristics agree with Takase’s and to verify that the signs agree. Indeed, the cross-
ratio we compute here in this article agrees with the quotient computed by Takase, since
in his article, Takase assumes that g, = 00. In that case, we have that

ag —aj

[all am; ﬂk, ﬂOO] = (64')

ak — am
We therefore turn our attention to the characteristics: Following Takase’s notation, let
W be the complement of V U {k [, m, oo} in {1, 2,...,2¢ + 2}. Then from the definitions
it follows that

Sj =V Uikj}, (65)

forj = I, m. Wealso have that T;U{oo} is the complement of WU{k, m}in{1,2,...,2g+2},
and T}, U {oo} is the complement of W U {k, [}. As a result,

(T U {oo}) o Uy)" = Uy o (W U {k 1}), (66)
and

((T; U {00}) 0 Uy)° = Uy o (W U {, m)). (67)

Now by definition, we have that

Noo =0, (68)
since Py, is chosen to be the base point of the Abel-Jacobi map. Therefore we have

(T;Ufocolly, = NTjolly (69)
for j = I, m. By Eq. (32), we have that

(T, U{oo})olly, = Nlyo(W Uik m}) (70)
and

N(T,pU{co)olly = Nyo(WUkL}):- (71)

Putting all of this together, we obtain

2
O, o(vukin1(£2)0 w0 (w ik 1(82) )

[a), am, ar, aco] = exp(dmi(nm — n1)1(k)2)
" = P " 0111, o(v Uy 1($2)0 (M1 0 (w Uk m)) 1 (£2)

(72)

To verify that the signs agree, we first begin by noting that the sign that we obtain is

equal to

exp(4i(nm — n)1(ni)2) = exp(dmi(n; + nm)1(i)2), (73)

since both 7; and 7, have half-integer entries. We also note that before simplifying his
expression, Takase has the sign written as

(— 1) Ot — exp(drri(ng)1(n; + nm)2)- (74)

We prove that the two expressions are equal by proving that their product is 1. To do
this, we define

er(&,¢) = exp(dmi(€182 — £201)); (75)
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the significance of this function is that ex(;, n;) = —1 whenever i # j (see [25, Lemma
1.4.13] or [2, Proposition 3.5]).
Then we have

exp(4i(n; + nm)1(nk)2) exp(dmi(ng)1(n; 4 1m)2) (76)
= exp(4mi(n; + 1m)1(k)2) exp(—4mi(nx)1(0; + 1m)2)
e2(n; + N M)

ea(np, ni)ea(Nms M) = 1

This completes the proof of Proposition 3.
We now end with the proof of Corollary 2:

Proof of Corollary 2 To obtain the values 1;, we post-compose the degree 2 morphism
x: C — P! with a linear fractional transformation of P! sending x(P;) to 0, x(P;) to 1 and
%(Pyg+12) to oo. This new map is again a degree 2 morphism C — P!, and so the result of
Proposition 3 applies. In addition, we use that for this particular map, if A; = x(P;), then

we have
0—A; x(Pl) - x(P])
A= L =[%;,1,0,00] = ———— /7 77
7T 0-1 [ ] x(P1) — x(P2) 77
Therefore we fix k = 1,/ = 2 and m = j to obtain
2
O, o(vuin,an]($2)0 [nur, o(wugi,2n1(£2)
Aj = exp(dmi(n; — n2)1(n1)2) . . = . (78)
! ! 011, 0vui,in1(82)6 [N, 0(wug,in1(£2)
]
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