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Learning for Detection: MIMO-OFDM Symbol
Detection through Downlink Pilots
Zhou Zhou , Lingjia Liu , Senior Member, IEEE, and Hao-Hsuan Chang

Abstract— In this paper, we introduce a reservoir computing
(RC) structure, namely, windowed echo state network (WESN),
for multiple-input-multiple-output orthogonal frequency-division
multiplexing (MIMO-OFDM) symbol detection. We show that
adding buffers in input layers is able to bring an enhanced
short-term memory (STM) to the standard echo state network.
A unified training framework is developed for the introduced
WESN MIMO-OFDM symbol detector using both comb and
scattered patterns, where the training set size is compatible with
those adopted in 3GPP LTE/LTE-Advanced standards. Complex-
ity analysis demonstrates the advantages of WESN based symbol
detector over state-of-the-art symbol detectors when the number
of OFDM sub-carriers is large, where the benchmark methods
are chosen as linear minimum mean square error (LMMSE)
detection and sphere decoder. Numerical evaluations suggest
that WESN can significantly improve the symbol detection
performance as well as effectively mitigate model mismatch
effects using very limited training symbols.

Index Terms— Machine learning, OFDM, MIMO, symbol
detection, recurrent neural network, reservoir computing, echo
state network, limited training sets.

I. INTRODUCTION

MULTIPLE-INPUT-MULTIPLE-OUTPUT, orthogonal
frequency-division multiplexing (MIMO-OFDM) is

the dominant wireless access technology for 4G and 5G
cellular networks. MIMO technology introduces additional
spatial degrees of freedom and enables various multi-antenna
transmission strategies such as transmit diversity, spatial
multiplexing, and multi-user MIMO operations [1] to
improve overall network performance. To achieve the spatial-
multiplexing gain in MIMO systems, different data streams
are transmitted from different antennas causing inter-streams
interference at the receiver. Accordingly, the symbol detection
of multiple transmitted symbols from receiving antennas
becomes critical for MIMO to realize its promise. In general,
MIMO detection is classified into coherent detection and
non-coherent detection [2]. In the coherent MIMO detection,

Manuscript received June 25, 2019; revised October 12, 2019,
December 13, 2019, and February 9, 2020; accepted February 9, 2020. Date
of publication March 2, 2020; date of current version June 10, 2020. This
work was supported in part by the U.S. National Science Foundation (NSF)
under Grant ECCS-1811497 and Grant CCF-1937487. The associate editor
coordinating the review of this article and approving it for publication was
C.-K. Wen. (Corresponding author: Lingjia Liu.)

The authors are with the Bradley Department of Electrical and Com-
puter Engineering, Virginia Tech, Blacksburg, VA 24061 USA (e-mail:
ljliu@ieee.org).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2020.2976004

the instantaneous channel matrix is obtained at the receiver
through explicit channel estimation. In this way, a two-step
approach is adopted where the instantaneous channel matrix
is estimated in the first step while MIMO symbol detection
is conducted in the second step based on the estimated
channel matrix as well as the received signals. On the other
hand, in the non-coherent detection, the channel estimation is
either performed implicitly or is completely avoided where
differential encoding is usually applied on input symbols
leading to higher computational complexity. Therefore, most
modern systems use coherent MIMO detection.

OFDM combats the effect of frequency-selective fading
by breaking a wide-band channel into multiple orthogonal
flat-fading narrow-band channels to significantly simplify
the transceiver architecture. However, the underlying time-
domain waveform usually has a high peak-to-average power
ratio (PAPR) leading to reduced power amplifier’s (PA) effi-
ciency. Meanwhile, it produces input signal excursions into the
PA’s non-linear operation region resulting in signal distortions
and spectral regrowth [3]. The non-linear distortion has a
significant negative impact on the MIMO-OFDM channel
estimation and symbol detection. To address the non-linear
distortion as well as the clipping noise, additional system
resources are required to recover the distortion [4]. Alterna-
tively, the digital pre-distortion (DPD) can be introduced ahead
of the PA to compensate for PA’s non-linearity effects [5]. Note
that a perfect knowledge of PA modeling and measurement
bias is required for the DPD-based compensation. However,
obtaining this knowledge is very challenging in reality [6].
Therefore, it is desirable to have a robust MIMO-OFDM
symbol detector against the non-linear distortion.

Artificial neural networks (NN) as an emerging technology
provides new aspects for communication systems [7]. For
instance, an auto-encoder is introduced in [8], [9] to conduct
the symbol modulation. However, this end-to-end learning
strategy often relies on a good channel model to facilitate
the application. [10] employs recurrent neural network (RNN)
as the receiver in molecular communication systems, where
the underlying channel model is not available. Furthermore,
in optical fiber systems [11]–[13], NNs are utilized as channel
equalizers as well as network monitors. In [11], the introduced
method is verified through a lab experiment.

In light of the challenges in MIMO-OFDM symbol
detection, NNs provide an ideal framework to conduct
symbol detection even under the non-linear distortion.
In [14], a deep neural network (DNN) is introduced for
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OFDM symbol detection without using explicit channel state
information (CSI) where the offline training is conducted
using available channel statistics. A NN-based method is
introduced in [15] for the receiver design of a cyclic prefix
(CP)-free OFDM system and a fully connected NN-based
OFDM receiver is tested over the air [16]. However, none of
these works investigate MIMO-OFDM systems. A DNN-based
detector is introduced through unfolding the standard belief
propagation algorithm [17]. The parameters of the underlying
DNN are required to be trained for different antenna config-
urations in an offline manner. In [18], the feature of residual
signals after layered processing is used to construct a NN for
symbol detection. Meanwhile, the loss function is conducted
on multiple layers in order to avoid the gradient vanishing [19].
It demonstrates the introduced network can perform as well as
the spherical decoding while achieving lower computational
complexity. However, these methods require pre-known CSI
as the coefficients or input of the underlying NN which cannot
be perfectly obtained when non-linear distortion presents.

From the aforementioned examples, feedforward neural
networks are employed for symbol detection by dividing the
received signal into independent batches. On the other hand,
communication signals are usually temporally correlated.
RNNs allow us to learn the temporal dynamic behaviors [20]
making it a better tool for symbol detection. For standard
RNNs, the coefficients are often calculated via backpropaga-
tion through time (BPTT) [21]. However, when the sequence is
inherent with long-range temporal dependencies, the training
cannot converge due to the vanishing and exploding gradient,
i.e., a small change at the current iteration can result in a very
large deviation for later iterations [22]. To resolve the issue,
RNNs are introduced with specific structures, such as the long
short-term memory network [23] which uses “memory units”
and “gating units” to control the gradient flow in order to avoid
the gradient vanishing. Although RNNs with resolved gradient
issues have been considered for communication system design
in [10] and [12], these methods rely on a large training set
for a well-fitted RNN model. However, the available training
set for cellular networks especially in the physical layer is
usually very limited due to the fact that the size of the
training set is associated with the underlying system control
overhead. For example, in 3GPP LTE/LTE-Advanced systems,
the pilot overhead is specified and is fixed for different MIMO
configurations [24]: The training set (demodulation reference
signals) for SISO-OFDM is around 5% of all the resource
elements. On the other hand, for a 2 × 2 MIMO-OFDM
system, the overhead for reference signals is around 10%.
Therefore, how to effectively conduct RNN-based symbol
detection for cellular networks under very limited training
sets becomes important for realizing the promise of RNN in
practical wireless networks.

