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Abstract—1In this paper, we investigate online learning-based
MIMO-OFDM symbol detection strategies focusing on a special
recurrent neural network (RNN) - reservoir computing (RC).
We first introduce the Time-Frequency RC to take advantage
of the structural information inherent in OFDM signals. Using
the time domain RC and the time-frequency RC as building
blocks, we provide two extensions of the shallow RC to RCNet:
1) Stacking multiple time domain RCs; 2) Stacking multiple
time-frequency RCs into a deep structure. The combination of
RNN dynamics, the time-frequency structure of MIMO-OFDM
signals, and the deep network enables RCNet to handle the
interference and nonlinear distortion of MIMO-OFDM signals
to outperform existing methods. Unlike most existing NN-based
detection strategies, RCNet is also shown to provide a good
generalization performance even with a limited online training
set (i.e, similar amount of reference signals/training as standard
model-based approaches). Numerical experiments demonstrate
that the introduced RCNet can offer a faster learning convergence
and as much as 20% gain in bit error rate over a shallow
RC structure by compensating for the nonlinear distortion
of the MIMO-OFDM signal, such as due to power amplifier
compression in the transmitter or due to finite quantization
resolution in the receiver.

Index Terms—Deep learning, online learning, OFDM-MIMO,
symbol detection, reservoir computing.

I. INTRODUCTION

RTIFICIAL-INTELLIGENCE (AI) enabled cellular net-
works are envisioned as the critical path for Beyond-
5G networks [2], [3]. Among the various potential fields of
communication systems where Al and its associated machine
learning tools can contribute, symbol detection is a very impor-
tant area in the physical layer. To be specific, symbol detection
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constitutes a key module within the signal processing chain
of modern communication receivers. Assuming the availabil-
ity of receiver channel state information (CSI), the optimal
model-based strategy is to apply the maximum likelihood
detector. However, the performance of model-based strategies
is sensitive to model inaccuracies and CSI estimation errors.
On the other hand, learning-based approaches can provide
robust performance without relying on detailed underlying
channel models. In this paper, we focus on the problem of
symbol detection in MIMO-OFDM which is the major radio
access technology for 4G/5G systems [4]. In current 4G/5G
systems, symbol detection methods are based on modeling the
underlying wireless link and applying associated model-based
signal processing techniques [5]. However, in the presence of
non-linearities, either due to the underlying wireless chan-
nels (e.g. mmWave and Terahertz channels for Beyond-5G)
or device components (e.g. power amplifier), it becomes
extremely difficult to analytically model such behavior in
a tractable and accurate manner. Alternatively, recent work
in [6], [7] demonstrated the effectiveness of using neural
networks (NNs) for symbol detection under unknown environ-
ments. Along the same line of thinking, we consider exploiting
the dynamic behavior of recurrent neural networks (RNNs)
for the task of MIMO-OFDM symbol detection. The main
motivation of adopting RNNs instead of other NN architec-
tures is based on the fact that under fairly mild and general
assumptions, RNNs are universal approximations of dynamic
systems [8]. This is extremely important for wireless systems
which are highly dynamic over time and frequency. On the
other hand, to realize the full potential of RNNSs, especially
deep RNNs, new research challenges need to be addressed for
MIMO-OFDM symbol detection:

o Challenge 1: From a system design perspective, train-
ing an NN-based symbol detector using over-the-air
feedback—to update layer weights of the underlying
NN based on the back-propagation algorithm—is likely
prohibitively expensive in terms of the control overhead.!

IFor example, in 3GPP LTE/LTE-Advanced systems, the reference
signal overhead is specified and is usually fixed for different MIMO
configurations [9]: The training set (demodulation reference signals) for
SISO-OFDM is around 5% of all the resource elements.On the other hand,
for a 2 x 2 MIMO-OFDM system, the overhead for reference signals is
around 10%. In 5G, more flexible reference signal design is designed to
reduce the reference signal overhead [10]
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Therefore, over-fitting could occur when the selected NN
model is too complicated.

o Challenge 2: NNs, especially RNNs, are mainly designed
to process time-domain data. Since data is transmitted
in both time and frequency domains in contemporary
cellular systems, it is critical to combine RNNs with
domain knowledge in an organic way to offer reliable and
robust performance gains over current communication
strategies.

o Challenge 3: The underlying wireless environment
changes dynamically over time and frequency. This would
be especially true for Beyond-5G systems which would
mainly use mmWave and Terahertz channels. Accord-
ingly, the underlying NN model needs to be sophisti-
cated enough to capture the time-frequency variation of
the channel. Otherwise, under-fitting can result in poor
symbol detection performance.

Furthermore, a general challenge of neural networks

to wireless systems is “uncertainty in generalization”
[2]—it is often unclear whether the dataset used for training
the underlying neural network is general enough to capture
the distribution of data encountered in reality. This is
especially true for 5G and Beyond 5G networks that will
provide reliable service under vastly different scenarios and
environments. In 4G/5G MIMO-OFDM systems, there exist
many MIMO modes with link adaptation, rank adaptation,
and scheduling operating on a subframe basis [11]. Therefore,
it is challenging, if not impossible, to adopt a complete
offline training-based approach. Rather, it is critical to design
an online neural-network-based approach to conduct symbol
detection in each subframe only using the limited training
symbols that are contained in that particular subframe. In
this way, the online-learning-based approach can be adaptive
and robust to the change of operation modes, channel
distributions, and environments.

A. Our Contributions

To address these challenges, our approach is based on reser-
voir computing (RC) [12] which is a special category of RNNs.
RC is capable of avoiding the issues of vanishing and explod-
ing gradients which occur during training of conventional
RNNSs using back-propagation through time (BPTT) [13]. Fur-
thermore, the training of RC is only conducted on the output
layer while the hidden layers and the input layers are fixed
according to a certain distribution. In this way, the amount
of training needed for MIMO-OFDM symbol detection can
be significantly reduced making it an operationally feasible
solution to address Challenge 1. This benefit can be clearly
seen in Section V-D where we show a quantitative comparison
of the training overhead for various learning-based strategies.
The RC architecture makes applying NN techniques in the
physical layer of cellular networks possible and feasible. It
is also shown in [14] that RC-based symbol detection can
significantly improve the underlying energy-efficiency of the
system.

In this work, rather than directly applying the shallow RC
structure, we attempt to address Challenge 2 and Challenge
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3 by introducing RCNet through the following extensions to
facilitate deep RC-based symbol detection methods that further
improve detection performance by merely using over-the-air
training, that is, online training:

o Extend the output layer of a shallow RC structure to
a multiple-layer network promoting joint time-frequency
processing. This method can effectively resolve Chal-
lenge 2 by incorporating the structural information
(time-frequency structure) of MIMO-OFDM signals into
the output layer design of RCNet.

o Stack shallow RCs together into a “deep” RC to improve
the processing capability of RCNet. In this way, Chal-
lenge 3 can be addressed owing to the boosting mecha-
nism of NNs.

