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Abstract

We investigate optimal subsampling for quantile regression. We derive the asymp-
totic distribution of a general subsampling estimator and then derive two versions of
optimal subsampling probabilities. One version minimizes the trace of the asymptotic
variance-covariance matrix for a linearly transformed parameter estimator and the
other minimizes that of the original parameter estimator. The former does not depend
on the densities of the responses given covariates and is easy to implement. Algorithms
based on optimal subsampling probabilities are proposed and asymptotic distributions
and asymptotic optimality of the resulting estimators are established. Furthermore, we
propose an iterative subsampling procedure based on the optimal subsampling proba-
bilities in the linearly transformed parameter estimation which has great scalability to
utilize available computational resources. In addition, this procedure yields standard
errors for parameter estimators without estimating the densities of the responses given
the covariates. We provide numerical examples based on both simulated and real data
to illustrate the proposed method.

Keywords: Asymptotic Distribution; Iterative Subsampling; Massive Data

arXiv:2001.10168v1 [stat.CO] 28 Jan 2020

*haiying.wang@uconn.edu
Tyzm63@psu.edu



1 Introduction

Quantile regression is an increasingly popular and familiar tool in statistical analysis. Com-
pared with the linear mean regression model, a quantile regression model has many ad-
vantages. For example, it is more robust so is favored when outliers are present. Quantile
regressions at various quantile levels also provide a more comprehensive picture of the relation
between the response and covariates than the traditional mean regression, which extracts
only the mean relation. In addition, quantile regression naturally incorporates error het-
eroscedasticity. In big data problems, because data are often collected from different sources
with different times and locations, the homoscedasticity assumption is often not valid (Fan
et al., 2014), which makes quantile regression a natural candidate as an analysis tool.

In spite of the aforementioned advantages, it is computationally difficult to obtain param-
eter estimates in quantile regression from massive data. The simplex algorithm is a popular
optimization method for quantile regression, but it is computationally demanding for large
data sets (Chen and Wei, 2005). Portnoy and Koenker (1997) introduced the interior point
algorithm into quantile regression, which has been found to be faster than the simplex algo-
rithm when there is a large number of observations. However, the interior point algorithm
still need polynomial time for optimization; its worst-case time complexity is O(N°/?p?),
where N is the sample size and p is the dimension of the regression coefficient (Sec 6.4.4
of Koenker, 2005). Whilst for linear median regression, under some conditions, the overall
time complexity is O(N'"*p?logn), where 0 < a < 0.5 (Theorem 6.3 of Koenker, 2005).
In addition, to perform inference through quantile regression, one often has to rely on the
bootstrap method which further increases the computational burden. This is because the
asymptotic variance-covariance matrix depends on the densities of the responses given the
covariates, which are infeasible to estimate especially when the dimension of the covariate is
high.

Subsampling has been widely used to reduce computational burden when handling mas-
sive data. It performs analysis on a small subsample drawn from the full data and provides
a practical solution to extracting information from massive data with limited computing
power. This idea has attracted much attention with extensive literature such as Drineas
et al. (2012); Dhillon et al. (2013); Yang et al. (2013); Ma et al. (2015); Wang et al. (2018).
Most existing work takes an algorithmic approach and focuses on fast calculation. The
first studies to consider statistical properties include Ma et al. (2015); Raskutti and Ma-
honey (2016) and Wang et al. (2018). Specifically, Ma et al. (2015) assessed biases and
variances for subsampling estimators based on statistical leverage scores in linear regres-
sion; Raskutti and Mahoney (2016) investigated ordinary least-squares estimators based on
randomized sketching; and Wang et al. (2018) proposed an optimal subsampling method
under the A-optimality criterion for logistic regression. Wang (2019) proposed a more effi-
cient estimator based on the optimal subsample, and Ai et al. (2019) extended the optimal
subsampling technique to generalized linear models. Wang et al. (2019) proposed a method
called information-based optimal subdata selection for linear mean regression, which selects
subsamples deterministically without involving random sampling.