Rooted in the backpropagation-decorrelation learning rule,
reservoir computing (RC) is a type of RNNs, where the gradi-
ent issues of RNN training can be avoided. More importantly,
it can offer high computational efficiency with very limited
training set [25]. This is achieved by conducting learning only
on the output layer, whereas the untrained layers are sampled
from a well-designed distribution. This makes RC an ideal

tool for conducting symbol detection for cellular networks
where the training set is extremely limited. In fact, an RC-
based MIMO-OFDM symbol detector is first introduced in our
previous work [26], [27]. With limited training set, [26] shows
that the RC-based symbol detector can effectively combat the
non-linear distortion caused by PA. However, our previous
introduced RC-based symbol detector has limited performance
using practical pilot patterns, such as the reference signal
defined in LTE/LTE-Advanced standards. Since the wireless
channel memory can introduce multi-path interference to the
received signal, it motivates us to consider if an RC-based
symbol detector with additional short term memory (STM)
can improve the interference cancellation performance. Thus,
the windowed echo state network (WESN) is introduced. The
contributions of our paper are summarized as follows

• We incorporated buffers1 in the input layer of RC, i.e,
WESN. Through theoretical analysis, we showed that the
added buffers can improve the short-term memory of
the underlying RC. Numerical evaluations also demon-
strate a positive correlation between the detection per-
formance and the improved short-term memory: WESN
with improved short-term memory can perform better
interference cancellation. A trade-off between the buffer
length and the size of neurons is identified.

• We introduced a unified training for WESN-based on the
pilot patterns that are compatible with the demodulation
reference signal (DMRS) adopted in LTE/LTE-Advanced
standards. In this way, we are able to demonstrate the
fact that the introduced symbol detector can be effective
under a very limited training set. To the best of our
knowledge, this is the first work in the literature of con-
ducting machine learning-based symbol detection using
LTE/LTE-Advanced compatible pilot patterns. Mean-
while, we demonstrated WESN can detect symbols using
non-orthogonal pilots through numerical evaluations.

• We analyzed the complexity of the WESN-based symbol
detector compared to conventional MIMO-OFDM
receivers, such as linear minimum mean square
error (LMMSE) and sphere decoding which is an
approximation to the maximum likelihood estimator
[28], [29]. The results suggest that the WESN-based
detector has less computational complexity than
conventional methods, especially when a large number
of sub-carriers are utilized.

The structure of this paper is organized as follows: In
Section II, the system model of MIMO-OFDM and conven-
tional symbol detection methods are introduced. Meanwhile,
the basic knowledge of RC is reviewed. Section III contains
the WESN-based MIMO-OFDM symbol detector as well as
pilot structures. In addition, the analysis of the short term
memory of WESN is presented in this section. The complexity
comparison between conventional methods and the WESN-
based method is discussed in Section IV. Section V conducts
the performance evaluation. Finally, Section VI concludes
remarks and future work.

1the buffer represents a linear shift register without any feedback tap
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II. SYSTEM MODEL AND PRELIMINARIES

A. Channel Model and Transmitter Architecture

We consider a point-to-point MIMO-OFDM system, where
the number of transmitter (Tx) and receiver (Rx) antennas are
denoted as Nt and Nr. The ith OFDM symbol of the pth Tx
antenna can be expressed as

u
(p)
i (t)=

Nc−1∑
n=0

x
(p)
i [n] exp(2πjnt/Δt), t ∈ [iΔt, (i + 1)Δt),

(1)

where x
(p)
i [n] is the transmitted symbol at the nth sub-carrier,

Nc stands for the number of sub-carriers, Δt is the time length
of one OFDM symbol.2 At the qth antenna, the corresponding
received OFDM symbol is given by

y
(q)
i (t) =

Nt−1∑
p=0

h
(q,p)
i (t) � g(u(p)

i (t)) + n(t), (2)

where n(t) represents the additive noise, � stands for the
circular convolution which is translated by the circular prefix
of an OFDM symbol, g(·) is a general function of the
waveform distortion which is discussed later in this section,
and h

(q,p)
i (t) is the channel response from the pth Tx antenna

to the qth Rx antenna for the ith OFDM symbol.
Equivalently, the signal in Eq. (2) can be rewritten in the

digital frequency domain as

ỹ
(q)
i [n] =

Nt−1∑
p=0

h̃
(p,q)
i [n]g̃(p)[n] + ñ[n], (3)

where ñ[n] is the additive noise in the frequency domain, and

g̃(p)[n] =
∫

Δt

g(u(p)
i (t))e−2πjtn/Δtdt (4)

h̃
(p,q)
i [n] =

∫
Δt

h
(p,q)
i (τ)e−2πnjτ/Δtdτ. (5)

When we set g(z(p)
i (t)) = z

(p)
i (t), we have

ỹ
(q)
i [n] =

Nt−1∑
p=0

h̃
(p,q)
i [n]x(p)

i [n] + ñ[n]. (6)

In the OFDM system, after the waveform is converted
into the analog domain, it passes through RF circuits, such
as power amplifiers, filters, and delay lines. These analog
components are usually nonlinear systems due to practical
constraints (e.g., circuit spaces and power consumption). For
instance, the input-output relation of the power amplifier (PA)
can be represented using the RAPP model [6]:

g(u(t)) =
G0u(t)[

1 +
(

|u(t)|
usat

)2p
]1/2p

(7)

where u(t) is the input signal of PA, G0 stands for the power
gain of PA, usat is the saturation level, and p > 0 is the

2For simplicity, the index t used in this paper can represent both analog
and digital time index based on the context. When the t is related to digital
processing components, an ADC is assumed as a prior to the processing.
Otherwise, it represents the analog domain time index.

Fig. 1. The input and output amplitude (AM/AM) curve of PA: p = 3 and
|usat|2 = −11.78dB.

smooth factor. The corresponding operational region of the PA
model is shown in Fig. 1, which is divided into three parts: a
linear region |u(t)| � usat, a non-linear region |u(t)| ∼ usat,
and a saturation region |u(t)| � usat. Even though the signal
waveform is perfectly retained in the linear region, the power
efficiency is low. Therefore, to reduce the distortion while
maintaining relatively high efficiency, the PA operational point
is set closely to the nonlinear region. Meanwhile, due to
the high PAPR of OFDM signal, PAPR reduction is also
employed to guarantee a certain level of PA efficiency [3].
However, improving PA efficiency will lead to the deficiency
in transmission reliability due to the underlying waveform
distortion. In this paper, we denote the resulting distortion as
a function g(·).

