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Abstract— Beamforming in multiple input multiple output
(MIMO) systems is one of the key technologies for modern wire-
less communication. Creating appropriate sector-specific broad-
cast beams are essential for enhancing the coverage of cellular
network and for improving the broadcast operation for control
signals. However, in order to maximize the coverage, patterns for
broadcast beams need to be adapted based on the users’ distri-
bution and movement over time. In this work, we present self-
tuning sectorization: a deep reinforcement learning framework to
optimize MIMO broadcast beams autonomously and dynamically
based on users’ distribution in the network. Taking directly
UE measurement results as input, deep reinforcement learning
agent can track and predict the UE distribution pattern and
come up with the best broadcast beams for each cell. Extensive
simulation results show that the introduced framework can
achieve the optimal coverage, and converge to the oracle solution
for both single sector and multiple sectors environment, and for
both periodic and Markov mobility patterns.

Index Terms— MIMO, sectorization, broadcast beams,
coverage maximization, self-organizing networks, and deep
reinforcement learning.

I. INTRODUCTION

CELLULAR data traffic has witnessed an exponential
growth over the last few years primarily due to the

widespread use of mobile devices and novel application ser-
vices. Cisco Visual Networking Index (VNI) forecast predicts
a threefold increase of global IP traffic from 122 exabyte (EB)
in 2017 to 296 EB in 2022 [1]. In order to handle this massive
data-flow and ensure superior quality of experience (QoE) to
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the end users, wireless cellular networks are also becoming
extremely complicated. With the coexistence of different types
of networks, managing networks efficiently has become a
critical issue for 5G [2]–[4] and beyond systems. In order to
reduce the network management complexity and operational
cost, self organizing network (SON) has been introduced in
Third Generation Partnership Project (3GPP) as one of the
enabling technologies for advanced mobile networks [5], [6].
SON aims to achieve autonomous functionalities within Radio
Access Network (RAN). These self-X functionalities include
self-configuration, self-optimization, and self-healing [7], [8].
Self-optimization within SON refers to the process of self-
tuning of network parameters for achieving optimum perfor-
mance in terms of any predefined metric of interest. The idea
is to dynamically update the cellular radio resource parameters
based on the changes in propagation characteristics, traffic
pattern or network deployment scenarios. User distribution
in wireless cellular network changes dynamically over time.
These changes are the result of users’ mobility behavior. For
instance, in the day time, users are more densely populated
in the commercial area whereas at night, users are primarily
clustered in residential areas. Users’ large time-scale move-
ment also depends on specific time within the week (workdays
and weekends) or year (holidays). Accordingly, to maximize
the overall throughput and coverage of the wireless networks,
sector-specific cellular radio parameters should also be updated
taking into account the changes in users’ distribution.

Multiple Input Multiple Output (MIMO) system [9] is one
of the back-bones for current and next generation cellular
network. Massive MIMO [10], where a large number of
antennas are deployed at the base stations (BS), is envisioned
as a key enabler for 5G systems. Beamforming refers to a
MIMO technique for coherently combining the signals gener-
ated by multiple antennas in the MIMO arrays. 3-dimensional
(3D) massive MIMO/full-dimension (FD) MIMO [11]–[13]
promises tremendous throughput gain by enabling simulta-
neous beamforming in both elevation and azimuth domain.
With large antenna array, it is possible to create sharp
narrow beams towards desired users, and hence reduce the
interference significantly [14]; this beamforming is used to
improve users’ throughput and is therefore user-specific. Cel-
lular networks, on the other hand, also require to create wide
beams. In fact, sectorization can be viewed as a process of
expansive beam generation where a separate wide beam is
used to cover a separate sector belonging to the same cell-site.
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These sector-specific broad beams are essential for connecting
as many users as possible, essentially providing the coverage
for cellular networks. Another important application for wide
beams is the broadcast technologies for sending out the
wireless control and access signals as prescribed by LTE and
LTE-Advanced systems. As a result, generating the accurate
wide broadcast beam patterns that cover the maximum number
of users in the network is critical.

Unfortunately, most of the works in the MIMO literature
focus on maximizing MIMO throughput or increasing the
reliability of the data plane. Meanwhile, at present, broad-
cast beam parameters are set manually in modern cellular
networks: a group of network engineers do the drive tests and
physically visit each base station site to fix the parameters
controlling the shape, tilt and beam-widths of these sector-
specific broadcast beams. Once fixed, these broadcast beam
parameters are not changed until some major fault/complain
is reported. In other words, the parameters remain unchanged
for a long period of time– often years, and as a result,
currently, these parameter cannot be updated based on users’
movement or change in user distribution. Accordingly, this
fixed parameter setup results in strictly suboptimal solution in
terms of overall network coverage.

Reinforcement learning (RL) is shown to be a useful tool
for dynamic spectrum access (DSA) as well as small cell
networks. A Q-learning based framework has been introduced
in [15] for managing cumulative interference, originated from
multiple cognitive radios, at the primary users’ receivers in
wireless regional area networks (WRANs). The introduced
RL system is shown to autonomously learn policy that handles
the cumulative interference at the primary users and keeps
interference level at the primary protection contour below
a predefined threshold. An RL-based power control strategy
has been developed in [16] for cognitive femtocell networks,
and it has been shown that RL can enhance the capacity
of femtocells while ensuring a minimum quality of service
(QoS) to macrocells. In a similar setup, [17] proposes an
RL framework for interference management in small-cell
networks. The problem of dynamic channel assignment (DCA)
has been addressed in [18] by utilizing a real-time RL-based
approach. A Multirate transmission control (MTC) strategy
has been proposed in [19] using Q-learning algorithm for
wideband code division multiple access (CDMA) systems.