The first extension on deepening the output layer is achieved
by replacing the original single layer output of the shallow RC
with a three-layer structure: a time-domain layer, a Fourier
transform layer, and a frequency-domain layer, namely the
“time-frequency RC”. The time-domain layer attempts to
reconstruct the transmitted time-domain signal. The Fourier
transform layer is used to transform the time-domain signal to
the frequency-domain. The frequency-domain layer attempts
to extract frequency-domain features to further improve the
detection performance. The second extension is achieved by
concatenating multiple “time-frequency RCs” sequentially.
Note that the output weights of each RC layer are trained
in a consecutive fashion.

Through extensive experiments, we show that this deep
structure of RCNet demonstrates appealing and robust perfor-
mance when non-linear effects exist in the end-to-end wireless
system. In other words, it outperforms conventional MIMO
symbol detection strategies under channel non-linearities
caused, for e.g., by the power amplifier (PA) at the trans-
mitter (Tx) or the quantization error due to the low resolution
of analog-to-digital converters (ADCs) at the receiver (Rx).
The results suggest that the introduced MIMO-OFDM symbol
detection framework can be a very promising enabling tech-
nology for Beyond-5G cellular systems where high-frequency
spectrum and low-resolution ADCs would be frequently used.
To the best of our knowledge, this is the first recurrent neural
network-based MIMO-OFDM symbol detector in the literature
that can provide good symbol detection performance using a
limited online training set under relevant channel environments
(e.g., the WINNER II channel) in the presence of practical
real-world constraints such as transmit-side non-linearity due
to the PA and limited quantization resolution in the receiver.

B. Related Work

1) Deep RNN: Deep neural networks (DNN) can extract
sophisticated features thereby providing improved classifica-
tion performance over shallow NNs [15]. Hierarchical RNNs
are shown to be capable of learning long-term dependencies of
signals [16]. In [17], the deep long short-term memory network
was introduced by consecutively stacking the hidden layers of
multiple RNNs. This deep structure is shown to significantly
improve performance in the task of speech recognition. The
methods of extending a shallow RNN to deep RNNs have been
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summarized in [18]: multi-layer RNNs can be constructed
by increasing input layers, hidden layers and output layers,
as well as stacking multiple shallow RNNs into a deep form.
Concatenating echo state networks (ESNs) into a chain by
learning readout layers connecting to each ESN layer is
introduced in [19]. The follow up work in [20], [21] extended
this structure into a deep version which is demonstrated to
be able to achieve a higher memory compared to the shallow
one. However, these extensions are very general and do not
consider specific domain knowledge and structural information
for targeted applications.

2) NN-Based Symbol Detection: The work in [7] shows that
an unfolding NN from the projected gradient descent algorithm
can be trained to achieve state-of-the-art performance for
MIMO symbol detection tasks. In [22], an online and offline
combined approach is introduced for OFDM symbol detection.
In [23], a soft-thresholding based neural network structure is
applied for MIMO symbol detection in a spatial correlated
channel. Note that [7], [22] combine online and offline training
for symbol detection tasks, where the online training overheads
can be reduced through leveraging the same statistical features
from the offline training dataset. However, the symbol detec-
tion performance will deteriorate when the training dataset
is statistically different from the testing ones. In contrast,
we consider a purely online learning-based approach that
only utilizes the limited training dataset available within each
subframe for MIMO-OFDM symbol detection to mitigate the
issue of “uncertainty in generalization” for robust and adaptive
communications.

Our previous work [6], [24], showed that shallow RCs can
achieve good performance for online MIMO-OFDM symbol
detection even with a very limited training set. In [6], an ESN,
which is a special variant of RC, is introduced as an OFDM
symbol detector without relying on obtaining explicit CSIL
This scheme is evaluated under relevant scenarios for cel-
lular networks where the training/reference signal overhead
is comparable to that of current cellular networks. In our
follow-up work, the windowed ESN (WESN) is introduced
by adding a sliding window to the input of ESN to enhance
the short-term memory (STM) [24]. Experimental results show
that WESN can provide good performance over standard ESNs
using the training/reference signal set adopted in 4G LTE-
Advanced [4]. Furthermore, ESN-based symbol detectors can
effectively compensate for the distortion caused by non-linear
components in wireless transmission.

The organization of this paper is as follows. In Sec. II,
we briefly describe the transceiver architecture. In Sec. III
and IV, we introduce the two extensions incorporated in our
proposed RCNet structure and its associated learning algo-
rithms. Sec. V evaluates the performance of RCNet as opposed
to existing symbol detection strategies for MIMO-OFDM
systems. The conclusion and future work is contained in
Sec. VL.

II. OFDM TRANSCEIVER ARCHITECTURE AND
STRUCTURAL INFORMATION

In this section, we briefly introduce the transceiver
architecture of a MIMO-OFDM system and illustrate the
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Fig. 1. OFDM Resource Grid.

structural information we are going to utilize for the design
of RCNet. The OFDM resource grid can be seen most clearly
in Fig. 1. The total system bandwidth is divided into N, sub-
carriers. In each sub-frame, the first ) OFDM symbols are
the reference signals (the training set) and the rest Ny OFDM
symbols are used to carry data (the testing set). Therefore,
the reference signal overhead (training overhead) is defined
as 1 = Q/(Q + Ng). In 3GPP LTE/LTE-Advanced and 5G
systems, (Q+ N4 = 14 for normal sub-frames and the overhead
is typically below 20% to improve spectral-efficiency [9],
[10]. For a single MIMO-OFDM symbol, we denote the
modulation symbol as {z(n)}2+<~1 where z(n) € CNex1
represents the modulation symbols at the nth sub-carrier of the
underlying MIMO-OFDM symbol in the frequency domain;
Ny is the number of transmit antennas in the system. Each
element of z(n) is modulated using quadrature amplitude
modulation (QAM). A single MIMO-OFDM symbol in the
frequency domain also can be lumped as a matrix,

Z £ [2(0), (1), Dt (1)

After the inverse fast Fourier transform (IFFT) operation and
addition of the cyclic prefix (CP), we can obtain the time
domain MIMO-OFDM symbol, denoted as X. At the trans-
mitter, the MIMO-OFDM symbol is distorted by a non-linear
activation function f(-) due to the inherent non-linearity of
transmitter-side radio circuits, such as the PA [25]. At the
receiver, a single MIMO-OFDM symbol is expressed as

) Z(Nsc -

X = q(h(f(X)) + N), 2

where X £ [z(0),z(1), -+ ,2(Ns + N — 1)]T €
CWNsetNep)xNeo (1) represents the t-th time domain
sample of the MIMO-OFDM symbol; N, is the number of
receive antennas; N is the additive noise; h(-) represents
the multi-path channel, such as the 3GPP spatial channel
model (SCM) [26] and ¢(-) represents the non-linearity at the
receiver.