B. Conventional Methods

Coherent symbol detection methods are conducted by two
steps: channel estimation and symbol detection. In the channel
estimation, a series of pre-known pilots x̄p

i [n] is sent to Rx,
where i ∈ Ωt, p ∈ Ωs, n ∈ Ωf in which Ωt, Ωs and Ωf

respectively represent the pilot index sets of OFDM symbols,
antennas, and sub-carriers. Specifically, in LTE/LTE-Advanced
systems, the design of pilot patterns is based on resource
blocks (RBs) as shown in Fig. 2. For single input single
output (SISO) OFDM systems, the pilot structures are depicted
in Fig. 2 (a). The first sub-figure illustrates that Ωt equals
to the first OFDM symbol and Ωf occupies all the sub-
carriers. This comb pattern can be applied to the block fading
channel assumption which is used in [26]. The size of Ωf

can be further reduced as shown in the second sub-figure of
Fig. 2 (a) where the channel interpolation can be incorporated
using frequency coherence. In the third subfigure of Fig. 2 (a),
the scattered pilot pattern is applied on a Doppler channel
which facilitates the channel tracking with very limited pilot
overhead. For the MIMO channel, the pilot pattern is shown
in Fig. 2 (b) and 2 (c). In Fig. 2 (b), the pilot symbols
at different antenna ports are non-overlapping since they are
allocated to different OFDM symbols. In Fig. 2 (c), the cross
marker represents the null pilot symbols. Therefore, the pilot
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Fig. 2. Pilot structure per RB (a) SISO-OFDM (b) comb structured MIMO-OFDM (c) scattered structured MIMO-OFDM.

interference is eliminated during the channel estimation stage
for MIMO.

Using pilots, the channel coefficients on the corresponding
resource elements (REs) are obtained through (3) by solving

min
h̃
(p,q)
i [n]

l(ỹ(q)
i [n], x̄(p)

i [n]|(i, p, n) ∈ Ωt × Ωs × Ωf ) (8)

where l(·) is a pre-defined loss-function, such as likelihood
function, mean square error, etc.. The CSI on the rest of
the REs is inferred through an interpolation method. By sub-
stituting the estimated ĥ

(p,q)
i [n] into (3), the rest symbols

{x(p)
i [n]|(i, p, n) ∈ (Ωt × Ωs × Ωf )c} (where Ωc stands for

the complementary set of Ω) are estimated using

min
xp

i [n]
l(ỹ(q)

i [n], ĥ(p,q)
i [n]|(i, p, n) ∈ (Ωt × Ωs × Ωf )c). (9)

However, the optimal solutions for (8) and (9) are not usually
guaranteed due to the nonlinear distortion g(·). An improper

assumption on g(·) can cause a model mismatch which deteri-
orates the accuracy on solving the channel estimation (8) and
the symbol detection (9). To circumvent this dilemma, i.e., the
dependence on the model assumption, RC-based method can
be employed as an alternative approach.

C. Reservoir Computing

RC is one category of RNNs which consists of an input
mapping, a fixed dynamic system, and a trained readout
network. In general, there are two types of RC network archi-
tectures: echo state network (ESN) and liquid state machine
(LSM). The network architecture of ESN [25] is illustrated
in Fig. 3. The underlying network dynamics can be described
by the following equation

s(t + 1) = fstates(W ′[yT (t + 1), sT (t), xT (t)]T ), (10)

where s(t) ∈ CNn represents the inner states, Nn is
the number of neurons inside the reservoir, y(t) is the
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Fig. 3. An example of reservoir computing, the echo state network.

input signal, fstates represents the states activation function,
W ′ = [W in, W 1, W f1 ], where W in is weights of the input
layer, W 1 is the inner state transition weights, and W f1 is
weights of the feedback layer. Moreover, W f1 can be omitted
when feedback is not required. The output equation is given
by

x(t + 1) = fout(W outs
T (t + 1)) (11)

where fout is the activation function, and W out represents the
output layer. W ′ is designed following the echo state property.

Definition 1: We consider an ESN following the state tran-
sition of (10). Given an input sequence y(t) and two finite
initial states s1(0) and s2(0), for any ε > 0 and y(t), if we
have ‖s1(t) − s2(t)‖ < ε when t > κ(ε), where ξ(ε) is a
positive number, then the ESN satisfies the echo state property.
Nevertheless, the echo state property of a given ESN cannot
be easily justified from the above definition. For ease of appli-
cation, the following sufficient condition is usually applied.

Theorem 1 (Proposition 3 in [25]): Assume an ESN with
tanh(·) as the activation function. If the maximum singular
value of the inner states transition weight matrix W is smaller
than 1, i.e., σ(W )max < 1, then for all input y(t) and initial
states s ∈ [−1, 1]N , the ESN satisfies the echo state property.

Learning output weights, W out, contains the following:
• Generation of the states trajectory: By feeding the train-

ing input {ȳ(t)}T
t=0 into ESN with target {x̄(t)}T

t=0,
the states set {s̄(t)}T

t=0 is obtained by (10), where T
represents the sequence length of the training input.

• Regression on the output weights: Substituting the gen-
erated states {s̄(t)}T

t=0 into (11), we can calculate the
weights W out through

min
W out

L({ȳ(t)}T
t=0, {fout(W outs̄

T (t))}T
t=0). (12)

Specifically, when we choose fout as an identity function, L
as Frobenius norm, the output weights can be solved by

min
W out

T∑
t=0

‖ȳ(t) − W outs̄(t)‖2
F (13)

which has a closed-form solution as follows

W out = Ȳ S̄
+
, (14)

where Ȳ = [ȳ(0), · · · , ȳ(T )], S̄ = [s̄T (0), · · · , s̄T (T )], and
S̄

+
is the Moore-Penrose inverse of S̄.

III. SYMBOL DETECTION

A. Neural Network-Based Approach

The neural network-based symbol detection consists of
two steps: training and testing. In the training stage, base
station (BS) sends pre-defined symbols {x̄(p)

i [n]|(i, p, n) ∈
Ωt × Ωs × Ωf} to mobile stations (MSs). Then, MSs train
a neural network receiver D by solving

min
D

f(D(ȳ(p)
i (t)), x̄(p)

i [n]|(i, p, n) ∈ Ωt × Ωs × Ωf ), (15)

where f(·) is the training objective function and D is the
neural network; ȳ

(p)
i (t) represents the received signal at a MS

in the training stage. For instance, f(·) can be mean squared
error or cross-entropy; D can be fully connected, convolutional
or recurrent neural networks. In the testing stage, the symbols
are estimated by feeding the observation y

(p)
i (t) to the learned

neural network D̂, i.e., D̂(y(p)
i (t)). Consequently, the sym-

bol detection performance and implementation complexity
are determined by the utilized neural network and learning
method. However, in wireless communications, the resources
allocated to pilots are much less than the transmitted data
symbols. Therefore, overfitting can occur if the adopted NN
structure is unconformable.