In this paper, we use the idea of optimal subsampling to meet the challenges in com-
putation and inference for quantile regression. We derive the asymptotic distribution of a
general subsampling based estimator and find the optimal subsampling probabilities that



minimize a weighted version of the asymptotic mean squared errors (MSE). In addition to
the computational advantage, the subsampling technique also provides a scalable approach
to perform statistical inference. The theory of optimal subsampling cannot be easily ex-
tended to quantile regression, because it only applies when the target function is smooth
and at least twice differentiable, which is not satisfied in the quantile regression context.
Compared with standard practices for quantile regression, the asymptotic results are signif-
icantly more challenging to obtain in the context of subsampling. There are two layers of
randomness for a subsample, one is from the randomness of the data and the other is due
to subsampling. Both sources of the randomness need to be taken into account in the proof.
In addition, although the subsample observations are independent conditional on the full
data, they are correlated unconditionally, which further complicates the analysis. In this
paper, we do not consider the deterministic selection method in Wang et al. (2019), because
this method requires to characterize the exact variance-covariance matrix of the subsample
estimator which is not feasible for quantile regression.

An alternative popular approach to dealing with massive data is the divide and conquer
method that first divides the full data into small pieces to analyze, and then combines the
analysis results from all pieces to obtain an aggregated estimator. More details about this
approach can be found in Lin and Xie (2011); Schifano et al. (2016); Shang and Cheng (2017);
Volgushev et al. (2019) and the references therein. This approach mainly aims at analyzing
the full data with parallel or distributed computing platform, while the subsampling method
aims at fast calculation with limited computing resources.

2 Problem Statement

2.1 Model

Consider a linear quantile regression model

where ¢,(Y; | x;) is the 7-th quantile of the univariate response Y; at a given value of the
p-dimensional covariate vector x;. In this paper, we assume that x;’s are nonrandom, and we
want to estimate the unknown S from observed data of size N, (z;,v;),i = 1,..., N, where
the true [ value is assumed to be in the interior of a compact set.

2.2 Full data estimation of [

Let ¢; = y; — BT x;, and let fe1x (€4, z;) be the probability density function of €; evaluated at ¢;
with covariate x;. The most frequently seen method of estimating of 5 is through minimizing
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where p.(-) is the check function defined as p,(¢) =e{l(¢ > 0)— (1—7)} =e{r—I(¢ < 0)}.



Denote the minimizer of (2) as B . Under some regularity conditions, the full data es-

timator E has some desirable asymptotic properties. Here we adopt the set of regularity
conditions used in Koenker (2005) and list them below as Assumption 1 for completeness.

Assumption 1

(a) Assume that fx(t,x) is continuous with respect to t and is uniformly bounded away
from 0 and oo att = 0.

(b) Assume that there exist positive definite matrices Dy and D such that

1

Do :N ;xz% — Dy, (3)
1 N

Dy == Zl fax (0, z) 2] — D, (4)

maxi<;<n |||

Wi = o(1). (5)

As shown in Theorem 4.1 of Koenker (2005), under Assumption 1, the full data estimator
[ satisfies that

{7(1 = 7) D' DnoD3'} V2V N (B — B,) — N(0, 1), (6)

in distribution, where N(0, I) represents a multivariate standard normal distribution, and
B; stands for the true value of 5. This result indicates that the distribution of B can be
approximated by a normal distribution for large N, and this forms the basis for statistical
inference on § or on the quantile of the response given the covariates. However, for massive
data with very large N, it is computationally difficult to obtain § numerically. In addition,
(6) is often not usable for statistical inference because it is hard to obtain estimates of
fe1x(0,2;) in the expression of Dy. To solve these issues and to apply quantile regression
for massive data, we develop a subsampling based approach in the following sections.

3 Subsampling based estimation

3.1 Subsampling based estimator and its asymptotic distribution

Take a random subsample using sampling with replacement from the full data according
to the probabilities 7;, ¢ = 1,...N, such that ZlNzl m; = 1. Here m; may depend on the
full data Fy = {(x;,4:),4 = 1,..., N}. In this paper, we use sampling with replacement
because nonuniform sampling without replacement requires to update the sampling distri-
bution sequentially based on selected observations (e.g., in the sample function of R), which
is computationally slow. In addition, when the sampling ratio is very small, sampling with
and without replacement have very similar performance. Denote the subsample as (z7,y}),



with associated subsampling probabilities 7}, 7 = 1, ..., n. The subsample estimator, denoted
as [, is the minimizer of

1 = p,(y* — BTz
Q) = 3 P, g

7

which can be equivalently written as

1 Rip-(y; — B x;
Q:,(ﬁ):mz prly 5:[)7
=1

where R; is the total number of times that the ith observation is selected into the sample
out of the n sampling steps. Here, we need to weight the target function based on the
subsampling probabilities 7’s, because we allow 7;’s to depend on the responses ¥;’s and an
un-weighted target function would result in a biased estimator.