For RC-based MIMO-OFDM symbol detection, the objec-
tive is to recover the frequency domain modulation symbols
{z(n)} =<', The inputs to the RC are the time domain sam-
ples {sc(t)}ivzcngNsrl. This time-frequency structural infor-
mation needs to be explored in the design of RCNet to
improve its detection performance beyond that of the existing
shallow RC-based symbol detection. In the supervised learning
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TABLE I
NOTATIONS
Symbols Definitions

N, Number of receiver antennas

Ny Number of transmitter antennas

Nsec Number of sub-carriers

Nep Length of Cyclic Prefix (CP)

Q Number of MIMO-OFDM symbols in the training set (Number of batches in the training set)
Ny Number of MIMO-OFDM symbols carrying data (testing set)

n Reference signal (training) overhead

X One MIMO-OFDM symbol at Rx in the time domain (One batch of training input)

X One MIMO-OFDM symbol at Tx in the time domain (One batch of training target in the time domain)

zZ One MIMO-OFDM symbol at Tx in the frequency domain

(One batch of training target in the frequency domain)

t Sample index in the time domain

n Sub-carrier index (modulation symbol index) in the frequency domain
z(n) The nth modulation symbol of one MIMO-OFDM symbol at Tx in the frequency domain
Z(t) The tth sample of one MIMO-OFDM symbol at Tx in the time domain
z(t) The tth sample of one MIMO-OFDM symbol at Rx in the time domain
y(t) The tth sample of one MIMO-OFDM symbol at the output of a time domain RC
g(n) The nth modulation symbol of one MIMO-OFDM symbol at

the output of a time domain RC in the frequency domain

Z(n) The nth modulation symbol of one MIMO-OFDM symbol at the output of a time-frequency domain RC

framework, the training set is defined as {dq}qu_Olz

(fea @)™z ™).

(fa (O} ™ (@ ORI,

(X4, Zg) = (X4, Xy). 3)

dq

1

1

= represents equivalently defined as; The subscript ‘¢’ stands
for the gth MIMO-OFDM symbol, i.e, the training set has
batches in total. The notations used are summarized in Table I.

III. TIME-FREQUENCY RC-INCORPORATING
STRUCTURAL INFORMATION

To incorporate the time-frequency structural information
inherent in the OFDM signal structure, we introduce in this
section the new concept of “time-frequency RC” in addition
to the shallow RC. For differentiation, the shallow RC is
referred to as the “time domain RC” in this paper. To provide a
systematic view of the RC-based design and to better articulate
how the structural information is incorporated, we will first
briefly discuss the “time domain RC” used in our previous
work [6], [24] before describing the “time-frequency RC”.

A. Time Domain RC-The Shallow RC

One realization of the time domain RC is illustrated
in Fig. 2, namely ESN [27]. In the figure, the collection of
neurons is denominated as a reservoir. The ESN drives the
input signal into a high dimensional dynamic response through
a fixed random projection, where the response signal is repre-
sented by the trajectory of hidden neuron states. Meanwhile,
non-linear activation functions are applied to the neuron states
transition. The neurons in the reservoir are sparsely connected
with fixed weights to satisfy certain distributions under which
the response signals are asymptotically uncorrelated to the
initial neuron states [27]. One justification for using fixed
hidden states transition is from an experimental fact that

Output Feedback

- _} —
m(t) Input Layer Output Layer yl(t)
N,
Reservoirs
Fig. 2. RCNet: Time Domain RC-ESN Realization.

the dominant changes of an RNN’s weights during training
happen at the output layer [28]. Finally, the desired outputs are
obtained by learning a combination of the non-linear response
signals.

Given the training set {dq}qQ;OI,
generated by the gth batch are

the states of the reservoir

qu(t +1)
= f(qu(t)Wg + ch (t)Win + qu(t)Wfb + nT (t)) (4)

where s,(t) € CN»*! represents the neurons state vector,
with NV, denoting the number of neurons in the reservoir;
f is the activation function; W, € CN»*Nn denotes the
state transition weights matrix; W, € CN~*Nn denotes the
weights of the input layer; n(t) € CN»*! is an optional noise
regularization term; Wy, € CNr*Nn represents the weights
on the feedback path which can be removed when teacher
forcing is not required [27]. Correspondingly, the output signal
of the time domain RC can be written as

yl'(t) = sT ()W iout )

where W, € CN»*Nr represents the readout layer. Note
that in the training stage, if teacher forcing is enabled,
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Algorithm 1 Time Domain RC-Based MIMO-OFDM Symbol
Detection
Q-1
Input: {d,},
Output: Wous, p*
for p € [0, N,,] with step size P do
Generate p-delayed training set d(®)
Generate the state matrix {Sép )}qu_Ol according to the
dynamics equation (4)
Calculate the output weights W',
objective value Obj, using (6)
end for
Find the optimal p* = argmin, Obj, and W, = w?

using (7) and the

*

tout

the feedback signal associated with Wy, is &,. On the other
hand, the feedback signal &, is replaced by y, after training.
To drive y,(t) to the desired time domain MIMO-OFDM
symbol, we can minimize the le-norm distance between
{y,()} 25 and {&,(t)}35, through
Q—1Nep+Noe—1

min E
Wiout
q

=0 t=0

y,(8) — Z4(t)]]2 ©)

Therefore, the readout weights are updated by the following
closed-form expression,

W iout = <[SOT7 . 7551}T>+ {X’OT’ . 7X271}T -

where (S)" is the pseudo-inverse of S, and S, is stacked by
the trajectory of the states as

Sqé [84(0), 84(1),- -~ asq(Nsc+N6p_1)]T~ (®)

In addition, due to the feedback nature of RC, there exists
a lag-effect on the generated state response [12]. A delay
parameter can be introduced in the learning process such that
the following slightly revised training set is utilized [29],

4 £ (X0, X0 1,0nN, %),
[ONTX[)7X07... aXQ_l’]T)

where p is the aforementioned delay parameter, and O rep-
resents the zero matrix. The time domain RC is trained
with different values of p with p* being the value of p
generating the minimal objective value defined in (6). This
input-output delay offset p* will be used to configure the RC
for testing. Overall, the training procedure of the time domain
RC-based MIMO-OFDM symbol detection is summarized in
Algorithm 1, where p is uniformly sampled from 0 to N,
in steps of P. Symbol detection is conducted by feeding the
received signal to the learned RC.