B. Windowed Echo State Network

1) ESN Short Term Memory: For RNN, the output features
are expected as a function of the memory encoded from inputs.
A longer memory allows wider time-spanned features to be
learned. Intuitively, the memory size can be characterized as
the ability of recovering historical inputs. Thus, the memory
capacity of ESN is defined as follows:

Definition 2 (Short Term Memory [30]): Given an ESN
with fixed coefficients of the inner state transient matrix, input
layer, and activation function, we first define the following
self-delay reconstruction correlation

d(m, wout) =
cov(y(n − m), x(n))
σ(y(n − m))σ(x(n))

, (16)

where wout is the output weight for the ESN with a single
input and a single output; With a slight abuse of notations,
in this subsection, n represents the time sequence index, m
is the input delay degree, and x(n) is the ESN output when
input is y(n). Then, relying on the self-delay reconstruction
correlation, we have the following definitions,

• The m-th delay STM capacity:

MCm = max
wout

d(m, wout). (17)

• The STM capacity:

MC =
∑

m=1,2,...

MCm. (18)

Remark that the above definition is only for ESN with a single
input and single output. The general definition of STM for
ESN with multiple inputs and multiple outputs is obtained by
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Fig. 4. The architecture of WESN-based MIMO-OFDM symbol detector.

extending the concept to each input-output pair. Furthermore,
the metric in (17) can be approximately calculated through a
self-delay training procedure defined as follows: 1) Input the
zero mean sequence {y(n)}N−1

n=0 to ESN; 2) Train the output
{x(n)}N−1

n=m using the target {y(n)}N−m−1
n=0 , where x(n) =

wouts(n) and s(n) is the state of the ESN. Therefore, the self-
delay reconstruction correlation can be rewritten as

d(m, wout) =
∑N−m−1

n=0 y(n)x(n + m)√∑N−m−1
n=0 |y(n)|2

√∑N−1
n=m |x(n)|2

(19)

∝−‖x̃(m : N − 1)−ỹ(0 : N − m − 1)‖2
2, (20)

where ∝ stands for in a relation of proportionality; x̃(m :
N − 1) is a normalized vector stacked by the samples from
x(m) to x(N−1); and ỹ(0 : N−m−1) is stacked by samples
from y(0) to y(N −m−1). According to the output equation
of ESN in (11), x̃(m : N − 1) can be expressed as

x̃(m : N − 1) = woutS̃, (21)

where S̃ = [s̃T (m), s̃T (m + 1), · · · , s̃T (N − 1)] and s̃(n)
denotes the scaled states such that s̃(n) = s(n)/‖wouts(n)‖2.
From the above definition, we can obtain the STM capacity
of the buffer as follows

Theorem 2: The memory capacity of a buffer is greater than
M , where M is the buffer’s size.

Proof: With buffers we have MCm = 1 if 0 ≤ m ≤ M .
When m > M , we have MCm ≥ 0 as the signal can be
self-correlated. Therefore, we have MCW ≥ M .

Furthermore, we have the following upper bound for the
STM capacity of ESN

Theorem 3 (Proposition 2 in [30]): The memory capacity
of ESN is bounded by neuron number, i.e., MCESN < Nn.

Note that the above conclusion can only be made when the
network is with an identity output activation and an i.i.d input.
However, this theorem can give us a general guide on setting
the number of neurons. Comparing Theorem 2 to Theorem 3,
we see a buffer has a higher STM capacity than ESN when
the buffer size is the same as the number of neurons of the
ESN. However, a higher STM capacity does not necessary
stand for a better nonlinear feature mapping ability. This is
because reservoirs process the input history through a highly
nonlinear recursive procedure rather than simply preserve the
input. In our extension, adding a buffer at the input of ESN

as depicted in Fig. 4, we can obtain the WESN. Its STM can
be characterized using the following theorem.

Theorem 4: Assume the STM capacity of the buffer and the
ESN are MCW and MC, the STM capacity of the WESN,
MCWESN , is given by

1
2
MCWESN ≥ λMCW + (1 − λ)MCESN , λ ∈ (0, 1).

Proof: See Appendix for details.
The result suggests that WESN can achieve a higher STM
capacity than the convex combination of the buffer and ESN.

C. WESN-based MIMO-OFDM receiver

The introduced WESN-based MIMO-OFDM symbol detec-
tor is shown in Fig. 4. The receiving link is concatenated by
a WESN, a cyclic prefix (CP) removal and an FFT block,
where the dimension of the WESN outputs is the same as
the number of the transmission streams. The received ith
OFDM symbol yi(t) = [y(0)

i (t), y(1)
i (t), · · · , y

(Nr−1)
i (t)]T

is first fed into the buffers. At the jth antenna’s buffer,
it collects Nbf samples from y

(j)
i (t) to create a vector

[y(j)
i (t − Nbf), y(j)

i (t − Nbf + 1), · · · , y
(j)
i (t)]T . The vector

is mapped into reservoirs through the input layer. Reser-
voirs update their inner states and generate an output vector
zi(t) = [z(0)

i (t), z(1)
i (t), · · · , z

(Nr−1)
i (t)]T , where zi(t) ∈

CNr and C represents the modulation constellation. Finally,
it converts Zi into the frequency domain, where Zi =
[zi(0), zi(1), · · · , zi(Nc − 1)] ∈ CNr×Nc , and maps the
frequency signal into modulation symbols according to the
constellation C, i.e., QC(ZiF ), where F is the Fourier matrix.

D. Training of WESN

We begin by considering the training of the WESN receiver
under the SISO channel without Doppler shifts, i.e., fD = 0.
As discussed in Sec. II-B, the first OFDM symbol contains the
training set. According to (15), we select the objective function
f as the Frobenius norm induced distance and D as the WESN.
Using the ESN’s dynamics and output equations in Sec. II-C,
we have the output of WESN as WS, where S ∈ C(Nn)×Nc

stands for the reservoir states, and W ∈ C1×(1+Nn) is the
readout weights. With a slight generalization in our notations,
here Nn stands for the number of neurons plus the length of

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on July 09,2021 at 19:14:35 UTC from IEEE Xplore.  Restrictions apply. 