We now show the asymptotic normality of 3, and then identify the 7 = {7y, ..., 7y} that
minimizes the asymptotic variance. To establish the asymptotic normality, we assume some
conditions on the subsampling probabilities in Assumption 2. Note that we allow 7;’s to be
dependent on the responses y;’s, so they may be random.

Assumption 2
(a) Assume that

17—, ®)

I<i<N T

(b) Assume that

{r — 5Z < O)} x}
Ve = Z A (9)
converges to a positive definite matrixz in probability.

Remark 1 Assumption 2 contains two requirements on the sampling probabilities 7;’s. These
are not very restrictive conditions as one can see by inserting equal probabilities m; = 1/N.
They mainly require that the mazimum covariates weighted by the inverse selecting probabil-
ities do not diverge or diverge too fast.

The following theorem describes the asymptotic normality of E .

Theorem 1 Under Assumptions 1 and 2, as n — oo and N — oo, if n = o(N), then
Vn(B8—PB:) asymptotically follows a normal distribution with mean 0 and variance-covariance
matrix approximated by DJ_VlVﬂDJ_Vl, i.€.

(DN VDN Y2 /n(B — B,) — N(0, 1)

in distribution, where Dy is defined in (4) and Vy is defined in (9).



3.2 Optimal subsampling probabilities

The asymptotic distribution of E depends on the subsampling probabilities 7;’s and the key
to the success of a subsampling based estimator is to find the 7;’s to optimize some criterion
of the asymptotic distribution. Since § is asymptotically unbiased, we focus on minimizing
the asymptotic variance-covariance matrix.

In the asymptotic variance-covariance matrix n_lDR,IVWD;,l, only V, depends on ;’s
while Dy does not involve ;’s, and DX,IVWDX,I < DX,IVW/DX,I if and only if V; < V. in the
Loewner ordering (Yang, 2010). In addition, Dy depends on the density functions of &;’s
at zero given the respective x;’s, which are often infeasible to estimate in practice. Thus,
we propose to focus on minimizing V. As there is no complete ordering for matrices, a
natural choice is to minimize the trace. Therefore, we propose to find optimal subsam-
pling probabilities to minimize tr(V;). Note that n='V; can be viewed as the asymptotic
variance-covariance matrix of DNB in estimating Df3, a linearly transformed parameter.
Thus, minimizing tr(V;) can be interpreted as minimizing the asymptotic MSE of Dyf due
to its asymptotic unbiasedness. This choice also has an optimality interpretation in terms
of optimal experimental design; it is termed the L-optimality criterion, where “L” stands
for “linear transformation” of the estimator (see Atkinson et al., 2007). Using this criterion
we are able to obtain the explicit expression of optimal subsampling probabilities in the
following theorem.

Theorem 2 (L-optimality) If the sampling probabilities 7;, i = 1,...N, are chosen as

opt _ [T — I(ei < O)[|i]
> | =15 < 0|

i=1,2,.. N, (10)

T

then the total asymptotic MSE of Dy (3, tr(V,)/n, attains its minimum.

For completeness, we also derive the optimal subsampling probabilities that minimize
the asymptotic MSE of 3, that is, the 7;’s that minimize the trace of n=! D'V, Dy'. This is
called the A-optimality criterion in optimal experimental design (see Atkinson et al., 2007).

Theorem 3 (A-optimality) If the sampling probabilities m;, i = 1,..., N are chosen as

nopt _ |7 = I(e: < 0)[| Dy x4
Z > et = 1(g; < Ol Dy

Y AR Y

then the total asymptotic MSE of E, tr(Dy' Ve DY) /n, attains its minimum.

Remark 2 The L-optimal subsampling probabilities 7TZL P75 do not depend on the densities
of €;’s given the associated x;’s and thus are much easier to implement compared with the
A-optimal subsampling probabilities W?Opt ’s, which depend on the conditional density through
Dy. In addition, 7TZ-L°1[’t s require O(Np) time to compute, while TP require O(Np?) time

to compute even if Dy is available.



In (10), &; = y; — BT x;, and it depends on the unknown 3, so the L-optimal weight result
is not directly implementable. We propose the following two-step algorithm to address this
issue.

