

RUNNING HEAD: Personalized Learning Research

A Systematic Review of Research on Personalized Learning:
Personalized by Whom, to What, How, and for What Purpose(s)?

Matthew L. Bernacki ¹

Nikki G. Lobczowski ²

Meghan J. Greene ¹

¹*University of North Carolina at Chapel Hill*

²*Carnegie Mellon University*

Article accepted for publication in *Educational Psychology Review*, March 22, 2021.

Corresponding Author: Matthew L. Bernacki (mlb@unc.edu)

Declarations:

Funding: This project was conducted with support from the U.S. National Science Foundation under Award DRL 1851680.

Conflicts of interest/Competing interests: None (include appropriate disclosures)

Availability of data and material: Included in Supplemental Tables. Additional materials available upon request.

Acknowledgements: The authors wish to thank Candace Walkington, who provided feedback on a prior version of the manuscript.

Abstract

Teachers, schools, districts, states, and technology developers endeavor to personalize learning experiences for students, but definitions of personalized learning (PL) vary and designs often span multiple components. Variability in definition and implementation complicate the study of PL and the ways that designs can leverage student characteristics to reliably achieve targeted learning outcomes. We document the diversity of definitions of PL that guide implementation in educational settings and review relevant educational theories that could inform design and implementation. We then report on a systematic review of empirical studies of personalized learning using PRISMA guidelines. We identified 376 unique studies that investigated one or more PL design features and appraised this corpus to determine (1) who studies personalized learning, (2) with whom, and in what contexts, and (3) with focus on what learner characteristics, instructional design approaches, and learning outcomes. Results suggest that PL research is led by researchers in education, computer science, engineering, and other disciplines, and that the focus of their PL designs differ by the learner characteristics and targeted outcomes they prioritize. We further observed that research tends to proceed without *a priori* theoretical conceptualization, but also that designs often implicitly align to assumptions posed by extant theories of learning. We propose that a theoretically-guided approach to the design and study of PL can organize efforts to evaluate the practice, and forming an explicit theory of change can improve the likelihood that efforts to personalize learning achieve their aims. We propose a theory-guided method for the design of PL and recommend research methods that can parse the effects obtained by individual design features within the “many-to-many-to-many” designs that characterize PL in practice.

KEYWORDS: Adaptivity, Learning Technology, Personalization, Personalized Learning

A Systematic Review of Research on Personalized Learning: Personalized by Whom, to What, How, and for What Purpose(s)?

Educators have historically adapted their instruction to provide differentiated and individualized instruction based on learner needs (Drumheller, 1971; Slavin, 1984; Subban, 2006; Tomlinson, 1999). Personalization is increasingly becoming an aspirational standard in K-12 educational settings (Ferguson, Ginevra, & Meyer, 2001; Grant & Basye, 2014; Great School Partnership, 2015) and in higher education (Brown et al., 2020). A recent review of educational policy (Zhang, Yang & Carter, 2020) confirms that the vast majority of US states have adopted policies to deliver personalized learning opportunities to K-12 students. Whereas policymakers have reached consensus that students should receive a personalized learning experience, policies provide broad latitude to allow schools to define what personalization means and how to implement it (Kallio, et al., 2020; McHugh, et al., 2020). With this flexibility for implementation comes a challenge for those who seek to understand how personalized learning benefits learners: personalized learning (PL) is defined differently in almost every context where it is employed, and this diversity makes it difficult to assess how PL influences learners' educational experience and academic outcomes (AUTHORS, DATE; Cuban, 2018; Enyedy, 2014; Halverson, 2019).

Within the context of higher education, the pursuit of a major over and above completion of a general education requirement constitutes a student-driven choice of a personalized course plan. Thereafter, however, few policies exist to govern ways that postsecondary education should be personalized. Whereas early briefs acknowledge individual exemplars such as the Online Learning Initiative (Soares, 2011), few such programs span institutions in ways governed by a guiding policy. The Association of Public Land-Grant Universities established a Personalized Learning Consortium in 2013 and provided recommendations for personalized learning through

adoption of adaptive courseware (Vignare et al., 2018), but lacks standing or funding to further organize cross-institutional effort. EDUCAUSE, which organizes conversations amongst administrators of information technology in higher education, provides information about trends towards personalization (Alli, Rajan & Ratliff, 2016; Feldstein & Hill, 2016). It also acknowledges the lack of coherent theory and application (Shulman, 2016), however, and projects personalized learning as a future educational development (i.e., two to five years out), in their 2020 edition of their annual *Horizon Report* (Brown et al., 2020).

Aim: Understand and Organize Efforts Towards a “Grand Challenge”

The National Academy of Engineering named the development of personalized learning systems a “Grand Challenge” for the 21st century (Ellis, 2009), and researchers from many different disciplines have taken aim at different features of the grand challenge they describe. The process of personalizing learning requires that a learning environment – whether it be face-to-face vs. digital or human-driven vs. automated – take into account the learner and some combination of their prior knowledge, motivations, goals, beliefs, interests, skills, experience, and culture (and likely other factors) and provide an instructional experience that is responsive to these features in ways that should promote superior engagement in a learning task and performance on it. The dimensions of the PL challenge are myriad and appeal to many different disciplines, which has led to a large and disparate body of research on personalized learning.

Our aim in this paper is to appraise the PL research literature to systematically investigate who is conducting research on personalized learning, what features of the personalized learning process have been investigated, and whether investigations into personalized learning align to theoretical assumptions about the learning process. At present, the research base on personalized learning is beset by the complexity induced by policies that promote implementations that are

free to vary the number and types of components they involve to personalize a learning experience. Any attempt to summarize the effect of personalized learning on the learner experience, learning process, or academic performance achieved is thus at risk of inducing a *jingle jangle fallacy* (Gonzalez, MacKinnon, & Muniz, 2020) where many different types of personalized instruction are conflated under a single, insufficiently precise label of personalized learning. As a result, educators who wish to derive these perceived benefits for their students may adopt an instantiation of personalized learning that bears similarity in name, but varies in its implementation from past programs, and thus fails to confer promised benefits to students.

Perhaps in an effort to limit the risk of a jingle jangle fallacy, the sole prior systematic review of research was limited in scope to studies explicitly described as personalized learning with technology, and included only 70 studies (Xie et al. 2019). Xie, Chu, Hwang and Wang (2019) provided an initial consideration of the characteristics of learners and task engagement events that inform adaptivity in technology-based learning environments, and offer a general synopsis of the kinds of outcomes that personalized learning designers targeted. They noted a tendency for these design approaches to achieve positive effects on outcomes spanning affect, cognition, behavior, skill, and performance, among other variables. However, this review relied upon the very general conceptualization of learning provided by Bruner's (1966) model of constructivism, and ultimately made little effort to examine how instantiations of personalized learning are intended to accommodate learner characteristics through design, whether such design processes are informed by educational theory, or how design choices affected achievement of targeted learning outcomes. This lack of theoretical alignment contrasts with research syntheses that were not undertaken as *systematic* reviews but apply a more complex theoretical conceptualization to evaluate adaptive design approaches (e.g., Aleven et al. 2017,

Plass & Pawar, 2020). Thus, limited inferences can be drawn about the ways Xie et al. (2019) observed and clarified how personalization achieves effects. In addition, the authors' appraisal of these studies failed to make evident the common implementation of personalized learning in schools, wherein personalized learning often comprises multiple design elements aimed at accommodating multiple learner characteristics, and targeting multiple outcomes in a many-to-many fashion. In the current systematic review, we grounded our appraisal of personalized learning to a classical instructional design paradigm, and then examined how instructional design might be personalized based on theories of learning that consider the characteristics of the learner, learning processes, and the specific outcomes that instructional tasks are designed to achieve.

In the personalized learning design process (AUTHORS, DATE), any effort to personalize learning must be based on a classic (i.e., non-personalized) instructional design paradigm wherein a learner arrives to a learning environment that is designed to achieve a specific learning outcome, engages in learning, and is assessed on their mastery or achievement of the targeted outcome. The personalization of this learning environment, beginning with an appraisal of one or more features of a learner, must inform the way a learning environment adapts the learning experience through one or more changes from a base mode of instruction. This selection of a learner feature to which the environment should adapt should be motivated by the desire to obtain an educational outcome (Figure 1). The model we propose mirrors the process models that commonly guide decision making in design processes, especially when information stored about users informs the programming logic that delivers the learning experience (Beese, 2019; Reigeluth et al, 2015). We further illustrate the types of learner characteristics that may act as triggers to personalize the learning environment (Figure 1, bottom

left) and ways that learning theories propose these characteristics influence design considerations (Figure 1, bottom middle and right).

In order to provide a context for a theoretically-guided systematic review of the PL research literature, we first provide an overview of the many definitions of personalized learning proffered by government, foundations, organizations, companies, and educational theorists, then describe the policy context that promotes the adoption of personalized learning. We then summarize the educational theories relevant to the personalization of learning and proceed to report our systematic review process and the results it produced as they reflect the ways researchers consider the learner, the PL design process, and the learning outcomes it is designed to achieve.

INSERT FIGURE 1 ABOUT HERE

Definitions of Personalized Learning Vary

Personalized learning (PL) has emerged as a promising instructional practice to address the diverse needs of learners in recent years (e.g., Pane et al., 2014). Many definitions have been published to define PL by government offices, educational policy organizations, educational foundations and initiatives, influencers, and researchers. The most commonly referenced definition was provided in 2010 by the U.S. Department of Education Office of Educational Technology, which defined personalization as “instruction that is paced to learning needs, tailored to learning preferences, and tailored to the specific interests of different learners” (US DOE, 2010). Table 1 includes the list of additional definitions which are commonly cited by schools that enact personalized learning initiatives and provides evidence of the diversity of components within and between definitions. A close read of the definitions in Table 1 would reveal that the features included across definitions of personalized learning vary considerably,

and that this variation spans the learner characteristics to be accommodated, design elements meant to accommodate them, and outcomes that personalization efforts are intended to achieve. We summarized the relative frequency of these elements across definitions in Table 2. The majority of personalization efforts were centered around identifying and accommodating students' "interests" and "needs," though few additional details were offered to operationally define these terms. Definitions included myriad design approaches to accommodate learner characteristics, including pace, delivery approach, coverage, sequence of instruction, as well as methods of scaffolding, delivering and assessing mastery of content. The learner outcomes that personalized learning could target spanned motivation, skill, and achievement, and not all definitions clearly defined an aim. Perhaps the most salient feature of this thematic representation of personalized learning was the complexity endemic in the definitions. With the exception of a very general definition provided by Cuban (2018), every definition included more than one learner characteristic, design component, and/or learner outcome. This suggests that implementations of personalized learning are likely to be complex, where the effects of multiple design factors may need to be parsed or interacted, and parallel analyses may need to be conducted to examine effects on discrete variables amongst those targeted in a design. This complexity induces challenges for the systematic study of personalized learning, as enacted in authentic educational settings.

INSERT TABLE 1 ABOUT HERE

INSERT TABLE 2 ABOUT HERE

From Definition to Policy to Implementation

In the context of educational practice, the varying definitions of personalized learning are accommodated by policies that govern the funding and implementation of efforts to personalize

learning from the national to the local level. In the United States, the Every Student Succeeds Act (ESSA) of 2015 provides states with guidance and funding related to PL and includes ten references to PL under four titles; the U.S. law, however, does not clearly define how to operationalize PL (Zhang et al., 2020). Zhang et al.'s (2020) review of state ESSA plans revealed that 33 states included guidelines related to PL, but there was great variability across state plans regarding the definition of PL and the operationalized components. Data collected by researchers who investigated implementation in states that prioritized PL such as Wisconsin give an indication that the PL initiatives school leaders enact often are chosen to leverage extant resources in schools. These implementations appear pragmatic, though they may not align fully to recommendations provided by educational designers and policymakers (Kallio, et al. 2020). Large scale evaluations by RAND (2014; Pane et al., 2014) make clear that PL implementations achieve many positive effects, but also note that initiatives are beset by implementation challenges that can diminish effects. One key conclusion of the RAND report was that PL is likely to be more effective when design and implementations draw upon educational theory.

Conceptualizations of Adaptivity and Personalized Learning

Policies that define and stipulate the criteria for a school's initiative to be classified as PL are written in order to provide guidance and flexibility. Schools can adopt one or more of many potential methods of personalization in order to comply with these broad criteria and achieve eligibility for the funding and incentives policies provide. Because of this flexibility, PL programs vary substantially in the amount and combination of features they include. Typically, researchers systematically vary these features, record findings, and build an evidence base and theory that substantiate how components of instructional designs affect learning and achievement. These multi-component designs of PL in schools yield comparisons between

programs comprising multiple features, which makes comparative analysis to achieve the causal inference necessary for theory building particularly difficult. If we are to attempt to explain how personalized learning confers benefits to students, a precise taxonomy of critical components of PL to be studied is needed. Such a taxonomy would make clear the systematically testable assumptions about the way that individual personalized learning design choices and their combination can accommodate specific learner characteristics and impact individual outcomes. To build such a taxonomy, we first consider the theoretical literature on adaptive technologies, a theory of personalized learning, and then turn to the broader set of learning theories that may be applicable to personalization.

Appraising the Dimensions of Adaptivity in Learning Technologies

When considered in the context of learning technologies, those who design for adaptivity undertake such efforts by appraising the common difficulties that learners encounter with a focal subject or task, the inclusion of a pedagogical decision that is based on one or more characteristics of the learners who engage in the task, and a system to interactively respond to learner actions (Aleven, Beal & Graesser, 2013). Because a system can adapt to one or more phenomena, the presence and extent of adaptivity is best understood as lying on a continuum. For example, Aleven, McLaughlin, Glenn, and Koedinger (2017) provided a dimensional grid to organize the ways that designers of adaptive learning technologies intend to support learners, drawing upon empirical literature that examines learner engagement and performance when using adaptive platforms. Thereafter, their model described approaches to further improve aspects of instruction by iteratively collecting and considering data from studies with cohorts of learners, as well as how to instantiate design changes.

These dimensions of adaptivity included the learner characteristic(s) to which the technology adapts the learning experience, and comprised (1) prior knowledge or demonstration through in-task performance that knowledge is increasing, (2) errors made and strategies employed during a task, (3) students' motivation and affect, (4) the degree to which they engage in metacognition, and self-regulated learning via strategies and effort, and (5) the controversially labeled "learning style" that an individual reports. While extensively researched, the validity of this last characteristic remains in question and might be best reframed as a learner's *preference* to learn in a specific way (c.f. Aleven et al. 2017; Kirschner and Van Merriënboer, 2013).

Additional models of adaptive learning broaden the consideration of learner characteristic through the lens of sociocultural theory (Plass & Pawar, 2020). These include learner characteristics that derive from distal layers of a learner's ecological system and factors such as a learner's social milieu, cultural context, as well as the ways that the factors influence students' beliefs about and ways they engage in learning. Specifically, these factors may manifest during tasks to influence the way students' identity, self-perceptions, and feelings of agency and relatedness influence engagement. Plass and Kaplan (2016) further drew attention to ways in-task engagement may induce emotional responses and how tasks might be designed to adapt and accommodate these processes.

The way that developers design learning tasks to accommodate learner features involves multiple layers of consideration, as described by Aleven et al. (2017). At the most general level, the inclusion of content may rely upon considerations about the social and cultural beliefs that learners may bring to a task and how these considerations might lead them to engage with features of content. Thereafter, designers often undertake a *cognitive task analysis* (Clark, 1996) to consider the nature of the learning task and the implicit cognitive (and often metacognitive;

e.g., Aleven et al., 2016) processes employed by students. More recently, designers and researchers have begun to consider learners' motivational (AUTHORS, DATE) and emotional responses during engagement with learning tasks (Plass & Kaplan, 2016). These paradigms can further inform how tasks might be developed to be responsive to such in-situ processes.

When considered from the developer perspective where loops of code that deliver a learning experience are nested within one another, learning technologies can be designed to adapt to these characteristics and events during the design of the environment, the tasks within it, or the specific steps that are completed during tasks (i.e., "design loop, task loop, step loop"; Aleven et al., 2017). Design loop adaptivity spans many learners and involves using data from these learners to adjust the design of the overall environment. This loop does not personalize the experience for individuals, but does lead to future versions of a task that are more capable of doing so. Task loop adaptivity refers to the selection of tasks based on learner characteristics, such as the level of knowledge they possess about a topic, and the likelihood they will benefit from engaging with one task over another. This is common to the design of intelligent tutoring systems (Koedinger & Aleven, 2007) that optimize students' progress through a sequence of units of mathematics based on students' demonstration of prerequisite skill mastery. Task loop adaptivity may also be used to present students with an activity or a representation of a phenomenon that is thought to be the most helpful to students who possess a particular level of prior knowledge, or an identified deficit in such knowledge (e.g., providing worked examples then problem solving opportunities, instead of a faded scaffolding approach; Salden et al., 2010). This kind of task loop adaptivity is critical to providing appropriate learning experiences that support learners with lower prior knowledge and to avoiding the induction of an expertise reversal by over-scaffolding high prior knowledge learners (Kalyuga, 2007). Step loop adaptivity

1
2
3
4
5 refers to the consideration of students' actions when completing attempts at problem-solving
6 steps within a larger task, and involves the provision of correctness feedback, hints, and other
7 problem-specific support to learners. This form of adaptivity is central to many classes of
8 adaptive software systems including intelligent tutoring systems. When compared to non-
9 adaptive versions, these adaptive learning technologies largely demonstrated superior levels of
10 desired learner engagement and performance (Aleven et al., 2017). These considerations
11 primarily have been applied to learning technologies; however, they can be more broadly applied
12 across any learning environments wherein educators aim to provide more adaptive instruction
13 (c.f., Holstein et al., 2020).

26 ***Plass's Taxonomy of Adaptivity for Learning***

27
28 Plass (2020; Plass & Pawar, 2020) provided a taxonomy of the design space in which
29 instructional designers aim to personalize learning to student characteristics and focused on the
30 variables that should be considered in this process. He highlighted the common adaptive
31 instructional approaches used to support various students, including *differentiation* to
32 accommodate students' interest, prior knowledge, and preferences, as well as *individualization* to
33 accommodate students' degree of special need or a specific level of skill or ability by altering a
34 learning progression. He further distinguished the adaptive practices that accommodate an
35 enduring feature of the learner from the sensitive events that occur during learning that provide
36 information about the learner and engagement within the learning context, which together can
37 inform adaptivity. This *responsive system* approach includes those that adjust the difficulty or
38 pace of problems to adapt to the knowledge or skill mastery that a learner demonstrates, and can
39 be used to promote efficient learning. These responsive systems are programmed to be adaptive
40 and contrast the *adaptable* environments that place learners in an agentic, autonomous role by
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

providing choices to direct their own course at key points in learning tasks (e.g., Harley, Lajoie, Frasson & Hall, 2017). Plass acknowledged that several variables may inform personalization, including cognitive, motivational, affective, and socio-cultural variables, which largely overlap with the specific variables displayed at the bottom of Figure 1. Key to Plass's taxonomy of adaptivity is a set of considerations that would guide the design of a personalized learning design choice: the designer must determine (1) whether a variable is sufficiently relevant to the achievement of a learning outcome, (2) whether there is sufficient variability across learners that designing the environment to accommodate these levels is worthwhile, and critically, (3) whether educational theories and empirical evidence have identified an effective way of leveraging that variable through a design choice that reliably improves the learning outcome. Making determinations in response to the first and second considerations require only that a variable be identified and measured in order to weigh its candidacy. Responding to the third consideration is far more challenging and requires an awareness of the theories and evidence advanced by educational psychologists and learning scientists about the ways that individual learner characteristics affect learners' tendency to engage in particular ways during learning, as well as the ways that engaging in tasks of certain designs benefit learners differently.

An Example of Personalized Learning Theory: Context Personalization

One very specific theory of personalized learning is *context personalization* (AUTHORS, DATE), a method which differentiates learning to accommodate students' interests by placing the learning task in the context of students' area of interest. This method leverages students' situational interest (AUTHORS, DATE), and their depth of knowledge about the problem context (AUTHORS, DATE) in order to produce superior performance on learning tasks in mathematics, and more efficient rates of problem completion and skill mastery. Whereas context

personalization provides a framework for accommodating one of the reasonably stable characteristics of a learner (i.e., out of school interest), the dimensions of context personalization are multiple, and require that designers consider which interests should be accommodated (i.e., sports, games, shopping, cooking are common; AUTHORS, DATE), how fine-grained the personalization should be (i.e., should a student interested in basketball receive only basketball content versus many sports), how deeply the problem should leverage the problem context (i.e., passing references to basketball teams and terms vs. selecting a basketball phenomenon that illustrates an equation; AUTHORS, DATE), and whether the student should be afforded any ownership of the problem (e.g., the students' ability to name a player or team; Høgheim & Reber, 2015 or author problem content; AUTHORS, DATE). This single approach to personalizing a task aligns to industry definitions of personalization but makes clear that any single method of personalization requires multiple design choices and that each requires evidence to suggest their appropriateness for accommodating a single learner feature. Multi-component methods of personalizing learning that are commonly adopted in schools thus need to be designed with multiple learning theories in mind and in response to a specifically selected set of learner characteristics that are to be accommodated.

Learning Theories Relevant to the Personalization of Learning

Though not explicitly developed to inform the personalized learning design process, many theories of learning focus specifically on the way that one or more learner characteristics influence the way that individuals engage during learning tasks, how they may benefit from learning tasks that include (or avoid) certain affordances or activities, and how these characteristics and subsequent engagement in learning lead to learning outcomes. When these learning characteristics are considered as resources to be leveraged through instructional design,

the learning theories becomes highly relevant to the personalized learning design process. Table 3 provides a brief overview of the theories of cognition and motivation that can provide conceptual grounding to those who wish to personalize learning to learner characteristics in service of obtaining targeted outcomes. We aim to distinguish individual theories within the areas of cognition and motivation relevant to personalization and further acknowledge that others have elaborated on relevant sociocultural processes (c.f. Plass & Pawar, 2020).

INSERT TABLE 3 ABOUT HERE

The refinement of context personalization (AUTHORS, DATE) serves as a running example of the way that learning theory can be used to guide efforts to personalize learning, and how personalizing learning opportunities in subjects such as mathematics to a student's out-of-school interests can improve student learning and also provide evidence to refine learning theory. Context personalization is a common instructional practice that has been employed with the goal of providing students with a motivating contextualization of a learning task (e.g., Cordova & Lepper, 1996), and one that may give them the opportunity to connect a problem scenario to a familiar context wherein they might draw upon the funds of prior knowledge they have developed as they engage their out of school interests (Gonzalez, Moll, & Amanti, 2006). Research into the methods by which context personalization achieves its effects has made clear the relevance of both cognitive and motivational theories to improve context personalization methods. For example, the benefits of personalized learning were observed to differ based on the depth of the prior knowledge that the problem was designed to activate from students' understanding of their out-of-school interests (AUTHORS, DATE). AUTHORS discovered that matching problem depth to students' depth of engagement with their interest influenced students' performance in personalized math problem-solving tasks, which led to an important design

principle in context personalization: the problem could either draw on students' informally acquired *funds of knowledge* (Gonzalez, Moll, & Amanti, 2006), or unintentionally induce an *expertise reversal effect* (Kalyuga, 2007). Similarly, AUTHORS (DATE) examined how matching problem contexts to student interests' in sports, games, fashion, technology, and shopping influenced their situational interest (Hidi & Renninger, 2006) in the problem solving tasks, and found that problems that triggered and maintained student interest conferred greater benefits to in task and later performance, as well as later individual interest in mathematics.

A second major aim of this review is to examine how the selections of learning characteristics, personalized learning design choices, and targeted academic outcomes align to relationships posited by theories of learning. Table 3 provides an overview of a sampling of learning theories with cognitive, metacognitive, motivational, and affective elements that are likely to align to the conceptualizations on which studies of PL rest. This should not be viewed as an exhaustive list, but rather an illustrative set we pose *a priori* and later consider as lenses through which the relations amongst learner characteristics, design elements, and outcomes that emerge from the corpus of studies we reviewed might be conceptualized.

The Theory-to-Research-to-Practice Problem

In a special issue of *Education Week*, Herold (2017) proposed an argument against personalized learning, claiming that it is a poorly defined educational movement funded by the educational media industry and powerful non-profit foundations. He proposed that personalized learning (1) is overhyped and lacks a research base that justifies enthusiasm, (2) is bad for teachers and students due to implementations that aim to empower student choice in 1-to-1 student to device settings, which typically devolve to behavioristic instructional paradigms and the reliance on algorithm-driven, decontextualized learning experiences, and (3) relies on past

student data to inform the personalization process and promotes risks prioritizing the generation and mining of student data over concerns regarding privacy risks and the potential beneficence of such research. These arguments are corroborated by leading educational policy researchers from major U.S. universities (e.g., UCLA) and corporations (e.g., RAND), as well as administrators of large school districts, and educational technology researchers (e.g., Cuban, 2018) and proprietors (e.g., Google).

The central critique that underlies these arguments is that the conceptualization of how learning is to be personalized is underdeveloped, and that “unresolved pedagogical tensions” undermine the personalized learning movement (Herold, 2017, p. 5). The lack of specificity undermines teachers’ and technologies’ delivery of learning opportunities, and students’ experiences during learning. The persistent recommendation is that more and better research be conducted to understand how personalization efforts influence learning, and what conditions must be present in the student and the environment for personalized learning to obtain its promised effects on educational outcomes.

39 The Current Systematic Review 40

41 This paper is designed to answer the following research questions: (1) Who comprises the
42 research communities that produce scholarship on personalized learning?; (2) What populations
43 of learners have been studied as they engage with PL resources, in what contexts, and with what
44 methods?; (3) What learner characteristics, design elements, and learning outcomes have been
45 investigated in studies of personalized learning?; (4) How do researchers’ personalization efforts
46 relate to the outcomes they target?; and (5) Under what conceptualizations or operational
47 definitions do researchers design personalized learning and observe its effects? Our overarching
48 aims for the systematic review are to summarize these findings to determine the degree to which
49

the answers to the above research questions are congruent across research communities, despite wide variance in the way PL is defined, and align coherently to theories of learning and thus have potential to converge on a consensus conceptualization and the development of a theory of personalized learning.

14 **Methods**
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Utilizing PRISMA guidelines (Liberati et al., 2009), we searched the academic literature spanning the years starting at 2010 (i.e., when personalized learning was formally defined by the U.S. Department of Education) through 2018. Databases systematically searched included ERIC, PsychInfo, and IEEE (see Figure 2). We included in our search the “gray literature” wherein papers that are publicly available but not formally published (i.e., dissertations, theses, and reports) were returned by search engines to avoid a file drawer problem induced by potential publication biases. A search of the terms “personalization”, “personalized learning”, and “personalized instruction” in titles, abstracts, subjects, and keywords was replicated across each venue.

This set of searches returned 1585 records (1372 unique) comprising journal articles ($n=718$), dissertations and other grey literature ($n=131$), and conference proceedings ($n=523$). Conference proceedings were thereafter constrained to the most highly cited conferences per Google Scholar reports ($n=13$ conferences), resulting in 97 papers (see Tables S1 to S3). In total, 992 full-text articles were screened for eligibility. The following criteria were required for inclusion: (1) published between 2010-2018, (2) empirical studies with descriptions of methodology, analyses, and results, (3) explicit reference to an educational aim (i.e., to remove design and development projects conducted with an aim to develop a platform but not to test its effects), and (4) PL must have been a current aim and could not be referenced only as a

60
61
62
63
64
65

“future direction” for the research. This evaluation was undertaken by two independent reviewers and inter-rater reliability was evaluated to confirm sufficient levels of agreement on each of the last three criteria. Kappa coefficients were calculated for determination of an empirical study ($\kappa = .83$), with an educational aim ($\kappa = .91$), and that examined PL within the scope of the study ($\kappa = .72$). This screening of the literature yielded a corpus of 355 unique sources that were forwarded to the review stage of the analysis (See Table S4).

Thereafter, feedback provided by experts in personalized learning elucidated a gap in the search of conference proceedings wherein some of the most prominent venues for scholarly research on personalized and adaptive learning technologies were not included in the indexes searched by the IEEEExplorer tool we used to engage in a systematic search. We thus conducted a hand search of the conference proceedings for the term “personalized learning,” as well as cognate terms used to described “adaptive learning,” “mastery learning,” and “smart learning” environments, as recommended by an expert reviewer. This additional search yielded 240 additional hits, 215 of which were unique after duplicates were removed. Of these, 21 met criteria imposed during screening and were added to the analyses. We subsequently considered a revisit of the systematic searches of the ERIC, PsychInfo, and IEEE indexes, but the nature of these additional search terms proved problematic when applied to such large corpuses of literature. Each of the terms refers not only to learning environments that are personalized or adapted, but also refers to additional phenomena related to education, but unrelated to design efforts to personalize learning. For example, inclusion of “mastery” as a search term along with learning produces thousands of additional matches due to additional definitions related to student goals (e. g., mastery orientation). “Smart” was problematic for similar reasons, and the term “adaptive” is broadly applied to assessment instruments and approaches that are unrelated to

personalization efforts. We thus retained our initial approach to search of these literatures and return to the challenges imposed by language to describe personalized learning in the discussion section.

Our review of the eligible studies included contextual, structural, methodological, and conceptual components. To determine the academic origin of PL research, articles were reviewed for the academic affiliation of the author, the geographic location, and the publication venue of the source (i.e., Research Question 1). The design context of personalized learning to be examined was captured by recording the academic subject and educational level, as well as the variety of learning technology or non-technological context in which the PL was conducted (i.e., Research Question 2). Papers were next evaluated to identify the learner characteristics that were the subject of personalization efforts (e.g., interest, preference, prior knowledge, see Figure 1). Papers were further reviewed to identify methodological details related to participants (e.g., sample size, age, gender, ethnicity) and the dependent variables which PL implementations were hypothesized to effect (i.e., Research Question 3). Finally, the conceptualization of the PL design under investigation was observed by capturing the authors' verbatim definition, descriptions of PL in the text, and any citations of a formal definition of PL (i.e., Research Questions 4 and 5).