3718 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 6, JUNE 2020

Fig. 5. The OFDM pilots structures for WESN in one RB: (a) block (b) scattered.

buffers. Therefore, similarly as (13), the readout weights of
WESN are updated by solving

min
W

‖WSF − x̄T
0 ‖2, (22)

where F ∈ C
Nc×Nc represents the Fourier transform matrix,

and x̄0 ∈ CNc is the pilot symbols in which the subscript
stands for the first OFDM symbol. The solution can be further
written as the following closed-form,

W
(a)
= x̄T

0 (SF )+
(b)
= (x̄T

0 F H)S+, (23)

where (a) holds when we assume the number of training
symbols is greater than the number of neurons plus inputs.
Alternatively, through (b), the weights learning can be inter-
preted as fitting the output of WESN to the waveform of the
target OFDM symbols x̄T

0 F H .
We then extend the symbol detection method to the MIMO

channel without Doppler shifts. Rather than SISO, the MIMO
receiver needs to mitigate the inter-streams interference. To
realize this, a tailored training pilot pattern is introduced,
where Fig. 5a shows the case of Nt = Nr = 4. This pattern
occupies the same number of REs as the comb structured
MIMO-OFDM pilots in Fig. 2b. There is a slight difference
between the two patterns: in Fig. 2b, the pilots from dif-
ferent antennas are orthogonal while those in Fig. 5a are
overlapping. This is due to the fundamental difference between
learning-based methods and conventional channel estimation-
based methods: In learning-based methods, NNs need to learn
the interference situation of the transmission; in conventional
methods, received pilots should be interference-free to improve
channel estimation performance.

By using this pilot pattern, the outputs of the WESN can
be expressed as the matrix Z = [Z0, Z1, Z2, Z3], where
the subscripts represent the indices of the OFDM symbols
allocated as pilots. Similarly, we have Z = W S, where
S = [S0, S1, S2, S3] ∈ CNn×4Nc represents the state matrix
of WESN. Thus, the output layer is solved by

min
W

‖WSF ′ − X̄‖2, (24)

where F ′ = diag(F , F , F , F ) ∈ C4Nc×4Nc is a block
diagonal matrix in which the diagonal element is F ; X̄ =
[X̄0, X̄1, X̄2, X̄3] ∈ CNr×4Nc is the pilot symbols. Accord-
ingly, we have

W = X̄[S0F , S1F , S2F , S3F ]+

(a)
= [X̄0F

H , X̄1F
H , X̄2F

H , X̄3F
H ][S0, S1, S2, S3]+.

(25)

From (a), we know that the weight learning can be conducted
in the time domain as well.

Now, we consider MIMO channels with non-zero Doppler
shifts. To be compatible with the conventional pilots design in
SISO depicted in the third sub-figure of Fig. 2a, we directly
utilize this scattered pilots pattern as the training set of WESN.
Therefore, the weights of the outputs are updated by

min
W

‖W [S0F (:, Ωf0),S4F (:, Ωf4)]−[x̄T
0 (Ωf0), x̄

T
4 (Ωf4)]‖2,

(26)

where Ωf0 and Ωf4 respectively represents the sub-carriers
allocated to the pilot symbols at t = 0 and t = 4 in the
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figure. Alternatively, the above minimization problem can be
expressed as

min
W

‖W [S0F Ωf0
, S4F Ωf4

] − [x̄T
0,Ωf0

, x̄T
4,Ωf4

]‖2, (27)

where

x̄t,Ωf
(n) �

{
x̄t(n), n ∈ Ωf

0, n /∈ Ωf

(28)

F Ωf
(n) �

{
F (n), n ∈ Ωf

0, n /∈ Ωf

. (29)

Therefore, the output weight is given by

W = [x̄T
0,Ωf0

, x̄T
4,Ωf4

][S0F Ωf0
, S4F Ωf4

]+, (30)

which can be rewritten as

W = [x̄T
0,Ωf0

F H , x̄T
4,Ωf4

F H ][S0F Ωf0
F H , S4F Ωf4

F H ]+,

(31)

where x̄T
Ωf

F H represents the time domain OFDM waveform
transformed merely from the symbols defined on the sub-
carriers Ω̄f . It demonstrates the output weight is also obtained
by fitting the waveform of the scattered pilots. Similarly, using
the MIMO scattered pilots in Fig. 5b, we have,

W = [X̄T
0,Ωf0

F H , X̄
T
4,Ωf4

F H ][S0F Ωf0
F H , S4F Ωf4

F H ]+,

(32)

where X̄t,Ωf
represents MIMO pilots similar to (28).

IV. COMPLEXITY ANALYSIS

In this section, we compare the computational complexity
of the RC-based symbol detector to the conventional methods
discussed in Sec. II-B, where the complexity is evaluated by
floating-point operations per second (FLOPS).

A. Single-Input-Single-Output Systems

1) Channel Estimation: For the conventional methods of
solving the channel estimation problem (8), g(·) is assumed
as a linear function. When l(·) is chosen as mean squared
error (MSE), we branch the discussion according to the pilot
patterns plotted in Fig. 2 (a). For the comb pilots, the objective
function in (8) is rewritten as

min
h̃

E‖ỹi − x̄i 
 h̃‖2
F , (33)

where 
 denotes the Hadamard product. From [31], we know
that the solution is given by

h̃ = RhyR−1
yy yi, (34)

where Rhy = FRhhF HX̄
H
i , Xi = diag(xi), Ryy =

XiFRhhF HXH
i + σ2I , and Rhh is the channel covariance

matrix. For the scattered pilots, the channel coefficients on the
time-frequency grids allocated as pilots are calculated by

min
h(Ωf )

E‖ỹi[Ωf ] − X̄i(Ωf )h[Ωf ]‖2
F , (35)

which has a closed-form solution as follows

h[Ωf ] = RhY (Ωf )Ryy(Ωf )−1ỹi[Ωf ], (36)

where RhY (Ωf ) = F (Ωf , :)RhhF (Ωf , :)HX̄i(Ωf )H and
Ryy(Ωf ) = Xi(Ωf )F (Ωf , :)RhhF (Ωf , :)HX(Ωf , :)H

i +
σ2I . The channel gains on the rest grids are inferred by the
interpolation as discussed in [32]. When the channel tap is
assumed to be uncorrelated i.e., Rhh = I , we have

h̃[n] = x̄∗
i [n] · ỹi[n]/(|x̄i[n]|2 + σ2), (37)

where n stands for the index of sub-carriers.
2) Symbol Detection: For the symbol detection problem (9),

when l(·) is selected as MSE, we have

min
xi

E‖ỹi − xi 
 ĥi‖2
F . (38)

When the transmission symbols are uncorrelated between sub-
carriers, (38) becomes

min
xi[n]

Nc−1∑
n=0

E|ỹi[n] − xi[n]ĥi[n]|2,

which has a following solution

x̂i[n] = ĥ∗
i [n] ∗ ỹi[n]/(|ĥi[n]|2 + σ2). (39)