In cellular networks, users movement changes in a dynamic
fashion. To maximize the coverage area, the broadcast beam
parameters controlling cell-sectorization need to be dynami-
cally updated based on user movement. However, selecting
the best broadcast beams simultaneously for all sectors in the
network and updating the beams autonomously based on users’
movement or distribution is a challenging problem, primarily
because of the large number of combinatorial possibilities
for beam selection–this pertains to very large action space in
RL framework. Recently deep reinforcement learning (DRL)
[20], [21] has been proved to be capable of learning
human-level control policies on a varieties of different Atari
games [22]. DRL agents learn to estimate the Q-values of
selecting the best possible actions from current state of the
video games. However, compared to traditional Q-learning,

in deep learning based Q-network, the Q-values are approx-
imated using deep neural network instead of storing the
Q-values for all state-action pairs in a tabular form. As a
result, DRL has the ability to predict the correct Q-values even
for very large state and action space. Our recent work [23]
shows that DRL based resource allocation can help improve
the network performance of a DSA network.

In this work, we present a DRL-based framework for MIMO
broadcast beam optimization for optimal cell-sectorization in
order to maximize the coverage of cellular network. This will
be an important step towards realizing the potential of SON.
Our detailed contributions in this paper are summarized below:

1) We introduce a double deep Q-network (DQN)-based
framework [24] for dynamically optimizing sector-
specific MIMO broadcast beams for cellular net-
work. The learning-based algorithm can autonomously
update or self-tune the beam parameters based on users’
mobility patterns or changes in user distribution.

2) We introduce self-tuning sectorization algorithms for
both single sector and multiple sector environments.
For multiple sector case, we have introduced a novel
neural network architecture for computing the Q-values
corresponding to different broadcast beam selection,
with only linear increase in complexity as the number
of BSs increases.

3) Finally, we present extensive simulation work using ray-
tracing data for validating our solution. We consider both
periodic and Markov mobility patterns, and show that
the introduced DRL-based algorithm can achieve perfect
convergence with Oracle for both single sector and mul-
tiple sector environment and for any user distribution.

The rest of the paper is organized as follows: Section II
presents the network model and problem statement; Section III
presents the beam learning framework; Section IV introduces
the DRL-based optimization strategies for both single cell and
multiple cell environments; Section V presents the simulation
work before we conclude the paper in Section VI.

II. NETWORK MODEL AND PROBLEM STATEMENT

We consider a cellular network consisting of G BSs and
K UEs. We assume the BSs can have one or multiple sectors,
and there are total M sectors in the network, where M ≥ G.
Each sector is equipped with a two dimensional (2D) antenna
array whose phases can be configured so that different array-
beam widths (in both elevation and azimuth domain) and
elevation tilt (e-tilt) angle can be updated. Placing 2D antenna
array enables the BSs to beamform in both elevation and
azimuth directions, and this is essentially the setup for full
dimension (FD) MIMO systems [11], [25]. The elevation
beam-width, φ, azimuth beam-width, ψ, and e-tilt angle, ζ,
constitute the parameter set in constructing the broadcast
beams for each sector. In this work, we focus on optimizing
the broadcast beams/sector-wide beams for cellular network.
Let us denote the number of antenna elements in elevation and
azimuth directions by N1 and N2, respectively. Hence, total
N = N1N2 number of antenna weights need to be tuned for
generating the FD-MIMO broadcast beams. We can represent
the N1 × N2 antenna weight matrix into a N × 1 weight
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TABLE I

NOTATION FOR SYSTEM VARIABLES

vector, w, following a vectorization operation. Each choice of
weight vector, w, in fact, consists of a specific choice of φ, ψ,
and ζ. A collection of notations used in this paper is summa-
rized in Table I.

Assuming each UE has a single antenna, the downlink
broadcast received signal at k-th UE under m-th cell-sector
can be written as

yk = hT
m,kfmxm +

M∑
m′=1
m′ �=m

hT
m′,kfm′xm′ + nk, (1)

where hm,k is the N × 1 channel vector for the channel
between m-th sector and the k-th UE, xm is the broadcast
signal from m-th sector, and fm is the corresponding N × 1
broadcast precoding vector for m-th sector. It can be clearly
observed from (1) that broadcast beams from one sector
interfere with the beams from other sectors. Hence, in order
to maximize the network coverage, selecting the appropriate
broadcast beams for all the sectors is critical.

In this work, we adopt a DRL-based approach where an
agent is responsible for selecting the proper antenna con-
figurations for all sectors. Each BS, for its sectors, has the
same pool of possible antenna weight vectors available, W :
{w1,w2, . . . ,wJ}, where J is the total number of beam-
weight vectors in the pool; wj = [wj

1, w
j
2, . . . , w

j
N ] is the

j-th vector in the beam pool, and wq
n is the antenna weight

for the n-th antenna element corresponding to q-th weight
vector. Accordingly, each sector chooses its precoder, f , from
the beam pool, i.e., fm ∈ W . It is to be noted here again
that each of the weight vector in the pool corresponds to a
particular choice of elevation and azimuth beam-widths and
e-tilt angle. The agent selects one out of J beam patterns for
each sector based on users’ distribution/mobility patterns. This
selection behavior is referred to as actions in reinforcement
learning.

All BS in the network transmit sector-specific signals using
the wide broadcast beams selected by the agent. UEs collect
measurement results such as Reference Signal Received Power
(RSRP) or Reference Signal Received Quality (RSRQ), and

report them to the agent as observation of the mobile envi-
ronment. Assuming k-th UE in the network is associated with
m-th sector, from (1), the received signal-to-interference-plus-
noise ratio (SINR) for k-th user can be expressed as:

SINRk =

∣∣∣hT
m,kfm

∣∣∣2∑M
m′=1
m′ �=m

∣∣∣hT
m′,kfm′

∣∣∣2 + σ2

, (2)

where σ2 is the noise variance. In this work, we use the
number of connected UEs as a metric to measure the cell
coverage. Number of connected UEs in the network can
be defined as the number of UEs whose received signal-to-
interference-plus-noise ratio (SINR) are above a predefined
threshold, T . For any user distribution, the objective, hence,
is to select the optimal beam pattern indices for all the sectors
under all BSs that maximize the coverage or total number of
connected UEs in the network. The problem can formally be
written as:

max
f1,f2,...,fM

K∑
k=1

1SINRk>T (3)

s.t. fm ∈ W , 1 ≤ m ≤M, (4)

where the indicator function, 1x>T , is defined as

1x>T :=

{
1, if x > T

0, if x ≤ T. (5)

The user distribution changes over time, and hence optimal
beam patterns that maximize the number of connected UEs at
time t1 may not be the same as that at time t2, where t1 �= t2.
The agent, therefore, has to be able to identify users’ mobility
pattern, and then dynamically and autonomously select optimal
beams for all the sectors in order to maximize network
coverage. It is to be noted here that we are not using users’
location information to optimize the beam patterns. In order
to minimize the feedback from the network, the agent will be
merely using users’ RSRP values to for the optimization.