INSERT FIGURE 2 ABOUT HERE

Results

Based on the classifications of design elements of the studies we reviewed, we present descriptive results that address four research questions about the source and design of studies of personalized learning. In each section, we also conduct inferential analyses to address the first overarching aim of the paper and evaluate whether the descriptive statistics differ significantly

across PL research communities. We then address our second overarching aim – appraising the alignment of studies of PL to assumptions derived from theories of learning.

Research Question 1: Who Studies Personalized Learning?

Geographic Regions

We first examined the geographic placement of the institutions where PL researchers affiliated in order to examine whether the research base on PL includes a representative sample of investigator perspectives and participating samples. Thereafter, we examined the location of scholarship from within the United States, in order to examine whether research on PL overlaps states with policies governing implementation of PL. Figure S1 illustrates that more researchers investigated PL in the United States, China, and the United Kingdom, but also that PL was investigated with populations on all inhabited continents, if sparsely. Within the United States, the majority of research is produced by researchers who affiliated with institutions in the Southwest, Midwest, and Northeast regions of the country. This research activity largely overlapped with the implementation of PL practices governed by states with formal policies. Research activity was ongoing in all states with PL policies in place, with the exception of Alaska and was heaviest in states with broad implementations (e.g., Wisconsin and Vermont).

Academic Disciplines

The majority of research on personalized learning was led by researchers who affiliated with education units. Educational researchers composed a slight majority of the population of lead authors, with scholars from many other fields leading research on personalized learning, including substantial numbers of researchers who affiliated with Engineering and Computer Science units. Thereafter, researchers who investigated personalized learning spanned

information technology, informatics and information sciences, psychology, business, communications, and physical and library sciences, among other disciplines (Figure 3).

We augment these findings with the acknowledgement that, across the studies reviewed, it was evident that personalized learning research efforts were the product of collaborative and interdisciplinary teams, with many comprising multiple scholars with complementary expertise spanning multiple academic disciplines. Thus, although we catalog only the first author's home unit in the figure, it is indeed the case that it was quite typical for a large number of researchers to contribute to a single study. We return to this in the discussion section where we consider the kinds of effort and expertise that are required to examine how PL designs achieve effects on outcomes across populations and contexts. The diversity of scholars who led evaluations of personalized learning to improve learning outcomes confirms the need to examine how scholars formed in different academic traditions engage on the topic and whether their focus and language align.

INSERT FIGURE 3 & S1 (link) ABOUT HERE

Publication Venues

The majority of personalized learning publications appeared in indexed research journals. However, the preponderance of research on PL conducted by researchers from Engineering and Computer Science and related disciplines are unlikely to be discovered by those who only search these indices, as their fields prioritize conference proceedings as a primary outlet for scholarship (See Figure S2). Any synthesis of PL research must draw upon both journal and conference papers in order to fully represent the larger community of scholarship. A chi-square analysis confirms that engineering and computer science disciplines disproportionately publish in conference proceedings compared to scholars affiliated with Education units, $\chi^2 (2) = 38.66, p <$

.05. Further, the volume of unpublished dissertations and reports in other venues cannot be discounted. Because PL has become a common inclusion in policies that govern educational practice, a considerable number of research reports were published in venues that are not indexed at all and would require a broader search of the literature, perhaps involving the use of Google Scholar or other platforms that include citations of popular media.

INSERT FIGURE S2 (link) ABOUT HERE

Research Question 2: What Populations of Learners Have Been Studied as They Engage with PL Resources, in What Contexts, and with What Methods?

In order to understand the implications of personalized learning for learners, it is essential to understand who the individuals are who engage in personalized learning, and under what conditions learners engage in these PL tasks. Figure 4 illustrates that PL was broadly studied across the continuum of K-12 and higher education populations, with limited investigation of its effects for younger children or for adults in graduate, professional, workplace, or informal settings.

INSERT FIGURE 6 ABOUT HERE

Learner Populations and Method of Instructional Delivery

PL instruction was primarily delivered using digital platforms; more than 80% of implementations required access to some form of learning technology to engage in PL in fully digital or hybrid delivery format (see Figure S3). However, 37% of the PL implementations evaluated also spanned not-exclusively-technological settings, which underscores the importance of expanding research syntheses beyond those that solely consider findings from digital settings (e.g., Xie et al., 2020). Our findings suggest that PL instruction was more often used as a supplemental, diagnostic, or reactive educational approach, as opposed to a primary mode of

instruction. The majority of studies focused on the adaptive nature of PL and its reliance on the collection of student data to provide individualized and differentiated instruction, though the number of studies (40%) that investigated PL instances that were deployed as the primary mode of instruction illustrate the breadth of adoption of PL, and reliance upon it, in authentic educational environments, as described in policy research (Zhang et al., 2020).

INSERT FIGURE S3 (link) ABOUT HERE

Academic Domains

In addition to the span of digital and classroom instances and primary and supplemental modes of instruction, PL was implemented in many different academic domains and school subjects. As illustrated in Figure S4, STEM domains such as science, computer science, and mathematics that involve proportionally more problem-solving tasks than other academic subjects compose the majority of contexts investigated by PL researchers. Domains also included English and other language courses, and 12% of the studies conducted investigate PL designs that spanned multiple components of an academic curriculum. This latter phenomenon aligns with PL definitions and policies that recommend personalization designs should incorporate multiple components and be implemented at a school-level in order to allow students to set goals, make choices, and pursue learning paths (Kallio, et al., 2020).

INSERT FIGURE S4 (link) ABOUT HERE

Research Questions 3: What Learner Characteristics, Design Elements, and Learning Outcomes Have Been Investigated in Studies of Personalized Learning?

The second overarching aim of this systematic review was to examine not only the contexts in which PL research was being undertaken but also the definitions of PL and theoretical conceptualizations that guided the implementation of studies. To assess these features

of the extant research, we began by analyzing the definitions of PL that researchers stated in their publications and thereafter developed a taxonomy of PL design features in order to compare them to theories of learning. Figure 5 includes a series of word clouds that represent the proportional inclusion of words in passages of text from research publications in which researchers defined personalized learning. We conducted an overall analysis of the entire sample of studies we reviewed and further broke down our sample into the research communities that emerged in analyses conducted to address Research Question 1 (see Figure S3). The prominent vocabulary found in the overall sample largely aligns with vocabulary used in formally established definitions of personalized learning (see Tables 1 and 2). However, authors largely failed to align their operational definitions to these formal definitions via citation: less than 6.5% formally cited any of these definitions of PL. When considered by the academic home of lead researchers, the language comprising definitions of PL differs markedly across units. Definitions across all units included considerable focus on the *individual* and their *needs*, as well how each are *different*. Researchers from Education units additionally focused on the learners' *interests* and *goals*, as well as the *environment* in which PL occurred. These researchers also were unique in their proportionally higher inclusion of *teachers* within definitions of PL. Alternatively, researchers from Engineering and Computer Science units focused on *system(s)* that *adapt* or are *adaptive*.

INSERT FIGURE 5 ABOUT HERE

Learner Characteristics

Figure 6 illustrates that, as proposed in descriptions of the design of adaptive learning environments (Aleven et al., 2017; Plass, 2020; Plass & Pawar, 2020), the majority of PL designs were adapted to students' prior knowledge and preparedness to learn, adjusted features of the

learning tasks during learning based on ongoing performance, or were adapted to accommodate learners' preferences and interests. Perhaps more problematically, the fourth most common learner characteristic that PL designs accommodates was an individual user's "learning style" (see Paschler et al., 2008 for a review of the construct). Aleven and colleagues (2017) provided a thorough overview of the empirical and theoretical arguments against the existence of learning styles and thus dismissed them as a relevant construct to be accommodated by instructional design. They argued against their inclusion and revoiced that the existence of "learning styles" or any such implications for learning have been largely debunked through empirical testing (Kirschner, 2017; Pashler et al, 2008; Willingham et al., 2015). We revisit this more extensively in the discussion.

In addition to examining the overall prevalence of accommodations of learner characteristics in the PL designs under examination, we conducted analyses to determine whether the focus of PL designs differed by the academic domain of the lead researcher. Chi-square analyses confirmed that there were significant differences in the proportional focus on individual learning characteristics between Education, Engineering, Computer Science, and other research communities $\chi^2(9) = 47.3505, p < 0.00001$. Our findings show that Education researchers were disproportionately focused on studying PL designs that accommodated students' interests compared to other communities (see Figure 6 and Table 4). Engineering and Computer Science researchers investigated PL designs that accommodated students' (usually self-selected or self-reported) "learning styles" in 26% and 17% of their studies, respectively. This characteristic is the focus of only 8% of all studies, and only 2% of studies in Education (see Figure 7).

INSERT FIGURE 6 & 7, TABLE 4 ABOUT HERE

5 ***Outcome Variables***

Figure S4 (left panel) displays the number of studies that evaluated PL designs aimed at affecting specific student outcomes. Other than those papers that failed to provide sufficiently-detailed reporting – which we revisit in discussion – the most common aim of a PL design was to improve students' performance within the task or on a measure of academic performance. Other common aims of PL designs were to improve students' perceptions of and satisfaction with their learning. A set of studies examined whether PL designs could improve affective or motivational outcomes including efficacy, motivation, engagement, as well as self-reported interest, enjoyment, or positive emotions during learning. A subset of studies evaluated the degree to which PL designs achieved stronger endorsements of the usability of environments and the quality of their implementation. The assessment tools used to substantiate these outcomes included activity within the PL system and assessments in and outside the environment, as well as survey, interview, and observation methods. PL environments meant to affect distal factors included students' grades and disciplinary referrals (Figure S4, right panel). Similar to the differences in focus on learner characteristics by researchers affiliated with different academic units, we again observed differences between academic domains (i.e., our first overarching aim) in their proportional focus on outcomes to be achieved by PL designs under evaluation (see Table 5). Whereas all researchers were primarily interested in PL environments designed to improve academic performance, chi-square analyses of the most common four and seven variables under observation in research conducted across academic units confirmed that Education researchers were disproportionately less focused on improving student satisfaction with or the usability of PL designs (7%, 0% of studies) compared to researchers in other disciplines (14-21%, 7-11% of studies).

INSERT FIGURE S4 (Link) & TABLE 5 ABOUT HERE**Research Question 4: How Do Researchers' Efforts to Personalize Instruction Relate to the Learning Outcomes They Target?**

We next built on our analyses that examined the learning outcomes that researchers and designers aimed to impact with personalized learning designs to determine how personalization efforts were associated with learner outcomes. We conducted an additional round of review to catalog instances where researchers (1) designed experiments to test personalized learning conditions against control conditions where no personalization was in place or (2) examined the degree to which students' learning experience involved engagement with personalized learning design features, as well as the relationship between such use and the assessed learner outcomes.

Next, we categorized the directions of effect or association (i.e., positive, negative, or none observed) and tallied the number of studies in which such effects or relations were observed.

Additionally, we also cataloged instances where researchers collected data on relations between personalization and learner outcomes, but the design of their study was qualitative in nature and thus intended to observe emergent phenomena rather than test inferences. We present stacked bar charts in Figure 8 where the relative height of a bar demonstrates the amount of research that examined how personalization efforts related to learner outcomes. Each bar represents studies that explored a given relationship with those using qualitative methods (i.e., in gray) at the bottom and then a valenced, proportional display of those that found negative causal or associative relations (i.e., red range), no relation (i.e., in yellow), and positive associative or causal relationships (i.e., green range). Results of this display confirm that a substantial proportion of the research was exploratory in nature, and that findings relating personalization efforts to learning outcomes were often emergent in nature. Moreover, researchers tended to

adopt correlational designs far more often than experimental ones. Of the designs that inferentially tested relations, we found more positive than negative relations and effects. The distribution of studies across many learner outcomes, however, further demonstrates the diversity of aims held by those who personalized learning, and the paucity of research on any single learning outcome could warrant a meta-analytical treatment to better understand such effects.

INSERT FIGURE 8 ABOUT HERE

Research Question 5: Under What Conceptualizations or Operational Definitions do Researchers Design Personalized Learning and Observe Its Effects?

To answer our final research question, we appraised the language used to define personalized learning comprising the learner characteristics, design features, and target outcomes. Our second overarching aim – to appraise the degree to which PL designs and studies of the align to, might benefit from, and can advance theories of learning – required that we not only examine the raw and proportional frequency of research design features but also the relations among these features within studies of PL. Our first observation was that, despite our intentions to record researchers' references to extant learning theories that informed the PL designs, very few papers provided an explicit theoretical conceptualization about how personalizing to a learner characteristic should achieve an improvement in a process or outcome. Thus, we explored whether an implicit *a priori* consideration of learning theory could be derived by examining alignment to learning theories based on the design elements in PL environments within the studies we reviewed.

In order to examine theoretical associations, we constructed a pair of Sankey diagrams that demonstrate the frequency with which elements were associated in our observed sample. These diagrams appear illustrate the learner characteristics leveraged to target outcomes (Figure

S5), and the variety and frequency of design approaches used to personalize a learning experience to a specific learner characteristic in order to target a specific learning outcome (Figure 9). One critical observation that is not illustrated in these Sankey diagrams but might be inferred from the bottom panel is that many PL designs are intended to achieve multiple outcomes, employ multiple design elements, and accommodate multiple learner characteristics. These many-to- many (to-many) relationships were operationalized in most PL implementations; thus, some parsing is required to deduce the assumptions that led to such complexity.

The first Sankey diagram (i.e., Figure S5) provides a general sense of the magnitude of focus placed on individual learner characteristics and learning outcomes, and the degree to which personalization involved homogeneous or heterogenous assumptions regarding the learner feature that should be accommodated to achieve an outcome. Academic performance was the most common outcome targeted by PL designs, but designs accommodated a heterogenous set of learner features to promote it, including students' prior knowledge and preparedness to learn, learners' preferences and interests, and various "styles" including their self-reported or -selected learning style, cognitive style, or language style. Additional features that were leveraged to improve academic performance included students' demographic attributes, preference of pronouns, personality, learning goal, and interpersonal needs. This pattern of heterogenous accommodation of multiple learner characteristics in the service of a specific target outcome also employed designs aimed to improve affective and motivational outcomes, such as satisfaction, perception, efficacy, and engagement. PL designs focused on improving usability and the performance and implementation of the system also accommodated multiple user characteristics. Homogeneity in characteristics was observed only in the case of promoting interest in learning

1
2
3
4
5 via PL, which solely accommodated students' stated interests as reported prior to or selected
6 during learning (i.e., in all three of the studies observed).
7
8
9
10

INSERT FIGURES S5 (link) & 9 ABOUT HERE

11
12 The second Sankey diagram examines the designs employed by those who produced and
13 evaluated PL platforms and affords an opportunity to inspect the different PL approaches that
14 designers adopted in order to promote learning outcomes and accommodate learner
15 characteristics. This three-step diagram reveals additional heterogeneity in the way that designers
16 accommodated learner characteristics in order to obtain learning outcomes. For example, the
17 most common method of personalizing learning in order to improve performance was to provide
18 an adaptive experience that was personalized to students' prior knowledge (and in the case of
19 adaptable environments, updated demonstrations of knowledge) and other estimations of their
20 preparedness to learn. These design choices appear in the blue blocks in the middle column of
21 Figure 9. This panel clearly demonstrates that designers differed in the methods they chose to
22 leverage information about a student's preparedness to promote additional learning and
23 achievement. The slight majority of PL platforms responded to data about students' preparedness
24 through system-initiated adaptation of the tasks' rigor in response to prior or in-task performance
25 data. For example, these design choices included in the blue block atop the middle column
26 include designs such as intelligent tutoring systems, which relied on estimates of prior
27 knowledge to inform the learner models that adapted problem selection and further informed the
28 task design in adaptable fashion based on updated estimations of mastery demonstrated through
29 in-task performance. The next two blue blocks include those tasks that adjusted rigor only on a
30 preliminary assessment (i.e., without further adaptation based on in-task performance) or on an
31 external data source reflecting prior knowledge or preparedness. Next, the additional color
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

blocks in the bottom panel reveal a complex design landscape where at least one design choice made by developers may accommodate one or more learner characteristics in order to achieve a set of targeted learning outcomes. Continuing the example of accommodating through PL based on preparedness to learn, the other PL designs focused on leveraging prior knowledge to promote academic achievement include provision of choice to learners, who can choose the content, task, and manner of presentation of material, as well as the order and timing they engage with the materials (i.e., Figure 9, yellow block). These yellow features align to design work aimed at providing choice (Patall et. al, 2008), but in the context of research deriving from adaptive software environments that assess prior knowledge, such design choices are known to promote overlearning of a narrow subset of simpler content and avoidance of more challenging content (Long & Aleven, 2011). Long and Aleven (2011) describe demonstrated this tendency to continually revisit topics already studied as leading to perseveration and stagnation, thus slowing progress through self-paced instruction, when such choice is afforded. In addition to adapted rigor and choice provision, a number of different systems adapted the way content was displayed to learners based on their self-reported “learning style” or actions within the environment. Other systems tailored instructions or task framing to students based on data about their personality, interests, or other factors (i.e., green and purple blocks). The red blocks of instructional design features reflect designs that were multi-component and school-wide, where a restructuring of an educational environment was undertaken to accommodate students’ preparedness to learn alongside many other factors with the goal of promoting academic achievement and other desirable outcomes. These whole-school approaches often involved the restructuring of the school day to provide flexibility for students, opportunities for blended learning between 1:1 time on a device and classroom activities, and additional opportunities for interactions with

classmates, teachers, and staff to work towards developing and progressing through personal learning plans. These school-level designs involve a many-to-many-to-many approach, illustrated by a diversity of paths leading into and out of the red blocks, where the school attempted to accommodate students' preparedness and preferences in service of promoting motivation, engagement, and performance, among other targeted outcomes. Whereas multi-component, school-level interventions understandably may have adopted this complexity in associations across characteristics, design elements, and outcomes, the pattern of complexity that can be observed across other blocks of design elements reveals that designers often anticipated that single PL design choices were likely to achieve multiple-targeted outcomes. We consider these designers' assumptions in light of the assumptions proposed within theories of learning.

Discussion

From over 375 studies undertaken to investigate the designs and effects of personalized learning, we conclude that those who studied personalized learning from 2010 to 2018 spanned all six inhabited continents, and conducted research activity largely in regions where PL implementations were in place. While the PL research community includes scholars from many academic domains, the bulk of research on PL was led by scholars who affiliated with Education, Engineering and Computer Science units of higher education institutions (i.e., Research Question 1). Learners who engaged in PL designs spanned K-12, university, and adult populations who tended to engage in technology-based environments, many of which were complemented by classroom-based PL activities. These PL designs were most heavily used in mathematics and other STEM domains, but some PL design work was conducted in English, language arts, and other areas of the humanities (Research Question 2). Our second block of research questions served to address our two overarching aims in the paper and examine the degree to which PL

designs were found to be associated with the learning outcomes they were designed to target (Research Questions 3 & 4), how well such designs were informed by theories of learning, and how the reliance on theories and inclusion of design elements varied across segments of the PL research community (Research Question 5). Overall, the vast majority of research conducted on personalized learning was exploratory in nature, wherein researchers employed qualitative, descriptive, or correlational designs to examine users' experiences, and the degree to which such experiences related to targeted outcomes. These studies were critical to the earlier phases of the design process where, after a period of ideation, designers tested whether they had developed a product that was usable, whether they delivered a satisfactory experience for their target population, and whether engagement with the product was associated with the aims it was designed to support (Rothwell & Kazanas, 2011). However, this early stage design research fell short of the criteria for evidence necessary to inform research syntheses (Lipsey & Wilson, 2001). Personalized learning was broadly defined and targeted multiple outcomes. This diffused research efforts across criterion variables and slowed progress towards a critical mass of studies that warrants meta-analysis and examination of moderating factors. We return to this topic as we make recommendations for future definition, design, and research, and for now simply acknowledge that the few studies that provided correlational or causal evidence demonstrated more positive relations and effects than null or negative findings. Having established this emerging pattern, we next considered how the designs that produced these relations and effects were conceptualized vis-à-vis learning theory.

Alignment to Theories of Learning

One surprising finding in this review is that despite some overlap in the features of operational definitions of PL, researchers seldom substantiated alignment to common definitions

of PL, or to learning theories that guided the conceptualization of their study designs. We thus conclude that most PL research was only loosely aligned to formal definitions and theories. Emergent conceptualizations based on research designs further confirmed that researchers varied in their operational definition and conceptualization of how to personalize learning, and that these differences often nested with differing proportional focus by the academic home of the lead researcher. Focal learner characteristics and target outcomes varied across academic disciplines. Educational researchers more often personalized to interest and prior knowledge and expected greater engagement and performance, accordingly; computer scientists and engineers were more apt to personalize to preferences including potentially problematic variables including debunked “learning styles.” Further, designers often developed PL approaches that aimed to achieve a diverse set of target outcomes, often with only a single PL design element. In light of these findings, we consider some emergent themes revealed by our analysis, and consider how they relate to a potential way forward where personalized learning aligns more closely to extant learning theory.

Adaptation to prior knowledge and preparedness to learn is robust and widespread.

Of all PL designs, those that adapt elements of instructional design to data indicating students' prior knowledge and preparedness to learn in order to promote more efficient learning were the most plentiful and the most well aligned to theory and research. The wealth of scholarship on cognitive modeling and the tight connection to classes of educational technologies such as intelligent tutoring systems and other adaptive systems affords ample evidence that leads to the refinement of both theories and implementations of this form of adaptive and personalized learning (Aleven et al., 2017; Plass, 2020).

1
2
3
4
5 **Applying multimedia learning principles, not PL to beliefs or “styles” promoted**
6
7 **learning; consider the content.** PL designers, especially those outside of education, seemed
8 enamored with “learning styles”, and may have been largely unaware of the paucity of evidence
9 for their existence and the preponderance of evidence to the contrary. Additionally, they may not
10 have previously been exposed to the many principles derived by multimedia researchers or the
11 Multimedia Learning Theory that comprises them (Mayer, 2016). Hundreds of studies
12 documented by instructional design researchers confirmed that, often regardless of learner
13 preferences, instructional design that followed specific design principles related to the spacing,
14 contiguity, redundancy, and inclusion of design elements consistently provided benefits to
15 learners who use them. Whereas students’ preferences for the way information is presented can
16 differ, evidence from research on learning with multimedia has consistently shown that the
17 nature of the content to be learned was a more important determinant of the way those materials
18 should be displayed to learners than students preference for a modality of presentation. Further,
19 the paucity of evidence of effects of accommodation of “learning styles” on achievement
20 suggests that this design choice is unlikely to yield any of the benefits targeted by PL designs.
21
22

23 **Task framing was popular in PL, but conceptualization varied; consider motivation**
24 **theory.** In addition to presenting content based on students’ preferences, some PL designs
25 reframed tasks by introducing them to learners in different ways depending upon learner
26 characteristics including their personalities, goals, interests, and other factors. Despite a general
27 lack of *a priori* acknowledgement of alignment to them, a number of theories of academic
28 motivation explicitly proposed relationships between goals, expectancies of success, efficacy,
29 and perceptions of the values and costs associated with task engagement, as illustrated in Table
30 3. Intervention research that examined how reframing tasks for students or asking students to
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5 self-generate information about a learning task that pertains to their efficacy for it or reasons they
6 might value it have shown promise in promoting interest, persistence, achievement, and future
7 motivation and behavior (Høgheim & Reber, 2015; Hulleman, Godes, Hendricks, &
8
9 Harackiewicz, 2009; AUTHORS, DATE, DATE, DATE, DATE). This area of intervention
10 research has become particularly robust, to the point that meta-analyses of interventions afford
11 moderator analyses that can inform the task framing approaches that PL designers intend to
12 provide (Lazowski & Hulleman, 2016) and consider how students will differ in their responses
13 and the ways the benefit from these design approaches (Canning, Priniski & Harackiewicz, 2019;
14 Durik & Harackiewicz, 2007). The adoption of these design choices into PL environments also
15 has potential to catalyze research, especially if implemented systematically and at scale (Sales, et
16 al., 2018) and might further enrich the study of motivational interventions as a result.
17
18

19 **Identity-driven personalization and emergent PL design paradigms; proceed with**
20 **caution.** While not sufficiently conceptualized by designers nor examined at sufficient scale to
21 afford any conclusions, a number of studies examined learner characteristics that reflected
22 elements of the learners' identity. A number of personalization efforts aimed to adjust the
23 learning task in ways that would enable the student to identify with features of the task. These
24 included personalizing to students' preferred pronouns (Halkyard, 2012), the use of familiar
25 names or places (Kleinman, 2018), storytelling (Armstrong et al., 2016; Haas, 2016), and using
26 information from the students' own lives (Cakir & Simsek, 2010). In addition to funds of
27 knowledge, theorists posed that students also bring to learning tasks their *funds of identity*,
28 internalized family and community resources used to make meaning, and describe themselves
29 (Esteban-Guitart & Moll, 2014). Students' geographical, practical, cultural, social, and
30 institutional funds of identity can inform instructional decisions to help students better connect
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

with content. Whereas some dimensions of identity might be sufficiently canonical or finite that a program could ostensibly collect precise data that reflect students' identity-related values for a variable, and designers could adjust a learning task in ways that incorporate them (e.g., cue students' preferred pronouns, Halkyard, 2012), many aspects of identity and the instruments that would surface them do not produce clear indications of learners' characteristics. This limits how readily such data can be operated upon in designs that aim to produce a PL experience. Tools like family histories (Kleinman, 2018) and self-portraits (Esteban-Guitart & Moll, 2014) can provide insight into students' funds of identity, but are quite complex. Even when learners' individual experiences can be captured, these data will be captured as lengthy descriptions, rather than categorical indicators that can be operated on with scripted logic to adapt features of a learning task. As a result, learners' funds of identity can and should be considered by teachers who can design and deliver instruction that can give students the autonomy and ownership of learning experiences they can make personal (e.g., student-curated collections; Tsybulsky, 2020). However, developers of PL technologies were limited in the way their designs responded to any more than a few, rather simple aspects of a learner's identity. The incorporation of the more complex aspects of identity (i.e. socio-cultural practices) did not lend themselves to the automated logic that underlies technology-based PL designs. Ultimately, extreme caution should be used when considering how to leverage – and avoid misconstruing or misusing – cultural funds of identity in instructional design to avoid marginalization or misrepresentation of minoritized learners. One productive way forward might be to design for “adaptability” (Plass & Pawar, 2020, p. 277) where learners are given the choice of ways they might alter the design or course of a learning task. This design approach aligns to the dimension of ownership that characterizes *context personalization* (Authors, DATE), in which learners select interest areas

that can be accommodated by changing the context of a learning task. Placing the learner in the agentic position and using their personal funds of knowledge and identity has also been used to promote self-generated relevance and make meaningful connections in learning (Hulleman, et al. 2017). This design choice avoids potential misses when trying to personalize learning, and can help designers avoid learner *reactance* (Brehm & Brehm, 1981), which may negatively affect motivation and engagement in learning, once induced.

19 Implications for Improving Description, Implementation, and Study of Personalized 20 21 Learning

24 The discussion, design, testing, and implementation of personalized learning is beset by
25 challenges with the complexity of a common PL design that attempts to accommodate all
26 learners based on multiple characteristics, with multiple design elements, and to multiple ends.
27
28 Those who design, study, and employ personalized learning can parse this complexity by
29 adopting more precise language in describing the way learning is made more personal, is
30 adapted, or continues to be adaptable. Thereafter, they can consider how they believe the
31 personalization of a task benefits a learner, and what must be known about the learner to do enact
32 such a plan. This theory of change and its quality can then be appraised for its coherence, both in
33 terms of its alignment to theories about the learning process and its alignment to empirical
34 findings that confirm that a proposed instructional design approach has achieved targeted
35 outcomes for learners in the past. In sum, the study of personalized learning would benefit from a
36 linguistic taxonomy that describes each component of a PL effort, as well as an explicated theory
37 of change that guides design and can inform the study of the assumptions it includes.

56 **Language and definitions.** Tables 1 and 2 provide a broad overview and thematic
57 alignment of the learner characteristics, design elements, and learning outcomes that an
58
59
60
61
62
63
64

1
2
3
4
5 individual may be thinking of when they are discussing personalized learning. This induces risk
6 where two people who aim to discuss PL can mean two entirely different things, arrive at
7 different conclusions about the merits of the approach, each be independently correct, and
8 achieve nothing in their discussion. In order to provide researchers, designers, and practitioners
9 the tools they need to describe PL more coherently and engage in design, appraisal, and adoption
10 more productively, we propose a decomposition of PL into its component forms that involves
11 use of clearer terminology for and connection between classes of learner characteristics, the ways
12 this information is gathered and acted upon in a PL design, and the outcomes that are targeted.
13
14

15 The list of learner characteristics that inform PL designs is staggeringly large. However,
16 Plass and Pawar (2020) and AUTHORS (DATE) proposed organizing frameworks that can
17 group these characteristics according to their cognitive, motivational, affective, and emotional, or
18 sociocultural origins. This organization simplifies consideration and allows designers and
19 adopters to more systematically consider the need of learners that require a personalization of
20 instruction to accommodate them, or how adapting instruction based on what is known about a
21 learner can make their impending experience a more productive or efficient one. When asked
22 about their students' challenges in learning, teachers tend to speak at this level of generality and
23 describe students' preparedness to learn in terms of their prior knowledge or reasoning ability
24 and motivation, tendency towards boredom or frustration that threatens learning and persistence,
25 or their perception of the relevance of topics to their daily life (Turner, Christiansen, & Meyer,
26 2009). These dimensions of teachers' appraisals align directly to the cognitive, motivational,
27 affective and emotional, or sociocultural processes that educational researchers study. When this
28 is acknowledged explicitly, practitioner-researcher teams can engage with theory, plan design,
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2
3
4
5 and contribute back to the empirical evidence base when they carry out instruction that supports
6 learners through personalization (AUTHORS, DATE).
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Whereas descriptions of students' assets and needs were more coherently described by the language of educational psychologists, improving description of the way these information are gathered and leveraged requires language from programmers and designers. The common thread across all PL designs was that a program's function (or student's classroom experience) was altered based on a piece of information provided by or about a learner. These details can be provided once at the outset of the task by the learner or another entity, updated during the task when the program appraises a learner's actions or products, or by re-engaging a learner directly. Not all PL programs are embedded in technologies, but all adopt this type of IF-THEN language in their design. Another way that personalized learning might be more clearly described is by noting not just the type of information that informs this IF-THEN, but also whether the *source* of the information is the learner, an external reporter (e.g., a teacher) or repository (e.g., school database), or the system itself (e.g., appraisal of current student skill mastery based on past performance). The source of these data can help establish whether a PL design is one that needs to be setup and informed by a teacher, integrated with other systems (i.e., synced to access school records), or as a standalone instructional tool where all information is provided by the learner. A second design feature is the *timing* of the reporting of a learner characteristic. This describes whether personalization is based on a preliminary, one-time report of a (theoretically enduring, stable) learner characteristic, or whether the system repeatedly adapts the task by recursively updating the data that inform an IF-THEN statement. For example, this distinction can separate PL designs that accommodate students based on an initial report of their prior knowledge (e.g., Reddy et al., 2015) versus a design that constantly adapts the rigor of a learning

task based on estimates of their current knowledge state (e.g., Arroyo et al., 2014). It could also differentiate between designs that present content that aligns to learners' surveyed interests in topics (AUTHORS, DATE) versus those that consistently prompt a learner to select a topic they find to be most interesting (Scanlon et al., 2011). Aleven and colleagues (2017) referred to the position of this IF-THEN relationship by its presence on specific "loops" of a program, and Plass and Pawar (2020) drew distinction between environments that are *adaptive* to initial appraisals of learner characteristics versus those that are *adaptable* based on experiences that arise during learning. The timing and frequency with which tasks are re-calibrated to adapt instruction are worthy of distinction, as personalization to a learner characteristic that is malleable and not enduring at a single time point versus personalization on an on-going basis are likely to differ in the degree to which they accommodate learners' knowledge, interests, choices, emotions, and other factors, and achieve different outcomes as a result.