3) Complexity: For complexity analysis, we first review the
FLOPS of standard matrix operations. Given two matrices
A ∈ Cm×n and B ∈ Cn×p, the matrix product AB requires
NFLOPS(AB) = 2mnp for the summations and additions.
For any invertible matrix C ∈ Cn×n, FLOPS of the inverse
is NFLOPS(C−1) = n3 + n2 + n. When C ∈ Cm×n is
with full column rank, FLOPS of the MP-inverse C+ is
given by 3mn2 + 2n3. Therefore, for the comb pilot pattern
in Fig. 2b, the FLOPS of the LMMSE channel estimation (34)
is 2N2

c , in which the calculation of the covariance matrices
Rhy and Ryy are ommited. In the symbol detection stage (39),
the FLOPS is proportional to Nc. Thus, the total FLOPS for
the LMMSE channel estimation plus the symbol detection is
on the scale of δN2

c +(1−δ)Nc, where δ represents the ratio of
the pilot symbols to all the transmission symbols in the OFDM
system. Moreover, when we consider the scattered pilot pattern
in Fig. 2c, the complexity of interpolation needs to be included.
For the standard linear interpolation method, the FLOPS is on
the scale of 7Nc(1 − κ), where κ is the ratio of pilot sub-
carriers over all sub-carriers. Thus, the total FLOPS for the
LMMSE channel estimation with LMMSE symbol detection
using scattered pilot is δ(κNc)2 + δ7Nc(1−κ)+ (1− δ)Nc +
δ(1 − κ)Nc.

For the ESN/WESN using comb pilots, according
to (23), the FLOPS for the output weights learning is
2Nc(Nn + 1) + 3NcN

2
n + 2N3

n. Meanwhile, the computa-
tion at the symbol detection stage is merely on the out-
put layer mapping, where the FLOPS is NnNc. Thus,
the overall FLOPS for the ESN/WESN-based symbol detec-
tion is δ(2Nc(Nn + 1) + 3NcN

2
n + 2N3

n) + (1 − δ)NnNc.
For scattered pilots, FLOPS at the learning stage is
2(κNc)(Nn + 1) + 3κNcN

2
n + 2N3

n. Therefore, the total
number of FLOPS is proportional to δ(2(κNc)(Nn + 1) +
3κNcN

2
n+2N3

n)+NnNc. It indicates the resulting complexity
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of the ESN/WESN receiver is linearly proportional to the
number of subcarriers. It suggests that the ESN/WESN has
less computational burden than the LMMSE method when the
number of subcarriers is large. Remark that we do not consider
the computations inside the reservoirs in this analysis. This is
because the reservoirs are usually implemented through analog
circuits which perform faster than the digital circuit [33], [34]
with less energy consumption.

B. Multiple-Input-Multiple-Output Systems

By using the comb and scattered pilots respectively plotted
in Fig. 2b and Fig. 2c, the FLOPS of the LMMSE channel
estimation on each antenna pair is the same as the SISO
case due to free interference. Therefore, the complexity of
the MIMO channel estimation is NtNr times more than the
SISO case. However, for the symbol detection, the interference
caused by multiple transmitted antennas are required to be
annihilated. Thus, the MIMO symbol detection demands more
computations than the SISO case.

Now, we consider the LMMSE MIMO symbol detection
using (9). When the transmitted symbols on different sub-
carriers are independent, the symbol detection can be con-
ducted in sub-carrier-wise. Therefore, at the nth sub-carrier of
the tth OFDM symbol, the symbol detection is solved by

min
x̃i(n)

E‖ỹi(n) − Ĥ i(n)x̃i(n)‖2
F , (40)

which has the following closed-form solution

x̃i(n) = (Ĥ
H

i (n)Ĥi(n) + σ2I)−1Ĥ
H

i (n)ỹi(n). (41)

It leads the FLOPS to 2Nc(N3 + N2 + N), where N denotes
the number of antennas at Tx and Rx when Nt = Nr.

For the MIMO sphere decoding, it is an approximation of
solving the following maximum likelihood estimation,

min
xi(n)∈CNr

‖ỹi(n) − Ĥ(n)x̃(n)‖2, (42)

where C represents the modulation constellation of the trans-
mitted symbols. Since the standard sphere decoding usually
has high redundancy in the implementation. We choose a
complexity reduced sphere decoding algorithm proposed in
[35] for the evaluation. It shows that the FLOPS is proportional
to Nc|C|N (2N2 +2N −1) which implies the sphere decoding
is extremely complicated when a high order modulation is
adopted. Using the comb pilot for ESN/WESN, the FLOPS for
output weight learning is 2N2Nc(Nn +1)+3NcNN2

n +2N3
n

according to (25), where the number of training OFDM
symbols is the same as the transmission antennas. At the
symbol detection stage, the FLOPS is NcNNn. Similarly,
we can calculate the FLOPS using the scattered pilots. The
results of complexity comparison are summarized in Table I.
We see that the computational complexity of ESN/WESN is
dominated by the number of neurons which is smaller than
Nc through the numerical experiments in Sec. V.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the WESN-
based symbol detection. Through our numerical experi-
ments, we incorporate the model of RF circuits, such as

Fig. 6. Overfitting issue of ESN-based Symbol detector.

Fig. 7. BER comparison of ESN symbol detector, WESN symbol detector
and LMMSE method under the SISO block fading channel: the number of
neurons is 64 and the length of buffers is 30.

up/downsamplers, PA, and anti-interference/alias filters into
the link simulation. To simulate the analog domain, we apply
a four times up-sampling upon the baseband signal. We assume
that the channel is given by the following tap-delay model:

h
(q,p)
i (τ) =

L−1∑
l=0

a
(p,q)
i (l)pw(τ − τl), (43)

where L is the maximum number of resolvable paths and
pw(τ) is the pulse shaping function which is chosen as the
ideal rectangular shaped filter in the frequency domain. At the
lth delay tap, we assume ai(l) is generated by the circular
Gaussian distribution,

ai(l) ∼ NC(0, σ2
l ),

where σ2
l is assumed to be an exponential power delay profile,

i.e., σ2
l = exp(−ατl/τmax). Moreover, between two adjacent

OFDM symbols, the correlation is assumed to be

E(ai(l)a(i+1)(l)) = σ2
l J0(2πfDΔt), (44)

where J0 stands for the Bessel function of the first kind
with parameter 0. Note that, for simplicity, we set the path-
coefficients for any two different Tx-Rx antenna pairs to
be independent. In general, other spatial correlation models
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TABLE I

COMPUTATIONAL COMPLEXITY OF SYMBOL DETECTION METHODS

Fig. 8. Average BER of WESN symbol detector under SISO block fading channel by varying the length of buffers (from 1 to 64) and the number of neurons
(from 8 to 512):(a) 3D surface when the PA input power is −8 dBm, (b) 3D surface when the PA input power is −11 dBm.

Fig. 9. BER comparison of ESN symbol detector, WESN detector and
LMMSE method under SISO Doppler channels with different Doppler shifts,
the number of neurons is 64 and the length of buffers is 30.

or channel models also can be utilized without changing
the training framework. The number of paths, L, in the
channel model (43) is set as 6. The baseband modulation
order is selected as 16-QAM. For the conventional meth-
ods using scattered pilots, the CSI is obtained by linear
interpolation.