In this work, we consider both single cell and multiple
cells network scenarios. In the single cell case, the agent
optimizes the broadcast beam for one cell–this represents a
noise-limited environment. In this case, the DRL only needs
to learn the optimal beam according to the cell environment
including UE mobility pattern. On the other hand, in the
multiple-cell case, the broadcast beams for all the cells need
to be updated simultaneously– this represents an interference-
limited environment. We are addressing the challenges of
these two scenarios where UEs are assumed to be moving
according to some mobility pattern; first, the periodic case,
where users’ movement change in a periodic fashion, and
second, the Markov case, where users’ mobility is determined
by following a transition probability matrix.

III. LEARNING FRAMEWORK

In this section, we present learning framework for MIMO
broadcast beam optimization using DRL as a self-tuning sec-
torization mechanism. We first briefly describe the background
of DRL which will set up the foundation for broadcast beam-
learning strategy developed in subsequent sections.
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A. Beam Learning Framework

Appropriate MIMO broadcast beam selection for cell-
sectorization is critical for wireless network performance opti-
mization. Our objective here is to build a mechanism that
automatically facilitates the selection of best beams for all the
sectors. Moreover, we would need the sectors autonomously
update their beam parameters based on different scenar-
ios or user distributions, and realize self-tuning sectorization.
Towards this, our learning framework is described as follows:

1) Specification of Design Parameters: First of all, network
designer needs to decide on the objective function that needs to
be optimized [26]. For broadcast beam optimization, an impor-
tant objective function is the network coverage or total number
of connected UEs in the network. The optimization parameters
in this problem are the beam weights for each sector antenna
element. It is necessary to select the optimal beam for each
BS from a set of possible beams. Next, the system designer
needs to decide on what input, such as RSRP or RSRQ, are
required from the UEs in order to learn their mobility behavior
and optimize the beams. Finally, in order to avoid random
broadcast beams during the deployment stage, a simulation
platform based on ray-tracing data is built to train the DRL
agent offline.

2) Learning Engine: An agent or learning engine has the
task of learning the UE mobility pattern and selecting the
best beam parameters for each scenario. It takes feedbacks
from UEs as inputs, and suggests the optimal beam vectors
for all sectors. Updating the beams based on user distribu-
tion by autonomously identifying underlying mobility pattern
requires training. However, online training is often not desir-
able because of stringent network management requirements
from the operators. Hence, the training needs to be done
offline, and the training environment has to be close to the real
cellular environment as much as possible so that the optimal
beams in the training stage will be identical to the optimal
beams in deployment stage– the procedure is presented in
details in the next subsection.

3) Online Deployment and Occasional Re-Training: Once
the learning engine is trained offline, the learned agent is
deployed for real-time operation. It will enable the BSs to
choose the optimal beams and update the selections based on
users mobility pattern. Since users’ mobility pattern in the
network don’t change too frequently, the beam parameters
learned offline can remain unchanged for a long period of
time– on the order of weeks or months. Whenever, there is
a need to support new scenarios or any change in mobility
patterns is identified, the learning engine would need to be
re-trained offline based on recent data. The newly learned
beam parameters will then be pushed to the respective BSs
for updated operation.

B. Offline Training

Dynamically updating the broadcast beam patterns accord-
ing to the cellular environment and user distribution for all
cells in real time is intrinsically a difficult problem. Directly
deploying a DRL agent and training it online is not only slow
but also costly. During the online training stage of the DRL,

the agent may output some random beams according to the
greedy exploration algorithm. Some of these random beams
may not be acceptable to operators because of degraded net-
work performance. In order to address this issue, we develop
an offline training mechanism using ray-tracing data to train
the DRL network before real deployment. By providing
azimuth angle of arrival, elevation angle of arrival, azimuth
angle of departure, elevation angle of departure, and path
loss value of each path for each location in a cell, ray-
tracing can well-capture the cellular environment so that the
learned beam in the offline training platform could be the
same as the online deployment case. The offline training is
focused on learning the UE distribution pattern from users’
location history data. The location data includes UEs’ location
and the corresponding time stamp. The location history data
contains the UEs’ mobility pattern information. Together with
ray-tracing data, which contains the information about signal
propagation environment, UEs’ location history data are used
to train the DRL network so that the DRL agent could learn the
best broadcast beam according to both the cellular environment
and UE distribution pattern. It is to be noted that for each
training time step, the BSs select one set of actions and it
throws the agent to a new state, upon which the new reward
is computed. Hence, for each training step, the agent needs
to access one ray-tracing data. After offline training, it will
be deployed to provide real-time broadcast beam selection
results for all the BSs in the cellular network. In the following,
we describe the detailed steps of offline training.