B. Time-Frequency RC—RC With Structural Information

Since the time domain RC focuses only on the received time
domain signal without processing in the frequency domain,
it is clear that it does not take advantage of the structural
information of the underlying OFDM signalization. In OFDM
systems, the training signal is sent over the frequency domain
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Fig. 3. RCNet: Time-Frequency RC.
and the frequency domain provides a much cleaner view of the
transmitted signal. Therefore, it is desirable for the NN-based
symbol detector to conduct detection tasks in the frequency
domain. Meanwhile, the underlying NN-based symbol detector
should also take advantage of the time domain correlation.
To achieve these goals, we introduce the time-frequency RC
whose structure is shown in Fig. 3. Following the same line of
reasoning as the time domain RC, the reservoir first generates
high dimensional response signals according to the input. The
response signals are mapped to the desired signals through a
time domain layer, a fixed FFT layer, and a frequency domain
layer. Accordingly, the time domain layer output is the same as
that in (5). After removing the CP and conducting an FFT on

{y, () i\;s}'\,:v”rl, the obtained frequency domain symbols
are denoted as {gq(n)}ﬁ[;})_l. Subsequently, the frequency

domain layer output is defined as
z, (n) = g (n)diag (w our(n)) ©

where w foui(n) € CN*1 is the weight specified at the nth
sub-carrier; diag(w) represents a diagonal matrix which has w
as the main diagonal elements. Furthermore, we set the magni-
tude of each entry of w ¢, (n2) as 1. This allows the introduced
frequency domain layer to compensate for the residual phase
error after the time domain processing. It is important to note
that the frequency domain processing can effectively tune the
delay parameter discussed in Section III-A. This is because
the FFT layer converts a shift in the time domain to a phase
variation in the frequency domain. Accordingly, the added
output layers in the time-frequency RC essentially leverage
the structural information of the MIMO-OFDM signal.

The learning objective of the time-frequency output layer is

Q-1 Nsc—1

Yo > llzeln) = 2,05

qutN 1 g=0 n=0
{wpou(n)} g™t =0 "=

s.t. diag (|lwyroue(n)|) =I, Yn=0,---,Ng — L.
(10)

which is equivalent to the time domain objective function
defined in (6). In order to seek a proper solution to the
above problem, we resort to alternative least squares (ALS)
as the solver to obtain closed-form update rules for W,
and wyoue(n). The detailed derivation can be found in
the Appendix with their closed-form update rules outlined
in (17) and (14) respectively. The learning algorithm of the
time-frequency RC is summarized in Algorithm 2.

Note that there are certain implementation-related issues
that need to be clarified when fully connected layers
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Fig. 4. RCNet: Deep Time RC.

Algorithm 2 Time-Frequency RC Based MIMO-OFDM Sym-
bol Detection
Input: {d,}
Output: Wtout’ {wfout (n)}giboil
Generate the state matrix {Sép )}qu_Ol according to the
dynamics equation (4)
Initialize wfour(n) =1, Vn=1,---, Ny
while (10) does not converge do
Update W+ using (17)
Update w foue(n) using (14)
end while

are employed in the frequency domain, i.e. replacing
diag (w fout (1)) with Wg,yi(n) in (9). In this case, the learn-
ing rule of the output layers becomes

N1 2
WIEIOI}, Z;) HF(N)SWtouthout (n) — Z(”)H
{W four(m)bnzg™ 7

where F(n) 2 I ® f(n), f(n) € CN-=1 is the nth row of
a Fourier matrix, ® denotes the Kronecker product operation
and

S £ [So(Nep : Noc + Nep — 1,0)7,
T
Sq-1(Nep : Nyo + Nep — 1,1)7]

F

Based on ALS, the update rule of W s,,:(n) is given by

W tout(n) = (F(n)SW out) " Z(n). (11

However, given W ro1(n), Wigy: is updated by solving a
Sylvester’s equation which can introduce a heavy computa-
tional load. Meanwhile, this brings more parameters to learn
which can lead to overfitting since the training set size is
usually limited in practical systems.

IV. RCNET-STACKING RCS FOR A DEEP NETWORK

We now introduce RCNet by stacking multiple RCs into
a “deep” RC network. Intuitively, this deep structure can be
interpreted as decomposing different levels of interference
cancellation for the received MIMO-OFDM signal. Based on
the discussion in Section III, the basic building block of RCNet
can be either the time domain RC or the time-frequency RC.

When the building block is the time domain RC, RCNet can
be constructed by stacking them into a deep structure (Deep
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Ny N N uil)
Intermediate Intermediate
Output Layer Input Layer Output Layer

Reservoirs

Time RC) as shown in Fig. 4. Let L denote the total number
of building blocks in RCNet. Given the training set d®), for
the [™ RC, the state equations are

sOT(+1) = f (s OWD 4y T OW )
+a&l (W) + nT(t))

where the superscript (1) represents the I RC; y) follows
the output equation from the previous layer which is defined
in (5). The output layer and intermediate output layers of this
RCNet are learned sequentially, i.e. the intermediate output
layer closest to the input is learned first; the next RC is learned
based on the results generated by the previous one. The input
of the I™ RC is the output of the (I — 1) RC after training.
The teacher forcing for different RCs is the same. The final
output of this RCNet generates an estimate of the desired
MIMO-OFDM symbol, i.e. yéL) (t). In the state equation of the
I™ layer, the feedback signal associated with W% is replaced
by y,, after training. The learning algorithm of the deep time
RC is summarized in Algorithm 3. This learning method can
be interpreted via the boosting framework [30]: by sharing
learned features among a set of weak learners, their ensemble
can result in a stronger learning ability.

Algorithm 3 RCNet: Deep Time RC Based MIMO-OFDM
Symbol Detection
Input: {d,},
l - _
Outp(u)t: {J‘\?/Ef)% lL=101’ p(l)}f:(}t +Nge—1
{zg (5 ={= )}

t=0
for [ from 0 to L — 1 do
dy (1) 2 ({2 3 (@, o pg )
for p € [0, Np] with step size P do
Generate p-delayed training set d®) (1)
Generate the state matrix {Sép )}qQ;Ol according to the
state equation (4)
Calculate the output weights
objective value Obj, using (6)

W(P)

tou

. using (7) and the

end for
Find the optimal p(!) = argmin, Obj, and Wg,)ut =
W'
tout
Use the learned Wg))ut and p® to generate

g Vg

end for
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Fig. 5. RCNet: Deep Time-Frequency RC structure.

Similarly, we can change the building block of RCNet from
the time domain RC to the newly introduced time-frequency
RC. The structure of the corresponding RCNet (Deep
Time-Frequency RC) 1is shown in Fig. 5. The Deep
Time-Frequency RC is expected to provide better performance
than the Deep Time RC since it takes advantage of the
structural information of OFDM signalization. Furthermore,
it is important to note that compared to the Deep Time RC
version of RCNet, additional IFFT layers need to be added
between two adjacent time-frequency RCs to transform the
former frequency domain output to a time domain signal
for subsequent processing. A similar learning algorithm for
this RCNet (Deep Time-Frequency RC) is summarized in
Algorithm 4. Note that this learning methodology of RCNet
is fundamentally different from conventional gradient-based
learning in that the RC structures do not require learning of
the internal state transition matrix and the input layer. Using
the [3-norm as the loss function allows us to leverage the least
squares framework to arrive at a closed-form solver, which
is more efficient than conventional gradient-based objective
descent. Training any of the deep RC structures via backprop-
agation through time (BPTT) is very inefficient since BPTT
essentially unfolds the RC structure into a “very deep neural
network™ in both the time and space dimensions, which can
cause severe gradient vanishing issues during training. On the
other hand, the sequential learning methodology builds on
the boosting mechanism, where results learned from previous
layers offer a good starting point for the learning of the deeper
layers.