A theory of change. Educators and policymakers adopt personalized learning in order to achieve a targeted outcome for learners. They may seek to raise student achievement or motivation to learn, or to instill a sense of agency or satisfaction when engaged in learning. Whereas the desire to achieve these outcomes motivates the adoption of PL, educators and policymakers often lack the resources necessary to determine which PL design is best suited to achieve their ends. This can stem from a lack of formal training necessary to understand how learner characteristics or instructional activities influence the learning process, a lack of transparency about the way design elements deliver and personalize a task, or a combination of the two. Those who select, configure, and deploy personalized learning in authentic learning environments need encouragement to formalize their theory of change, and resources that can help them identify whether research supports their intuition, and whether a model of PL exists

that can be adopted to leverage the learner characteristics to deliver the ends they seek (AUTHORS, DATE). Policy briefs encourage and provide guidance to help educational decision makers carry out this kind of planning process (AUTHORS, DATE). However, those who design PL solutions need to align their own materials to such theories of change in order to enable decision makers to understand designs and confidently adopt one that matches their theory of change and is likely to provide the outcomes they seek to achieve.

A challenge to PL designers. Informed adoption of PL requires that designers of PL explicitly align their designs to a well-described theory of change, and provide transparent, accessibly written documentation that describes the way they system uses learner characteristics to adapt instruction to achieve learning outcomes. That is, the design of the tasks needs to be described in terms of *malleable factors* that promote outcomes (Institute for Educational Sciences, 2020). The selection of learning activities itself should increase the likelihood of achieving an outcome. Thereafter, the adaptation of that activity based on information about the student should be based on a theorized moderating factor that further enhances the likelihood that a learner will achieve an outcome. For instance, providing students with opportunities to solve problems is a well-known method of improving their ability to solve future problems (Arroyo et. al, 2011) and adapting the problems posed to the learner so that students are tasked with solving problems involving knowledge they have yet to master speeds their learning and increases what is learned (Kulik & Fletcher, 2016). Indeed, this line of work is most perceptible feature in the initial design of Cognitive Tutors, which were designed according to assumptions of ACT theory (Anderson, 1983), and were refined over a decade of testing to improve ACT-R theory (Anderson et al. 1995, 1997). Such an example illustrates how transparency about the way

learning tasks promote learning outcomes and adapting tasks to student characteristics can enhance the benefits to these outcomes.

This kind of transparent logic needs to be extended across PL designs to illustrate how an instructional design approach and adaptation of it achieves its ends. For example, a student's out-of-school interests are often the target of personalization efforts. Designers may explain their PL design by articulating how they use one of two distinct theories of change to achieve a target learning outcome. One designer might provide an opportunity for students to choose and enter topics of interest into a learning task (e.g., nouns into math story problems; Høgheim, & Reber, 2015) if the goal is to promote student motivation for learning (Figure 10; yellow path). A second designer might propose a second theory of change that involves assessing student interests' prior to learning and then tracks students into sets of materials where interest are extensively incorporated into the learning tasks, in order to promote both task interest and achievement (Figure 10, green line; AUTHORS, DATE).

The transparency these example provide would enable educators to make more thoughtful adoptions and implementations of personalized learning that can deliver the specific outcomes they target. The same transparency in design can enable researchers to more systematically investigate individual PL designs and to synthesize research that investigates these malleable factors and their implications for outcomes. This iterative process can then inform future research and design cycles that follow.

51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 **INSERT FIGURE 10 ABOUT HERE**

A research agenda for personalized learning. Researchers who aim to contribute to the knowledge base about personalized learning can leverage transparent theories of change and heuristics developed by educational agencies to determine what methods of personalizing

learning work to achieve targeted outcomes, for which learners, and under what conditions (What Works Clearinghouse, 2020). Given the diversity of PL designs that have been developed and the complexity of their combination into multi-component personalized learning initiatives in educational practice, this shift will require methods of inquiry spanning classic experimental designs, complex educational research methods, and implementation science approaches.

The methods that designers use to test the functionality, usability, and effects of the products, tools, and features they develop are reasonably well established, and the A-B testing phase aligns to the controlled experiments that educational researchers use to establish causal inferences about learning. More of these studies are needed in order to understand how individual design components within PL initiatives achieve outcomes, and how such designs further need to be crossed to examine how such components interact to moderate independent effects. When additional data about users are available, additional moderating factors can be considered, as can contextual factors related to dosage, timing, and other ways that PL may be adopted in authentic educational settings.

As researchers move from laboratory to applied settings, research designs become more complex, and retaining the ability to make causal inferences would require substantial control of the personalized learning experience. That is, researchers would need to maintain the ability to randomly assign versions of PL that systematically vary in their features to learners and observe their effects. This kind of design is possible in some circumstances when PL involves a single platform that is in sufficient demand that researchers can toggle and study individual features without disrupting users' experience (e.g., ASSISTments Testbed; Ostrow & Heffernan et al. 2016), or when a broad, systematic study is conducted with thousands of users in a form of super-experiment (Stamper et al., 2012). However, these are uncommon opportunities, and the

more common district and school-level designs present a pernicious challenge to the conceptualization and study of PL.

When K-12 schools in the U.S. adopt a model of PL, they tend to do so in accordance with a governing educational policy that includes multiple features they must satisfy. By necessity, such programs will often include multiple components in order to satisfy program requirements and address policy goals. Because policies are seldom drafted with explicit theoretical conceptualizations or heavy input from educational researchers, these design and implementation conditions are likely to lead to complex designs that stymie research with confounded designs, affording compulsory involvement but restricting opportunities for a control comparison. The increasing adoption of PL is encouraging, but designs are diverse, implementations are irregular both within and between designs, and studies of school-level designs generally proceed with limited resource and agency. The design of policies and implementations and their study would benefit from ongoing conversation with learning scientists and instructional designers, as well as evaluators who could design innovative, flexible, and systematic studies of implementations and their effects (e.g., McCarthy & Liu, 2020). It may be the case that school implementations of personalized learning need to be considered differently, as they are necessarily multicomponent initiatives that rely on a many-to-many-to-many conceptualization to align to state policies and aim to address many needs of learners and community stakeholders. Should this be the case, a separate education policy agenda will need to emerge, undertaking an implementation science paradigm to evaluate successful components and models (and moderating factors; AUTHORS, DATE).

5 Limitations

Conducting a systematic review of a phenomenon described by numerous definitions and investigated across multiple research communities was a challenge, and the individual differences in publishing conventions, indexing, terminology, and reporting standards imposed limitations on the authoritativeness of this review. We set out to enact a systematic search using indexes that are broadly subscribed in social sciences (i.e., PsychInfo, ERIC, via EBSCOHost) and computer science and engineering communities (i.e., conference proceedings via IEEE Xplorer). This enabled us to confidently search by the keywords and their variants we reported in our methods. However, we quickly found that additional keyword variants would be relevant, but would also add tens of thousands of potential matches, owing to the popularity of “personalization” and “adaptivity” in other fields (e.g., medicine, media). We deemed that screening more than the roughly 1600 manuscripts we considered would be unwieldly and inefficient, given that addition of these broader variants induced even higher false positive rates when we conducted a preliminary screening and found that few met our inclusion criteria. Rather than adopting this method, we undertook a principled method of adding back conferences that were not indexed but were highly relevant venues for the kinds of studies that populated our search (e.g., a conference on User Modeling, Adaptation and Personalization). We did so by using keywords and citation indices to identify the most highly cited relevant conference proceedings on Google Scholar, and thereafter took the advice of expert reviewers to ensure our review was as inclusive as possible of candidate manuscripts to represent contemporary research. When future researchers deem that a critical mass of additional scholarship has accrued that an updated review is warranted, they may consider experimenting further with keyword approaches to capture personalization and adaptivity as they cross with human subjects research on the

learning process and its outcomes in order to manage challenges with these many relevant keywords. They may also adopt more complex methods of handling way unindexed conference proceedings are considered in order to increase confidence that relevant research on personalized learning does not go unconsidered.

Conclusion

Research activity focused on personalized learning is ample, but also arises from multiple communities that do not commonly intersect in their alignment to ideas, nor in their conventions for presentation of findings. Most research into personalization lacked an *a priori* conceptualization that explicitly built upon a stated definition of PL or theory of learning. While evidence suggests that PL designs generally promote the learning outcomes they target, the empirical base is small, diffused, and largely correlational. Further, the evidence base suffers from an inherent disorganization that obscures which PL designs achieve such ends. This arises from the typically complex PL designs that are implemented in practice, wherein many learner characteristics inform many design choices, and which are adopted to promote many outcomes. The state of the research undermines the ability to produce unequivocal evidence of the effects that personalization design choices can have on learner outcomes, and this limits both the development of a cohesive theory of personalized learning and the confidence practitioners can profess when planning a PL implementation. Stronger connections between PL designers and members of the educational research community who are familiar with instructional design principles and theories of cognition, motivation, affect, and sociocultural factors can likely produce designs that yield superior benefits to learners, clearer evidence of the benefits of design choices, and a cohesive theory of personalized learning.

References

Aleven, V., Beal, C.R., & Graesser, A. C. (2013). Introduction to the special issue on advanced learning technologies. *Journal of Educational Psychology, 105*(4), 929-931.

Aleven, V., McLaren, B., Roll, I., & Koedinger, K. (2006). Toward meta-cognitive tutoring: A model of help seeking with a Cognitive Tutor. *International Journal of Artificial Intelligence in Education, 16*(2), 101-128

Aleven, V., McLaughlin, E. A., Glenn, R. A., & Koedinger, K. R. (2017). Instruction based on adaptive learning technologies. In R. E. Mayer & P. Alexander (Eds.), *Handbook of Research on Learning and Instruction* (2nd ed., pp. 522-560). New York: Routledge.

Alli, N., Rajan, R., & Ratliff, G. (2016). How personalized learning unlocks student success. *Educause Review, 50*(2), 12-21.

Anderson, J.R. (1983). *The architecture of cognition*. Harvard University Press.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. *The Journal of the Learning Sciences, 4*(2), 167-207.

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level cognition and its relation to visual attention. *Human–Computer Interaction, 12*(4), 439-462

Armstrong, C. M. J., Hustvedt, G., LeHew, M. L. A., Anderson, B. G., & Connell, K. Y. H. (2016). When the Informal Is the Formal, the Implicit Is the Explicit: Holistic sustainability education at Green Mountain College. *International Journal of Sustainability in Higher Education, 17*(6), 756–775.

Arroyo, I., Royer, J. M., & Woolf, B. P. (2011). Using an intelligent tutor and math fluency training to improve math performance. *International Journal of Artificial Intelligence in Education, 21*(1-2), 135-152

Authors, Date.

Bandura, A. (1986). *Social foundations of thought and action: A social cognitive theory*.

Englewood Cliffs, NJ: Prentice-Hall.

Beese, E. B. (2019). A process perspective on research and design issues in educational personalization. *Theory and Research in Education*, 17(3), 253-279.

Bill and Melinda Gates Foundation (2015). *Personalized Learning: What is it?*. Retrieved online at <https://k12education.gatesfoundation.org/download/?Num=2340&filename=Personalized-Learning-What-is-it.pdf>

Block, J. H., & Burns, R. B. (1976). Mastery learning. *Review of Research in Education*, 4, 3-49.

Bray, B., & McClaskey, K. (2014). *Make learning personal: The what, who, wow, where, and why*. Corwin Press.

Brehm, S. S., & Brehm, J. W. (2013). *Psychological reactance: A theory of freedom and control*. Academic Press.

Brown, M., McCormack, M., Reeves, J., Brook, D. C., Grajek, S., & Alexander, B. (2020). Educause Horizon Report Teaching and Learning Edition. *Louisville, CO: EDUCAUSE*.

Bruner, J. S. (1966). *Toward a Theory of Instruction* (Vol. 59). Harvard University Press.

Cakir, O., & Simsek, N. (2010). A comparative analysis of the effects of computer and paper-based personalization on student achievement. *Computers & Education*, 55(4), 1524–1531. <https://doi.org/10.1016/j.compedu.2010.06.018>

Canning, E. A., Priniski, S. J., & Harackiewicz, J. M. (2019). Unintended consequences of framing a utility-value intervention in two-year colleges. *Learning and Instruction*, 62, 37-48.

Chan Zuckerberg Initiative (2020). *Education Overview*. Retrieved from
<https://chanzuckerberg.com/education/>

Clark, R. E., & Estes, F. (1996). Cognitive task analysis for training. *International Journal of Educational Research*, 25(5), 403-417.

Cordova, D. I., & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. *Journal of Educational Psychology*, 88(4), 715.

Cuban, L. (2018). *Second draft: A continuum of personalized learning. Larry Cuban on School Reform and Classroom Practice*, 27 September. Available at:
<https://larrycuban.wordpress.com> (accessed 5 Feb 2020).

Deci, E. L., & Ryan, R. M. (2000). The "what" and "why" of goal pursuits: Human needs and the self-determination of behavior. *Psychological Inquiry*, 11(4), 227-268.

Durik, A. M., & Harackiewicz, J. M. (2007). Different strokes for different folks: How individual interest moderates the effects of situational factors on task interest. *Journal of Educational Psychology*, 99(3), 597.

Drumheller, S. J. (1971). *Handbook of Curriculum Design for Individualized Instruction: A Systems Approach; how to Develop Curriculum Materials from Rigorously Defined Behavioral Objectives*. Educational Technology Publications.

Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. *Contemporary Educational Psychology*, 101859.

Eduvate Rhode Island (2017). *Creating a shared understanding of personalized learning for Rhode Island*. Retrieved from

<http://eduvateri.org/projects/personalized/personalizedlearningpaper/>

Elliot, A. J. (1999). Approach and avoidance motivation and achievement goals. *Educational Psychologist*, 34(3), 169-189.

Ellis, G. (2009). Grand challenges for engineering. *IEEE Engineering Management Review*, 37(1), 3-3. National Academy Press. Retrieved from www.engineeringchallenges.org/cms/8996/9127.aspx

Enyedy, N. (2014). *Personalized instruction: New interest, old rhetoric, limited results, and the need for a new direction for computer-mediated learning*. Boulder, CO: National Education Policy Center.

Esteban-Guitart, M. & Moll, L. C. (2014). Funds of identity: A new concept based on the funds of knowledge approach. *Culture & Psychology*, 20(1), 31-48.

Feldstein, M., & Hill, P. (2016). Personalized learning: What it really is and why it really matters. *EDUCAUSE Review*, 51(2), 24-35.

Ferguson DL, Ginevra R, Meyer G, et al. (2001) *Designing Personalized Learning for Every Student*. Alexandria, VA: Association for Supervision and Curriculum Development.

Grant, P. & Basye, D. (2014) *Personalized Learning: A Guide for Engaging Students with Technology*. Eugene, OR: International Society for Technology in Education.

Gonzalez, O., MacKinnon, D. P. & Muniz, F. B. (2020) Extrinsic Convergent Validity Evidence to Prevent Jingle and Jangle Fallacies, *Multivariate Behavioral Research*, DOI: [10.1080/00273171.2019.1707061](https://doi.org/10.1080/00273171.2019.1707061)

González, N., Moll, L. C., & Amanti, C. (Eds.). (2006). *Funds of knowledge: Theorizing practices in households, communities, and classrooms*. Routledge.

Gong, Y., Wang, Y., & Beck, J. (2016). How Long Must We Spin Our Wheels? Analysis of Student Time and Classifier Inaccuracy. *Proceedings of the 9th International Conference on Educational Data Mining*. ACM.

Great Schools Partnership (2015) *Personalized learning. The Glossary of Education Reform*. Available at: <https://www.edglossary.org/personalized-learning/> (accessed 31 May 2018).

Haas, B. J. (2016). IWitness and student empathy: Perspectives from USC Shoah Foundation Master Teachers. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

Halkyard, S. (2012). The Separate and Collective Effects of Personalization, Personification, and Gender on Learning with Multimedia Chemistry Instructional Materials. ProQuest LLC.

Halverson, R. (2019) *Taking a learning sciences perspective to understand personalized learning in schools*. Presentation at the 2019 Annual Meeting of the American Educational Research Association. Toronto, Canada.

Harley, J. M., Lajoie, S. P., Frasson, C., & Hall, N. C. (2017). Developing emotion-aware, advanced learning technologies: A taxonomy of approaches and features. International *Journal of Artificial Intelligence in Education*, 27(2), 268-297.

Herold, B. (2017). The case (s) against personalized learning. *Education Week*, 37(12), 4-5.

Hidi, S., & Renninger, K. (2006). The four-phase model of interest development. *Educational Psychologist*, 41(2), 111-127.

Høgheim, S., & Reber, R. (2015). Supporting interest of middle school students in mathematics through context personalization and example choice. *Contemporary Educational Psychology*, 42, 17-25.

Holstein, K., Aleven, V., & Rummel, N. (2020). A conceptual framework for human-AI hybrid adaptivity in education. In I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán (Eds.), Proceedings, 21th International Conference on Artificial Intelligence in Education, AIED 2020 (pp. 240-254). Cham: Springer. https://doi.org/10.1007/978-3-030-52237-7_20

Hulleman, C. S., Godes, O., Hendricks, B. L., & Harackiewicz, J. M. (2010). Enhancing interest and performance with a utility value intervention. *Journal of Educational Psychology, 102*, 880-895.

Hulleman, C. S., Kosovich, J. J., Barron, K. E., & Daniel, D. B. (2017). Making connections: Replicating and extending the utility value intervention in the classroom. *Journal of Educational Psychology, 109*(3), 387.

Institute for Educational Sciences (2020). Request for Applications, Education Research Grant Program. CFDA Number: 84.305A U.S. Department of Education

Järvelä, S. (2006). Personalised learning? New insights into fostering learning capacity. *Personalising education*, (pp. 31-46). OECD.
<https://www.oecd.org/site/schoolingfortomorrowknowledgebase/themes/demand/41176687.pdf>

Kallio, J.M. & Halverson. R.R. (2020). Distributed Leadership for Personalized Learning. *Journal of Research on Technology in Education*.

Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. *Educational Psychology Review, 19*(4), 509-539. doi:10.1007/s10648-007-9054-3

Kirschner, P. A. (2017). Stop propagating the learning styles myth. *Computers & Education, 106*, 166-171.

Kirschner, P.A., & van Merriënboer, J. G. (2013). Do learners really know best? Urban legends in education. *Educational Psychologist*, 48(3), 169-183.
doi:10.1080/00461520.2013.804395

Kleinman, C. (2018). Improving second language lexical acquisition through personalization and contextualization: A look at intrinsic cognitive load reduction strategies. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

Koedinger, K. R., & Aleven, V. (2007). Exploring the assistance dilemma in experiments with Cognitive Tutors. *Educational Psychology Review*, 19(3), 239-264.

Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: a meta-analytic review. *Review of Educational Research*, 86(1), 42-78.

Lazowski, R. A., & Hulleman, C. S. (2016). Motivation interventions in education: A meta-analytic review. *Review of Educational Research*, 86 (2), 602-640.

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., ... & Moher, D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *Annals of internal medicine*, 151(4), W-65.

Lipsey, M. W., & Wilson, D. B. (2001). *Practical meta-analysis*. SAGE publications, Inc.

Long, Y., & Aleven, V. (2011, June). Students' understanding of their student model. In *Proceedings of the International Conference on Artificial Intelligence in Education* (pp. 179-186). Springer, Berlin, Heidelberg.

Mayer, R.E. (2014). *Cambridge Handbook of Multimedia Learning* (Second Edition). Cambridge University Press

McCarthy, B. & Liu (2020). Strengths-Based Blended Personalized Learning: An Impact Study Using a Virtual Comparison Group. *Journal of Research on Technology in Education*.

McHugh, D., Shaw, S., Moore, T. R., Ye, L. Z., Romero-Masters, P., & Halverson, R. (2020) Uncovering Themes in Personalized Learning: Using Natural Language Processing to Analyze School Interviews. *Journal of Research on Technology in Education*.

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. *Theory into Practice*, 31(2), 132-141.

Ostrow, K. S., & Heffernan, N. T. (2016, April). Studying learning at scale with the ASSISTments TestBed. In *Proceedings of the Third (2016) ACM Conference on Learning@ Scale* (pp. 333-334).

Pane, J.F., Steiner, E., Baird, M. & Hamilton, L. (2015). *Continued progress: Promising evidence on personalized learning*. Retrieved from <http://k12education.gatesfoundation.org/wp-content/uploads/2015/11/Gates-ContinuedProgress-Nov13.pdf>

Pashler, H., McDaniel, M., Rohrer, D., & Bjork, R. (2008). Learning styles: Concepts and evidence. *Psychological science in the public interest*, 9(3), 105-119.

Patall, E. A., Cooper, H., & Robinson, J. C. (2008). The effects of choice on intrinsic motivation and related outcomes: A meta-analysis of research findings. *Psychological Bulletin*, 134(2), 270–300. <https://doi.org/10.1037/0033-2909.134.2.270>

Patrick, S., Kennedy, K., & Powell, A. (2013). *Mean What You Say: Defining and Integrating Personalized, Blended and Competency Education*. International Association for K-12 Online Learning.

Pekrun, R., & Perry, R. P. (2014). Control-value theory of achievement emotions. In *International Handbook of Emotions in Education* (pp. 130-151). Routledge.

Plass, J. (2020) Towards a Taxonomy of Adaptivity for Learning. *Journal of Research on Technology in Education*.

Plass, J. & Pawar, S. (2020) Adaptivity and Personalization in Game-Based Learning in *Handbook of Game-based Learning*. (pp. 263). MIT Press.

RAND Corporation (2014). *Early Progress: Interim Report on Personalized Learning*. RAND Corporation. Retrieved from <http://k12education.gatesfoundation.org/resource/early-progress-interim-research-on-personalized-learning/>

Reigeluth, C. M., Aslan, S., Chen, Z., Dutta, P., Huh, Y., Lee, D., & Watson, S. L. (2015). Personalized integrated educational system: Technology functions for the learner-centered paradigm of education. *Journal of Educational Computing Research*, 53(3), 459-496.

Rothwell, W. J., & Kazanas, H. C. (2011). *Mastering the instructional design process: A systematic approach*. John Wiley & Sons.

Salden, R., C. M., Aleven, V., Schwonke, R., & Renkl, A. (2010). The expertise reversal effect and worked examples in tutored problem solving. *Instructional Science*, 38(3), 289-307. doi:10.1007/s11251-009-9107-8

Sales, A., Botelho, A. F., Patikorn, T., & Heffernan, N. T. (2018). Using big data to sharpen design-based inference in A/B tests. In K.A. Boyer & M. Yudelson (Eds.) *Proceedings of the Eleventh International Conference on Educational Data Mining*. Buffalo, NY

Shulman, D. (2016). Personalized learning: Toward a grand unifying theory. *EDUCAUSE Review*, 51(2), 10.

Slavin, R. E. (1984). Team assisted individualization: Cooperative learning and individualized instruction in the mainstreamed classroom. *Remedial and Special Education*, 5(6), 33-42.

Soares, L. (2011). The “personalization” of higher education: Using technology to enhance the college experience. *Retrieved from Center for American Progress website: http://www.americanprogress.org/issues/labor/report/2011/10/04/10484/the-personalization-of-higher-education.*

SRI International (2018). *Using Technology to Personalize Learning in K–12 Schools*. SRI International, Menlo Park, CA. Available from <https://www.sri.com/work/publications/using-technology-personalize-learning-k-12-schools>.

Stamper, J.C., Lomas, D., Ching, D., Ritter, S., Koedinger, K. R., & Steinhart, J (2012). The rise of the super experiment. *Proceedings of the Annual Meeting of the International Educational Data Mining Society (EDM)* (5th, Chania, Greece, Jun 19-21, 2012)

Subban, P. (2006). Differentiated instruction: A research basis. *International Education Journal*, 7(7), 935-947.

Sweller, J. (2011). Cognitive load theory. In *Psychology of Learning and Motivation* (Vol. 55, pp. 37-76). Academic Press.

Tomlinson, C. A. (1999). Mapping a route toward differentiated instruction. *Educational Leadership*, 57, 12-17.

Turner J.C., Christensen A., Meyer D.K. (2009) Teachers' Beliefs about Student Learning and Motivation. In: Saha L.J., Dworkin A.G. (eds). *International Handbook of Research on Teachers and Teaching. Springer International Handbooks of Education*, vol 21. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-73317-3_23

U.S. Department of Education (2010). Transforming American Education: Learning Powered by Technology. Office of Educational Technology, Washington, D.C.

<http://www.ed.gov/sites/default/files/netp2010.pdf>

U.S. Department of Education (2016). Future Ready Learning: Reimagining the Role of Technology in Education. Office of Educational Technology, Washington, D.C.

<http://tech.ed.gov/files/2015/12/NETP16.pdf>

Vignare, K., Lammers Cole, E., Greenwood, J., Buchan, T., Tesene, M., DeGruyter, J., Carter, D., Luke, R., O'Sullivan, P., Berg, K., Johnson, D., & Kruse, S. (2018). A guide for implementing adaptive courseware: From planning through scaling. Joint publication of Association of Public and Landgrant Universities and Every Learner Everywhere.

Xie, H., Chu, H. C., Hwang, G. J., & Wang, C. C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. *Computers & Education*, 140, 103599.

What Works Clearinghouse. (2020). What Works Clearinghouse Standards Handbook, Version 4.1. Washington, DC: U.S. Department of Education, Institute of Education Sciences, National Center for Education Evaluation and Regional Assistance. This report is available on the What Works Clearinghouse website at <https://ies.ed.gov/ncee/wwc/handbooks>.

Willingham, D. T., Hughes, E. M., & Dobolyi, D. G. (2015). The scientific status of learning styles theories. *Teaching of Psychology*, 42(3), 266-271.

Zimmerman, B. J., & Schunk, D. H. (2011). *Handbook of Self-Regulation of Learning and Performance*. Routledge.

Zhang, L., Yang, S., & Carter, R. A. (2020). Personalized learning and ESSA: What we know and where we go. *Journal of Research on Technology in Education*, 52(3), 253-274.

References Removed During Blinding

Bernacki, M. L., Nokes-Malach, T. J., Richey, J.E., & Belenky, D.M. (2016) Science diaries: a brief writing intervention to improve motivation to learn science. *Educational Psychology*, 36 (1), 26-46. doi: 10.1080/01443410.2014.895293

Bernacki, M.L. & Walkington, C. (2018). The role of situational interest in personalized learning. *Journal of Educational Psychology*, 110(6), 864-881.