According to 3GPP standard on minimization of drive test
(MDT), a BS could configure its UEs to report measurement
results, time stamp, and location information [27]. Therefore,
we assume that UE location history information is available
for a cellular network. During one training step, a batch of
time stamps are selected from the location history data, and
the corresponding UEs’ location information is incorporated to
ray-tracing data for every time stamp. Therefore, the UE distri-
bution at the selected timestamp is combined with ray-tracing
data. We call the ray-tracing data with UE distribution infor-
mation as scenario-specific ray-tracing data and the UEs who
report their measurement information during the timestamp as
selected UEs. Based on the current BSs’ broadcast beam and
scenario-specific ray-tracing data, the receive power for the
selected UEs could be calculated and accordingly the network
coverage. A reward could be provided to the DRL agent based
on the coverage and the DRL agent could accordingly update
its selection of broadcast beams based on selected optimizer.
These offline training steps could be repeated many times until
the DRL agent converges. After the DRL agent converges,
it could be deployed in the cellular network for real-time
broadcast beam selection. Details on the DRL agent design is
discussed in next section. The entire offline training process
is pictorially depicted in Fig. 1 and Algorithm 1.

IV. DRL FOR BROADCAST BEAM OPTIMIZATION

In this section, details on the design of DRL framework
for self-tuning sectorization are presented. The DRL network
is utilized in order to track optimal beams during both the
offline training and online deployment. To be specific, a deep
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Algorithm 1 Offline Training
Input:
1: UE location history data, ray-tracing data of a cellular

network
Output:
2: trained DRL agent for broadcast beam selection

STEP 1: Initialization
3: Define a pool of candidate antenna patterns;

STEP 2: Learning Best Beams
4: while algorithm doesn’t achieve convergence do
5: Select a batch of UE location at different timestamps;
6: incorporate UE location distribution to ray-tracing data

to create scenario-specific ray-tracing data;
7: calculate the received power for each UE in the scenario-

specific ray-tracing data based on the current BSs’ broad-
cast beam;

8: calculate the network coverage, and calculate a total
reward as a function of network coverage;

9: DRL updates its neural weights based on the learning
algorithm and reward

10: end while

Fig. 1. Offline training.

Q-network (DQN)-based architecture has been introduced to
select MIMO broadcast beams for all sectors in a dynamic
environment. For better stability of the results, we use DQN
with experience replay [21], [28]. The agent (decision maker)
interacts with the environment by selecting the best broadcast
beam parameters. The DRL has three main components: state,
action and reward. The dynamics between state, action and
reward are shown in Fig. 2. Agent interacts with environment
by observing the state of the network, and taking action that
maximizes the reward or network performance metric.

A. Background of DRL

We consider a reinforcement learning framework where an
agent or controller dynamically interacts with an unknown
environment, E , by taking sequential decisions or actions in
discrete time steps. At each time step, t, the agent interacting
with the environment observes a state, st ∈ S, selects an
action, at, from a set of allowable actions, A, and receives
an immediate scalar reward, rt ∈ R(st, at). Based on agent’s
current action, agent enters into new state, st+1. The cumula-
tive discounted reward, Rt, at time step, t, is defined as

Rt =
∞∑

k=0

γkrt+k, (6)

Fig. 2. Reinforcement learning framework for beam optimization.

where γ ∈ (0, 1] is the reward discount factor, which balances
between the impact of recent rewards and earlier rewards.
The learning objective is to maximize the expected cumulative
reward at each state, st. The Q-value, Qπ(s, a), for state-action
pair, (s, a), is defined as the expected cumulative discounted
reward for taking action, a, in state, s, and following a
policy, π, onward, i.e.,

Qπ(s, a) = E[Rt|s, a], (7)

where E[·] denotes expectation. Q-learning adopts a value
iteration approach to find the Q-values for each state-action
pair, and optimal value function Q∗(s, a) is the one which
provides maximum action value for state, s, and action, a,
achievable by following any policy:

Q∗(s, a) = max
π

Qπ(s, a) . (8)

Using Bellman equation [20], the optimal value function in (7)
can be expressed as

Q∗(s, a) = Es′

[
rt + γmax

a′
Q∗(s′, a′)|s, a

]
. (9)

The value iteration algorithm can solve the Bellman equation,
and the update rule is given by

Qi+1(s, a)← Es′

[
rt + γmax

a′
Qi(s′, a′)|s, a.

]
. (10)

In deep Q-learning, the value functions are approximated by
deep neural network parameterized by the weights, ζ:

Q(s, a, ζ) ≈ Qπ(s, a). (11)

This helps to estimate the Q-values even for very large state-
action space, and reduces the computational complexity. Next,
we describe each of these components in details, and explain
how we model the state, action, and reward in DRL-based
MIMO broadcast beam optimization problem.

1) State: State in the introduced RL framework is designed
as to reflect the network coverage situation which can be
obtained from UE measurements. To be specific, we can
design the state as the connection indicators of UEs in the
network (a vector of 1/0s). Each UE reports its status to
its attached BS. If a UE’s SINR falls below a predefined
threshold, T , a zero is placed at the element of the vector corre-
sponding to that UE. Otherwise, a one is placed. Accordingly,
a ‘0’ in the state vector will represent that the corresponding
UE has poor connection, and a ‘1’ will indicate that the UE
has good connection. The DRL state representation adopted
in this work is pictorially depicted in Fig. 3.
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Fig. 3. DRL state representation for beam optimization problem.

2) Action: An action of the agent is defined as the selection
of beam index from a pool of candidate beam patterns. Agent
observes the states and the corresponding reward, and takes the
best possible action that maximizes the cumulative discounted
future reward for the next time step. At the beginning of
training, agent explores different actions in an attempt to learn
the best beams for different user distribution. However, once
the training phase is complete, agent exploits the learned
information and only selects the best known actions that
maximize the cumulative reward for each user distribution.
We would like to highlight the fact that continuous beam
space would not be feasible for cellular network coverage
optimization since it can produce many beams which may not
be practically realizable at BS arrays. Hence, beam pool should
consist of discrete set of beams and need to be judiciously
selected based on the particular network under consideration.

3) Reward: A reward in this work refers to any network
performance metric. One way to design the reward can be the
total number of connected UEs in the network based on the
state and action taken in the previous state. Another approach
to design the reward can be the function of the measurement
results, for example, a function of the SINR or RSRP vector.
In this work, we adopt the first approach for designing the
reward. It is to be noted here that maximizing total number
of connected UEs in the network is equivalent to maximizing
the coverage of the cellular network.