The number of RC components in RCNet is another tunable
parameter. A validation set can be utilized for determining the
proper value of L. We can simultaneously test the validation
error while increasing L: Once the validation error stops
decreasing, we can stop increasing L. Furthermore, the number
of neurons in each RC can also be configured differently.
How to optimize the number of neurons in each RC to
achieve the best generalization performance can be treated as
future work. The comparison of the complexity of time RC
with conventional approaches can be found in Table I in our
previous work [24]. Following a similar derivation, the addi-
tional number of FLOPS required for the time-frequency RC
is on the order of O(N,N:(Q + 1 4+ Qlog(Ns.))), with
training the corresponding deep structures being L times more
computationally expensive.

Algorithm 4 RCNet: Deep Time-Frequency RC Based
MIMO-OFDM Symbol Detection
Input: {dq}qQ;O1
l - -
Outputs (Wi by 0N
o cp sc— cp sc—
zq (6120 = {zq(t) },Z0
forlfromOtoL—l%o N NN
l eptNee—1 =~ eptNae—1) o
ay(l) 2 (O (@ ) =

(P01 !

] p)1 Q-1
Generate the state matrix {S((I N 7=0

state equation (4)
Initialize woue(n) =1, Vn=1,---, Ny
while (10) does not converge do
Update W4, using (17)
Update w foy¢(n) using (14)
end while

Use the learned Wiy, and wyy,(n) to generate
(I+1) Nep+Noe—1

zq (O Hp

end for

according to the

V. PERFORMANCE EVALUATION

In this section, we provide performance evaluations for the
introduced RCNet framework under relevant scenarios. The
modulation scheme used to generate z(n) is set to be 16-QAM.
The simulation parameters in the performance evaluation are
configured as the follows: N, = 4, N; = 4, N, = 1024,
N¢p = 160, @Q = 4, and Ny = 13. Note that in this case the
training overhead is only 23.5%, which is significantly lower
from most other NN-based detection methods that use a pro-
hibitively high training overhead. The channel model adopted
in the evaluation is the WINNER II channel model defined
in [31], where the transmitter and receiver are configured with
uniform linear arrays having half-wavelength antenna spacing.
Furthermore, the communication scenario is chosen to be the
urban macrocell NLOS outdoor-to-indoor case.

Recall from Fig. 1 that the first @ OFDM symbols constitute
the training set and next Ny OFDM symbols are the data
symbols that make up the testing set. Therefore, the first ()
OFDM symbols will be used to train the RCNet while the bit
error rate (BER) will be evaluated using the testing set (data
symbols). This training and testing procedure is conducted for
100 consecutive sub-frames. The number of neurons for each
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layer of the RCNet (the component of the shallow RC) is
set as 128. The number of layers L is set as 3 for the deep
structures. Furthermore, a time window is added to the input
layer of each RC unit as suggested in [24], where the length
is set as 128. The state transition matrix W is generated
randomly to satisfy the echo state property [27], where the
spectral radius is chosen to be smaller than 1. The input
weights matrix W, is generated randomly from a uniform
distribution. In our evaluations, adding teacher forcing does
not show an improvement in performance. Therefore, W s, is
set to zero.

A. BER Performance Under Tx Non-Linearity

To evaluate the symbol detection performance, we compare
RCNet to shallow RC-based strategies as well as conventional
methods. To incorporate the Tx non-linearity in our evalua-
tion, the following RAPP model was adopted for the power
amplifier (PA),

fz) =

xT

2p
1 (£28)”]
where x represents the PA input signal, p is the smoothing
parameter, and x4, is the saturation level. When © < x444,
we have f(z) ~ x, implying that the PA output signal has no
distortion compared with the input. In our evaluation, we set
p = 3 and x5, = 1. As a benchmark, two conventional
symbol detection methods, namely linear minimum mean
squared error (LMMSE) and sphere decoding (SD) [32], are
selected. Since these two methods rely on the knowledge of
channel state information (CSI), we utilize LMMSE as the
channel estimation strategy based on the () OFDM symbols of
reference signals (training set) assuming perfect knowledge of
the noise variance and the linearity of the underlying wireless
link.

We first consider the BER performance when the PA input
power is in the linear region. In this case, the PA input
power is backed off to be far from the PA’s saturation region.
Accordingly, the input back-off (IBO), which is defined as the
ratio between the PA’s saturation power to the input power,
is chosen to be greater than 8 dB. In Fig. 6 we show the
bit error rate (BER) plotted as a function of the received
signal to noise ratio (SNR) in dB for various symbol detection
schemes, where the SNR is calculated as the average signal to
noise ratio across all subcarriers at the receiver side. From the
results we can observe that all RC-based methods including
the shallow structures and RCNet can perform better than con-
ventional methods when the transmission power is low. This is
because the estimated CSI is inaccurate in the low-SNR regime
resulting in poor performance of the conventional model-based
methods. For example, the performance of LMMSE symbol
detection is greatly dependent on the accuracy of the channel
state information (CSI), which is estimated using over-the-air
pilots in practical systems. Therefore, inherent error in the CSI
estimate can deteriorate the symbol detection performance,
depending further on the modulation scheme used. On the
other hand, RC-based methods are able to learn the underlying

75 (12)
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Fig. 7. Average BER for RCNet-based methods and conventional methods
by varying IBO to operate in PA’s non-linear region, where the corresponding
SNR ranges from 13 dB to 17dB.

features of the channel without explicitly relying on the
underlying CSI. Furthermore, it can be seen from the results
that the two versions of RCNet provide slight performance
improvement over their shallow counterparts demonstrating
the benefits of the deep network structure.