<http://dx.doi.org/10.1037/edu0000250>

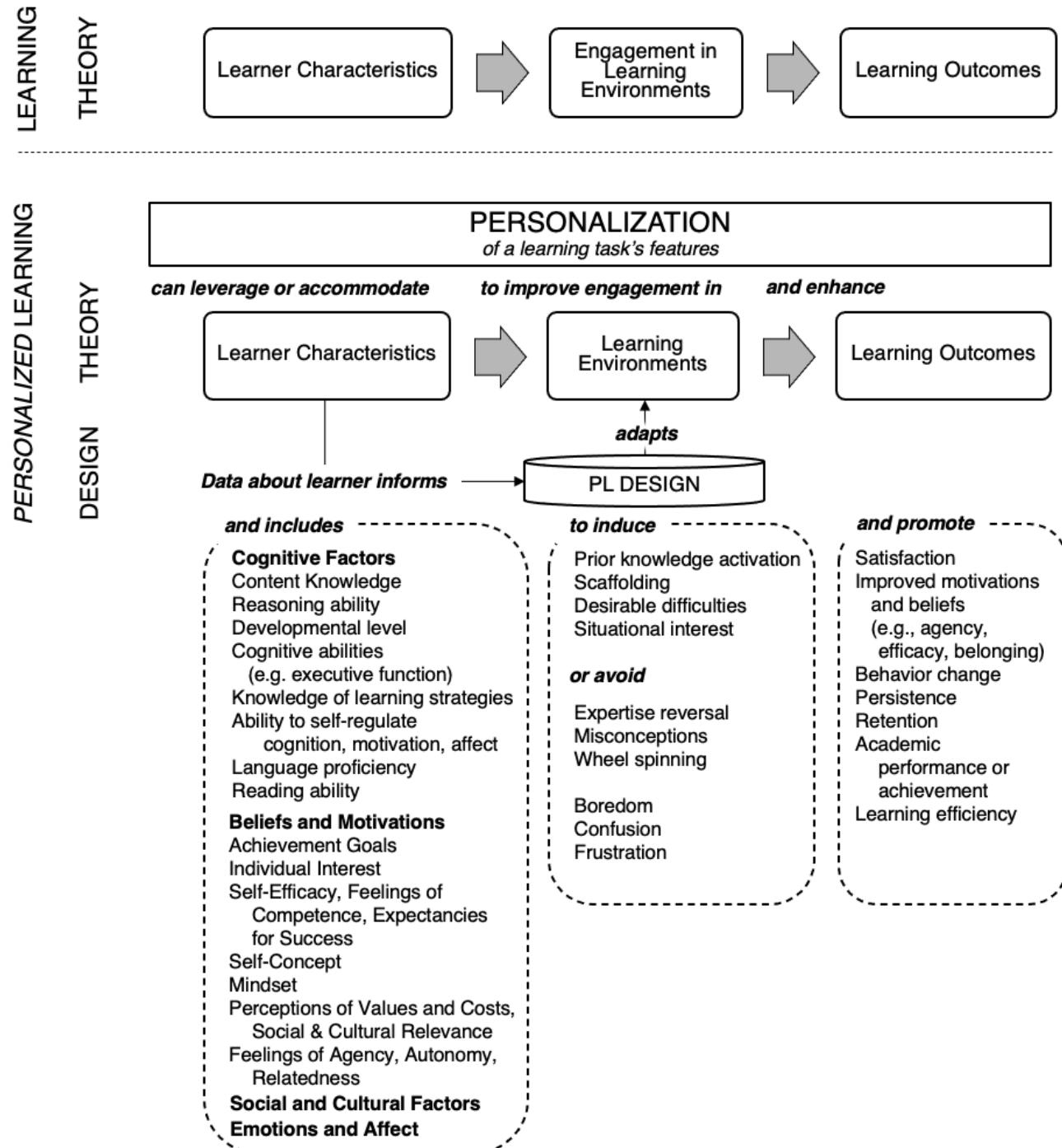
Walkington, C. (2013). Walkington, C. A. (2013). Using adaptive learning technologies to personalize instruction to student interests: The impact of relevant contexts on performance and learning outcomes. *Journal of Educational Psychology*, 105(4), 932.

Walkington, C. & Bernacki, M. L. (2014). Motivating students by “personalizing” learning around individual interests: A consideration of theory, design, and implementation issues. In S. Karabenick & T. Urdan (eds). *Advances in Motivation and Achievement* (Vol. 18). (pp. 139-176) Bingley, UK: Emerald

Walkington, C. & Bernacki, M. L. (2019). Personalizing algebra to students’ individual interests in an intelligent tutoring system: how moderators of impact. *Journal of Artificial Intelligence in Education*. <https://doi.org/10.1007/s40593-018-0168-1>

Walkington, C. & Bernacki, M.L. (2018). Personalization of instruction: design dimensions and implications for cognition. *Journal of Experimental Education*, 86 (1), 50-68. doi: 10.1080/00220973.2017.1380590

Walkington, C. W. & Bernacki, M.L. (in press). Appraising Research on Personalized Learning: Definitions, Theoretical Alignment, Advancements, and Future Directions. *Journal of Research on Technology in Education*.

Figure 1*Instructional Design and Personalized Instructional Design Processes*

Note. Instructional Design and Personalized Instructional Design Processes, and a taxonomy of learner characteristics that can be leveraged to inform design choices to achieve learning outcomes; elaborated from Walkington & Bernacki, 2020.

Figure 2

PRISMA model describing systematic review methodology

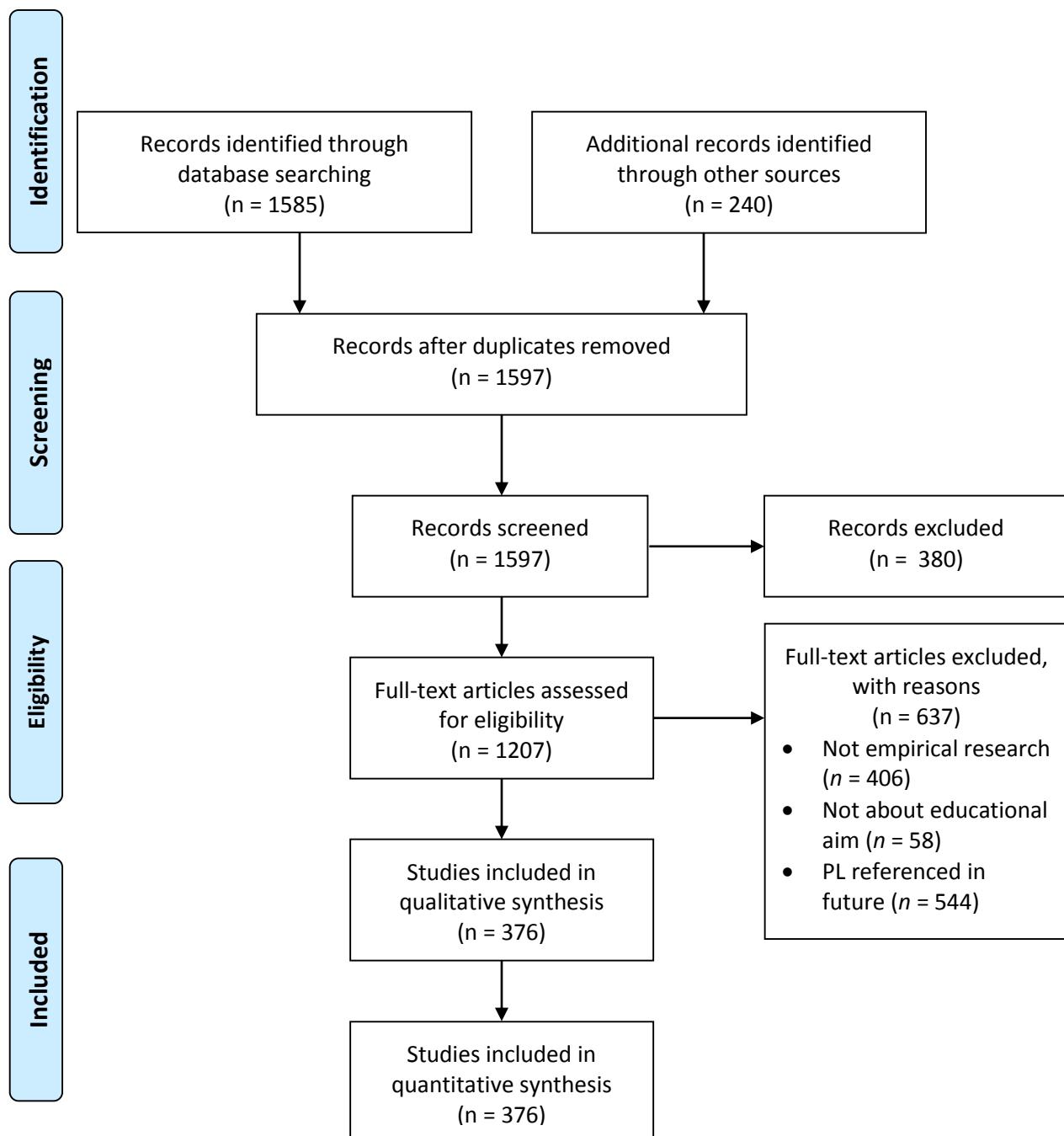
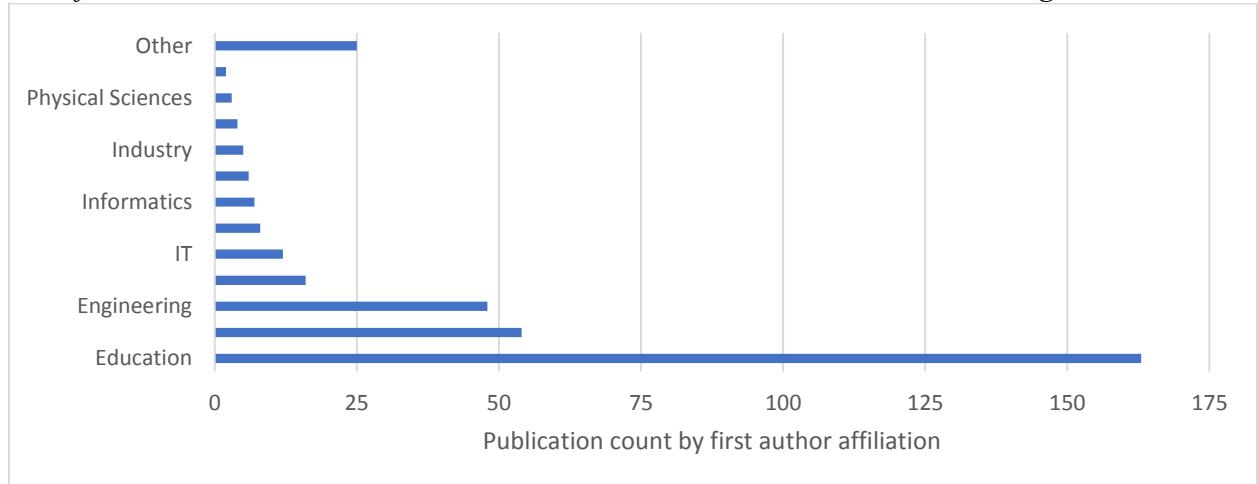


Figure 3

Affiliations of Researchers Who Have Led Published Research on Personalized Learning.



Note. Counts reflect publications based on affiliation of the first author.

Figure 4

Age Groups of Participants in Studies of PL

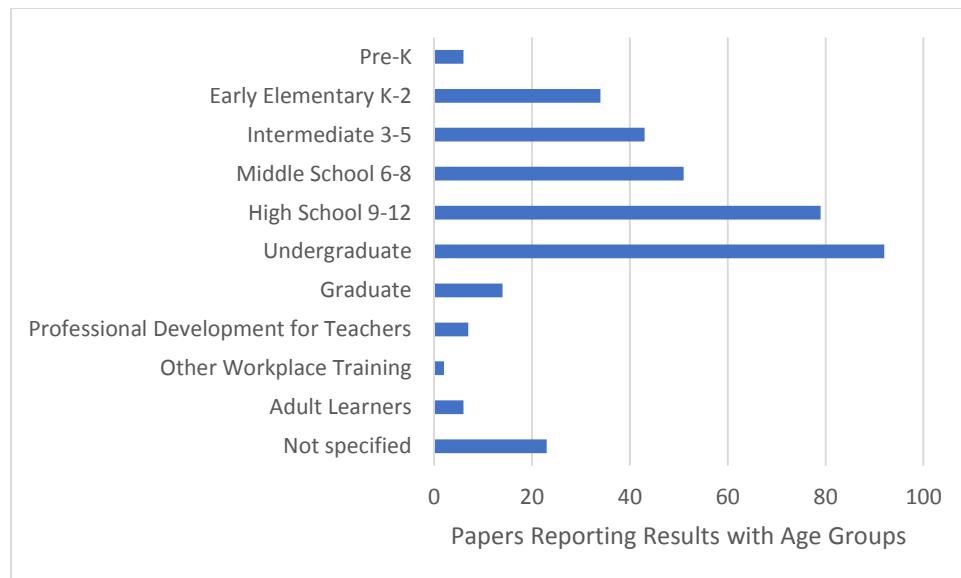


Figure 5

Definitions of PL Word Cloud of All Published Definitions of PL and Specific to Research Led by Education, Engineering, Computer Science, and Other Researchers.

Total Sample

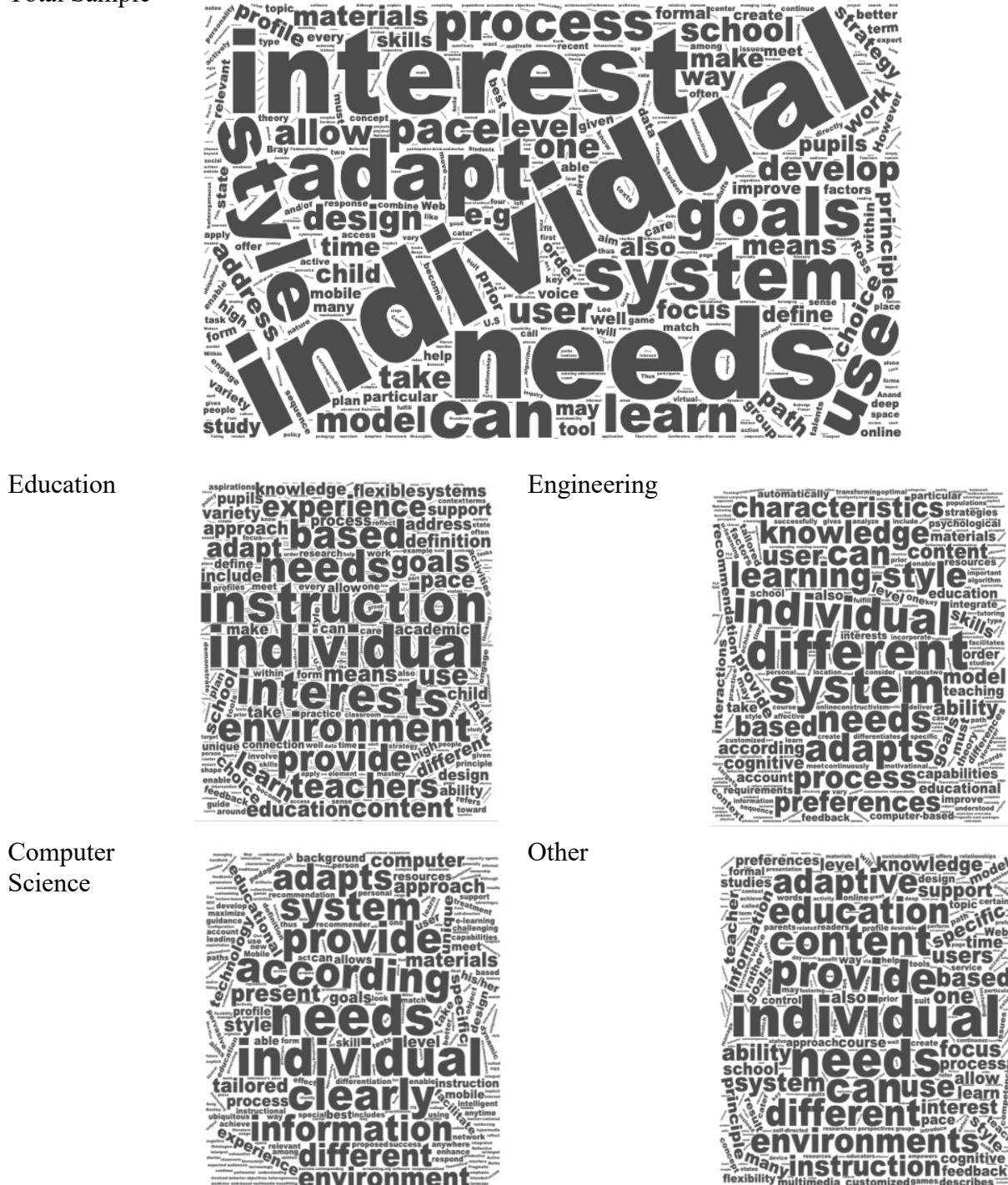


Figure 6

Studies that Investigated Learner Characteristics That Inform PL Design, and the Source of Data Reflecting the Characteristics

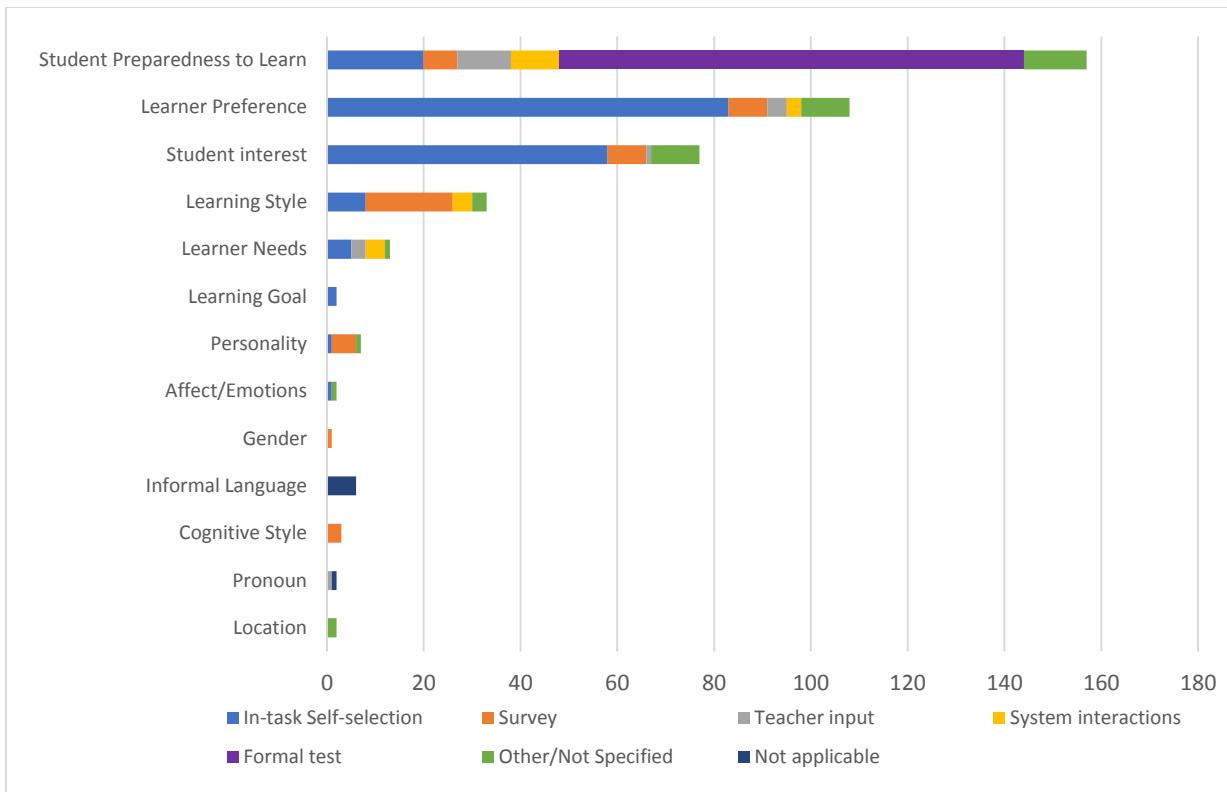


Figure 7

Proportional Focus on PL Research Designs That Accommodated Learner Characteristics by Total Number of Studies (Left) and Percentage (Right).

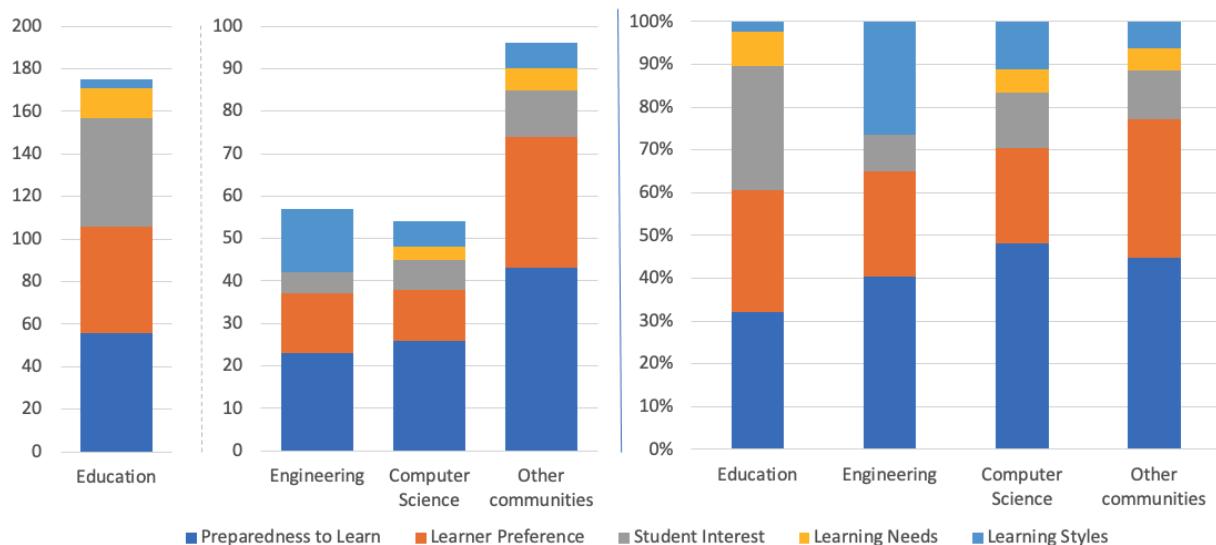
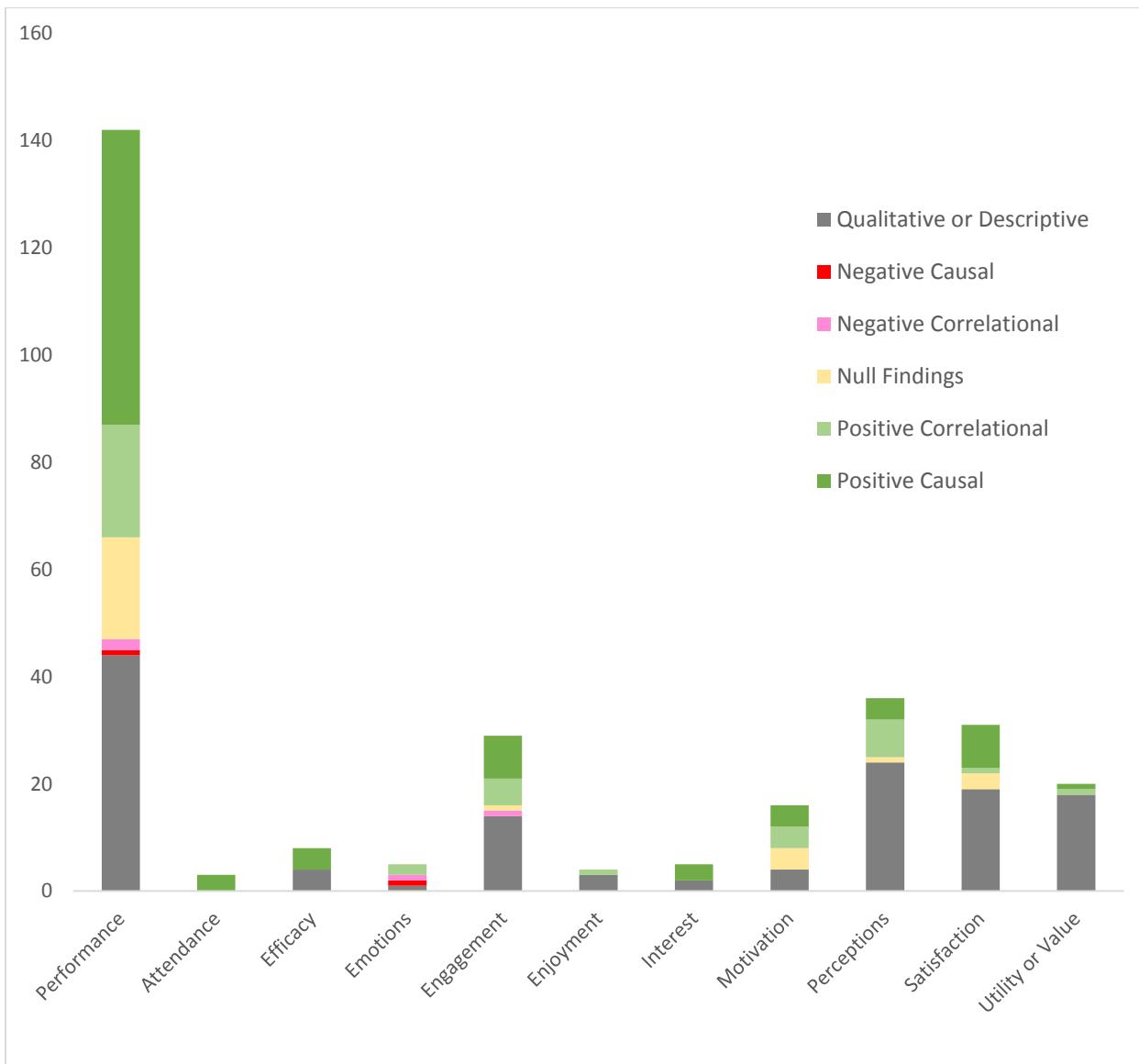


Figure 8

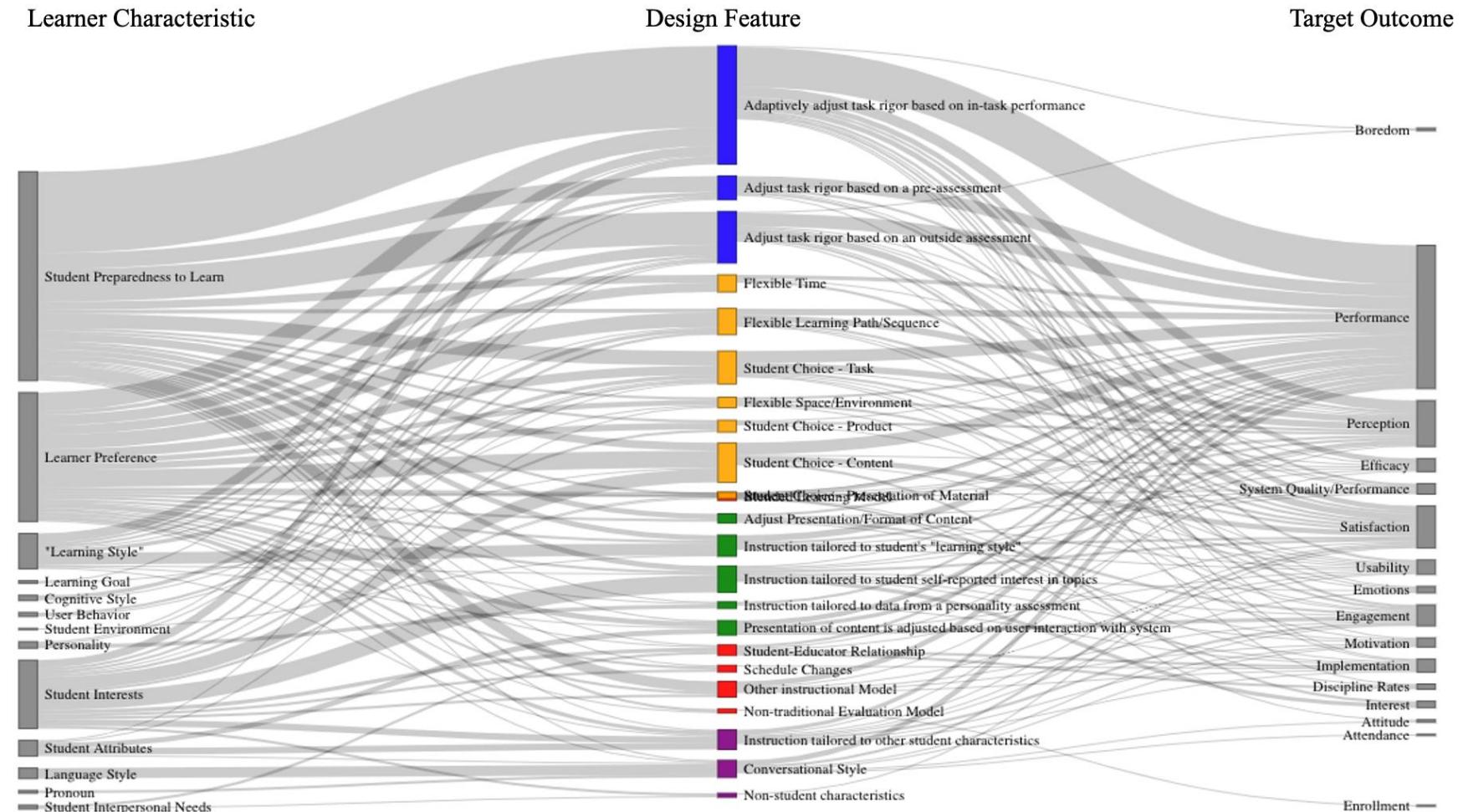
Dependent Variable PL Is Designed to Affect and Balance of Empirical Evidence of Relationship



Note. Grey bars are include all articles within the corpus evaluated that did not examine an outcome variable as part of the research design.