The agent’s goal is to maximize the cumulative discounted
future reward. The agent gathers its experiences as tuples,
(st, at, rt, st+1), where st denotes current UE connection
state, at denotes the action taken at state, st; rt is the
instantaneous reward obtained from state, st and by taking
action, at; and st+1 is the next state. The agent stores
history of its experiences in a memory called experience
replay memory [28], and replay memory stores the tuples,
(st, at, rt, st+1), for all time steps. The DRL agent randomly
samples mini-batches of experience from the replay memory
for training, and selects an action based on ε-greedy policy,
i.e., with probability ε, it tries a random action, and with
probability (1 − ε), the agent selects the best known action
so far. The optimum action in a particular state is selected
based on maximum Q-values [20] corresponding to that state.
In DQN-based reinforcement learning, the Q-values are pre-
dicted using deep neural network. Input to the neural network
is the UEs’ connection vector representing the state of the

RL environment, and output is the Q-values corresponding to
all the possible actions, i.e., beam indices from the beam-pool.
In the following subsections, we detail the broadcast beam
optimization strategies for both single cell and multiple cell
scenarios.

B. Broadcast Beam Optimization for Dynamic Environment

In this subsection, we present the framework for dynami-
cally optimizing MIMO broadcast beams, where the RL agent
needs to simultaneously control the beam parameters for all
the sectors based on different user distributions. For the single
cell case, beam parameters corresponding to only one sector
need to be optimized. This could serve as an example where
a legacy LTE sector is replaced with one massive MIMO
unit. The goal is to maximize the number of connected UEs
for different dynamic user distributions. The agent keeps a
single replay memory containing the agent’s experience tuples,
and randomly samples from it–this random sampling from
experience replay memory helps to decorrelate the data [22].
However, for multiple sectors case, there needs to be some
significant changes on the RL framework compared to that
for single sector beam optimization. In the multiple sector
environment, each sector has its own pool of beams or action
sets. Each sector can hence independently select its own
beam parameters. The setup is similar to that of multi agent
system [29], [30]. The goal remains the same–to maximize
the overall network coverage. This is a challenging problem
in terms of computational tractability. For an illustration, let
us consider that there are m sectors in the network, and each
sector has j possible beam patterns (actions) to select from.
Hence, total number of actions, i.e., all possible combinations
of sectors’ beam patterns, becomes jm, which increases expo-
nentially with total number of sectors. If there are 40 base
stations, and each has 5 possible actions to choose from, total
possible combination of beam patterns becomes 540, which is
an extraordinarily large number, making it difficult to achieve
optimal solution within reasonable time.

One way to find the appropriate broadcast beams for mul-
tiple sectors simultaneously is to use a single large neural
network with large number of output nodes that can be used
to predict the Q-values for all possible jm actions. However,
total number of training samples needed to train such neural
network would be extremely large, which may not be feasible
at all for any practical purposes. In other words, the learning
algorithm can almost never achieve convergence with this
architecture for even moderate size cellular network.

To address this issue, we introduce a novel low-complexity
algorithm for optimizing the broadcast beams for multiple
sectors where the action space grows only linearly, instead of
exponentially, with total number of sectors in the network. Let
us again assume that there are m sectors, and each sector has
j possible actions (beam-weight set) to choose from. Unlike
the single cell case, for multiple cell environment, we assume
the agent preserves different replay memories for different
sectors. Moreover we use m different neural networks for inde-
pendently computing the Q-values for j sectors. Each neural
network is responsible to predict the optimum action for the
corresponding sector only. With this architecture, number of
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Fig. 4. Replay buffer architecture for multiple sector case.

actions increases only linearly, but we can still achieve perfect
convergence with reasonably short computation time, which
demonstrated through extensive simulation in Section V. It is
to be noted that deep Q learning algorithm proposed in [21]
is designed to create a single NN-based agent that can learn
to play Atari games where the number of valid actions for the
player is quite limited. On the other hand, in terms of training
methodology, the architecture presented in this section for
multiple sector scenario is scalable with growing action space,
and in this sense, it provides a architectural generalization of
the work in [21]. The details of the architectures for replay
memory and neural networks for multiple sector broadcast
beam optimization are briefly described next.

1) Replay Memory Architecture: The replay memory archi-
tecture for multiple sectors broadcast beam optimization is
shown in figure 4. There are separate buffers for each sector.
The same current state, reward, and the next state are stored
in all the replay memories/buffers for the sectors. However,
the replay memories differ in the actions taken (beam indices
chosen) by the each sector. While all the sectors observe
the same current state, st, reward, rt, and next state, st+1,
the action stored are different–BS 1’s action is stored in
buffer 1, BS 2’s action is stored in buffer 2, and so on.
The rationale behind this buffer architecture is that states and
rewards are network specific, and same states and rewards are
observed by all sectors. On the other hand, each sector takes its
own action, and their joint actions regulate the overall network
state and the corresponding reward.

2) Neural Network Architecture: For Q-value prediction,
a deep convolutional neural network is used in this work. For
the suitability of computing the Q-values using convolutional
neural network, we transform the (K × 1) UE connection
vector into an ( K

100 × 100) frame. Four such frames are
stacked together, and fed as the input to the neural network for
computing the Q-values. We used three convolutional layers–
all with rectified linear unit (ReLU) activation function. First
convolution layer has 32 (8 × 8) filters. Second and third
convolution layers have 64 (4 × 4) filters and 64 (3 × 3)
filters, respectively. Finally, a dense layer with linear activation
function is used as the output layer.