In Fig. 7, we show the BER performance when the PA input
power is close to the saturation region. In this case, the PA’s
output is distorted due to the compression effect. The distortion
occurs when the peak-to-average-power-ratio (PAPR) of the
PA input signal is higher than the IBO, where the PAPR of
an OFDM signal x(t) is defined as ||z(¢)||% /||=(¢)||3. In our
evaluation, the signal’s PAPR is controlled in the range from
6 dB to 9 dB. Therefore, in order to investigate the BER
performance under the PA’s compression effect, we choose
the IBO to be below 6.5 dB as shown in Fig. 7. The results
clearly show that all RC-based methods perform relatively
well when the IBO is low, especially when it is lower than
5 dB. Note that the PA efficiency is substantially higher
when it is operating at a low IBO. This clearly suggests
that RC-based methods can provide an improvement in PA
efficiency by compensating for the transmitted waveform
distortion at the receiver. Furthermore, the results in Fig. 7
demonstrate the benefits of utilizing the signal’s structural
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information in the underlying NN design: the Time-Frequency
RC performs significantly better than the Time RC and the
Deep Time-Frequency RC performs better than the Deep Time
RC. This is because the newly introduced Time-Frequency
RC does take advantage of the OFDM signalization in the
design of the underlying network structure of RC to address
Challenge 2. On the other hand, the evaluation results also
clearly show the power of the deep nature of the introduced
RCNet to address Challenge 3 without additional training
overhead: RCNet performs substantially better than its shal-
low counterparts with the same training overhead. Note that
in Fig. 7, as the IBO reduces, the received SNR will also
increase leading to operation in the high SNR region at the
receiver. Note that there are existing methods such as Digital
Pre-Distortion (DPD) to mitigate the PA’s non-linearity by
pre-preprocessing the transmit data in the digital domain.
However, such methods rely on accurate PA models and
parameters, and cannot compensate for the loss when operating
in the PA’s compression region, but only when operating in its
distortion region. Additionally, such mitigation methods rely
on corrective processing at the transmitter, whereas RCNet
can compensate for this distortion completely at the receiver,
therefore, allowing PA operation at the transmitter in the
non-linear regime for enhanced efficiency.

Furthermore, in Fig. 8, we investigate the distribution of
symbol error rate (SER) over all subcarriers as a function of
the channel correlation: The z-axis is the condition number of
the spatial channel from all subcarriers. The SER is evaluated
in the PA’s nonlinear region with an IBO of 6 dB. Fig. 8
shows that the performance of all the methods is affected by
the channel condition number. However, compared with the
LMMSE approach, both the Time RC and the Time-Frequency
RC can achieve significantly better SER performance when the
condition number is not too large. Furthermore, Fig. 8 clearly
suggests that both the Time RC and the Time Frequency RC
achieve a lower average SER than the LMMSE approach under
any given channel condition number.

B. BER Performance Under Rx Non-Linearity

The non-linearity in the receiver stems primarily from
the quantization of the received signal due to the finite
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Fig. 9. Average BER curves for RCNet-based methods and conventional
methods using 1-bit resolution ADCs.

resolution analog-to-digital conversion. For a MIMO-OFDM
signal, the in-phase and quadrature components are quantized
by a pair of analog-to-digital converters (ADCs), where the
input-output relation of the ADCs can be defined as

Alz/A] - A/2,
q(x) = {Amm -sign(z),

if |z] < Amax

otherwise (13)

in which z is the ADC’s input, [-] is the ceiling function,
A > 0 represents the quantization interval, and A,,q, is
the maximal input amplitude of ADC such that A,, .,
(2™ — 1)A/2, where n is the number of quantization bits.
To be specific, when A =2 A4, ¢(x) represents a one-bit
ADC. In the state-of-the-art, low-resolution ADCs are often
utilized to digitize a signal with a large bandwidth at high
frequencies (e.g., mmWave bands and Terahertz bands) or to
reduce the power consumption of the underlying ADCs. Note
that almost all existing work in the symbol detection domain
with limited resolution ADCs makes system assumptions such
as large number of antennas and ideal CSI, which are either
not compatible with the setting in RCNet or not feasible in
practice. Also, to the best of our knowledge, we did not
find existing work that can generate stable channel estimation
results as well as conduct symbol detection in a MIMO-OFDM
system with quantized CSI.

In Fig. 9 and Fig. 10, we investigate the BER performance
of uncoded MIMO-OFDM signals under 1-bit and 2-bit
quantization respectively (n = 1 and n = 2) using QPSK
modulation as a function of the received SNR. Since only
1-bit and 2-bit ADCs are used, the resulting quantization
errors are usually large. From the figures, we can see that
conventional methods are very sensitive to quantization errors,
for e.g., the SD strategy completely collapses in both cases.
On the other hand, all RC-based methods can handle the large
quantization errors very well showing the benefits of adopting
this particular learning-based approach. It is important to
note that the RC-based strategies outperform the conventional
LMMSE and SD in all SNRs of interest. Furthermore,
a considerable gain can be achieved from Time-Frequency
RC to Time RC showing the importance of incorporating
structural information in the underlying NN design for
MIMO-OFDM symbol detection. As for the comparison
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Fig. 10.  Average BER curves for RCNet-based methods and conventional
methods using 2-bit resolution ADCs.

between the shallow RCs and the RCNet structures, we see
very marginal BER performance improvement. This might
be due to the fact that the shallow RC already takes the
best advantage of the available limited information for
symbol detection while additional iteration does not provide
performance improvement. Identifying the detailed reasons
behind this phenomenon can be treated as a future extension
of this work. Note that even though Fig. 6 shows that deep
time-frequency RC performs slightly worse than the time
RC in the PA’s linear region, i.e., in the absence of non-
linearities, their performance is typically close to each other
in the absence of system impairments. On the other hand,
Fig. 7 and Figs. 9, 10 demonstrate that in the PA’s non-linear
operation region and with extremely low-resolution ADCs
in the receiver respectively, both the time-frequency RC and
the deep time-frequency RC provide better performance than
their time RC counterparts. Finally, even though the uncoded
BER range of 0.25 to 0.4 presented in Fig. 9 and Fig. 10
represents an infeasible operational range for a radio receiver,
the performance gain of RCNet over model-based methods in
this extremely challenging situation of 1-bit or 2-bit quanti-
zation and highly distorted CSI demonstrates its applicability
and the advantage it offers over conventional methods
in such challenging scenarios. By incorporating channel
coding, it is possible to improve the RCNet performance
further to a feasible operating point for LTE/LTE-Advanced
systems.