Figure 9

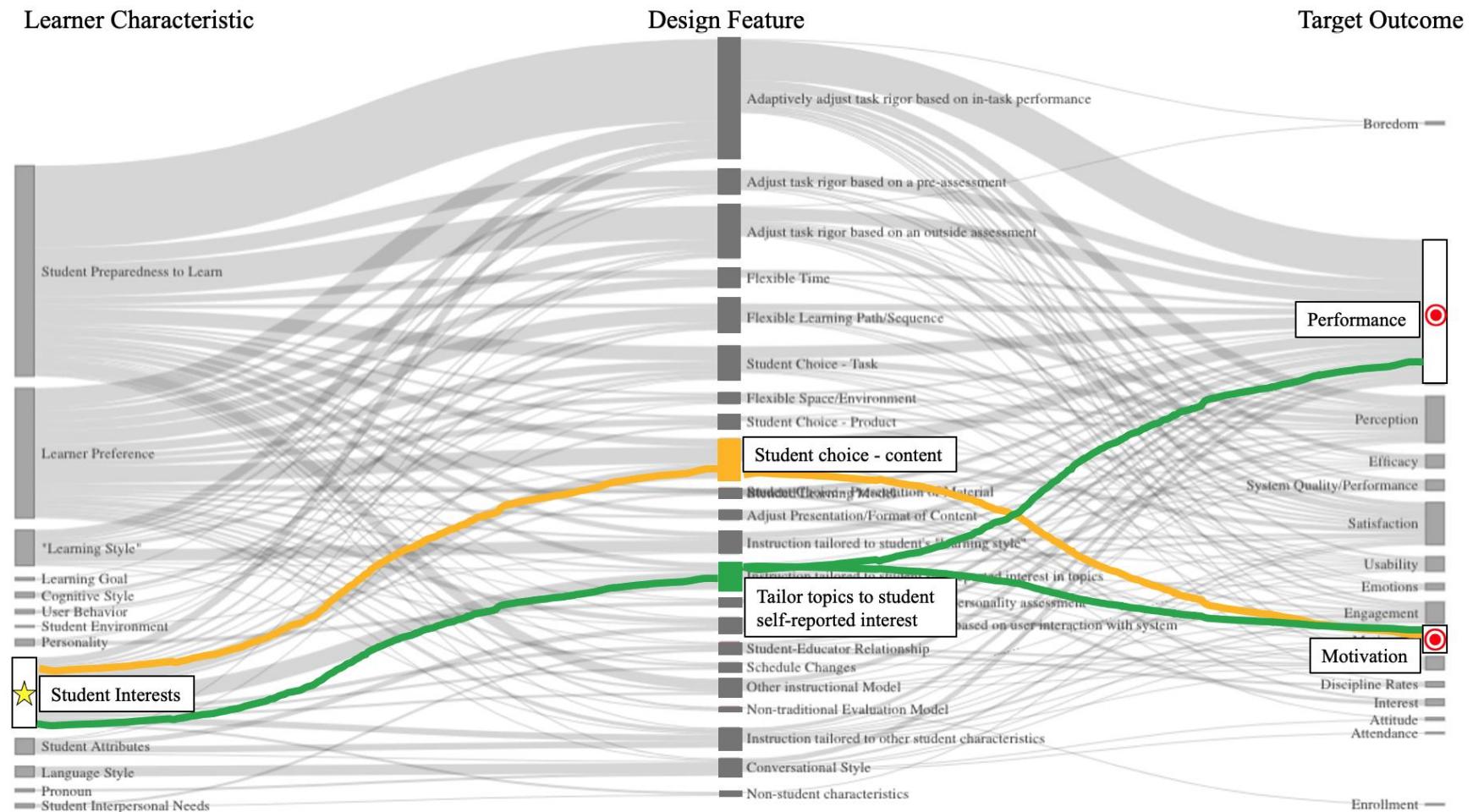
Relations Among Learner Characteristics and Learner Outcomes Design Elements Personalization Comprises



Note. Frequency of association of characteristics and outcomes (top). Implicit conceptualizations of ways PL design leverage characteristics to achieve outcomes (bottom). Design choices in the middle column indicate designs aligned to personalization based on prior or updated knowledge or skill mastery (blue), students' in-task selections (yellow), and pre-task provision of information (green, purple) or school-wide adjustments to afford ad-hoc PL (red).

Figure 10

Sample Theory of Change: How Context Personalization Designs Accommodate Interests and Promote Performance and Motivation



Note. Colored paths demonstrate context personalization methods (middle column) that accommodate a learner characteristic (left column) theorized to promote improved motivation and performance (right column). The yellow path indicates a design choice previously found to achieve effects on motivation (e.g., Høgheim, & Reber, 2015), and the green paths indicate a design choice that benefitted students' motivation (AUTHORS, DATE 1) and performance (AUTHORS, DATE 1, 2).

Table 1

Definitions of Personalized Learning

Source	Definition
OECD (Jarvela, 2006)	“seven critical dimensions: i) development of key skills which are often domain-specific; ii) levelling the educational playing field through guidance for improvement of students’ learning skills and motivation; iii) encouragement of learning through “motivational scaffolding”; iv) collaboration in knowledge-building; v) development of new models of assessment; vi) use of technology as a personal cognitive and social tool; vii) the new role of teachers in better integration of education within the learning society.”
U.S. Office of Educational Technology (2010)	“instruction that is paced to learning needs, tailored to learning preferences, and tailored to the specific interests of different learners. In an environment that is fully personalized, the learning objectives and content as well as the method and pace may all vary (so personalization encompasses differentiation and individualization).”
iNACOL (Patrick et al., 2013)	“Personalized learning is tailoring learning for each student’s strengths, needs and interests – including enabling student voice and choice in what, how, when and where they learn – to provide flexibility and supports to ensure mastery of the highest standards possible.”
Bray & McClaskey (2014)	“In a personalized learning environment, learners actively participate in their learning. They have a voice in what they are learning based on how they learn best. Learners have a choice in how they demonstrate what they know and provide evidence of their learning. In a learner-centered environment, learners own and codesign their learning. The teacher is their guide on their personal journey.”
Bill & Melinda Gates Foundation (2015)	“In personalized learning settings, teachers assess students’ strengths and needs to create learning plans that are aligned with student interests and strong academic standards. This summary provides a brief introduction to the three core elements of personalized learning, along with a snapshot of the key roles that teachers, school systems and leaders, and technology play.”
U.S. Office of Educational Technology (2016)	“instruction in which the pace of learning and the instructional approach are optimized for the needs of each learner. Learning objectives, instructional approaches, and instructional content (and its sequencing) all may vary based on learner needs. In addition, learning activities are meaningful and relevant to learners, driven by their interests, and often self-initiated.”
Eduvate Rhode Island (2017)	“Personalized learning is a student-centered learning approach where learning experiences are tailored to meet the unique needs and ensure strong growth of each individual student on a real-time basis. Specific approaches of personalized learning are varied.” RI adopted 8 themes to inform implementations: individualization, differentiation, standards-aligned, student owned, socially embedded, connected to student interests, in flexible environments, continuous formative assessment.
Cuban (2018)	“a revised continuum of classrooms, programs, and schools that encompass distinct ways that “personalized learning” appear in customized lessons as a strategy to achieve short- and long-term goals for schooling the young.”
SRI Education (2018)	“instruction in which the objectives, pathways, and pace of learning experiences are optimized for each learner’s needs, interests, and ongoing performance. ... Each of these elements can be assigned to or chosen by students on the basis of measures of their needs, interests, or ongoing academic performance. Personalization thus involves tailoring multiple elements of instruction, stressing the importance of understanding each learner as an individual, and matching learning experiences to his or her needs and interests. Technology is typically a critical tool for enabling these processes. Given this definition, the process of personalized learning can be characterized by a cycle of four processes: (1) engage, (2) measure, (3) interpret, and (4) adapt.
Chan Zuckerberg Initiative (2020)	“Providing a truly transformative, personalized learning experience means supporting teachers and students as whole people — supporting not only academic achievement, but also their physical, social, emotional, and identity development.”

Table 2

Thematic Elements Contained within Definitions of Personalized Learning

Source	Learner Characteristics						Design Components						Learner Outcomes				
	Prior Knowledge / Skill	Interests	Goals	Needs	Preferences	Pace	Approach	Objectives / Content	Sequence	Choice	Scaffolding	Technology	Assessment	Agency	Identity	Motivation	Performance / Skill
OECD (2006)											X	X	X			X	X
U.S. Office of Educational Technology (2010)		X	X	X	X	X	X	X									
iNACOL (2013)	X	X		X				X	X	X	X			X		X	
Bray & McClaskey (2014)					X		X			X			X	X			
Bill & Melinda Gates Foundation (2015)	X	X		X								X					
U.S. Office of Educational Technology (2016)		X		X		X	X	X	X	X							
Eduvate Rhode Island (2017)		X		X						X			X	X			
Cuban (2018)			X					X								X	
SRI Education (2018)	X	X		X		X		X	X			X	X			X	
Chan Zuckerberg Initiative (2020)				X										X		X	

Table 3

Learning Theories Relevant to Personalized Learning Based on Overlapping Focal Learner Characteristics and Related Outcomes

Learning Theory	Central Thesis	Key Learner Characteristics	Focal Outcomes
<i>(Meta) Cognitive Theories</i>			
Mastery Learning (Block & Burns, 1975)	Learners' current knowledge should inform selection of next tasks; feedback and support should be timely, specific	Prior knowledge and in-task performance	In-task performance, Skill mastery, learning efficiency
Expertise Reversal (Kalyuga, 2007)	Support benefits learners with low prior knowledge, undermine those with high knowledge	Prior knowledge	In-task performance
Working Memory / Cognitive Load (Sweller, 2011)	Capacity is limited; extraneous load should be reduced to afford germane processing	Working memory capacity	attention, performance
Metacognition and Self-Regulated Learning (Zimmerman & Schunk, 2011)	Learners bring prior knowledge, skill, goals, and agency; can plan and enact strategies, monitor and adapt learning	Metacognitive knowledge of learning skills, prior knowledge, goals, motivation	goal attainment, motivation, persistence, academic performance
<i>Motivation Theories</i>			
Achievement Goals (Elliot, 1999)	Learners may aim to improve /avoid decrease in mastery, performance	Achievement goals	Strategy use, persistence, achievement
Interest Development (Hidi & Renninger, 2006)	Learners bring interests that are triggered and maintained by task, mature and change over time	Individual interests	Engagement, persistence, knowledge activation, achievement
Self-Efficacy (Bandura, 1986)	The belief that a learner can succeed in learning affects engagement, success	Prior personal, vicarious experiences of success in tasks	Engagement, persistence, achievement
Expectancy Value (Eccles & Wigfield, 2020)	Learners appraise tasks to determine expectations, values and costs	Expectancy for success; utility, intrinsic, attainment value; effort, opportunity and psychological cost	Satisfaction, Persistence, academic achievement
Self-Determination (Deci & Ryan, 2000)	Learners are autonomous and motivated by choice; they thrive when they feel competent and that they belong	Ability to choose, affinity informing feelings of relatedness, self-efficacy	Satisfaction, persistence, academic achievement
<i>Affect-related Theories</i>			
Control Value (Pekrun & Perry, 2014)	Learners' appraisals of control and values arouse achievement emotions during learning, which influence engagement and outcome emotions	Emergent experiences of enjoyment, frustration, boredom during learning	outcome emotions (joy, hope, pride, anxiety, shame, anger) related to success/failure

Table 4

Personalization to Learner Characteristics

Learner Feature	Description	Percentage by Discipline				
		Overall	Education	Computer Science	Engineering	Other
Student Preparedness to Learn	Prior knowledge of the learner, academic level prior to learning task, Lexile level	38%	32%	46%	40%	43%
Learner Preference	Learner selections during the learning task (e.g. sequence of activities, types of activities)	27%	28%	22%	25%	29%
Student Interest	Academic and non-academic interests of students	18%	28%	12%	9%	9%
Learning Style	Preferential way in which students process, comprehend, and retain information	5%	2%	14%	26%	5%
Learner Needs	Personal and relational needs of learners	5%	7%	0%	0%	4%
Informal Language	Conversational style language using first and second person	2%	1%	2%	4%	3%
Personality	Personality type based on pre-learning task questionnaire	2%	0%	2%	9%	2%
Cognitive Style	The way individuals think, perceive, and remember information	1%	0%	2%	0%	3%
Pronoun	Learning tasks use pronouns matching the learners (self-report or teacher-report)	1%	1%	0%	0%	0%
Location	Physical, geographic location of the learner	1%	1%	2%	0%	0%
Learning Goal	Specific learning outcome of the learning task	1%	0%	0%	2%	1%
Affect/Emotions	Mental state associated with thoughts, feelings, behavioral responses, and a degree of pleasure or displeasure	1%	0%	0%	2%	2%

Table 5

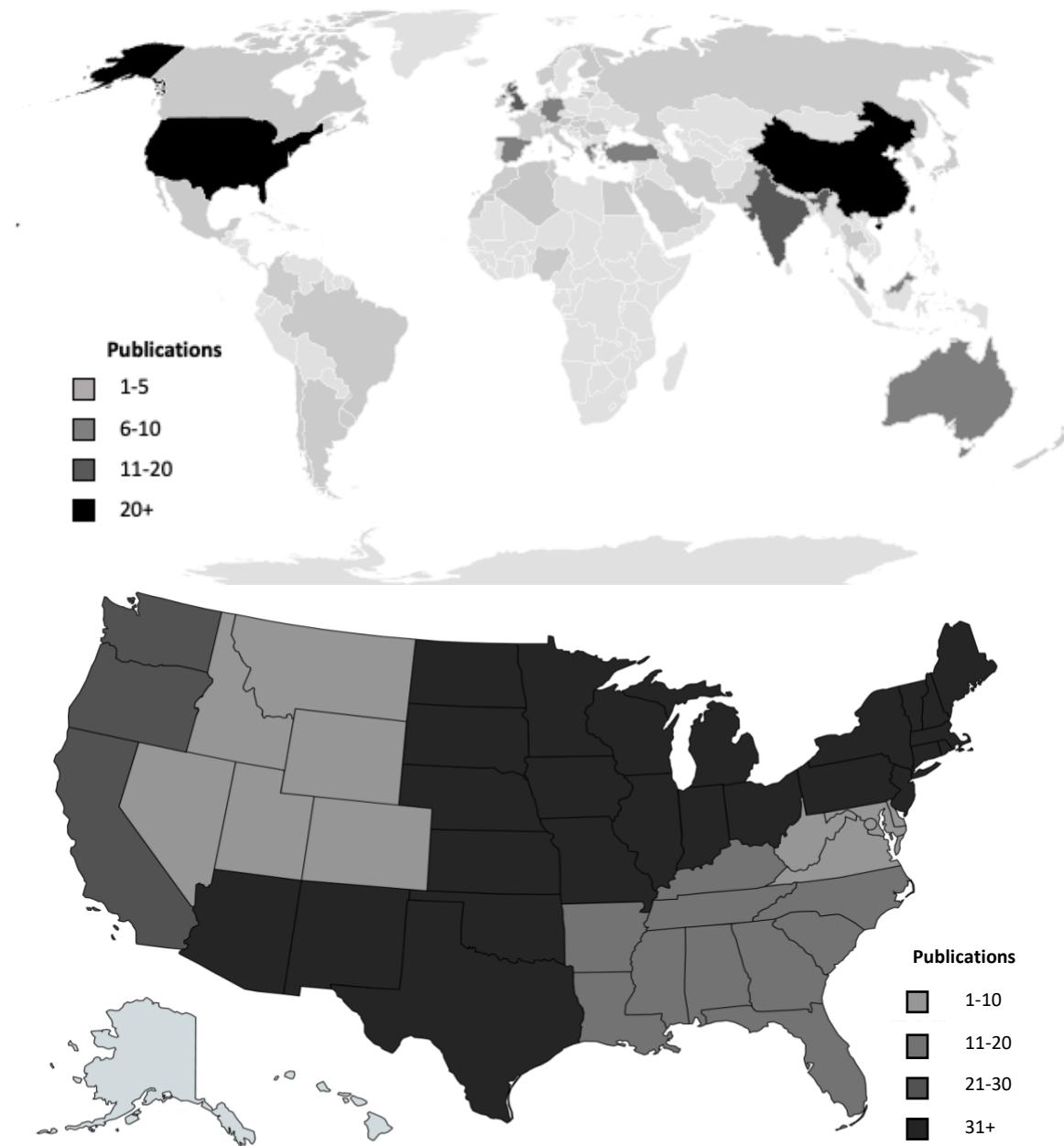
Outcome Variables Targeted by Personalized Learning Designs, by Academic Discipline

Outcome	Academic Domain									
	Education N = 86		Computer Science N = 37		Engineering N = 28	Other (N= 68)		Total N = 219		
	N	%	N	%	N	%	N	%		
Performance * [^]	41	48%		18	49%	14	50%	25	37%	98
Perception * [^]	15	17%		1	3%	1	4%	13	19%	30
Satisfaction * [^]	6	7%		4	11%	6	21%	12	18%	28
Engagement * [^]	4	5%		2	5%	1	4%	7	10%	14
Efficacy *	2	2%		5	14%	2	7%	1	1%	10
Motivation *	6	7%		2	5%	0	0%	1	1%	9
Usability *	0	0%		3	8%	2	7%	4	6%	9
Implementation	3	3%		1	3%	0	0%	1	1%	5
Emotions	1	1%		1	3%	1	4%	2	3%	5
Discipline Rates	4	5%		0	0%	0	0%	0	0%	4
Interest	2	2%		0	0%	1	4%	0	0%	3
Enjoyment	0	0%		0	0%	0	0%	2	3%	2
Attendance	2	2%		0	0%	0	0%	0	0%	2

Note. Across all targeted outcome variables, $\chi^2(36) = 55.37$, $p = 0.021$ * - Constrained to the first 7 outcome variables, $\chi^2(18) = 35.70$, $p = 0.008$ ^ - Constrained to the first 4, $\chi^2(9) = 16.09$, $p = 0.065$

Figure S1

World and United States (Regional) Choropleth Map of Geographic Locations of Institutional Affiliations of First Authors of Personalized Learning Studies.



Note. Countries with no publication data are shown in light gray. In the US, states with PL policies include Alabama, Alaska, Arizona, Arkansas, California, Colorado, Delaware, Georgia, Illinois, Indiana, Iowa, Maryland, Minnesota, Michigan, Nebraska, New Hampshire, New Jersey, New York, North Carolina, Oklahoma, Oregon, Pennsylvania, Rhode Island, South Carolina, South Dakota, Tennessee, Utah, Vermont, Washington, West Virginia, Wisconsin, and Wyoming (as of 2018; Zhang et al., 2020).

Figure S2

Publication Venue of Personalized Learning Research

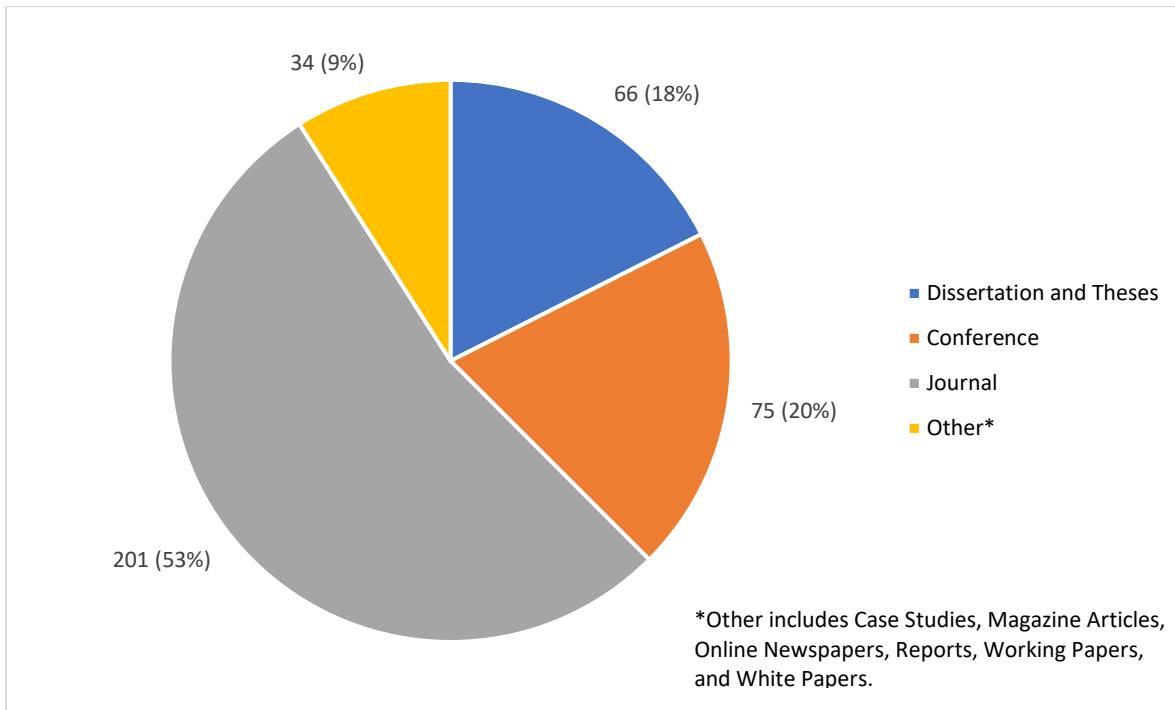


Figure S3

Percentage of Studies Conducted in Digital and Other Contexts, and as Primary or Other Modes of Instruction

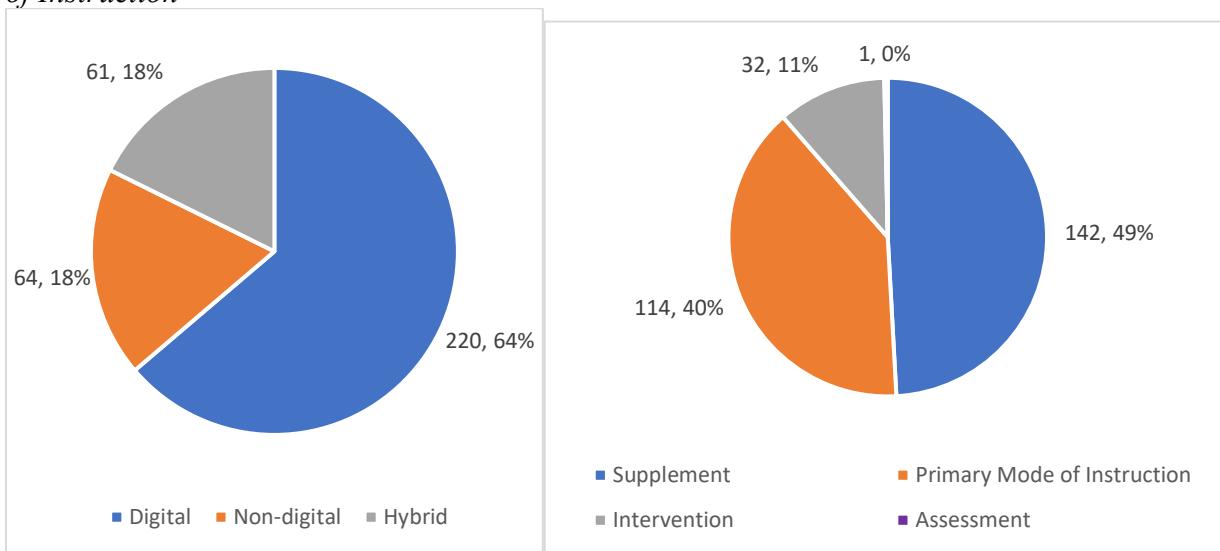


Figure S4

Percentage of Studies Conducted by Academic Domain of the PL Task

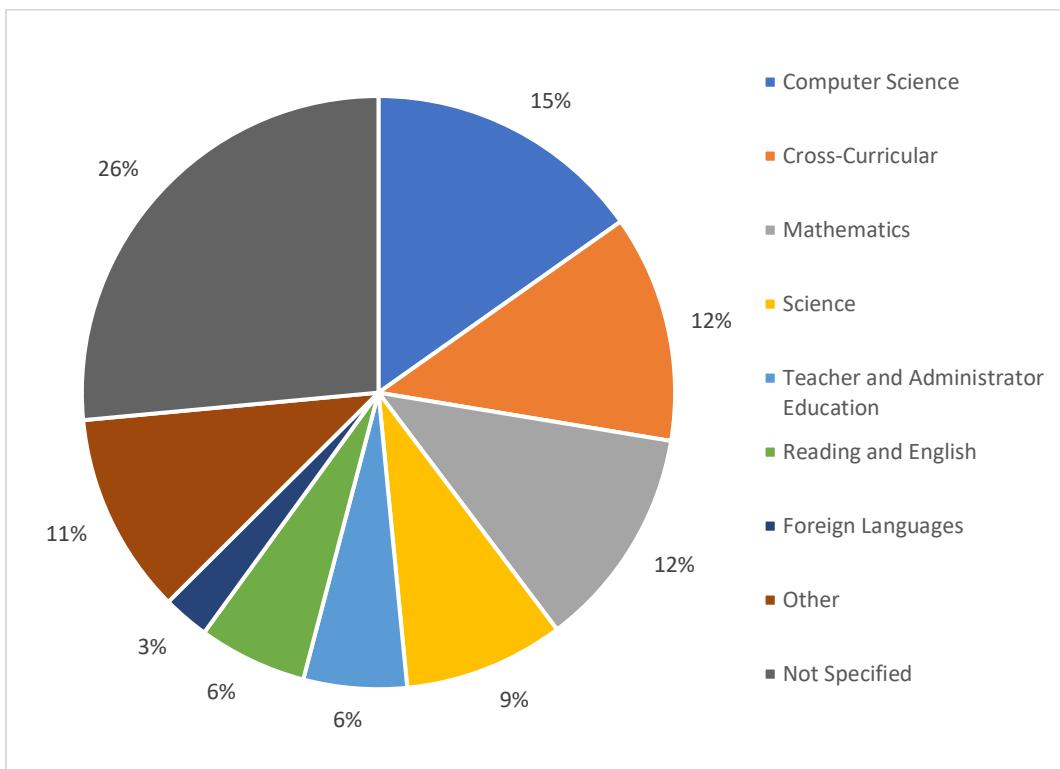


Figure S5

Relations Among Learner Characteristics and Learner Outcomes That Are the Focus of Personalized Learning Initiatives

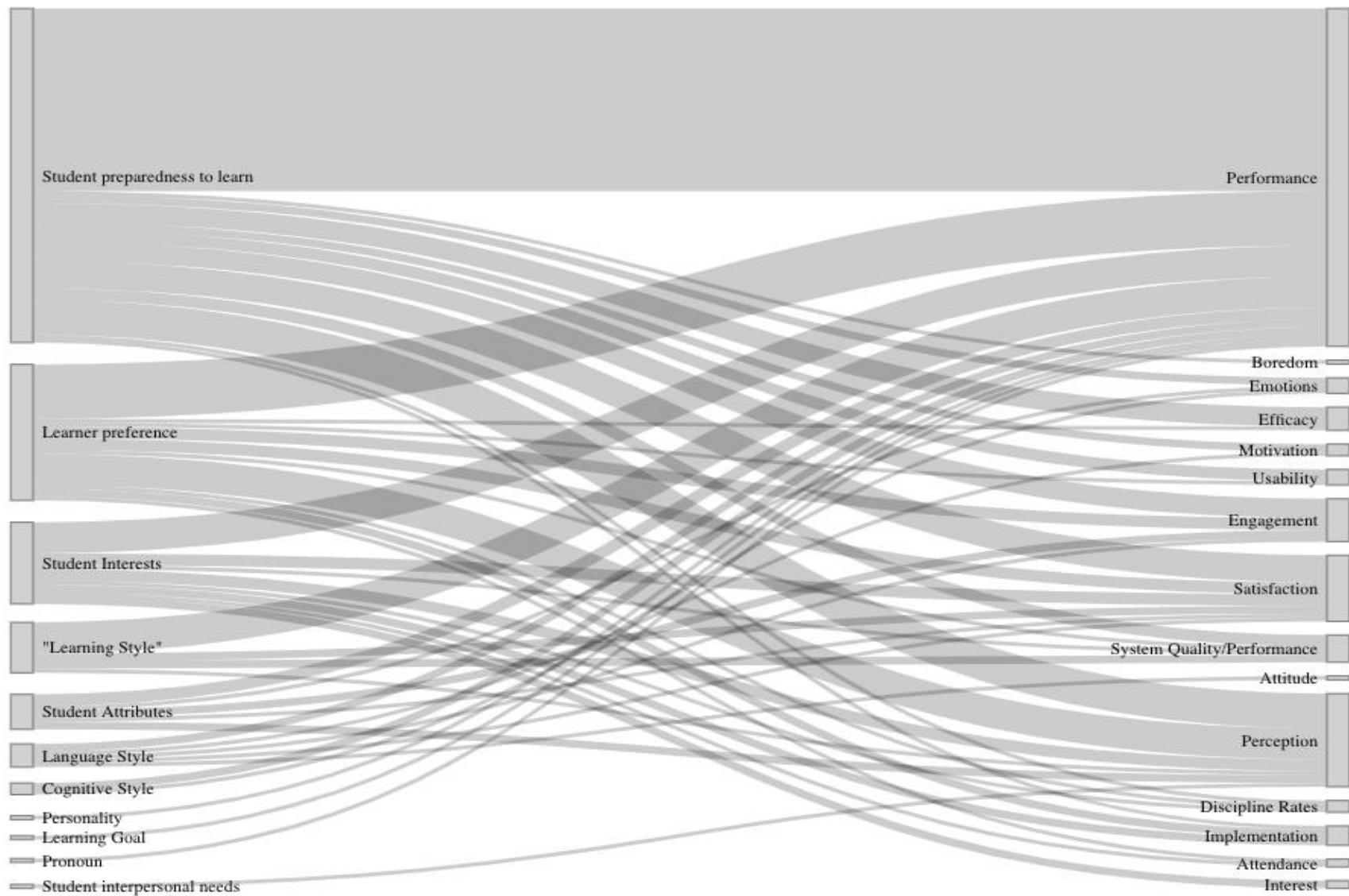


Table S1

Personalized Learning Studies Screened in and Reviewed, by Publication Venue – Journals

Journal	N
<i>Computers & Education</i>	13
<i>Interactive Learning Environments</i>	8
<i>Educational Technology & Society</i>	8
<i>Educational Technology Research and Development</i>	5
<i>The Turkish Online Journal of Educational Technology</i>	5
<i>Computers in Human Behavior</i>	4
<i>Informatics in Education</i>	4
<i>Journal of Computer Assisted Learning</i>	3
<i>International Journal of Game-Based Learning</i>	3
<i>International Journal of Distance Education Technologies</i>	3
<i>Research in Middle Level Education</i>	3
<i>International Journal of Web-Based Learning and Teaching Technologies</i>	3
<i>Journal of Educational Psychology</i>	3
<i>IEEE Access</i>	3
<i>Middle Grades Research Journal</i>	3
<i>British Journal of Educational Technology</i>	3
<i>Education and Information Technologies</i>	3
<i>IEEE Transactions on Learning Technologies</i>	3
<i>International Review of Research in Open and Distributed Learning</i>	3
<i>International Journal of Industrial Ergonomics</i>	2
<i>Journal of Online Learning Research</i>	2
<i>Journal of Interactive Learning Research</i>	2
<i>IEEE Transactions on Education</i>	2
<i>International Journal of Artificial Intelligence in Education</i>	2
<i>Journal of Chemical Education</i>	2
<i>Anatomical Sciences Education</i>	1
<i>Educational Action Research</i>	1
<i>Peabody Journal of Education</i>	1
<i>Educational Technology Research & Development</i>	1
<i>Journal of Educational Technology Systems</i>	1
<i>British Journal of Music Education</i>	1
<i>Language Learning & Technology</i>	1
<i>Electronic Journal of e-Learning</i>	1
<i>Teacher Development</i>	1
<i>Emerging Technologies in the Classroom</i>	1
<i>Journal of Educational Multimedia and Hypermedia</i>	1
<i>English Language Teaching</i>	1
<i>Educational Technologies Research and Development</i>	1
<i>European Journal of Psychology of Education</i>	1
<i>Journal on Excellence in College Teaching</i>	1
<i>Frontiers in Psychology</i>	1