Two such identical neural networks are used in predict-
ing the Q-values. One is used for computing the running
Q-values–this neural network is called the evaluation network.
The other neural network, called the target network, is held
fixed for some training duration, say for P episodes, and every
P episodes, the weights of the evaluation neural network is

Algorithm 2 Broadcast Beam Optimization for Multiple
Sectors
Input:
1: RSRP measurements from the UEs in the network

Output:
2: Optimum broadcast beam patterns for all sectors that

maximizes the number of connected UEs
STEP 1: Initialization
3: Define a pool of candidate antenna pattern;
4: Define the maximum exploration rate, εmax, minimum

exploration rate, εmin, exploration decay rate, optimizer’s
learning rate, α, and reward discount factor, γ;

5: Initialize the replay memory, D.
STEP 2: Optimization of Beam Weights
6: for episode = 1, 2, . . . , Z, do
7: Initialize the state vector at time step 1 as s1;
8: for t = 1, 2, . . . , T ′, do
9: Sample c from Uniform (0, 1)

10: if c ≤ ε then
11: Select an action (choose a beam index) for each

sector randomly from the beam pool
12: else
13: for m = 1, 2, . . . ,M do
14: Select the action for m-th BS, am

t =
argmaxamQ∗

m(st, a
m; θm)

15: end for
16: end if
17: Apply the selected beam patterns on the antenna

arrays of the corresponding BSs
18: Observe the resulting RL state, st+1, the UE connec-

tion vector.
19: Pre-process the state vector into a frame before

feeding to Neural Network
20: Compute the reward, rt, which is the number of

connected UEs.
21: for m = 1, 2, . . . ,M do
22: Store the experience tuple for m-th sector, em

t =
(st, a

m
t , rt, st+1), in m-th replay memory, Dm.

23: Sample random mini-batches of experience
(sj , a

m
j , rj , sj+1), from Dm

24: if sj+1 is a terminal state then
25: Set ym

j = rj
26: else
27: Set ym

j = rj + γmaxam Qm(st, am; θ)
28: end if
29: Perform a gradient descend on(

ym
j −Q(sj , a

m
j ; θ)

)2

30: end for
31: end for
32: end for

transferred to the target neural network. It has been shown that
this two neural network-based approach for Q-value prediction
provides better stability of results at convergence [22].

The neural network architecture for predicting the Q-values
for multiple sectors are shown in Fig. 5. The depiction
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Fig. 5. Neural network architecture for multiple sector case.

Fig. 6. Periodic change in scenarios.

is presented for M sectors case, where M separate neural
networks are used for predicting the Q-values for M sectors.
Input to all neural networks are the same state vectors. Neural
networks are identical, and the number of output for each
neural network is J . Hence, size of action space is JM ,
instead of JM , i.e., total number of actions grows only linearly
with number of sectors. The optimal action predicted by the
Q-values of neural network 1 is stored in Buffer 1, which
corresponds to sector 1. Similarly, the action predicted by the
Q-values of neural network 2 is stored in Buffer 2, which
corresponds to sector 2, and so on. It is to be noted that
neural networks do not share any weight information during
training, and each neural network independently predicts the
optimal actions for the corresponding sectors. Hence, there is
no additional signaling overhead among the neural networks.
The beam learning procedure for multiple BS environment is
presented in Algorithm 2.

V. SIMULATION RESULTS AND PERFORMANCE ANALYSIS

In this section, we present the simulation results and
performance evaluation for self-tuning sectorization mecha-
nism through DRL-based MIMO broadcast beam optimization.
We first present the results for single sector environment
followed by multiple sectors case. Both periodic and Markov
mobility patterns have been considered for the evaluation.

A. Results for Single Sector Dynamic Environment:

In this sub-section, we present the performance evaluation
for our algorithm for single sector dynamic environment.
The sector is equipped with a two dimensional (2D) antenna
array with 4 antenna elements in both elevation and azimuth
directions. The horizontal distance between BS antenna ele-
ments is 0.5 wave-length and the vertical distance between
antenna elements is 1.48 wave-length. We first consider two
scenarios or user distributions, and assume that users switch
between Scenario-1 and Scenario-2 periodically every 8 time
steps (see Fig. 6). The BS is located at a height of 35 m from
ground, and users are distributed randomly in the cell. Based
on users’ X-, Y-, and Z-coordinates, two scenarios are defined

TABLE II

SIMULATION PARAMETERS

as follows: Scenario-1: X ≥ 2600 m, Z ≥ 10 m; Scenario-2:
X ≤ 2700 m, Z ≤ 12 m. For simulation, this partition is used
as users’ mobility pattern. The received power of each UE is
calculated based on ray-tracing data. Noise level is set
as −95 dBm, and SINR threshold level is kept at 0.1 dB. For
a particular user, if the received SINR is above this threshold,
we consider the user to be connected; otherwise, we consider
it to be not-connected. A set of simulation parameters used in
this work is summarized in Table II. The general rationale for
selecting the hyper-parameters are described below:

1) Initial Exploration Rate: At the beginning of training,
agent needs to gather experiences, and explore as much as
possible. Accordingly, the initial exploration rate, εmax, is
set to 1, which corresponds to complete exploration and no
exploitation.

2) Final Exploration Rate: Towards the end of training,
agent should have acquired enough knowledge about the envi-
ronment and the underlying user distributions. In this phase,
rather than exploration, the agent should focus on exploitation
by taking the already known best actions for different sectors.
Hence, final exploration rate should be close to zero. However,
in order to avoid the situation where two rewards are very close
to each other and the agent is stuck with the slightly lesser
reward, the final exploration, εmin, in practice, is not set at
exactly 0. In this work, we set εmin at a very small number,
0.000001, which correspond to very high exploitation phase.

3) Exploration Decay Rate: Exploration decay rate is set
based on the total number of training samples available and
the number of training samples used for initial exploration
phase. Usually, the exploration rate is decreased in regular
interval. Denoting the number of training samples dedicated
for initial observation as Tobs, in this work, we followed the
algorithm below for decaying the exploration rate at time
step, t.

if t ≤ Tobs then
εt = εmax

else if t > Tobs and εt > εmin then
εt = εt−1 − (εmax−εmin)

Texpl

else
εt = εmin

end if
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Fig. 7. Beam pattern corresponding to a typical RL action.