C. Learning Convergence of RCNet

The evaluation results presented in previous sections
show that RC-based methods are effective in the low SNR
regime and under the effects of transmitter and receiver
non-linearities. These evaluations use L = 3 for the RCNet
structures. Intuitively, we can increase L to yield better
training performance, however, a higher L may cause over-
fitting. Fig. 11 shows the testing BER of RCNet as a function
of L considering only the transmitter non-linearity: increasing
L does ensure a decrease in the generalization error up
to L = 3 in general. For implementation, a suitable value
for L that minimizes the testing BER may be determined via
fine-tuning.
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We now evaluate the convergence behavior of RCNet under
transmit non-linearity. For an SNR of 12 dB, we train dif-
ferent RCs under the same channel realization. The objective
function used for tracing the number of iterations is defined
in (6) for the Time RC and in (10) for the Time-Frequency
RC. Fig. 12 shows the learning curve of the time domain RCs
where each iteration corresponds to a fixed delay parameter.
For the delayed training of RCNet, we set P = 5 and choose
the delay parameters uniformly from 0 to N, in Algorithm 3.
Therefore, the training of each RC layer of RCNet requires
5 iterations and a total of L = 10 layers are considered
in Fig. 12. The legend “entering next layers” represents a
single iteration in the for-loop on L in Algorithm 3 and
Algorithm 4. For instance, when the iterator [ changes from
l =1Ly tol =L+ 1, the output signal of layer L; “enters”
layer L 4 1. For the shallow time RC, we set P = 50 in
Algorithm 1, meaning that the resolution used in the search
for the optimum delay is finer for the case of shallow RC than
that for the case of RCNet. Therefore, there are a total of 50
iterations for the shallow Time RC. From Fig. 12, we clearly
observe that a finer delay parameter cannot result in a lower
objective value, whereas adding extra layers of RCs on top of
the shallow RC can decrease the objective value.
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A similar conclusion can be drawn by observing the learning
curve of the Time-Frequency RC and RCNet as depicted
in Fig. 13. For RCNet (Deep Time-Frequency RC), we fix the
number of iterations of the ALS for solving each RC layer to
be 5 in Algorithm 4. Therefore, as in Fig. 12, the training for
each RC layer of the RCNet requires 5 iterations and a total of
L =10 layers are considered in Fig. 13. As shown in Fig. 13,
the objective value decreases significantly by adding one extra
RC layer. Compared with the shallow Time-Frequency RC,
the fitting error of RCNet (Deep Time-Frequency RC) is
significantly smaller. To gain an intuition of the role of the
different RC layers in RCNet, the layers can be thought of as
learning different levels of features, with each layer producing
a different output distance compared to the training target,
so that the signals generated by the deeper layers are closer to
the target. Therefore, deepening the RCNet structure can lead
to a decrease in the training error, as compared to the shallow
structure. The comparison between the two RCNet structures
(Deep Time RC and Deep Time-Frequency RC) is presented
in Fig. 14. In this comparison, we set the number of iterations
of each RC layer to be 20 with L being swept from 1 to
10. Fig. 14 shows that the Deep Time-Frequency RC yields a
stable objective value where increasing L no longer helps in
deceasing the training error. On the other hand, increasing L
always helps to reduce the training error for the Deep Time
RC. From the generalization error on the testing set shown
in Fig. 11, the stability characteristics of the learning curve
for the Deep Time-Frequency RC provide an efficient way
to determine a suitable value for L that can avoid overfitting
issues.

D. Comparison With Other NNs

In Table II, we present the performance comparison between
the RC-based symbol detectors (shallow RCs and RCNet) and
symbol detectors constructed using alternate NN architectures.
Specifically, other popular RNN architectures are considered
for performance comparison against RCNet. The variants
include long short-term memory (LSTM), bidirectional-LSTM
(Bi-LSTM) and gated recurrent unit (GRU) that are more
robust against the short-term memory issue in vanilla RNNs.
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Bi-LSTM is an extension of traditional LSTMs, training on
both the original input sequence as well as its reversed copy
leading to a doubling of the training time for a given size of the
reference signal set. To keep the comparison fair, the number
of units in the recurrent hidden layer for the LSTM, Bi-LSTM
and GRU structures is set to 128, in line with the 128
neurons used in each layer of RCNet. In this comparative
analysis, only the PA non-linearities in the transmitter are
exercised by choosing a low input back-off (IBO) of 2.2
dB while ignoring quantization effects of the ADCs in the
receiver. It can be seen that in the case of all three RNN-
variants, even a prohibitively large training set of 500 reference
OFDM symbols, amounting to a reference signal (training)
overhead of = 97.5%, is insufficient to achieve an acceptable
BER for data transmission. On the other hand, with only 4
reference OFDM symbols, i.e., a reference signal overhead of
n = 23.5%, all four RCNet detection methods achieve better
BER performance than conventional detection methods (SD
and LMMSE) listed in Table II. Note that SD performs worse
than LMMSE since we are operating in the non-linear region
of the PA, as can be confirmed from the results in Fig. 7.

As a benchmark to compare RCNet against, we also eval-
uate another deep learning-based MIMO symbol detection
scheme DetNet, presented in [7]. A key requirement of DetNet
is the availability of perfect CSI during testing for MIMO
symbol detection. However, perfect CSI is either infeasible or
extremely costly to obtain in practical wireless systems. In
order to provide a fair comparison of DetNet against RCNet
which does not rely on CSI for detection, we evaluate DetNet’s
performance in the 4 x 4 IID Gaussian channel® in the follow-
ing two cases: 1) Training with perfect CSI, and 2) Training
with estimated CSI. In Case 1), we assume perfect CSI is
available in the training phase of DetNet. Note that the perfect
training CSI assumption is valid for DetNet since the amount
of training data is abundant for the receiver to obtain the close-
to-perfect CSI. On the other hand, during the testing phase of
DetNet, like in the case of LMMSE and SD, we assume the

2When training DetNet with the IID Gaussian channel, the online training
overhead consists only of the pilot overhead of 23.5%, which is needed for
CSI estimation, assuming the network is trained offline with a 60% overhead.
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TABLE 1I
BIT ERROR RATE (BER) COMPARISON WITH ALTERNATE NN-BASED METHODS (PA IBO =2.2 dB)

Detection Framework Training Symbols 17 (%) Training Epochs Training BER  Testing BER
Time RC [24] 2x 1073 9x 1072
Time-Frequency RC 8 x 1073 8 x 10—2
RCNet: Deep Time RC 4 235 N/A 1.4 x 1073 7.3 x 1072
RCNet: Deep Time-Frequency RC 3.5 x 1072 6.9 x 10~2
LSTM 3x 102 4.7 x 1071
Bi-LSTM 4 23.5 300 4.6 x 107> 4.7 x 1071
GRU 6 x 1072 4.7 x 1071
LSTM 2.2x 1071 4.7 x 107 T
Bi-LSTM 10 43.5 300 5.1 x 1072 4.7 x 1071
GRU 2.7 x 1071 4.8 x 1071
LSTM 2x 1071 4 %101
Bi-LSTM 20 60.6 300 9.9 x 10~2 4x10°1
GRU 2.5 x 1071 4.1 x 1071
LSTM 4.5 x 107 T 4.4 x 107 T
Bi-LSTM 500 97.5 30 4.4 %1071 4.3 x 1071
GRU 4 %1071 4.4 x 1071
LSTM 5000 99.7 30 4.4 x 107 T 4.3 x 107 T
LMMSE 9.2 x 10~ 2
Sphere Decoder 4 235 N/A N/A 1.3 x 1071
DetNet [7] (IID Gaussian Channel)