Overfitting is an important issue for NN-based approaches.
Fig. 6 shows the BER of both the pilot/training set and
the data/testing set of the ESN-based symbol detector as
the number of neurons changes. It shows that the BER
of the training set decreases as the model becomes more
complicated. However, the BER gap between testing and
training set is enlarged as the number of neurons increases.
Therefore, a proper selection on the number of neurons is
needed to achieve low generalization error (i.e., low BER on
testing set).

Fig. 10. BER comparison between ESN symbol detector and WESN symbol
detector under SISO Doppler channels with different Doppler shifts: the
number of neurons is 64 and the length of buffers is 30.

A. Single-Input-Single-Output Systems

We first evaluate the WESN receiver in the SISO channel
under different operation regions of PA. Fig. 7 shows the BER
results when the Doppler shift is 0Hz, where the threshold for
the PA linear region is set as 3dB up to the boundary of the
linear region as depicted in Fig. 1. Here the ESN is referred
to as the buffer length of WESN is set as 1. The number
of neurons for ESN and WESN is chosen to be the same,
64. The buffer length of WESN is set as 30. For the labeled
“LMMSE-LMMSE-CSI” method, the symbol detection is
conducted by LMMSE using the CSI obtained from the
LMMSE channel estimation. We can observe that these three
methods have comparable performance among the linear
region. Moreover, for WESN, the BER performance is the
best in PA nonlinear region when the optimal PA input power
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Fig. 11. Average BER performance of the WESN symbol detector under the SISO Doppler channel by varying the length of buffers and the number of
neurons when the PA input power is −8 dBm: (a) 3D surface (b) 3D contour version, where the number of neurons varies from 8 to 512, the length of
buffers ranges from 1 to 64 and the Doppler shift is 50 Hz.

is selected. It demonstrates that the WESN can considerably
compensate for the non-linear waveform distortion. We can
also conclude that the symbol detection using the estimated
CSI does not necessarily lead to the optimality in BER
performance.

Nevertheless, the performance of the WESN receiver is
highly related to the settings of neural network parameters,
especially the number of internal reservoirs and the buffer
length. We further investigate how the length of buffer and the
number of neurons can jointly impact the BER performance.
In Fig. 8. we observe that the length of buffer brings another
degree of freedom to improve the symbol detection perfor-
mance. From this figure, it shows that by either increasing the
number of neurons or the length of buffer, the resulting BER
declines. However, due to overfitting, BER increases again
when the number of neurons becomes greater. Furthermore,
it shows that compared to the WESN configured with more
neurons, the WESN with a few numbers of neurons but
longer buffers can achieve the same performance. This is
because the memory capacity of WESN is jointly determined
by the configuration of neurons and buffers. Furthermore,
we see the overfitting issue in Fig. 8b is slightly different
from that in Fig. 8a. When the number of neurons is large
(such as close to 500), the BER in Fig. 8b is higher than
that in Fig. 8a. This is because when the input power is
closer to the linear region, the transmitted signal is less
distorted. Therefore, the size of the employed neural network
is expected to be smaller. On the other hand, using more
neuron states (more complicated models) can result in worse
BER performance (overfitting) when the input power is close
to the linear region.

The BER performance under different Doppler shifts in the
SISO channel is shown in Fig. 9. We see that these three
methods are comparable in the BER as well. In Fig. 10,
the comparison between ESN and WESN under different
Doppler shifts is investigated. We can see that the WESN
always performs better than the ESN under different Doppler
shifts. From Fig. 11, we again investigate the BER distribu-
tion by varying buffer length and neurons number. We see
that increasing buffer size can significantly decrease BER
which indicates that WESN can get more advantages over

Fig. 12. BER comparison of ESN symbol detector, WESN symbol detector,
LMMSE method and sphere decoding under MIMO block fading channels
(the number of neurons is 64 and the length of buffers is 30).

the Doppler shift channel compared to the standard ESN.
Meanwhile, adding more neurons can always lead to model
overfitting.

B. Multiple-Input-Multiple-Output Systems

In Fig. 12, we compare the BER performance of WESN to
conventional methods, i.e., LMMSE and sphere decoding (SD)
under block fading channels where conventional methods
obtain CSI through LMMSE using pilot patterns depicted
in Fig. 2c. We see that the performance gap between WESN
and the conventional methods is enlarged compared to the
SISO case. For SD the BER performance deteriorates quickly
when the PA input power is in the non-linear region. This is
because SD requires more accurate CSI for symbol detection.

Again, we plot the BER distribution by varying the buffer
length and the number of neurons as shown in Fig. 13.
The advantages of the introduced buffer are more obvious
compared to the SISO case by looking at Fig. 8. Moreover,
by using the pilot pattern in Fig.5a, the number of pilot sym-
bols in training can be flexibly adjusted. In Fig. 15, we show
the BER performance by varying the number of pilots, i.e., the
number of OFDM symbols allocated as pilots. To be clarified,
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Fig. 13. Average BER performance of the WESN symbol detector under the MIMO block fading channel by varying the length of buffers and the number
of neurons when the PA input power is −8 dBm: (a) 3D surface (b) 3D contour version, where the number of neurons varies from 8 to 512 and the length
of buffers ranges from 1 to 64.

Fig. 14. Average BER performance of WESN symbol detector under the MIMO Doppler channel by varying the length of buffers (from 1 to 64) and the
number of neurons (from 8 to 512), the PA input power is −8 dBm, and the Doppler shift is 50 Hz: (a) 3D surface, (b) 3D contour version.

Fig. 5a shows the number of OFDM pilot symbols is equal
to 4. Specifically, when T < 4, it is non-orthogonal pilots
as the number of pilot OFDM symbols is smaller than the
number of Tx antennas, 4. When we employ the conventional
methods, using non-orthogonal pilot is not enough to avoid the
pilot interference during the channel estimation stage. This
means the conventional channel estimation method cannot
be directly applied using non-orthogonal pilots. However,
by using the RC-based method, we can observe that the BER
performance is almost invariant compared to orthogonal pilots.
It is because that the learning-based symbol detection can
extract important features underlying the channel which are
the inherent sparsity in the time-delay domain. Meanwhile,
by increasing the number of neurons, we can also observe the
deterioration of the BER performance due to overfitting.