Table S1 (Continued)

Personalized Learning Studies Screened in and Reviewed, by Publication Venue – Journals

Journal	N
<i>Mathematical Thinking and Learning</i>	1
<i>IBM Journal of Research & Development</i>	1
<i>ReCALL</i>	1
<i>Campus-Wide Information Systems</i>	1
<i>The Mathematics Teacher</i>	1
<i>IEEE Computational Intelligence Magazine</i>	1
<i>Journal of Educational Change</i>	1
<i>IEEE Journal of Selected Topics in Signal Processing</i>	1
<i>Journal of Educational Research and Practice</i>	1
<i>IEEE Revista Iberoamericana de Tecnologias del Aprendizaje</i>	1
<i>Journal of Experiential Education</i>	1
<i>Educational Horizons</i>	1
<i>Journal of Marketing for Higher Education</i>	1
<i>IEEE Transactions on Emerging Topics in Computing</i>	1
<i>Journal of Social Studies Education Research</i>	1
<i>Computer Assisted Language Learning</i>	1
<i>JSD</i>	1
<i>IEEE TRANSACTIONS ON PROFESSIONAL COMMUNICATION</i>	1
<i>London Review of Education</i>	1
<i>IEEE/CAA JOURNAL OF AUTOMATICA SINICA</i>	1
<i>Middle School Journal</i>	1
<i>Asia Pacific Education Review</i>	1
<i>Principal Leadership</i>	1
<i>Information and Management</i>	1
<i>Education Sciences</i>	1
<i>Computers and Education</i>	1
<i>The Internet and Higher Education</i>	1
<i>Interdisciplinary Journal of e-Skills and Lifelong Learning</i>	1
<i>The Urban Review</i>	1
<i>International Education Studies</i>	1
<i>Journal of Education and Work</i>	1
<i>Educational Policy</i>	1
<i>Journal of Educational Data Mining</i>	1
<i>Biochemistry and Molecular Biology Education</i>	1
<i>British Educational Research Journal</i>	1
<i>CRPE</i>	1
<i>Journal of Educational Technology & Society</i>	1
<i>Educational Psychology in Practice</i>	1
<i>Journal of Educators Online</i>	1
<i>International Journal of Leadership in Education</i>	1

Table S1 (Continued)

Personalized Learning Studies Screened in and Reviewed, by Publication Venue – Journals

Journal	N
<i>Journal of Experimental Education</i>	1
<i>International Journal of Progressive Education</i>	1
<i>Journal of Learning Analytics</i>	1
<i>International Journal of School & Educational Psychology</i>	1
<i>Journal of New Approaches in Educational Research</i>	1
<i>International Journal of STEM Education</i>	1
<i>Journal of School Psychology</i>	1
<i>International Journal of Sustainability in Higher Education</i>	1
<i>Journal of Special Education Technology</i>	1
<i>International Journal of Teaching and Learning in Higher Education</i>	1
<i>Journal on School Educational Technology</i>	1
<i>International Journal of Virtual and Personal Learning Environments</i>	1
<i>Kappan Magazine</i>	1
<i>Democracy and Education</i>	1
<i>Libraries and the Academy</i>	1
<i>International Journal of Web-Based Learning and Teaching Technologies</i>	1
<i>Malaysian Online Journal of Educational Technology</i>	1
<i>International Journal on E-learning</i>	1
<i>education policy analysis archives</i>	1
<i>US-China Education Review</i>	1
<i>New Horizons in Education</i>	1
<i>User Modeling and User-Adapted Interaction</i>	1
<i>Practical Assessment, Research & Evaluation</i>	1
<i>International Journal of Web-Based Learning and Teaching Technologies</i>	1
<i>Psychology Learning & Teaching</i>	1
<i>Teachers College Record</i>	1
<i>Remedial and Special Education</i>	1
<i>Teachers College Record</i>	1
<i>School Effectiveness and School Improvement: An International Journal of Research, Policy and Practice</i>	1
<i>Technologies for Inclusive Education: Beyond Traditional Integration Approaches</i>	1
<i>Educational Technology and Society</i>	1
<i>The Elementary School Journal</i>	1
<i>Teaching and Teacher Education</i>	1
<i>Journal of Classroom Interaction</i>	1
<i>Technology, Knowledge, and Learning</i>	1
<i>Dyslexia</i>	1
<i>The International Review of Research in Open and Distance Learning</i>	1
<i>Journal of Computer Assisted Living</i>	1
<i>The Learning Organization</i>	1
<i>Journal of Computers in Mathematics and Science Teaching</i>	1

Table S1 (Continued)

Personalized Learning Studies Screened in and Reviewed, by Publication Venue – Journals

Journal	N
<i>Education Technology Research and Development</i>	1
<i>Journal of Computing in Higher Education</i>	1
<i>Transactions on Learning Technologies</i>	1
<i>Journal of Early Childhood Literacy</i>	1
<i>Journal of Education and Training Studies</i>	1
<i>ZDM Mathematics Education</i>	1
<i>Journal of Science Teacher Education</i>	1
<i>Journal of Applied Research on Children: Informing Policy for Children at Risk</i>	1

Table S2

Personalized Learning Studies Screened in and Reviewed, by Publication Venue

– *Conference Proceedings*

Conference Proceeding	N
International Conference on Advanced Learning Technologies	21
IEEE Frontiers in Education Conference	10
Educational Data Mining Society	9
User Modeling, Adaptation, and Personalization	9
International Conference on Computer Science and Education	6
International Conference on Interactive Collaborative Learning	5
Intelligent Tutoring Systems	3
EUROCALL	2
IEEE Global Engineering Education Conference	2
International Conference on Technology for Education	2
IEEE Fifth International Conference on Technology for Education	1
IEEE International Conference on Advanced Learning Technologies	1
International Conference of Educational Innovation through Technology	1
International Conference on Information Technology Based Higher Education and Training	1
International Conference on Information Technology in Medicine and Education	1
Learning Analytics and Knowledge Conference	1

Table S3

Personalized Learning Studies Screened in and Reviewed, by Publication Venue– *Unpublished and Unindexed Venues*

Source	N
Dissertation	66
Center on Reinventing Public Education	4
International Association for Development of the Information Society	3
National Center on Scaling Up Effective Schools	3
Clayton Christensen Institute for Disruptive Innovation	2
RAND Corporation	2
Academy for Educational Development	1
Bill & Melinda Gates Foundation.	1
British Columbia Teachers' Federation	1
Editorial Projects in Education	1
Education Week	1
North American Chapter of the International Group for the Psychology of Mathematics Education	1
Project Tomorrow	1
Research Alliance for New York City Schools	1
Society for Research on Educational Effectiveness	1
Stanford Center for Education Policy Analysis	1
Wisconsin Center for Education Research	1

Table S4

Personalized Learning Studies Screened in and Reviewed

Abel, F., Bittencourt, I. I., Costa, E., Henze, N., Krause, D., & Vassileva, J. (2010). Recommendations in Online Discussion Forums for E-Learning Systems. *IEEE Transactions on Learning Technologies*, 3(2), 165–176. <https://doi.org/10.1109/TLT.2009.40>

Acampora, G., Loia, V., & Gaeta, M. (2010). Exploring e-Learning Knowledge Through Ontological Memetic Agents. *IEEE Computational Intelligence Magazine*, 5(2), 66–77. <https://doi.org/10.1109/MCI.2010.936306>

Akour, H. (2010). Determinants of Mobile Learning Acceptance: An Empirical Investigation in Higher Education. *ProQuest LLC*.

Al Chibani, W., Ghosn Chelala, M., Hindi, G., Doss, C., Fahle, E. M., Loeb, S., ... Hindi, G. (2012). Collaborative computing: A toolset for student motivation in ESL courses (Montana mathematics enthusiast monographs in mathematics education; Vol 11). (B. Sriraman & V. Freiman, Eds.), Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning, Thousand Oaks, CA.

Al-Tarabily, M. M., Abdel-Kader, R. F., Azeem, G. A., & Marie, M. I. (2018). Optimizing Dynamic Multi-Agent Performance in E-Learning Environment. *IEEE Access*, 6, 35631–35645. <https://doi.org/10.1109/ACCESS.2018.2847334>

Alcoholado, C., Nussbaum, M., Tagle, A., Gomez, F., Denardin, F., Susaeta, H., ... Toyama, K. (2012). One Mouse per Child: Interpersonal Computer for Individual Arithmetic Practice. *Journal of Computer Assisted Learning*, 28(4), 295–309.

AlHamad, A. Q., Yaacob, N., & Al-Omari, F. (2012). Applying JESS rules to personalize Learning Management System(LMS)using online quizzes. In 2012 15th International Conference on Interactive Collaborative Learning (ICL) (pp. 1–4). <https://doi.org/10.1109/ICL.2012.6402213>

Alhazbi, S. (2016). Cognition-based adaptive programming tutoring system. In 2016 15th International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1–4). <https://doi.org/10.1109/ITHET.2016.7760714>

Allen, L. K., & Society, I. E. D. M. (2015, June 1). Who Do You Think I Am? Modeling Individual Differences for More Adaptive and Effective Instruction. International Educational Data Mining Society.

Allen, L. K., Mills, C., Jacovina, M. E., Crossley, S., D'Mello, S., & McNamara, D. S. (2016, April 1). Investigating Boredom and Engagement during Writing Using Multiple Sources of Information: The Essay, the Writer, and Keystrokes. Grantee Submission.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Alvarado, L. A. R., Domínguez, E. L., Velázquez, Y. H., Isidro, S. D., & Toledo, C. B. E. (2018). Layered Software Architecture for the Development of Mobile Learning Objects With Augmented Reality. *IEEE Access*, 6, 57897–57909. <https://doi.org/10.1109/ACCESS.2018.2873976>

Álvarez, C., & Cuesta, L. (2010). Designing for online interaction : Scaffolded and collaborative interventions in a graduate-level blended course. *The EUROCALL Review: Proceedings of the EUROCALL 2011 Conference*, Vol 20, 5–12.

Alwalidi, A., & Lefrere, P. (2010). Making E-Learning Invisible: Experience at King Khalid University, Saudi Arabia. *Educational Technology*, 50(3), 4–7.

Alzahrani, A. I., Al-Samarraie, H., Eldenfria, A., & Alalwan, N. (2018). A DEMATEL method in identifying design requirements for mobile environments: students' perspectives. *Journal of Computing in Higher Education*, 30(3), 466–488. <https://doi.org/10.1007/s12528-018-9176-2>

Andrade Johnson, M. D. S. (2017). Potential of One-to-One Technology Uses and Pedagogical Practices: Student Agency and Participation in an Economically Disadvantaged Eighth Grade. ProQuest LLC.

Araújo, R. D., Cattelan, R. G., & Dorça, F. A. (2017). Towards an Adaptive and Ubiquitous Learning Architecture. In 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT) (pp. 539–541). <https://doi.org/10.1109/ICALT.2017.63>

Arhar, J., Niesz, T., Brossmann, J., Koebley, S., O'Brien, K., Loe, D., & Black, F. (2013). Creating a “Third Space” in the Context of a University-School Partnership: Supporting Teacher Action Research and the Research Preparation of Doctoral Students. *Educational Action Research*, 21(2), 218–236.

Armstrong, C. M. J., Hustvedt, G., LeHew, M. L. A., Anderson, B. G., & Connell, K. Y. H. (2016). When the Informal Is the Formal, the Implicit Is the Explicit: Holistic sustainability education at Green Mountain College. *International Journal of Sustainability in Higher Education*, 17(6), 756–775.

Arnet, T. (2016). Connecting ed & tech: Partnering to drive student outcomes, (July), 26 p. 1-26.

Arroyo, I., Woolf, B. P., Burelson, W., Muldner, K., Rai, D., & Tai, M. (2014). A multimedia adaptive tutoring system for mathematics that addresses cognition, metacognition and affect. *International Journal of Artificial Intelligence in Education*, 24(4), 387–426. <https://doi.org/10.1007/s40593-014-0023-y>

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Arshavsky, N., Edmunds, J. A., Miller, L. C., & Corritore, M. (2014). Success in the College Preparatory Mathematics Pipeline: The Role of Policies and Practices Employed by Three High School Reform Models. *School Effectiveness and School Improvement*, 25(4), 531–554.

Artzi, I. (2016). Simulation of an adaptive e-learning environment: A research and development platform for online instructional designers. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Ashwthi, P., Menon, B. M., & Rao, B. R. (2018). Performance Categorization for Personalized Learning in Vocational Training Simulators. In 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT) (pp. 66–68). <https://doi.org/10.1109/ICALT.2018.00022>

Asif, M., & Krogstie, J. (2011). Mobile Student Information System. *Campus-Wide Information Systems*, 28(1), 5–15.

Assami, S., Daoudi, N., & Ajhoun, R. (2018). Personalization criteria for enhancing learner engagement in MOOC platforms. In 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 1265–1272). <https://doi.org/10.1109/EDUCON.2018.8363375>

Asztalos, R. (2014). The use of a wiki at a college in Hungary as a tool to enhance personal learning. In S. Jager, L. Bradley, E. J. Meima, & S. Thouësny (Eds), *CALL Design: Principles and Practice; Proceedings of the 2014 EUROCALL Conference*, Groningen, The Netherlands (pp. 18-22). Dublin: Researchpublishing.net. doi:10.14705/rpnet.2014.000188

Ayub, M. S. M., Talib, O., & Siew, N. M. (2018). The Perceptions of Users Regarding Multimedia Principles in Mobile-Based Japanese Language Learning. *Turkish Online Journal of Educational Technology - TOJET*, 17(3), 113–124.

Baehr, C. (2012). Incorporating user appropriation, media richness, and collaborative knowledge sharing into blended E-learning training. *IEEE Transactions on Professional Communication*, 55(2), 175–184.

Bahmani, A., Sedigh, S., & Hurson, A. R. (2011). Context-aware recommendation algorithms for the percepolis personalized education platform. In 2011 Frontiers in Education Conference (FIE) (p. F4E–1–F4E–6). <https://doi.org/10.1109/FIE.2011.6143102>

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Balaban, I., Bubas, G., & Pipan, M. (2011). Key elements of an e-learning course evaluation survey: An empirical validation. In 2011 14th International Conference on Interactive Collaborative Learning (pp. 336–343). <https://doi.org/10.1109/ICL.2011.6059600>

Baldoni, M., Baroglio, C., Brunkhorst, I., Henze, N., Marengo, E., & Patti, V. (2011). Constraint Modeling for Curriculum Planning and Validation. *Interactive Learning Environments*, 19(1), 81–123.

Baldwin, T. (2012). Online Adaptation for Mobile Device Text Input Personalization. ProQuest LLC.

Barieva, K., Kireeva, Z., Zhou, N., & Kadi, S. (2018). The Overcoming the Communication Barriers of Students as Means of a Personalization of Education. *Journal of Social Studies Education Research*, 9(3), 398–409.

Barria-Pineda, J., Guerra-Hollstein, J. & Brusilovsky, P. (2018). A Fine-Grained Open Learner Model for an Introductory Programming Course in T. Mitrovic, J. Zhang, L. Chen, & D. Chin (eds.) *Proceedings of the 26th User Modeling, Adaptation, and Personalization Conference* (pp.53-61) Springer

Barrett, D. D. (2018). A mixed methods study to measure the impact of mastery-based, personalized learning on at-risk student achievement. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Barrett, S. K., Arnett, T., Innovation, C. C. I. for D., & Impact, P. (2018). Innovative Staffing to Personalize Learning: How New Teaching Roles and Blended Learning Help Students Succeed. Clayton Christensen Institute for Disruptive Innovation.

Basham, J. D., Hall, T. E., Carter Jr., R. A., & Stahl, W. M. (2016). An Operationalized Understanding of Personalized Learning. *Journal of Special Education Technology*, 31(3), 126–136.

Bautista, N. U., & Boone, W. J. (2015). Exploring the Impact of TeachMETM Lab Virtual Classroom Teaching Simulation on Early Childhood Education Majors' Self-Efficacy Beliefs. *Journal of Science Teacher Education*, 26(3), 237–262.

Beese, E. B. (2019). How do they do it? Describing nontraditional designs for creating and carrying out personalized plans for learning in three high schools. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Behmke, D. A., & Atwood, C. H. (2012). IM-Chem: The Use of Instant Messaging to Improve Student Performance and Personalize Large Lecture General Chemistry Courses. *Journal of Chemical Education*, 89(4), 474–476.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Benchoff, D. E., González, M. P., & Huapaya, C. R. (2018). Personalization of Tests for Formative Self-Assessment. *IEEE Revista Iberoamericana de Tecnologias Del Aprendizaje*, 13(2), 70–74. <https://doi.org/10.1109/RITA.2018.2831759>

Benhamdi, S., Babouri, A., & Chiky, R. (2017). Personalized Recommender System for e-Learning Environment. *Education and Information Technologies*, 22(4), 1455–1477.

Bergstrom, T. M. (2016). Gatekeepers for gifted social studies: Case studies of middle school teachers. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Bernacki, M. L., & Walkington, C. (2018). The Role of Situational Interest in Personalized Learning. *Journal of Educational Psychology*, 110(6), 864–881.

Berry, R. R. (2016). Advances in cognitive-behavioral therapy for youth with anxiety disorders: A brief summary. *Current Psychiatry Reviews*, 12(1), 29–36. <https://doi.org/10.2174/157340051201160215102844>

Bethea, K. R. (2012). A cross-case analysis of the implementation and impact of smaller learning communities in selected SC public middle schools. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Bicer, A. (2016). Effect of personalized learning paths on learning quadratics in algebra. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Billings, K. J. (2012). Perspective from the Ed Tech Field. *Journal of Applied Research on Children*, 3(2).

Bingham, A. J. (2016). Drowning Digitally? How Disequilibrium Shapes Practice in a Blended Learning Charter School. *Teachers College Record*, 118(1).

Bingham, A. J. (2017). Personalized Learning in High Technology Charter Schools. *Journal of Educational Change*, 18(4), 521–549.

Bingham, A. J., & Burch, P. (2017). Navigating Middle of the Road Reforms through Collaborative Community. *Democracy & Education*, 25(2).

Bingham, A. J., Pane, J. F., Steiner, E. D., & Hamilton, L. S. (2018). Ahead of the Curve: Implementation Challenges in Personalized Learning School Models. *Educational Policy*, 32(3), 454–489.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Bloomer, M. (2017). Learning Delivery and Degree Completion: Examining Competency-Based Education “Fair to Compare?” ProQuest LLC.

Bolley, S. (2014). Examining the effects of blended learning for ninth grade students who struggle with math. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Bonk, C. J., Zhu, M., Kim, M., Xu, S., Sabir, N., & Sari, A. R. (2018). Pushing toward a More Personalized MOOC: Exploring Instructor Selected Activities, Resources, and Technologies for MOOC Design and Implementation. *International Review of Research in Open and Distributed Learning*, 19(4), 92–115.

Borup, J., & Stevens, M. A. (2017). Using student voice to examine teacher practices at a cyber charter high school. *British Journal of Educational Technology*, 48(5), 1119–1130. <https://doi.org/10.1111/bjet.12541>

Boyd, M. P., & Smyntek-Gworek, S. (2012). Morning Meeting in a third grade classroom: Literacy and learning [standards]. *Journal of Classroom Interaction*, 47(2), 4–12.

Brasiel, S., Jeong, S., Ames, C., Lawanto, K., Yuan, M., & Martin, T. (2016). Effects of Educational Technology on Mathematics Achievement for K-12 Students in Utah. *Journal of Online Learning Research*, 2(3), 205–226.

Brasiel, S., Martin, T., Jeong, S., Yuan, M., & (SREE), S. for R. on E. E. (2016). Mixed Methods Evaluation of Statewide Implementation of Mathematics Education Technology for K-12 Students. Society for Research on Educational Effectiveness.

Bremgartner, V., & Netto, J. F. de M. (2012). Improving collaborative learning by personalization in Virtual Learning Environments using agents and competency-based ontology. In 2012 Frontiers in Education Conference Proceedings (pp. 1–6). <https://doi.org/10.1109/FIE.2012.6462345>

Brink, M., & Bartz, D. E. (2017). Effective Use of Formative Assessment by High School Teachers. *Practical Assessment, Research & Evaluation*, 22(8).

Brinton, C. G., Rill, R., Ha, S., Chiang, M., Smith, R., & Ju, W. (2015). Individualization for Education at Scale: MIIC Design and Preliminary Evaluation. *IEEE Transactions on Learning Technologies*, 8(1), 136–148. <https://doi.org/10.1109/TLT.2014.2370635>

British Columbia Teachers' Federation. (2018). Educational Technologies and Teacher Autonomy. BCTF Research Report. 2017-TC-02.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Brown, B. A. (2014). How principals cultivate technology integration and use professional learning networks. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Brusilovsky, P., Somyürek, Guerra, S.J., Hosseini, R., & Zadorozhny, V. (2015). The Value of Social: Comparing Open Student Modeling and Open Social Student Modeling in F. Ricci, K. Bontcheva, O. Conlan, & S. Lawless (eds.) *Proceedings of the 23rd User Modeling, Adaptation, and Personalization Conference* (pp.44-55) Springer

Burridge, P., Carpenter, C., Cherednichenko, B., & Kruger, T. (2010). Investigating Praxis Inquiry within Teacher Education Using Giddens' Structuration Theory. *Journal of Experiential Education*, 33(1), 19–37.

Cakir, O., & Simsek, N. (2010). A comparative analysis of the effects of computer and paper-based personalization on student achievement. *Computers & Education*, 55(4), 1524–1531. <https://doi.org/10.1016/j.compedu.2010.06.018>

Cameron, K. (2012). The capability approach: Enabling musical learning. *British Journal of Music Education*, 29(3), 281–292. <https://doi.org/10.1017/S0265051712000356>

Campbell, L. O., & Cox, T. D. (2018). Digital Video as a Personalized Learning Assignment: A Qualitative Study of Student Authored Video Using the ICSDR Model. *Journal of the Scholarship of Teaching and Learning*, 18(1), 11–24.

Cannata, M., & (NCSU), N. C. on S. U. E. S. (2013). Understanding the Student Experience in High School: Differences by School Value-Added Rankings. National Center on Scaling Up Effective Schools. National Center on Scaling Up Effective Schools.

Capuano, N., Gaeta, M., Ritrovato, P., & Salerno, S. (2014). Elicitation of latent learning needs through learning goals recommendation. *Computers in Human Behavior*, 30, 663–673. <https://doi.org/10.1016/j.chb.2013.07.036>

Carolan, S., Moreau, G., Magnin, M., & Chinesta, F. (2015). Towards the Effective Use of Available Educational Resources: Designing Adaptive Hypermedia Environments for the Engineering Sciences. In 2015 IEEE 15th International Conference on Advanced Learning Technologies (pp. 400–402). <https://doi.org/10.1109/ICALT.2015.148>

Cerovski, J. (2016). The Process of Accepting Technology Innovation for Rural Teachers. ProQuest LLC.

Chatti, M. A., Dugoija, D., Thüs, H., & Schroeder, U. (2014). Learner Modeling in Academic Networks. In 2014 IEEE 14th International Conference on Advanced Learning Technologies (pp. 117–121). <https://doi.org/10.1109/ICALT.2014.42>

Chen, C.-M., & Sun, Y.-C. (2012). Assessing the Effects of Different Multimedia Materials on Emotions and Learning Performance for Visual and Verbal Style Learners. *Computers & Education*, 59(4), 1273–1285.

Chen, M., Chiang, F. K., Jiang, Y. N., & Yu, S. Q. (2017). A Context-Adaptive Teacher Training Model in a Ubiquitous Learning Environment. *Interactive Learning Environments*, 25(1), 113–126.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Chen, S. Y., & Liu, X. (2011). Mining Students' Learning Patterns and Performance in Web-Based Instruction: A Cognitive Style Approach. *Interactive Learning Environments*, 19(2), 179–192.

Chen, S. Y., Huang, P.-R., Shih, Y.-C., & Chang, L.-P. (2016). Investigation of Multiple Human Factors in Personalized Learning. *Interactive Learning Environments*, 24(1), 119–141.

Chen, X., Mitrovic, A. & Mathews, M. (2018). Exploring Adaptive Strategies for Providing Learning Activities in T. Mitrovic, J. Zhang, L.Chen, & D. Chin (eds.) *Proceedings of the 26th User Modeling, Adaptation, and Personalization Conference* (pp.139-145) Springer

Chi, M., VanLehn, K., Litman, D. & Jordan, P. (2010). Inducing Effective Pedagogical Strategies Using Learning Context Features in P. De Bra, A. Kobsa, & D. Chin (eds.) *Proceedings of the 18th User Modeling, Adaptation, and Personalization Conference* (pp.147-158) Springer

Chong, S. X., & Lee, C.-S. (2012). Developing a Pedagogical-Technical Framework to Improve Creative Writing. *Educational Technology Research and Development*, 60(4), 639–657.

Choudhury, R.R., Yin, H. & Fox, A. (2016). Scale-driven automatic hint generation for coding style in A. Micarelli, J. Stamper, & K. Panourgia (eds.) *Proceedings of the 13th Intelligent Tutoring Systems Conference* (pp.122-132) Springer

Chu, H.-C., Hwang, G.-J., Tsai, C.-C., & Tseng, J. C. R. (2010). A two-tier test approach to developing location-aware mobile learning systems for natural science courses. *Computers & Education*, 55(4), 1618–1627.
<https://doi.org/10.1016/j.compedu.2010.07.004>

Chunzhi, W., zeqi, W., & qianqian, L. (2013). Study of the E-learning system based on the personalized knowledge search. In 2013 8th International Conference on Computer Science & Education (pp. 592–598). <https://doi.org/10.1109/ICCSE.2013.6553978>

Ciloglugil, B., & Inceoglu, M. M. (2018). An Adaptive E-Learning Environment Architecture Based on Agents and Artifacts Metamodel. In 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT) (pp. 72–74).
<https://doi.org/10.1109/ICALT.2018.00024>

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Collado, C. L. (2017). A case study of formative assessment processes in preschool special education settings. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Connor, C. M., Mazzocco, M. M. M., Kurz, T., Crowe, E. C., Tighe, E. L., Wood, T. S., & Morrison, F. J. (2018). Using assessment to individualize early mathematics instruction. *Journal of School Psychology*, 66, 97–113.
<https://doi.org/10.1016/j.jsp.2017.04.005>

Cord, K. E. (2017). Instructional leader influence in 1:1 Technology integration creating student-centered learning. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Crosslin, M. B. (2018). Customizable modality pathway learning design: Exploring personalized learning choices through a lens of self-regulated learning. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Dabbagh, N., & Fak, H. (2017). College Students' Perceptions of Personal Learning Environments through the Lens of Digital Tools, Processes and Spaces. *Journal of New Approaches in Educational Research*, 6(1), 28–36.

Darrisaw-Akil, M. A. (2014). The relationship between small urban high schools and resiliency in at-risk students. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Dascalu, M.-I., Bodea, C.-N., Moldoveanu, A., Mohora, A., Lytras, M., & de Pablos, P. O. (2015). A recommender agent based on learning styles for better virtual collaborative learning experiences. *Computers in Human Behavior*, 45, 243–253.
<https://doi.org/10.1016/j.chb.2014.12.027>

Davis O., E. (2018). The impact of human-provided external instruction on learning with an interactive learning technology. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest LLC.

Davis, D. (2017). Personalized learning system: Type 2 diabetes mellitus preventive care. *Dissertation Abstracts International: Section B: The Sciences and Engineering*. ProQuest Information & Learning.

de Melo, F. R., Flôres, E. L., de Carvalho, S. D., de Teixeira, R. A. G., Batista Loja, L. F., & de Sousa Gomide, R. (2014). Computational organization of didactic contents for personalized virtual learning environments. *Computers & Education*, 79, 126–137. <https://doi.org/10.1016/j.compedu.2014.07.012>

DeArmond, M., Maas, T., & (CRPE), C. on R. P. E. (2018). Leading Personalized Learning. Center on Reinventing Public Education.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Deed, C., Lesko, T. M., & Lovejoy, V. (2014). Teacher Adaptation to Personalized Learning Spaces. *Teacher Development*, 18(3), 369–383.

DeMink-Carthew, J., Olofson, M. W., LeGeros, L., Netcoh, S., & Hennessey, S. (2017). An Analysis of Approaches to Goal Setting in Middle Grades Personalized Learning Environments. *RMLE Online: Research in Middle Level Education*, 40(10), 1–11.

DePass Pipkin, T. S. (2013). Personalized learning for the at-risk through Intervention and Referral Services. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest LLC.

Dinkins, T. M. (2017). Teacher's Perceptions of Implementing Personalized Learning in Urban Elementary School Classrooms. ProQuest LLC.

Doke, A., Singh, G. K., Kumar, V., Bhat, S., & Pedanekar, N. (2014). Which hat are you wearing today? Enabling perspectives while learning computer science. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings (pp. 1–4). <https://doi.org/10.1109/FIE.2014.7044227>

Dorça, F. A., Araújo, R. D., de Carvalho, V. C., Resende, D. T., & Cattelan, R. G. (2016). An Automatic and Dynamic Approach for Personalized Recommendation of Learning Objects Considering Students Learning Styles: An Experimental Analysis. *Informatics in Education*, 15(1), 45–62.

Doss, C., Fahle, E. M., Loeb, S., York, B. N., & (CEPA), S. C. for E. P. A. (2017). Supporting Parenting through Differentiated and Personalized Text-Messaging: Testing Effects on Learning during Kindergarten. CEPA Working Paper No. 16-18. Stanford Center for Education Policy Analysis.

Dutke, S., Grefe, A. C., & Leopold, C. (2016). Learning from Scientific Texts: Personalizing the Text Increases Transfer Performance and Task Involvement. *European Journal of Psychology of Education*, 31(4), 499–513.