Fig. 8. Results for periodic mobility pattern in a single sector dynamic environment: (a) average squared difference (ASD) between reward achieved by
DRL agent and the reward obtained by oracle; (b) average mismatch (AM) between actions taken by the DRL agents and the oracle.

Fig. 9. Users’ distribution patterns for 2 scenarios.

Here, Texpl denotes a parameter > 1 controlling the speed
of decay. In our work, we set Texpl = 5000, and Tobs = 1000.

4) Learning Rate: Learning rate, α, determines how fast
information acquired from recent experiences overrides the

information from prior experiences. In practice, α is set
between 0 and 1. A learning rate of 0 implies the Q-values are
never updated, and hence no learning takes place. On the other
extreme, a learning rate of 1 means the agent only considers
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Fig. 10. Results for periodic mobility pattern in a multiple sector dynamic environment: (a) average squared difference (ASD) between reward achieved
by DRL agent and the reward obtained by oracle; (b) average mismatch (AM) between actions taken by DRL agents for each sector and the corresponding
oracles.

Fig. 11. Instantaneous rewards (a) and instantaneous actions (b) at convergence for multiple sectors environment and periodic user-mobility pattern.

the information from the most recent experience, and ignores
any information previously acquired. In this work, we start
training with initial learnig rate, α = 0.001, and every 20000
training steps, we reduce our learning rate by a factor of 10.

5) Reward Discount Factor: Reward discount factor, γ,
indicates how the agent values the future reward. In practice,
the value of γ is set between 0 and 1. γ close to zero indicates
that immediate rewards are more valued than the distant future
rewards. On the other hand, γ close to 1 implies that long term
cumulative future rewards are more important than the current
reward. Based on our DRL environment, we set the reward
discount factor at 0.0001.

At each time step, the RL agent has 10 actions to choose
from, i.e., there are 10 different beam weight vectors available
for the agent. Each of the actions corresponds to a unique
beam pattern. As an illustration, one such beam pattern and

the associated elevation and azimuth cuts are shown in Fig. 7.
Based on the change in user distribution, the agent adaptively
selects the beam that maximizes the total number of con-
nected UEs. Figure 8a shows the average squared difference
(ASD) between the reward (total number of connected UEs)
obtained by the DRL agent and the reward predicted by
Oracle:

ASD =
1
N ′

N ′∑
n=1

(
RAgent

n −ROracle
n

)2
, (12)

where RAgent
n and ROracle

n denote instantaneous reward at n-th
time step obtained by DRL agent and Oracle, respectively;
N ′ represent the number of time steps used for averaging.
Oracle is defined as an entity which has the com-
plete and perfect knowledge of the environment and user
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Fig. 12. Results for Global solution for periodic mobility pattern in a multiple sector dynamic environment: (a) average squared difference (ASD) between
reward achieved by DRL agent and the reward obtained by oracle; (b) average mismatch (AM) between actions taken by DRL agents for each sector and the
corresponding oracles.

distribution; it is essentially an exhaustive search method
in order to compute the maximum attainable reward at any
given scenario. Each point in Fig. 8a represent ASD over
N ′ = 200 time steps. In Fig. 8a, we have also shown the
shaded error bar, which represent the maximum difference
from the mean value within every N ′ time steps. It can
be observed that at the beginning of training, ASD between
rewards obtained by the RL agent and the Oracle is quite
high. However, as time goes by, ASD gradually decreases,
and finally, at the completion of training, rewards from RL
agent converges completely with that from Oracle. This is
due to the fact that at the beginning of training, the agent
explores different actions and collects the memory. During
the exploration phase, the agent tries out all available actions,
and attempts to learn the optimal beam weights for different
user distributions. Over time, this exploration rate decreases,
and exploitation increases, i.e., agent tends to choose more
frequently the best known actions so far that maximize the
reward.

Fig. 8b shows the results for average mismatch (AM) in
actions (selected beam pattern) taken by the DRL agent and
the Oracle, respectively, where AM is defined as

AM =
1
N ′

N ′∑
n=1

1(AAgent
n �=AOracle

n ), (13)

where AAgent
n and AOracle

n denote the actions selected for n-th
time step by the DRL agent and the Oracle, respectively, and
the indicator function, 1(AAgent

n �=AOracle
n ), is defined as

1(AAgent
n �=AOracle

n ) =

{
1, if AAgent

n �= AOracle
n

0, if AAgent
n = AOracle

n .
(14)

It can be observed that action mismatch is quite large at
the start of the training because of high exploration rate.
However, at the end of training phase, actions taken by

the DRL agent and the Oracle converge completely, and
average mismatch reduces to zero. It is to be noted that the
introduced DRL-based self-sectorization method is applicable
for any discrete number of actions. However, as the number
actions grows large, the difference between optimal number
of connected users corresponding to different best beam com-
binations becomes smaller. Further increasing the number of
action would not provide much gain, however, may potentially
cause longer training time, especially for the multiple sector
scenarios.

B. Results for Multiple Sector Dynamic Environment

In this sub-section, we present the simulation results for
multiple sector dynamic environment. We consider two sec-
tors, each at a height of 35 m from ground. Each sector has
two possible beam patterns to choose from. Two scenarios
are considered similar to single sector case in the previous
sub-section. The scenarios with line of sight (LoS) and non-
line of sight (NLoS) UEs are shown in Fig. 9. We assume
the scenarios periodically change every 8 time steps. The
agent is responsible for simultaneously selecting the optimal
beam patterns for both sectors for maximizing the number of
connected UEs in the network. The average squared difference
in rewards achieved by the agent and the oracle for multiple
sectors scenario is shown in Fig. 10a. Similarly to single cell
case, as training increases, overall rewards attained by the
agent and the oracle converge completely. In other words,
the agent is able to dynamically optimize the beam patterns for
both sectors simultaneously in the interference environment,
and maximize the overall rewards from the network in all
scenarios or user distributions. In Fig. 10b, we show the
average action mismatch for both sectors. It can be observed
that towards the end of exploration phase, average action
mismatches between the sectors and the corresponding Oracles
reduce to zero. The instantaneous rewards and actions at
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Fig. 13. Results for average squared difference (ASD) in reward between the DRL agent and the oracle for periodic mobility pattern in a single sector
dynamic environment. ASDs for different size of action space have been plotted in figures (a) - (e).