In Fig. 16, we plotted the performance using the scattered
pilot of MIMO under the Doppler shift channel. The 2D BER
distribution under the Doppler channel is shown in Fig. 14
which has a similar distribution as Fig. 13. All these results
suggest that the RC-based approach can outperform conven-
tional methods in low SNR regime and under nonlinear distor-
tion. Furthermore, note that the WESN/ESN symbol detector is
trained using compatible pilot patterns of LTE/LTE-Advanced
systems, making it completely different from most of the
existing literature, such as [14], [17], [18]. In fact, almost all
other work in the field assumes a large training set to train

the underlying neural networks for symbol detection while we
are focusing on using the extremely limited training overhead
provided by LTE/LTE-Advanced networks. As shown in the
3rd sub-figure of Fig. 2(a), the training set (demodulation
reference signals) for SISO-OFDM is around 5% of all the
REs: one resource block has 12× 7 = 84 REs with 4 of them
being reference signals. On the other hand, for 4× 4 MIMO-
OFDM systems, one resource block has 12 × 7 × 4 = 336
REs with 16 of them being reference signals (the overhead
is around 20%). To evaluate activation functions other than
the identity function and to compare the introduced symbol
detector with other neural network-based approaches under
limited training symbols, we conduct the following:

• We use the long short-term memory (LSTM) [36] to
replace WESN in the receiver. The LSTM configuration
follows the standard interface provided by Keras [37]:
The activation function of the recurrent step is chosen as
the hard sigmoid; other activation functions are chosen as
the hyperbolic tangent; bias is added in each layer; bias
for the forget gate and other parts are all initialized as
zero; the number of LSTM units is set as 64; bias regular-
izer, kernel and recurrent regularizer are not configured.
Meanwhile, we utilize one dense layer as the output to
read out cell states. The training object is selected as
l2 norm as well, where the target is the time-domain
OFDM symbols. Furthermore, to make a fair comparison,
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Fig. 15. BER performance of ESN symbol detector and WESN symbol
detector under MIMO block fading channels by varying the number of pilots
OFDM symbols, the PA input power is chosen as −9 dBm, the number of
neurons for ESN is equal to 128 and 512, the number of neurons for WESN
is equal to 64 and 512, and the length of buffers is 30.

Fig. 16. BER comparison of ESN symbol detector, WESN symbol detector,
LMMSE method and sphere decoding under MIMO Doppler channels: length
of buffers is 30, number of neurons is 64, and Doppler shift is 50Hz.

we add a sliding window in the same way as the WESN
to increase the training batches of LSTM.

• We choose SoftMax associated with a one-hot coding as
the learnable layer after the FFT of WESN’s inner states.
Each stream of a subcarrier is operated with one SoftMax
instead of setting one SoftMax for all subcarriers.

• We add a multilayer perceptron (MLP) at the output of
the WESN to allow an arbitrary activation function. The
added MLP has three layers and “arctan” is selected as
the activation of intermediate layers.

• We use a fixed nonlinear function, cubic function, as the
output activation function of WESN to check the impact
of changing the activation functions.

The same training set as the WESN-based receiver is used to
evaluate all the above methods. Fig. 17 shows the performance
of all these methods compared to the WESN/ESN approach. It
can be seen that none of these methods are providing perfor-
mance even close to the introduced WESN symbol detector. In
fact, the identity output activation function of the WESN/ESN-
based approach can be replaced by any other function which
has a closed-form expression. However, the output design

Fig. 17. BER comparison of the ESN symbol detector, the WESN
symbol detector, the WESN-MLP detector, the WESN-FFT-softmax detector,
the LSTM-based detector, and WESN with cubic output activation under the
MIMO block fading channel, the number of neurons is set as 64 and the
length of buffers is 30.

Fig. 18. Training and testing BER using LSTM in 4 × 4 MIMO-OFDM.

cannot be easily optimized under arbitrary fixed activation
functions unlike the identity function case where the optimal
output weights can be analytically characterized. Therefore,
the performance of using cubic activation cannot be guaran-
teed. Even though the use of SoftMax and MLP will allow
us to learn arbitrary output function, it significantly increases
the number of trainable parameters which is not desirable for
symbol detection under limited training sets. On the other
hand, the available training symbols based on the reference
signals/pilots provided by LTE/LTE-Advanced networks are
too small to train a proper-fitted general neural network. That
is why we see the LSTM performs poorly in this situation.
To gain further insights on this, we also evaluated the BER for
both training and testing of LSTM as shown in Fig. 18. From
this figure, we see during the training stage, LSTM can achieve
a good training BER. However, due to the limited training set,
it cannot be generalized to a good BER performance at the
testing stage.

VI. CONCLUSION AND FUTURE WORK

In this paper, we consider the application of reservoir com-
puting to MIMO-OFDM symbol detection. Compared with
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our previous work [26], a new RC-based detector, WESN,
is introduced which can significantly improve the performance
of interference cancellation and nonlinear compensation. As an
advanced ESN, WESN is proved to be able to fundamentally
enhance the short term memory. In addition, numerical eval-
uation demonstrates that WESN offers a great performance
improvement over conventional approaches even using the
same amount of pilots defined in 3GPP LTE standards under
both static and dynamic MIMO channels. Moreover, through
complexity analysis, we prove that WESN requires fewer
FLOPS than conventional methods. For future work, this
symbol detection method can be extended to a joint symbol
demodulation and channel decoding framework. It is also inter-
esting to explore other activation functions and neural network
architectures such as extending the shallow RC architecture to
deep RNNs.

APPENDIX

Proof of Theorem 4: The output weights for the m-th delay
capacity can be calculated by

min
wout

‖x̃(m : N − 1) − ỹ(0 : N − m − 1)‖2
2.

Suppose x̃ = woutSWESN , where SWESN = [[ỹT (m :
m − M), s̃T (m)]T , [ỹT (m + 1 : m + 1 − M), s̃T (m +
1)], · · · , [ỹT (N − 1 − M : N), s̃T (N − 1)]]T represents the
extended states as introduced in [25]. By splitting wout into
[w1, w2], we have

‖[w1, w2][Y T , ST
ESN ]T − ỹ(0 : N − m − 1)‖2

2

= ‖w1Y − λỹ(0 : N − m − 1) + w2SESN

−(1 − λ)ỹ(0 : N − m − 1)‖2
2

≤ 2‖w1Y − λỹ(0 : N − m − 1)‖2
2

+2‖w2SESN − (1 − λ)ỹ(0 : N − m − 1)‖2
2,

where λ ∈ (0, 1). Thus,

min
w1,w2

1
2
‖[w1, w2][Y T , ST

ESN ]T − ỹ(0 : N − m − 1)‖2
2

≤ min
w1

‖w1Y − λỹ(0 : N − m − 1)‖2
2

+ min
w2

‖w2SESN − (1 − λ)ỹ(0 : N − m − 1)‖2
2

= λ2 rW + (1 − λ)2rESN ,

where

rW = min
w1

‖(1/λ)w1Y − ỹ(0 : N − m − 1)‖2
2,

rESN = min
w2

‖(1/(1 − λ))w2SESN − ỹ(0 : N − m − 1)‖2
2.

According to the definition of STM, we have

1
2
MCWESN ≥ λ2 MCW + (1 − λ)2MCESN

≥ λ2 MCW + (1 − λ2)MCESN .

Finally, the theorem is proved by substituting λ2 as λ.
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