Dwivedi, P., & Bharadwaj, K. K. (2013). Effective Trust-Aware E-learning Recommender System Based on Learning Styles and Knowledge Levels. *Educational Technology & Society*, 16(4), 201–216.

Dwivedi, P., Kant, V., & Bharadwaj, K. K. (2018). Learning Path Recommendation Based on Modified Variable Length Genetic Algorithm. *Education and Information Technologies*, 23(2), 819–836.

Ertem, I. S. (2013). The Influence of Personalization of Online Texts on Elementary School Students' Reading Comprehension and Attitudes toward Reading. *International Journal of Progressive Education*, 9(3), 218–228.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Essalmi, F., Tlili, A., Ben Ayed, L. J., & Jemmi, M. (2017). Toward Modeling the Learner's Personality Using Educational Games. *International Journal of Distance Education Technologies*, 15(4), 21–38.

Evans, M. A., Pruitt, J., Chang, M., & Nino, M. (2014). Designing Personalized Learning Products for Middle School Mathematics: The Case for Networked Learning Games. *Journal of Educational Technology Systems*, 42(3), 235–254.

Evans, S., Steele, J., Robertson, S., & Dyer, T. (2017). Personalizing Post Titles in the Online Classroom: A Best Practice? *Journal of Educators Online*, 14(2).

Ewen, M., & Topping, K. (2012). Personalised learning for young people with social, emotional and behavioural difficulties. *Educational Psychology in Practice*, 28(3), 221–239. <https://doi.org/10.1080/02667363.2012.684090>

Ezen-Can, A. & Boyer, K. E. (2015). Choosing to Interact: Exploring the Relationship Between Learner Personality, Attitudes, and Tutorial Dialogue Participation in O.C. Santos, J.G. Boticario, C. Romero, M. Pechenizkiy, A. Merceron, P. Mitros, J.M. Luna, C. Mihaescu, P. Moreno, A. Hershkovitz, S. Ventura, M. Desmarais (eds.) *Proceedings of the 8th International Conference on Educational Data Mining* (pp.125-128) Educational Data Mining Society

Fan, Y.-C., Wang, T.-H., & Wang, K.-H. (2011). A Web-Based Model for Developing Assessment Literacy of Secondary In-Service Teachers. *Computers & Education*, 57(2), 1727–1740.

Fancsali, C., Jaffe-Walter, R., Mitchell-McKnight, V., Nevarez, N., Orellana Williams Rose, Lea, E., & Development, A. for E. (2010). *Small High Schools at Work: A Case Study of Six Gates-Funded Schools in New York City*. A Report to the Bill & Melinda Gates Foundation. Academy for Educational Development. Academy for Educational Development.

Fang, Y., Nye, B., Pavlik, P., Xu, Y., Graesser, A. & Hu, X. (2017). Online Learning Persistence and Academic Achievement in X. Hu, T. Barnes, A. Hershkovitz, L. Paquette (eds.) *Proceedings of the 10th International Conference on Educational Data Mining* (pp.312-317) Educational Data Mining Society

Farmer, M. R. (2017). Steps toward personalized learning using online asynchronous technology: A study of 7th, 10th, and 12 th graders at a small rural school in Massachusetts. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Feild, J. Lewkow, N., Zimmerman, N., Riedesel, M., & Essa, A. (2016). A Scalable Learning Analytics Platform for Automated Writing Feedback in T. Barnes, M. Chi, and M. Feng (eds.) *Proceedings of the 9th International Conference on Educational Data Mining* (pp.688-693) Educational Data Mining Society

Flores, M. E. (2017). Analysis of an alternative high school's graduates and dropouts: A phenomenological study. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Ford, C. J. (2018). The Beliefs of Secondary Teachers on Personalized Learning for Students through the Use of Instructional Technology. ProQuest LLC.

Foss, J. G. K., Cristea, A. I., & Hendrix, M. (2010). Continuous Use of Authoring for Adaptive Educational Hypermedia: A Long-term Case Study. In *2010 10th IEEE International Conference on Advanced Learning Technologies* (pp. 194–196). <https://doi.org/10.1109/ICALT.2010.59>

Foundation, B. and M. G. (2015). Teachers Know Best: Making Data Work for Teachers and Students. Bill & Melinda Gates Foundation. Bill & Melinda Gates Foundation.

Fox, L., & McNally, J. C. (2018). The Professor-Student Learning Relationship in Higher Education: Wisdom from Students with Learning Disabilities. *Journal on Excellence in College Teaching*, 29(1), 27–48.

Francis, D. J., Kulesz, P. A., & Benoit, J. S. (2018). Extending the Simple View of Reading to Account for Variation within Readers and across Texts: The Complete View of Reading (CVR*"i"*). *Remedial and Special Education*, 39(5), 274–288.

Gallagher, R. P. (2015). Implementations of technology enhanced personalized learning: Exploration of success criteria, concerns, and characteristics. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Gamrat, C., Zimmerman, H. T., Dudek, J., & Peck, K. (2014). Personalized Workplace Learning: An Exploratory Study on Digital Badging within a Teacher Professional Development Program. *British Journal of Educational Technology*, 45(6), 1136–1148.

Gathumbi, A., Ayot, H., Kimemia, J., & Ondigi, S. (2015). Teachers' and School Administrators' Preparedness in Handling Students with Special Needs in Inclusive Education in Kenya. *Journal of Education and Practice*, 6(24), 129–138.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Gatumu, M. K., MacMillan, F. M., Langton, P. D., Headley, P. M., & Harris, J. R. (2014). Evaluation of Usage of Virtual Microscopy for the Study of Histology in the Medical, Dental, and Veterinary Undergraduate Programs of a UK University. *Anatomical Sciences Education*, 7(5), 389–398.

Gaynor, J. W., & Brown, D. (2012). An Online Booking System Encourages Self-Directed Learning and Personalization of Study. *Journal of Chemical Education*, 89(8), 1019–1024.

Gibbs, N. (2013). The Impact of Personalization-Based Tailored Instructional Communications on College Student Persistence. ProQuest LLC.

Gikandi, J. (2013). Synergy between Authentic Assessment Activities and Learner Autonomy: How Does This Promote Shared Authenticity in Online Higher Education? *International Journal on E-Learning*, 12(4), 353–381.

Gleason, S. C., & Gerzon, N. (2014). High-Achieving Schools Put Equity Front and Center. *Journal of Staff Development*, 35(1), 24–26.

Gnagey, J., & Lavertu, S. (2016). The Impact of Inclusive STEM High Schools on Student Achievement. *AERA Open*, 2(2).

Godfrey, R. V. (2016). Mobile phone practices and policies in family and consumer sciences programs in Texas. *Family and Consumer Sciences Research Journal*, 44(3), 295–308. <https://doi.org/10.1111/fcsr.12146>

Grivokostopoulou, F., & Hatzilygeroudis, I. (2015). Semi-automatic generation of interactive exercises related to search algorithms. In 2015 10th International Conference on Computer Science & Education (ICCSE) (pp. 33–37). <https://doi.org/10.1109/ICCSE.2015.7250213>

Grivokostopoulou, F., Perikos, I., & Hatzilygeroudis, I. (2014). Using Semantic Web Technologies in a Web Based System for Personalized Learning AI Course. In 2014 IEEE Sixth International Conference on Technology for Education (pp. 257–260). <https://doi.org/10.1109/T4E.2014.36>

Gross, B., DeArmond, M., & (CRPE), C. on R. P. E. (2018). Personalized Learning at a Crossroads: Early Lessons from the Next Generation Systems Initiative and the Regional Funds for Breakthrough Schools Initiative. Center on Reinventing Public Education.

Grover, K. O. (2014). Jessica's Journey: Transforming School Culture. *Educational Horizons*, 92, 16–20.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Guerrero-Roldán, A., García-Torà, I., Prieto-Blázquez, J., & Minguillón, J. (2010). Using an IMS-LD based questionnaire to create adaptive learning paths. In 2010 IEEE Frontiers in Education Conference (FIE) (p. F1J-1-F1J-6). <https://doi.org/10.1109/FIE.2010.5673375>

Gutierrez, R. J. (2013). Building “Consciousness and Legacies”: Integrating Community, Critical, and Classical Knowledge Bases in a Precalculus Class. ProQuest LLC.

Gutl, C., Cheong, C., Cheong, F., Chang, V., Nau, S. Z., & Pirker, J. (2015). Expectations of the generation NeXt in higher education: Learning engagement approaches in information sciences subjects. In 2015 International Conference on Interactive Collaborative Learning (ICL) (pp. 205–214). <https://doi.org/10.1109/ICL.2015.7318027>

Haas, B. J. (2016). IWitness and student empathy: Perspectives from USC Shoah Foundation Master Teachers. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

Hagerman, D., & Porath, S. (2018). The Possibilities of Teaching for, with, and about Social Justice in a Public Middle School. *Middle School Journal*, 49(5), 26–34.

Halimi, K., Seridi-Bouchelaghem, H., & Faron-Zucker, C. (2014). An Enhanced Personal Learning Environment Using Social Semantic Web Technologies. *Interactive Learning Environments*, 22(2), 165–187.

Halkyard, S. (2012). The Separate and Collective Effects of Personalization, Personification, and Gender on Learning with Multimedia Chemistry Instructional Materials. ProQuest LLC.

Halverson, R., Barnicle, A., Hackett, S., Rawat, T., Rutledge, J., Kallio, J., ... Research, W. C. for E. (2015). Personalization in Practice: Observations from the Field. WCER Working Paper No. 2015-8. Wisconsin Center for Education Research.

Hampson, C., Conlan, O., & Wade, V. (2011). Challenges in Locating Content and Services for Adaptive eLearning Courses. In 2011 IEEE 11th International Conference on Advanced Learning Technologies (pp. 157–159). <https://doi.org/10.1109/ICALT.2011.52>

Hansen, R. C. (2013). Exploring the effects of 1:1 Laptop implementation on quantifiable student outcomes in junior high school science classes between demographic subpopulations of students. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Harrity, S. M. (2014). Education's perfect storm: A case study of the transformation of Worcester technical high school. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

Hartley, D. P. (2012). One Freshman Academy's Influence on Student Engagement in High School. ProQuest LLC.

Hassan, M. M., & Qureshi, A. N. (2018). Disrupting the role learning loop: CS majors iterating over learning modulaes with an adaptive educational hypermedia in R. Nkambou, R. Azevedo, & J. Vassileva (eds.) *Proceedings of the 14th Intelligent Tutoring Systems Conference* (pp.66-77) Springer

Hawthorn, S. L. (2018). Exploring the Benefits of Digital Learning Opportunities in the Elementary Classroom to Support Intervention, Challenge, and Personalized Instructions. ProQuest LLC.

Heilman, M., Collins-Thompson, K., Callan, J., Eskenazi, M., Juffs, A., & Wilson, L. (2010). Personalization of Reading Passages Improves Vocabulary Acquisition. *International Journal of Artificial Intelligence in Education*, 20(1), 73–98.

Hill, T. D. (2015). Does organizational design of urban public schools lead students to charter schools? the students speak. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

Hoffman Sr., M. A. (2016). The Role of Personalized Professional Learning as a Motivational Factor for College Faculty to Engage in Ongoing Professional Development.

Høgheim, S., & Reber, R. (2017). Eliciting Mathematics Interest: New Directions for Context Personalization and Example Choice. *Journal of Experimental Education*, 85(4), 597–613. <https://doi.org/10.1080/00220973.2016.1268085>

Hooshyar, D., Ahmad, R. B., Yousefi, M., Yusop, F. D., & Horng, S.-J. (2015). A Flowchart-Based Intelligent Tutoring System for Improving Problem-Solving Skills of Novice Programmers. *Journal of Computer Assisted Learning*, 31(4), 345–361.

Hsiao, I. , Bakalov, F., Brusilovsky, P., & König-Ries, B. (2011). Open social student modeling: visualizing student models with parallel introspective views in J. A. Konstan, R. Conejo, J. L. Marzo, & N., Oliver (eds.) *Proceedings of the 19th User Modeling, Adaptation, and Personalization Conference* (pp.171-182) Springer

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Hsiao, I., Malhotra, M., Lan, C., Chae, H. S., & Natriello, G. (2014). mSchool: A Learner and Community Centered Open Knowledge Discovery and Management System. In 2014 IEEE 14th International Conference on Advanced Learning Technologies (pp. 25–27). <https://doi.org/10.1109/ICALT.2014.18>

Hsieh, C.-W., & Chen, S. Y. (2016). A Cognitive Style Perspective to Handheld Devices: Customization vs. Personalization. *International Review of Research in Open and Distributed Learning*, 17(1), 1–22.

Huang, Y.-M., Liang, T.-H., Su, Y.-N., & Chen, N.-S. (2012). Empowering Personalized Learning with an Interactive E-Book Learning System for Elementary School Students. *Educational Technology Research and Development*, 60(4), 703–722.

Huang, Y., & Huang, Y. (2013). Programming Language Learning Supported by an Accredited Course Strategy. In 2013 IEEE 13th International Conference on Advanced Learning Technologies (pp. 327–329). <https://doi.org/10.1109/ICALT.2013.101>

Hughes, J., Herrington, M., McDonald, T., & Rhodes, A. (2011). E-Portfolios and Personalized Learning: Research in Practice with Two Dyslexic Learners in UK Higher Education. *Dyslexia*, 17(1), 48–64.

Hung, S.-T. A. (2016). Enhancing feedback provision through multimodal video technology. *Computers & Education*, 98, 90–101. <https://doi.org/10.1016/j.compedu.2016.03.009>

Hurtienne, L. E. (2018). Middle school teachers' perceptions of the impact of transitioning to personalized learning. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Hussaan, A. M., & Sehaba, K. (2013). Adaptive Serious Game for Rehabilitation of Persons with Cognitive Disabilities. In 2013 IEEE 13th International Conference on Advanced Learning Technologies (pp. 65–69). <https://doi.org/10.1109/ICALT.2013.25>

Hussain, R. M. R., & Ng, H. Z. (2013). Training Academicians to Develop Personalized Learning Environment and Students Engagement (PLEaSE). *International Journal of Virtual and Personal Learning Environments*, 4(4), 16–30.

Hwang, G.-H., Chen, B., & Huang, C.-W. (2016). Development and effectiveness analysis of a personalized ubiquitous multi-device certification tutoring system based on Bloom's Taxonomy of Educational Objectives. *Journal of Educational Technology & Society*, 19(1), 223–236.

Hwang, G.-H., Chu, H.-C., Chen, B., & Cheng, Z. S. (2014). Development and Evaluation of a Web 2.0-Based Ubiquitous Learning Platform for Schoolyard Plant Identification. *International Journal of Distance Education Technologies*, 12(2), 83–103.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Hwang, G.-J., Kuo, F.-R., Yin, P.-Y., & Chuang, K.-H. (2010). A Heuristic Algorithm for Planning Personalized Learning Paths for Context-Aware Ubiquitous Learning. *Computers & Education*, 54(2), 404–415.

Hwang, G.-J., Sung, H.-Y., Hung, C.-M., Huang, I., & Tsai, C.-C. (2012). Development of a Personalized Educational Computer Game Based on Students' Learning Styles. *Educational Technology Research and Development*, 60(4), 623–638.

Ignatova, N., Dagiene, V., & Kobilinskiene, S. (2015). ICT-Based Learning Personalization Affordance in the Context of Implementation of Constructionist Learning Activities. *Informatics in Education*, 14(1), 51–65.

Inventado, P. S., Scupelli, P., Van Inwegen, E., Ostrow, K., Heffernan, N., Ocumpaugh, J., Baker, R., Slater, S. & Almeda, M. (2016). Hint Availability Slows Completion Times in Summer Work in T. Barnes, M. Chi, and M. Feng (eds.) *Proceedings of the 9th International Conference on Educational Data Mining* (pp.388-393) Educational Data Mining Society

Jiake, L., Wei, Z., & Xuan, W. (2010). Design and evaluation of a wiki-based collaborative learning environment for colleges computers compulsory education. In 2010 5th International Conference on Computer Science & Education (pp. 695–699). <https://doi.org/10.1109/ICCSE.2010.5593516>

Joan, D. R. R. (2013). Flexible Learning as New Learning Design in Classroom Process to Promote Quality Education. *Journal on School Educational Technology*, 9(1), 37–42.

Johnson, M. D. S. A. (2017). Potential of One-to-One Technology Uses and Pedagogical Practices : Student Agency and Participation in an Economically Disadvantaged Eighth Grade by Maria Dulce Silva Andrade Johnson A dissertation presented to the Faculty of the School of Education , Lo. (2017).

Kalloo, V., & Mohan, P. (2012). Correlating Questionnaire Data with Actual Usage Data in a Mobile Learning Study for High School Mathematics. *Electronic Journal of E-Learning*, 10(1), 76–89.

Kalloo, V., & Mohan, P. (2015). Investigating the Value of Personalization in a Mobile Learning System. *Journal of Computers in Mathematics and Science Teaching*, 34(2), 199–221.

Karagiannis, I., & Satratzemi, M. (2014). Comparing LMS and AEHS: Challenges for Improvement with Exploitation of Data Mining. In 2014 IEEE 14th International Conference on Advanced Learning Technologies (pp. 65–66). <https://doi.org/10.1109/ICALT.2014.29>

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Karmeshu, Raman, R., & Nedungadi, P. (2012). Modelling Diffusion of a Personalized Learning Framework. *Educational Technology Research and Development*, 60(4), 585–600.

Karri, S. K. R., & Kode, S. (2011). Butterfly Model: An Innovative Way to Deliver and Personalize Content in the “Learning by Doing” Methodology. In 2011 IEEE International Conference on Technology for Education (pp. 103–108). <https://doi.org/10.1109/T4E.2011.24>

Kartal, G. (2010). Does Language Matter in Multimedia Learning? Personalization Principle Revisited. *Journal of Educational Psychology*, 102(3), 615–624.

Kashif, M., & Cheewakrakokbit, P. (2018). Perceived Service Quality-Loyalty Path: A PAKSERV Based Investigation of International Students Enrolled in Business Schools in Thailand. *Journal of Marketing for Higher Education*, 28(1), 51–65.

Kellerer, P., Kellerer, E., Werth, E., Werth, L., Montgomery, D., Clyde, R., ... Northwest Nazarene University (NNU), D. C. (2014). Transforming K-12 Rural Education through Blended Learning: Teacher Perspectives. *International Association for K-12 Online Learning*.

Kickmeier-Rust, M. D., Mattheiss, E., Steiner, C., & Albert, D. (2011). A Psycho-Pedagogical Framework for Multi-Adaptive Educational Games. *International Journal of Game-Based Learning*, 1(1), 45–58.

Kim, D.-J. D., Rueckert, D., Kim, D.-J. D., & Seo, D. (2013). Students’ Perceptions and Experiences of Mobile Learning. *Language Learning & Technology*, 17(3), 52–73.

Kim, J., Lee, A., & Ryu, H. (2013). Personality and its effects on learning performance: Design guidelines for an adaptive e-learning system based on a user model. *International Journal of Industrial Ergonomics*, 43(5), 450–461. <https://doi.org/10.1016/j.ergon.2013.03.001>

Kim, R. H. (2011). Self-Directed Learning Management System: Enabling Competency and Self-Efficacy in Online Learning Environments. *Dissertation Abstracts International: Section B: The Sciences and Engineering*. ProQuest LLC.

Kinnari-Korpela, H. (2015). Using Short Video Lectures to Enhance Mathematics Learning--Experiences on Differential and Integral Calculus Course for Engineering Students. *Informatics in Education*, 14(1), 67–81.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Kitayama, Y. (2018). The Rise of the Far Right in Japan, and Challenges Posed for Education. *London Review of Education*, 16(2), 250–267.

Klasnja-Milicevic, A., Vesin, B., Ivanovic, M., & Budimac, Z. (2011). E-Learning Personalization Based on Hybrid Recommendation Strategy and Learning Style Identification. *Computers & Education*, 56(3), 885–899.

Klein, A. (2011). Programs Suffer Cuts in Funding. *Education Week*, 30(23), 1.

Kleinman, C. (2018). Improving second language lexical acquisition through personalization and contextualization: A look at intrinsic cognitive load reduction strategies. *Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning*.

Klemke, R., Eradze, M., & Antonaci, A. (2018). The Flipped MOOC: Using Gamification and Learning Analytics in MOOC Design-A Conceptual Approach. *Education Sciences*, 8.

Kode, S., & Rao, S. (2012). Personalization and Mentoring: Our Experience with Training Teachers. In 2012 IEEE 12th International Conference on Advanced Learning Technologies (pp. 458–459). <https://doi.org/10.1109/ICALT.2012.193>

Konert, J., Gutjahr, M., Göbel, S., & Steinmetz, R. (2014). Modeling the Player: Predictability of the Models of Bartle and Kolb Based on NEO-FFI (Big5) and the Implications for Game Based Learning. *International Journal of Game-Based Learning*, 4(2), 36–50.

Kong, S. C., & Song, Y. (2015). An experience of personalized learning hub initiative embedding BYOD for reflective engagement in higher education. *Computers & Education*, 88, 227–240. <https://doi.org/10.1016/j.compedu.2015.06.003>

Kopeinik, S., Nussbaumer, A., Winter, L., Albert, D., Dimache, A., & Roche, T. (2014). Combining Self-Regulation and Competence-Based Guidance to Personalise the Learning Experience in Moodle. In 2014 IEEE 14th International Conference on Advanced Learning Technologies (pp. 62–64). <https://doi.org/10.1109/ICALT.2014.28>

Kucirkova, N., Messer, D., & Whitelock, D. (2013). Parents Reading with Their Toddlers: The Role of Personalization in Book Engagement. *Journal of Early Childhood Literacy*, 13(4), 445–470.

Kumar, A., & Ganesh, L. S. (2011). Inter-Individual Knowledge Transfer and Performance in Product Development. *Learning Organization*, 18(3), 224–238.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Kurt, A. A. (2011). Personalization Principle in Multimedia Learning: Conversational versus Formal Style in Written Word. *Turkish Online Journal of Educational Technology - TOJET*, 10(3), 185–192.

Kurtz, H., Lloyd, S., Harwin, A., Osher, M., & Editorial Projects in Education (EPE), E. W. R. C. (2018). School Leaders and Technology: Results from a National Survey. *Editorial Projects in Education*.

Lahti, L. (2011). ConceptMapWiki - A Collaborative Framework for Agglomerating Pedagogical Knowledge. In 2011 IEEE 11th International Conference on Advanced Learning Technologies (pp. 163–165). <https://doi.org/10.1109/ICALT.2011.54>

Lai, C., & Zheng, D. (2018). Self-Directed Use of Mobile Devices for Language Learning beyond the Classroom. *ReCALL*, 30(3), 299–318.

Lan, A. S. (2018). Machine learning techniques for personalized learning. *Dissertation Abstracts International: Section B: The Sciences and Engineering*. ProQuest Information & Learning.

Lan, A. S., Waters, A. E., Studer, C., & Baraniuk, R. G. (2017). BLAh: Boolean Logic Analysis for Graded Student Response Data. *IEEE Journal of Selected Topics in Signal Processing*, 11(5), 754–764. <https://doi.org/10.1109/JSTSP.2017.2722419>

Lau, S. B.-Y., Lee, C.-S., & Singh, Y. P. (2015). A Folksonomy-Based Lightweight Resource Annotation Metadata Schema for Personalized Hypermedia Learning Resource Delivery. *Interactive Learning Environments*, 23(1), 79–105.

Lau, S. B., & Lee, C. (2012). Enhancing Collaborative Filtering of Learning Resources with Semantically-Enhanced Social Tags. In 2012 IEEE 12th International Conference on Advanced Learning Technologies (pp. 281–285). <https://doi.org/10.1109/ICALT.2012.102>

Lawrence, A. D. (2018). Toward culturally responsive online pedagogy: Practices of selected secondary online teachers. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest LLC.

Lazarinis, F., Green, S., & Pearson, E. (2011). Multi-Criteria Adaptation in a Personalized Multimedia Testing Tool Based on Semantic Technologies. *Interactive Learning Environments*, 19(3), 267–283.

Lee, D. (2016). Personalized learning practice, technology use, and academic performance in K-12 learner centered schools in the US. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Ley, T., Kump, B., & Gerdenitsch, C. (2010). Scaffolding Self-directed Learning with Personalized Learning Goal Recommendations in P. De Bra, A. Kobsa, & D. Chin (eds.) *Proceedings of the 18th User Modeling, Adaptation, and Personalization Conference* (pp.75-86) Springer

Li, Y. (2018). An Application of EDM: Design of a New Online System for Correcting Exam Paper. In 2018 13th International Conference on Computer Science & Education (ICCSE) (pp. 1–6). <https://doi.org/10.1109/ICCSE.2018.8468821>

Lin, C. F., Yeh, Y., Hung, Y. H., & Chang, R. I. (2013). Data mining for providing a personalized learning path in creativity: An application of decision trees. *Computers & Education*, 68, 199–210. <https://doi.org/10.1016/j.compedu.2013.05.009>

Ling, S.-E., Ariffin, S. R. B., Rahman, S. B., & Lai, K.-L. (2010). Diversity in Education Using Blended Learning in Sarawak. *Online Submission*, 83–88.

Liu, L., Sun, L., Yu, Y., Xia, W., & Li, C. (2015). The Application of E-Learning System Based on the Network Teaching Platform in Microbiology and Parasitology Teaching. In 2015 7th International Conference on Information Technology in Medicine and Education (ITME) (pp. 634–636). <https://doi.org/10.1109/ITME.2015.66>

Liu, M., Kang, J., Zou, W., Lee, H., Pan, Z., & Corliss, S. (2017). Using Data to Understand How to Better Design Adaptive Learning. *Technology, Knowledge and Learning*, 22(3), 271–298.

Liu, M., McKelroy, E., Corliss, S. B., & Carrigan, J. (2017). Investigating the effect of an adaptive learning intervention on students' learning. *Educational Technology Research and Development*, 65(6), 1605–1625. <https://doi.org/10.1007/s11423-017-9542-1>

Lu, C., Chang, M., Kinshuk, Huang, E., & Chen, C.-W. (2014). Context-Aware Mobile Role Playing Game for Learning--A Case of Canada and Taiwan. *Educational Technology & Society*, 17(2), 101–114.

Lynch, T., & Ghergulescu, I. (2017). Large Scale Evaluation of Learning Flow. In 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT) (pp. 62–64). <https://doi.org/10.1109/ICALT.2017.98>

Lyons Jr., R. D. (2013). A Program Evaluation of a Seminar Program. ProQuest LLC.

Ma, N., Xin, S., & Du, J.-Y. (2018). A Peer Coaching-Based Professional Development Approach to Improving the Learning Participation and Learning Design Skills of In-Service Teachers. *Educational Technology & Society*, 21(2), 291–304.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Magdin, M., & Turcáni, M. (2015). Personalization of Student in Course Management Systems on the Basis Using Method of Data Mining. *Turkish Online Journal of Educational Technology - TOJET*, 14(1), 58–67.

Magdin, M., Cápay, M., & Mesárošová, M. (2011). Usage of interactive video in educational process to determine mental level and literacy of a learner. In 2011 14th International Conference on Interactive Collaborative Learning (pp. 510–513). <https://doi.org/10.1109/ICL.2011.6059637>

Male, T., & Palaiologou, I. (2017). Pedagogical Leadership in Action: Two Case Studies in English Schools. *International Journal of Leadership in Education*, 20(6), 733–748.

Mallios, N., & Vassilakopoulos, M. G. (2015). Evaluating Students' Programming Skill Behaviour and Personalizing Their Computer Learning Environment Using "The Hour of Code" Paradigm. *International Association for Development of the Information Society*.

Maloney, K. J. (2017). Leveraging the Potential of Personal Learning Networks for Teacher Professional Development. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest LLC.

McClure, L., Yonezawa, S., & Jones, M. (2010). Can School Structures Improve Teacher-Student Relationships? The Relationship between Advisory Programs, Personalization and Students' Academic Achievement. *Education Policy Analysis Archives*, 18(17).

McIntosh II, D. D. (2017). The supplement of Compass Learning to textbooks meeting cognitive needs of students: A descriptive case study. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

McKenzie, W. A., Perini, E., Rohlf, V., Toukhsati, S., Conduit, R., & Sanson, G. (2013). A Blended Learning Lecture Delivery Model for Large and Diverse Undergraduate Cohorts. *Computers & Education*, 64, 116–126.

McNeil, M. (2012). Race to Top Draws out New Suitors. *Education Week*, 32(14).

Mehigan, T. J., & Pitt, I. (2012). Detecting Learning Style through Biometric Technology for Mobile GBL. *International Journal of Game-Based Learning*, 2(2), 55–74.

Metcalf, S. E. (2018). Redesigning high school through a personalized learning model. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Micheaux, D. (2016). Strike the Right Balance: How Do School Leaders Balance District Priorities with School and Staff Learning Needs? *Journal of Staff Development*, 37(5), 46–48.

Miller, M., Roberts, L., Hale, K., Lanier, D., Clerck, J. De, Endres, W., & Sorby, S. (2012). Work in progress: Development of computer modules to improve student metacognition and motivation strategies. In 2012 Frontiers in Education Conference Proceedings (pp. 1–2). <https://doi.org/10.1109/FIE.2012.6462407>

Mohamed, H., & Lamia, M. (2015). A New Approach of an Intelligent E-Learning System Based on Learners' Skill Level and Learners' Success Rate. *International Journal of Web-Based Learning and Teaching Technologies*, 10(2), 13–25.

Mora, A., Tondello, G. F., Nacke, L. E., & Arnedo-Moreno, J. (2018). Effect of personalized gameful design on student engagement. In 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 1925–1933). <https://doi.org/10.1109/EDUCON.2018.8363471>

Moreno-Leon, J., Robles, G., & Roman-Gonzalez, M. (2018). Towards Data-Driven Learning Paths to Develop Computational Thinking with Scratch. *IEEE Transactions on Emerging Topics in Computing*, 1. <https://doi.org/10.1109/TETC.2017.2734818>

Mosharraf, M. (2016). Tuning Primary Learning Style for Children with Secondary Behavioral Patterns. *Interdisciplinary Journal of E-Skills and Lifelong Learning*, 12, 19–32.