convergence of the algorithm are shown in Fig. 11, where, for
clarity, we zoom in for time steps between 4000 and 4030.
We can observe that scenarios change every 8 time steps

and maximum number of connected UEs are different for
the two scenarios. Optimal strategy for sector-1 is to select
action 1 while in scenario 1, and select action 2 while in
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Fig. 14. Results for ASD in reward between DRL agent and the oracle for periodic mobility pattern in a multiple sector dynamic environment. ASDs for
different size of action space have been plotted in figures (a) and (b).

scenario 2. On the other hand, optimal strategy for sector-2 is
to select action 2 for both scenarios. In reinforcement learning,
it is, in general, difficult to obtain convergence if the reward
values are too close. However, we can observe from Fig. 11
that the DRL agent can completely converge with the oracle
and take the corresponding best actions even when the reward
values for scenario 1 and scenario 2 differ. This indicates the
accuracy of self-tuning sectorization strategy developed in this
work.

Fig. 10 and Fig. 11 are based on our introduced neural
network architecture, where Q-values corresponding to each
sector is predicted by a separate neural network. For compari-
son, in Fig. 12, we present the global solution, where a single
neural network is responsible for predicting the Q-values for
all sectors. Hence, if there are 4 actions available for each
sector, for a 2-sectors environment, the neural network needs
to predict Q-values for 42 = 16 actions. We can observe from
Fig. 12 that for the single NN-based architecture, it requires
more than 7500 time steps for the DRL to converge with
Oracle. In comparison, for the introduced NN-architecture
in Fig. 10, the DRL agent can converge with Oracle within
only about 4000 time steps. These results demonstrate the
training advantage of the introduced neural network architec-
ture, especially for large action space, over the traditional state
of the art DRL training method [21].

In general, if the action space grows large, more train-
ing time is required for the algorithm to converge. How-
ever, exact training time required can be determined through
experimentation. For example, Fig. 13 shows the results on
average squared difference (ASD) in reward (number of con-
nected UEs) obtained by the DRL agent and the Oracle for a
single sector. In Fig. 13, for a fixed set of hyper-parameters,
we provide a comparison on how size of action space affects
the convergence time, where we vary the number of available
actions (possible beam patterns) from 2 to 10. We can observe
that for the single sector case, training for the action sizes from
2 to 10 all can converge within about 3000 time steps.

Fig. 15. State transition diagram for Markov mobility.

On the other hand, Fig. 14 presents ASD between the DRL
agent and the Oracle for two-cells dynamic environment where
the comparison on convergence time is shown for the numbers
of actions 2 and 4. Unlike the performance on single cell cases
in Fig. 13, for the multiple sectors case, we can observe that
as the number of actions doubles, from 2 to 4, it requires more
time for the DRL agent to converge with the Oracle. However,
from these experiments, it is notable that even though the
action space increases linearly, the required convergence time
doesn’t increase proportionally, i.e. training time doesn’t need
to be doubled with doubling the action space.

C. Multi-Sectors Environment With Markovian Mobility
Pattern

In this sub-section, we present the performance analysis
for DRL-based self-tuning beamforming in multiple sector
environment and for the case where user distributions alter-
nate between two scenarios following a Markovian mobility
pattern. It is to be noted here that, in general, users’ mobility
pattern has some intrinsic regularity. For example, users can
be clustered more in the commercial area during day time
while they move to residential are in the evening. Hence,
periodic mobility patterns considered in previous two sub-
sections rather closely depict the actual mobility pattern in
cellular network. Nevertheless, in this sub-section, we consider
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Fig. 16. Results for Markov mobility pattern in a multiple sector dynamic environment: (a) average squared difference (ASD) between reward achieved
by DRL agent and the reward obtained by oracle; (b) average mismatch (AM) between actions taken by DRL agent for each sector and the corresponding
oracles.

Fig. 17. Instantaneous reward (a) and instanteneous actions (b) at convergence for multiple sectors environment and Markov user mobility pattern.

the Markovian mobility in order to verify the robustness of the
developed self-tuning sectorization algorithm for the extreme
case when users’ mobility pattern doesn’t have any regularity
and users move between different scenarios in random fashion.

We consider two scenarios defined similarly to the ones in
Section V-A, and assume the users’ locations switch between
these two scenarios with transition probability governed by the
state transition diagram shown in Fig. 15. Moreover, we con-
sider two sectors each having two possible beam patterns to
choose from for each scenario. Fig. 16a shows the average
squared difference for rewards attained by the RL agent and
the oracle for Markov mobility pattern. We can observe that
similarly to the periodic cases presented in previous two
subsections, RL agent does converge with the oracle even for
probabilistic mobility, and ASD goes to zero after the training
phase. Average mismatch in actions between the sectors and
the corresponding oracles are shown in Fig. 16b. It can be seen
that average mismatch in actions for both sectors reduce to

zero at the end of the training phase. Finally, the instantaneous
rewards achieved and the actions taken by the sectors at con-
vergence of the algorithm are shown in Fig. 17, which, again,
indicates perfect convergence for Markov mobility pattern in
multiple cell environment.

VI. CONCLUSION

In this work, we have developed a framework for self-tuning
cell sectorization through MIMO broadcast beam optimization
using deep reinforcement learning. To be specific, we have
introduced learning strategies for both single sector and mul-
tiple sectors environment with dynamic user distribution. The
introduced solutions can autonomously and adaptively update
the RF parameters based on the changes in user distributions.
Simulation results show that the DRL-based method com-
pletely converges with the Oracle-suggested optimal solutions
for both periodic and Markovian user mobility patterns.
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