Training with Perfect CSI 7x 1072 1.7 x 1071
Training with Estimated CSI 3000 83.5 2% 10° 13x10-1  15x 101
MMNet [23] (3GPP MIMO Channel)

SNR = 13 — 18 dB 3096 38.24 1000 2.4 x 1071 2.55 x 10~1

LMMSE channel estimator is adopted to obtain the underlying
CSI estimate. Accordingly, the estimated CSI is utilized in the
testing phase. In Case 2), we assume the LMMSE estimator
is also adopted in the training phase of DetNet to make
sure the training and testing environments are the same. It
is important to note that in both cases the training/channel
estimation overhead is the same: the training overhead in the
training phase + CSI estimation overhead in the testing phase.
Further realizing that a PA backoff of 2.2 dB maps to a
received SNR of 17 dB for RCNet, the same SNR value is
used to train and test DetNet with its default configurations
of parameters such as number of training iterations, learning
rate and batch sizes. Table II clearly suggests that RCNet can
outperform DetNet in both cases. To be specific, when training
with perfect CSI, DetNet can achieve a testing BER of 0.17
with a training overhead of 83.5% (a training overhead of 60%
and a pilot overhead of 23.5% for CSI estimation) On the
other hand, the testing BER for DetNet is 0.15 when trained
with estimated CSI. Both DetNet results in IID channels are
significantly higher than 0.069, the corresponding testing BER
of RCNet (Deep Time-Frequency RC). Furthermore, we faced
significant difficulty ensuring the stability and convergence of
the training process of DetNet with the spatially-correlated
3GPP SCM channel. This demonstrates that DetNet cannot be
extended to realistic correlated MIMO channels. Additionally,
for DetNet, a fixed training overhead is needed to train the
underlying neural network in addition to the pilot overhead
for channel estimation. This leads to a much higher training
symbol overhead compared to RCNet. Furthermore, once the
channel statistics have changed, the underlying neural network
needs to be trained again under the new channel statistics.
For an exhaustive comparison with other NN-based detec-
tion methods, we also consider an iterative MIMO symbol

detection framework such as MMNet [23]. Our evaluation of
the MMNet framework utilizes the urban macrocell NLOS
outdoor-to-indoor scenario in the Quadriga channel simulator,
which is the same scenario used in the WINNER II channel
model for evaluating RCNet. From Table II, it can be seen
that for a 4 x 4 MIMO system, even with a training overhead
of 38.24%, the BER performance is as high as 0.255 across
the SNR range used for 3GPP MIMO channels in [23]. Note
that this setting for evaluating MMNet is significantly different
from [23], where massive MIMO channels (16 x 64 or 32 x 64)
are considered. A best-effort hyperparameter tuning (learning
rate and number of layers) is also performed in order to
achieve the lowest possible SER for the 4 x 4 system, which is
very different from the configurations for which MMNet para-
meters are originally trained. The poor performance of MMNet
in the 4 x4 MIMO setting may be understood from the fact that
iterative methods such as MMNet rely on the asymptotic prop-
erty of the massive MIMO channel to achieve optimality [33],
which does not hold for small number of transmit and receive
antennas.

Overall, from the comparison with other RNN-based symbol
detection strategies we can clearly see that RCNet offers
advantages of requiring very limited training overhead to
provide good performance of MIMO-OFDM symbol detection
tasks. Compared with conventional model-based symbol detec-
tion strategies, we can see that RCNet provides advantages
such as being robust to model mismatch and RF non-linearities
(transmitter and/or receiver). On the other hand, the state-
of-art NN-based symbol detection strategies, such as DetNet
and MMNet either require extensive amount of training data,
time, and computational resources compared to RCNet or
are not well-suited to a MIMO configuration with limited
antennas.
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VI. CONCLUSION AND FUTURE WORK

RC-based symbol detectors have been introduced for
MIMO-OFDM systems to work under very limited training
sets. This paper introduced a deep RNN-based network called
RCNet to 1) incorporate structural information of the OFDM
signalization, and 2) deepen the original shallow RC-based
symbol detection strategies to further improve the detection
performance. Incorporating structural information has been
achieved through the invention of Time-Frequency RC where
the learning is done both in the time and frequency domains to
take advantage of the time-frequency structure of the under-
lying OFDM signal. Meanwhile, the deep nature of RCNet
has been achieved by extending a shallow RC structure to
a deep RC structure in the following two ways: cascading
time domain RCs and cascading Time-Frequency RCs. The
associated learning algorithms have been developed for each of
these extensions and extensive evaluation has been conducted.
Experimental results showed that RCNet can outperform con-
ventional methods using a limited training set under non-linear
RF effects of the wireless link demonstrating the effectiveness
of incorporating structural information and deepening RCs for
symbol detection.

An important area of exploration for future research is how
to determine the optimal L, i.e., the number of RCs in RCNet
especially under receiver non-linearity. Connections to the
boosting method may provide insights on designing the num-
ber of neurons in each layer. Another interesting direction for
future work is how such RC-based detection methods can be
combined with transmit-side precoding to jointly optimize the
link performance with limited CSI feedback at the transmitter.
The full potential of the RCNet symbol detection method is
yet to be explored. From a theoretical standpoint, it would also
be meaningful to analyze the functionality of each layer in the
interference cancellation for a multi-user MIMO network.

APPENDIX

We now consider using alternative least squares to solve the

problem (10). When W, is given, (10) can be rewritten as
min

W fout (’ﬂ)

s.t. diag(|waUt(n)|) = Iv Vn = 07 T (Nsc - 1);

1E (1) SW tourdiag(w rour(n)) — Z ()|

where the definition of F'(n), Z(n) and S are given in Sec. II-
B. By spelling out the objective, the optimization problem is
equivalent to

min  —Real(Tr(Z (n)diag(w fout(n)) Z (n) 7))

Wout(n)
s.t. diag(|waUt(n)|) = Iv Vn = 07 T (Nsc - 1);
where Z(n) £ F(n)SW ;.. In addition,
Tr(Z (n)diag(w fout(n)) Z (n) ")
=D wrour;(n)Tr(2 (n)2 (n)")
J

where z7(n) is the jth column of Z(n), 27(n) is the jth
column of Z(n) and wyoye, j(n) is the j-th entry of w foue(n).
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In order to minimize the objective function value, we can
select

Lwgout,j(n) = —£(2 (n)" 27 (n)) (14)

where / represents the angle of a complex number. When
{w pout (n) } Y2571 s fixed in (10), W oy is learned by

n

min ||FSW pu — Z||% (15)

tout

where F 2 diag(F,--- ,F) € CON:cx@Nsc in which F is
the Fourier matrix.

and

Z4 2 [24(0),24(1), -, 24(Nge — 1)]7, (16)

in which 2,(n) £ diag(w?,,,,(n))zq(n). Therefore, the learn-
ing rule of W, is

Wi = STF" 2. (17)
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