Mostafavi, B. & Barnes, T. (2016). Exploring the Impact of Data-driven Tutoring Methods on Students' Demonstrative Knowledge in Logic Problem Solving in T. Barnes, M. Chi, and M. Feng (eds.) *Proceedings of the 9th International Conference on Educational Data Mining* (pp.460-465) Educational Data Mining Society

Mouza, C., & Barrett-Greenly, T. (2015). Bridging the app gap: An examination of a professional development initiative on mobile learning in urban schools. *Computers & Education*, 88, 1–14. <https://doi.org/10.1016/j.comedu.2015.04.009>

Mroz, M. A. (2014). “Off the Radar:” The Framing of Speech, Language and Communication in the Description of Children with Special Educational Needs in Literacy. *Journal of Education and Training Studies*, 2(3), 88–103.

Mulqueeny, K., Kostyuk, V., Baker, R. S., & Ocumpaugh, J. (2015). Incorporating Effective E-Learning Principles to Improve Student Engagement in Middle-School Mathematics. *International Journal of STEM Education*, 2.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Munoz-Merino, P. J., Kloos, C. D., & Munoz-Organero, M. (2011). Enhancement of Student Learning through the Use of a Hinting Computer E-Learning System and Comparison with Human Teachers. *IEEE Transactions on Education*, 54(1), 164–167.

Muñoz, K., Noguez, J., Neri, L., Mc Kevitt, P., & Lunney, T. (2016). A Computational Model of Learners Achievement Emotions Using Control-Value Theory. *Educational Technology & Society*, 19(2), 42–56.

Nagle, J., & Taylor, D. (2017). Using a Personal Learning Framework to Transform Middle Grades Teaching Practice. *Middle Grades Research Journal*, 11(1), 85–100.

Najar, A. S., Mitrovic, T. & McLaren, B. M. (2014). Adaptive Support versus Alternating Worked Examples and Tutored Problems: Which Leads to Better Learning? in V.Dimitrova, T., Kuflík, D.Chin, F., Ricci, P. Dolog, & G.J. Houben (eds.) *Proceedings of the 22nd User Modeling, Adaptation, and Personalization Conference* (pp.171-182) Springer

Nedungadi, P., & Raman, R. (2012). A New Approach to Personalization: Integrating E-Learning and M-Learning. *Educational Technology Research and Development*, 60(4), 659–678.

Nedungadi, P., & Remya, M. S. (2014). Predicting students' performance on intelligent tutoring system — Personalized clustered BKT (PC-BKT) model. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings (pp. 1–6). <https://doi.org/10.1109/FIE.2014.7044200>

Netcoh, S. (2017). Balancing freedom and limitations: A case study of choice provision in a personalized learning class. *Teaching and Teacher Education*, 66, 383–392. <https://doi.org/10.1016/j.tate.2017.05.010>

Netcoh, S., & Bishop, P. A. (2017). Personalized Learning in the Middle Grades: A Case Study of One Team's Successes and Challenges. *Middle Grades Research Journal*, 11(2), 33–48.

Norman, H., Nordin, N., Din, R., & Ally, M. (2016). Modeling Learner Situation Awareness in Collaborative Mobile Web 2.0 Learning. *Malaysian Online Journal of Educational Technology*, 4(1), 32–56.

Nussbaumer, A., Hillemann, E.-C., Gütl, C., & Albert, D. (2015). A Competence-Based Service for Supporting Self-Regulated Learning in Virtual Environments. *Journal of Learning Analytics*, 2(1), 101–133.

Oduwobi, O., & Ojokoh, B. A. (2015). Providing Personalized Services to Users in a Recommender System. *International Journal of Web-Based Learning and Teaching Technologies*, 10(2), 26–48.

Olofson, M. W., Downes, J. M., Petrick Smith, C., LeGeros, L., & Bishop, P. A. (2018). An Instrument to Measure Teacher Practices to Support Personalized Learning in the Middle Grades. *RMLE Online: Research in Middle Level Education*, 41(7), 1–21.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Omheni, N., Kalboussi, A., Mazhoud, O., & Hadjkacem, A. (2015). Modelling Learner's Personality Profile through Analysis of Annotation Digital Traces in Learning Environment. In 2015 IEEE 15th International Conference on Advanced Learning Technologies (pp. 66–67). <https://doi.org/10.1109/ICALT.2015.76>

Omisore, M. O., & Samuel, O. W. (2014). Personalized Recommender System for Digital Libraries. *International Journal of Web-Based Learning and Teaching Technologies*, 9(1), 18–32.

Ostashevski, N., Dron, J., & Howell, J. (2018). Supporting Peer Interactions in a MOOC: Utilizing Social Networking Tools to Personalize Learning. *Journal of Interactive Learning Research*, 29(2), 209–230.

Palazzo, R. (2015). Students' experiences in a mathematics intervention program. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Pane, J. F., Steiner, E. D., Baird, M. D., Hamilton, L. S., & Corporation, R. (2015). Continued Progress: Promises Evidence on Personalized Learning. RAND Corporation.

Papanikolaou, K. (2014). How Authoring Content for Personalised Learning May Cultivate Learning Design Skills. In 2014 IEEE 14th International Conference on Advanced Learning Technologies (pp. 94–98). <https://doi.org/10.1109/ICALT.2014.37>

Papousek, J. & Pelanek, R. (2017). Should We Give Learners Control Over Item Difficulty? in M. Bielikova, E. Herder, F. Cena, & M. Desmarais (eds.) *Proceedings of the 25th User Modeling, Adaptation, and Personalization Conference* (pp.299-303) Springer

Pearson, L. A. (2014). Instructional Design, Autism Spectrum Disorders, and Online Learning: What's Being Done? ProQuest LLC.

Peña-Ayala, A., Sossa, H., & Méndez, I. (2014). Activity theory as a framework for building adaptive e-learning systems: A case to provide empirical evidence. *Computers in Human Behavior*, 30, 131–145. <https://doi.org/10.1016/j.chb.2013.07.057>

Pengfei, G., & Mingxuan, C. (2015). Flipped Classroom: Teaching Experience from Practice. In 2015 International Conference of Educational Innovation through Technology (EITT) (pp. 155–159). <https://doi.org/10.1109/EITT.2015.40>

Pérez-Paredes, P., Ordoñana Guillamón, C., & Aguado Jiménez, P. (2018). Language Teachers' Perceptions on the Use of OER Language Processing Technologies in MALL. *Computer Assisted Language Learning*, 31(5), 522–545.

Pilley, A. J. (2017). The role of technology in personalized learning and the effect on student achievement. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Popescu, E. (2010). Adaptation Provisioning with Respect to Learning Styles in a Web-Based Educational System: An Experimental Study. *Journal of Computer Assisted Learning*, 26(4), 243–257.

Powers, K., Shin, S.-H., Hagans, K. S., & Cordova, M. (2015). The Impact of a Teacher Professional Development Program on Student Engagement. *International Journal of School & Educational Psychology*, 3(4), 231–240.

Prain, V., Cox, P., Deed, C., Dorman, J., Edwards, D., Farrelly, C., ... Yager, Z. (2013). Personalised learning: Lessons to be learnt. *British Educational Research Journal*, 39(4), 654–676.

Price, V. M. (2019). Implementing personalized learning across a multi-site school district. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Qinghong, Y., Dule, Y., & Junyu, Z. (2014). The research of personalized learning system based on learner interests and cognitive level. In 2014 9th International Conference on Computer Science & Education (pp. 522–526). <https://doi.org/10.1109/ICCSE.2014.6926516>

Qinghong, Y., Jing, X., & Dule, Y. (2015). The research of personalized learning system based on ontology. In 2015 10th International Conference on Computer Science & Education (ICCSE) (pp. 471–475). <https://doi.org/10.1109/ICCSE.2015.7250292>

Qingling, Y., Qunhua, Y., & Ying, W. (2016). Exploring Professional Development from Brief Experiences: Case Studies of Secondary EFL Teachers in China. *English Language Teaching*, 9(12), 109–116.

Rafferty, A. N. (2015). Applying probabilistic models for knowledge diagnosis and educational game design. *Dissertation Abstracts International: Section B: The Sciences and Engineering*. ProQuest Information & Learning.

Rajendran, R., & Muralidharan, A. (2013). Impact of Mindspark's Adaptive Logic on Student Learning. In 2013 IEEE Fifth International Conference on Technology for Education (t4e 2013) (pp. 119–122). <https://doi.org/10.1109/T4E.2013.36>

Reddan, G., & Rauchle, M. (2017). Combining Quality Work-Integrated Learning and Career Development Learning through the Use of the SOAR Model to Enhance Employability. *Asia-Pacific Journal of Cooperative Education*, 18(2), 129–139.

Reichelt, M., Kämmerer, F., Niegemann, H. M., & Zander, S. (2014). Talk to me personally: Personalization of language style in computer-based learning. *Computers in Human Behavior*, 35, 199–210. <https://doi.org/10.1016/j.chb.2014.03.005>

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Resig, J. J. (2018). The effects of group-based context personalization on learning outcomes and motivation. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest LLC.

Rhim, L. M., Lancet, S., (CRPE), C. on R. P. E., & (NCSECS), N. C. for S. E. in C. S. (2018). How Personalized Learning Models Can Meet the Needs of Students with Disabilities: Thrive Public Schools Case Study. Center on Reinventing Public Education.

Rhim, L. M., Lancet, S., (CRPE), C. on R. P. E., & (NCSECS), N. C. for S. E. in C. S. (2018). How School Culture and Support Systems Can Improve Disciplinary Outcomes for Students with Disabilities: Mott Haven Academy Charter School Case Study. Center on Reinventing Public Education.

Richards, L. G. (2014). This is NOT a MOOC!: Reflections on on-line asynchronous education. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings (pp. 1–6). <https://doi.org/10.1109/FIE.2014.7044104>

Rickerby, K. (2017). How Vermont's Expectations for Local Comprehensive Assessment Systems Create Flexible Pathways to Post-Secondary Success. ProQuest LLC.

Riedell, K. E. (2017). Understanding curriculum, instruction and assessment within eighth grade science classrooms for special needs students. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Ritter, S., Yudelson, M., Fancsali, S. & Berman, S. (2016). Towards Integrating Human and Automated Tutoring Systems in T. Barnes, M. Chi, and M. Feng (eds.) *Proceedings of the 9th International Conference on Educational Data Mining* (pp.626-627) Educational Data Mining Society

Rivera Alvarado, L. A., Lopez Dominguez, E., Hernandez Velazquez, Y., Dominguez Isidro, S., & Excelente Toledo, C. B. (2018). Layered software architecture for the development of mobile learning objects with augmented reality. *IEEE Access*, 6, 57897–57909. <https://doi.org/10.1109/ACCESS.2018.2873976>

Robinson, C., & Sebba, J. (2010). Personalizing Learning through the Use of Technology. *Computers & Education*, 54(3), 767–775.

Rollins, J. R. (2018). College and career ready through personalized learning: Business and industry perspective of the Don Tyson school of innovation. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Roycroft, E. A. (2015). The lived experiences of online high school social studies teachers utilizing project-based lessons at a virtual school. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Ruiz-Iniesta, A., Jiménez-Díaz, G., & Gómez-Albarrán, M. (2014). A Semantically Enriched Context-Aware OER Recommendation Strategy and Its Application to a Computer Science OER Repository. *IEEE Transactions on Education*, 57(4), 255–260.

Rushkin, I., Rosen, Y., Ang, A., Fredericks, C., Tingley, D., Blink, M. J. & Lopez, G. (2017). Adaptive Assessment Experiment in a HarvardX MOOC in X. Hu, T. Barnes, A. Hershkovitz, L. Paquette (eds.) *Proceedings of the 10th International Conference on Educational Data Mining* (pp.466-471) Educational Data Mining Society

Rutledge, J. (2018). Measuring what matters: How noncognitive skills are captured, stored, and utilized in personalized learning environments. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Rutledge, L., & LeMire, S. (2017). Broadening Boundaries: Opportunities for Information Literacy Instruction inside and outside the Classroom. *Portal: Libraries and the Academy*, 17(2), 347–362.

Rutledge, S. A., & Cannata, M. (2016). Identifying and Understanding Effective High School Practices. *Phi Delta Kappan*, 97(6), 60–64.

Rutledge, S. A., Brown, S., & Petrova, K. (2017). Scaling Personalization: Exploring the Implementation of an Academic and Social-Emotional Innovation in High Schools. *Peabody Journal of Education*, 92(5), 627–648.

Rutledge, S., Cohen-Vogel, L., Osborne-Lampkin, L., & (NCSU), N. C. on S. U. E. S. (2012). Identifying the Characteristics of Effective High Schools: Report from Year One of the National Center on Scaling up Effective Schools. Research Report. National Center on Scaling Up Effective Schools. National Center on Scaling Up Effective Schools.

Sadauskas, J. (2015). Improving adolescent writing quality and motivation with Sparkfolio, a social media based writing tool. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Sadeghi, S. H. (2017, July 1). E-Learning Instructional Design Practice in American and Australian Institutions. *International Association for Development of the Information Society*.

Safavi, A., & Zadeh, M. H. (2017). Teaching the user by learning from the user: personalizing movement control in physical human-robot interaction. *IEEE/CAA Journal of Automatica Sinica*, 4(4), 704–713. <https://doi.org/10.1109/JAS.2017.7510634>

Saghafi, M. R., Franz, J., & Crowther, P. (2014). A Holistic Model for Blended Learning. *Journal of Interactive Learning Research*, 25(4), 531–549.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Sahin, M., & Kisla, T. (2016). An Analysis of University Students' Attitudes towards Personalized Learning Environments. *Turkish Online Journal of Educational Technology - TOJET*, 15(1), 1–10.

Salahli, M. A., Özdemir, M., & Yasar, C. (2013). Concept Based Approach for Adaptive Personalized Course Learning System. *International Education Studies*, 6(5), 92–103.

Salehi, M., Nakhai Kamalabadi, I., & Ghaznavi Ghoushchi, M. B. (2014). Personalized Recommendation of Learning Material Using Sequential Pattern Mining and Attribute Based Collaborative Filtering. *Education and Information Technologies*, 19(4), 713–735.

Salter, D. W. (2013). Assessing the Developmental Instruction Model: An Exploratory Study of Classroom "Fit" Using Environmental Types. *Journal of Educational Research and Practice*, 3(1), 1–14.

Samia, D., & Amirat, A. (2017). Adaptation with Four Dimensional Personalization Criteria Based on Felder Silverman Model. *International Journal of Distance Education Technologies*, 15(4), 1–20.

Saul, C., & Wuttke, H. (2013). Assessment 3.0 meets engineering sciences. In 2013 International Conference on Interactive Collaborative Learning (ICL) (pp. 623–630). <https://doi.org/10.1109/ICL.2013.6644667>

Savio-Ramos, C. A. (2016). A Study of the self-efficacy of personalized learning as a remediation tool in algebra. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

Scanlon, E., Anastopoulou, S., Kerawalla, L., & Mulholland, P. (2011). How Technology Resources Can Be Used to Represent Personal Inquiry and Support Students' Understanding of It across Contexts. *Journal of Computer Assisted Learning*, 27(6), 516–529.

Schophuizen, M., Kreijns, K., Stoyanov, S., & Kalz, M. (2018). Eliciting the challenges and opportunities organizations face when delivering open online education: A group-concept mapping study. *The Internet and Higher Education*, 36, 1–12. <https://doi.org/10.1016/j.iheduc.2017.08.002>

Seabrook, H. J. (2017). Informal learning using tablet computers and apps: A multi-method study of older adults self-managing diabetes. Dissertation Abstracts International Section A: Humanities and Social Sciences. ProQuest Information & Learning.

Shand, K., & Farrelly, S. G. (2017). Using Blended Teaching to Teach Blended Learning: Lessons Learned from Pre-Service Teachers in an Instructional Methods Course. *Journal of Online Learning Research*, 3(1), 5–30.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Shi, L., Al Qudah, D., & Cristea, A. I. (2013). Social E-Learning in Topolor: A Case Study. International Association for Development of the Information Society.

Shin, J., & Cho, E. (2015). Characteristics of Convergence Learning Experience Using an Educational Documentary Film. *Asia Pacific Education Review*, 16(2), 213–223.

Siddall, J. (2017). How technology supported teacher behaviors impact student outcomes: Results from a 1:1 computing initiative. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Siler-Evans, K., Steiner, E. D., Hamilton, L. S., Pane, J. F., Education, R., & Foundation, B. and M. G. (2014). Personalized Learning Instructional Staff Survey Results (Spring 2014). Working Paper WR-1062-BMGF. RAND Corporation.

Sizemore, M. L. (2018). Personalized online learning labs and face-to-face teaching in first-year college English courses. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Song, Y., Wong, L.-H., & Looi, C.-K. (2012). Fostering Personalized Learning in Science Inquiry Supported by Mobile Technologies. *Educational Technology Research and Development*, 60(4), 679–701.

Spencer, L. (2015). Transforming schools from traditional to personalized. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Spoon, K., Beemer, J., Whitmer, J. C., Fan, J., Frazee, J. P., Stronach, J., ... Levine, R. A. (2016). Random Forests for Evaluating Pedagogy and Informing Personalized Learning. *Journal of Educational Data Mining*, 8(2), 20–50.

Sterbini, A., & Temperini, M. (2010). Selection and sequencing constraints for personalized courses. In 2010 IEEE Frontiers in Education Conference (FIE) (p. T2C-1–T2C-6). <https://doi.org/10.1109/FIE.2010.5673146>

Strader, T. J., Reed, D., Suh, I., & Njoroge, J. W. (2015). Instructor Perceptions of Web Technology Feature and Instructional Task Fit. *International Journal of Web-Based Learning and Teaching Technologies*, 10(3), 52–65.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Snow, E., Allen, L., Russell, D., & McNamara, D. (2014). Who's in Control?: Categorizing Nuanced Patterns of Behaviors within a Game-Based Intelligent Tutoring System in J. Stamper, Z. Pardos, M. Mavrikis, & B.M. McLaren (eds.) *Proceedings of the 7th International Conference on Educational Data Mining* (pp.185-191) Educational Data Mining Society

Snow, E., Jackson, G. T., Varner, L. & McNamara, D. S. (2013). Investigating the Effects of Off-Task Personalization on In-System Performance and Attitudes within a Game-Based Environment in S. K. D'Mello, R. A. Calvo, & A. Olney (eds.) *Proceedings of the 6th International Conference on Educational Data Mining* (pp.272-275) Educational Data Mining Society

Su, J. M., Lin, H. Y., Tseng, S.-S., & Lu, C.-J. (2011). OPASS: An Online Portfolio Assessment and Diagnosis Scheme to Support Web-Based Scientific Inquiry Experiments. *Turkish Online Journal of Educational Technology - TOJET*, 10(2), 151–173.

Su, J.-M., Tseng, S.-S., Lin, H.-Y., & Chen, C.-H. (2011). A personalized learning content adaptation mechanism to meet diverse user needs in mobile learning environments. *User Modeling and User-Adapted Interaction*, 21(1–2), 5–49.
<https://doi.org/10.1007/s11257-010-9094-0>

Tam, V., & Gupta, M. (2017). Facilitating the Open Learning and Education through Facial Analytics and Video Streaming. In 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT) (pp. 31–33).
<https://doi.org/10.1109/ICALT.2017.110>

Tamashiro, R. (2011). Webster University: A Case Study in Innovative Academic & Organizational Designs for Tertiary Education in the 21st Century. *New Horizons in Education*, 59(3), 97–104.

The National Center on Scaling Up Effective Schools. (2013). Supporting Personalization for Academic and Social Learning in High Schools. *Practitioner Brief*.

Tiam-Lee, T. J. & Sumi, K. (2018). Adaptive feedback based on student emotion in a system for programming practice in R. Nkambou, R. Azevedo, & J. Vassileva (eds.) *Proceedings of the 14th Intelligent Tutoring Systems Conference* (pp.243-255) Springer

Thomas, N. G., & Thomas, A. L. (2018). Helping Struggling Students: The Impact of Three Instructional Interventions on College Students' Exam Scores and Exam-Skipping Behavior. *Psychology Learning and Teaching*, 17(1), 6–26.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Tichnor-Wagner, A., Allen, D., Socol, A. R., Cohen-Vogel, L., Rutledge, S. A., & Xing, Q. W. (2018). Studying Implementation within a Continuous Continuous-Improvement Process: What Happens When We Design with Adaptations in Mind? *Teachers College Record*, 120(5).

Tomberg, V., Laanpere, M., Ley, T., & Normak, P. (2013). Sustaining Teacher Control in a Blog-Based Personal Learning Environment. *International Review of Research in Open and Distance Learning*, 14(3), 109–133.

Tomorrow, P., & Learning, D. (2012). Leveraging Intelligent Adaptive Learning to Personalize Education: A Special White Paper Based upon the Speak Up 2011 National Findings. Project Tomorrow. Project Tomorrow.

Troussas, C., Espinosa, K. J., & Virvou, M. (2016). Affect Recognition through Facebook for Effective Group Profiling towards Personalized Instruction. *Informatics in Education*, 15(1), 147–161.

Tsoni, R., & Pange, J. (2015). Supporting undergraduate University's students MyCourse Application. In 2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL) (pp. 249–253). <https://doi.org/10.1109/IMCTL.2015.7359597>

Umphrey, J., & Foran, M. (2012). Getting Ready. *Principal Leadership*, 12(5), 18–22. R

Vadell, K. (2013). Approaching K-12 Online Education in Pennsylvania. *Online Journal of Distance Learning Administration*, 16(2).

Vail, K. A., Boyer, K. E., Wiebe, E. N., & Lester, J.C. (2015). The Mars and Venus Effect: The Influence of User Gender on the Effectiveness of Adaptive Task Suppo in F. Ricci, K. Bontcheva, O. Conlan, & S. Lawless (eds.) *Proceedings of the 23rd User Modeling, Adaptation, and Personalization Conference* (pp.265-276) Springer

van Seters, J. R., Wellink, J., Tramper, J., Goedhart, M. J., & Ossevoort, M. A. (2012). A Web-Based Adaptive Tutor to Teach PCR Primer Design. *Biochemistry and Molecular Biology Education*, 40(1), 8–13.

Verdú, E., Regueras, L. M., Gal, E., de Castro, J. P., Verdú, M. J., & Kohen-Vacs, D. (2017). Integration of an Intelligent Tutoring System in a Course of Computer Network Design. *Educational Technology Research and Development*, 65(3), 653–677.

Verdú, E., Regueras, L. M., Verdú, M. J., Castro, J. P. de, Kohen-Vacs, D., Gal, E., & Ronen, M. (2014). Intelligent tutoring interface for technology enhanced learning in a course of computer network design. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings (pp. 1–7). <https://doi.org/10.1109/FIE.2014.7044139>

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Vicente, A., Motz, R., Llamas, M., & Caeiro, M. (2011). Work in progress — LOM4CE: LOM for the Content Ecosystem. In 2011 Frontiers in Education Conference (FIE) (p. T2E-1–T2E-2). <https://doi.org/10.1109/FIE.2011.6142903>

Villavicencio, A., Marinell, W. H., & New York University, R. A. for N. Y. C. S. (2014). Inside Success: Strategies of 25 Effective Small High Schools in NYC. Report. Research Alliance for New York City Schools. Research Alliance for New York City Schools.

Walkington, C. A. (2013). Using Adaptive Learning Technologies to Personalize Instruction to Student Interests: The Impact of Relevant Contexts on Performance and Learning Outcomes. *Journal of Educational Psychology*, 105(4), 932–945.

Walkington, C., & Hayata, C. A. (2017). Designing Learning Personalized to Students' Interests: Balancing Rich Experiences with Mathematical Goals. *ZDM: The International Journal on Mathematics Education*, 49(4), 519–530.

Walkington, C., Clinton, V., & Mingle, L. (2016, November 1). Considering Cognitive Factors in Interest Research: Context Personalization and Illustrations in Math Curricula. North American Chapter of the International Group for the Psychology of Mathematics Education.

Walkington, C., Petrosino, A., & Sherman, M. (2013). Supporting Algebraic Reasoning through Personalized Story Scenarios: How Situational Understanding Mediates Performance. *Mathematical Thinking and Learning: An International Journal*, 15(2), 89–120.

Walkington, C., Sherman, M., & Howell, E. (2014). Personalized Learning in Algebra. *Mathematics Teacher*, 108(4), 272–279.

Wang, Y., & Crooks, S. M. (2015). Does Combining the Embodiment and Personalization Principles of Multimedia Learning Affect Learning the Culture of a Foreign Language? *Journal of Educational Multimedia and Hypermedia*, 24(2), 161–177.

Wanless, L. S. (2013). Students' perceptions of psychosocial dimensions of the learning environment in online and blended courses. *Dissertation Abstracts International Section A: Humanities and Social Sciences*.

Welch, K. (2017). Custom-built environments for communities of online informal learning: An exploratory study of tools, structures, and strategies. *Dissertation Abstracts International Section A: Humanities and Social Sciences*.

Wexler, J., & Pyle, N. (2012). Dropout Prevention and the Model-Minority Stereotype: Reflections from an Asian American High School Dropout. *Urban Review: Issues and Ideas in Public Education*, 44(5), 551–570.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Whittenburg, J. Ben. (2012). Adapting to adaptive e-learning: Utilizing adaptive e-learning programs within educational institutions. *Dissertation Abstracts International Section A: Humanities and Social Sciences*. ProQuest Information & Learning.

Wongwatkit, C., Srisawasdi, N., Hwang, G.-J., & Panjaburee, P. (2017). Influence of an Integrated Learning Diagnosis and Formative Assessment-Based Personalized Web Learning Approach on Students' Learning Performances and Perceptions. *Interactive Learning Environments*, 25(7), 889–903.

Wongwatkit, C., Srisawasdi, N., Hwang, G., & Panjaburee, P. (2016). Enhancing Learning Attitudes and Performance of Students in Physics with a Mastery Learning Mechanism-Based Personalized Learning Support System. In 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT) (pp. 278–282). <https://doi.org/10.1109/ICALT.2016.55>

Worthy, J., Consalvo, A. L., Bogard, T., & Russell, K. W. (2012). Fostering Academic and Social Growth in a Primary Literacy Workshop Classroom: "Restorying" Students with Negative Reputations. *Elementary School Journal*, 112(4), 568–589.

Xia, B. S. (2017). An In-Depth Analysis of Teaching Themes and the Quality of Teaching in Higher Education: Evidence from the Programming Education Environments. *International Journal of Teaching and Learning in Higher Education*, 29(2), 245–254.

Xu, D., Huang, W. W., Wang, H., & Heales, J. (2014). Enhancing e-learning effectiveness using an intelligent agent-supported personalized virtual learning environment: An empirical investigation. *Information & Management*, 51(4), 430–440. <https://doi.org/10.1016/j.im.2014.02.009>

Yan-hong, L., Bo, Z., & Jian-hou, G. (2015). Make adaptive learning of the MOOC: The CML model. In 2015 10th International Conference on Computer Science & Education (ICCSE) (pp. 1001–1004). <https://doi.org/10.1109/ICCSE.2015.7250398>

Yang, Q., & Chen, L. (2013). A learning grouping algorithm based on user personality. In 2013 8th International Conference on Computer Science & Education (pp. 71–75). <https://doi.org/10.1109/ICCSE.2013.6553886>

Yang, X., & Yu, S. (2015). Designing a Resource Evolution Support System for Open Knowledge Communities. *Educational Technology & Society*, 18(4), 385–400.

Yao, C.-B. (2017). Constructing a User-Friendly and Smart Ubiquitous Personalized Learning Environment by Using a Context-Aware Mechanism. *IEEE Transactions on Learning Technologies*, 10(1), 104–114.

Table S4 (continued)

Personalized Learning Studies Screened in and Reviewed

Yeo, H.-I., & Lee, Y. L. (2014). Exploring New Potentials of Blogs for Learning: Can Children Use Blogs for Personal Information Management (PIM)? *British Journal of Educational Technology*, 45(5), 916–925.

Yousuf, B., & Conlan, O. (2014). Enhancing Learner Engagement through Personalized Visual Narratives. In 2014 IEEE 14th International Conference on Advanced Learning Technologies (pp. 89–93). <https://doi.org/10.1109/ICALT.2014.36>

Yu, W., Hui, W., Wei, H., & Yongge, J. (2010). Implementing a web-based personalized learning and assessment system. In 2010 5th International Conference on Computer Science & Education (pp. 1629–1632). <https://doi.org/10.1109/ICCSE.2010.5593590>

Zakaria, R., & Zualkernan, I. A. (2015). Using Knowledge Space theory to Personalize Teaching for Groups of Students. In 2015 IEEE 15th International Conference on Advanced Learning Technologies (pp. 58–60). <https://doi.org/10.1109/ICALT.2015.114>

Zander, S., Wetzel, S., Kühl, T., & Bertel, S. (2017). Underlying processes of an inverted personalization effect in multimedia learning – An eye-tracking study. *Frontiers in Psychology*, 8. <https://doi.org/10.3389/fpsyg.2017.02202>

Zawawi, B. F., Al Abri, M. H., & Dabbagh, N. (2017). Affordance Analysis of Google+ Features: Advancing Teaching and Learning in Higher Education. *Journal of Educational Multimedia and Hypermedia*, 26(4), 425–443.

Zhai, X., Gu, J., Liu, H., Liang, J.-C., & Tsai, C.-C. (2017). An Experiential Learning Perspective on Students' Satisfaction Model in a Flipped Classroom Context. *Educational Technology & Society*, 20(1), 198–210.

Zhang, J.-H., Zhang, Y.-X., Zou, Q., & Huang, S. (2018). What Learning Analytics Tells Us: Group Behavior Analysis and Individual Learning Diagnosis Based on Long-Term and Large-Scale Data. *Educational Technology & Society*, 21(2), 245–258.

Zheng, X.-L., Chen, C.-C., Hung, J.-L., He, W., Hong, F.-X., & Lin, Z. (2015). A Hybrid Trust-Based Recommender System for Online Communities of Practice. *IEEE Transactions on Learning Technologies*, 8(4), 345–356.

Zou, D., & Xie, H. (2018). Personalized Word-Learning Based on Technique Feature Analysis and Learning Analytics. *Educational Technology & Society*, 21(2), 233–244.