Lopt
7

Algorithm 1 Two-step Algorithm in implementing 7

e Step 1: Using the uniform sampling probability 70 = 1/N, draw a random subsample

of size ng to obtain a preliminary estimate of (3, B}). Replace 3 with Bo in (10) to obtain

the approximate optimal subsampling probabilities 7T1-L opt.fo,
Lopt,Bo
7 )

e Step 2: Subsample with replacement to obtain a subsample of size n using =
and use it to obtain the estimate [iopy through minimizing

1 < o (yr — BT
QZ@) _ = Z p-(y;i — 8 }‘1@)' (11)
n‘= NW:LOPE/J’O

If the density f.x(0,2) is obtainable, then 7P can be implemented similarly as in
Algorithm 1 to obtain BAopt. In this case, we can further combine the pilot estimator and
the second step estimator. To be specific, let fE‘X(O, x) be the estimate of f.x(0,z) based
on the first step sample, and let

~ 1 &% Foyx (0, 270)2020" ~ 1. fox (0, 2T
Dn(,:_zfalX( ]\;Zoz 7 and Dn:_zf€X( Az) i ’
no “— m; n= N?T: opt,fo
where 7% = 1/N, and (2%)°, and (a})!, are respectively the first and second step sub-

sample covariates. After obtaining the second step estimator BAopt, we can aggregate it with
the pilot estimator [, using

(no Dy + 1Dy) " 19Dy Bo + (126 Dy + 1.Dy) " 1D, Baops. (12)

The linear combination in (12) is similar to the aggregation step in the divide and con-
quer method (Lin and Xie, 2011; Schifano et al., 2016), and is used to further improve the
estimation variability from BAopt.

In practice, with limited computing resources, one often takes a pilot subsample with
size ng to explore the data, and then select a second subsample with size n according to the
computational capacity available. It is not recommended to combine the two step subsamples
to perform estimation. This is because if we are willing to handle estimation under size
no + n, then we could have chosen a better sample by setting the second step sample size to
no +n directly. Thus, unless f;x(0, ) is available, in which case we can further improve our
estimation via (12), the first step subsample should only be used to help estimate the second
step sampling weights. It should not participate in the second step estimation directly.

In Algorithm 1, the pilot estimate is used to calculate the approximate optimal subsam-
pling probabilities. We have the following theorem to describe the asymptotic properties of
the resultant estimators BULopt and BAopt.



Theorem 4 Assume that N~ Zfil 2|~ tzsx} converges to a positive definite matriz. Un-

der /ulssumptz'on 1, as ng — 00, n = o0 and N — oo, if n = o(N), then the distribution of
V1 (Bropt — Bt) is asymptotically normal, i.e.,

(DJ:TIVLOPtD]:fl)_l/Q\/ﬁ(BLOpt - /Bt) - N<O’ I) (13)
in distribution, where Vigp has the minimum trace, and it has the explicit expression
N

N

1 |7 —I(g; < 0)|zyzl 1

Vit = — § X = E [T = 1(g; < O)]||z4]|- (14)
Pt N i—1 ”‘TZH N i=1

Furthermore, if sup, \ﬁ‘X(O, x) — fex(0,2)| = op(1), then V1 (Bacpt — Br) is asymptotically
normal, 1.e.

(D' Vaopt Dy') v/ Baops — Br) — N(0,1)

i distribution. In this case, D&IVAoptD]}l has the minimum trace, and Vaop, has the explicit
ETPTESSION

N N

1 2 : |7 —1I(g; < 0)|zzl 1 .

N i1 ||Dx,lxz|| X N ;:1: |7 (e WDy il (15)

. R L t

4 Tterative subsampling based on 7;”

For statistical inference, to avoid estimating f;x(0,), which appears in the asymptotic
variance-covariance matrix expression of BLopt, we propose the following iterative sampling
procedure based on 7riL °P' that will produce both the point estimator and the standard de-
viation. Moreover, the convergence rate of the point estimator is proportional to the square
root of the number of iterations. This provides great scalability for the algorithm to extract

information from big data according to the available computing resources.



Algorithm 2 Two-step iterative sampling algorithm with ﬂLOpt

e Step 1: Using the uniform sampling probablhty 7 = 1/N, draw a random subsample

of size ngy to obtain a preliminary estimate of /3, BD Replace § with 50 in (10) to obtain

the approximate optimal subsampling probabilities 7r5 0

e Step 2: For b =1,..., B, subsample with replacement to obtain subsamples of size n

using Wf ?, obtain [ept,» through minimizing

p-(yi — BT )
Z */30 ’

and calculate

o)

v 1 o
Br = B bz_:ﬁ opt.b (16)
and its variance-covariance estimator
R B
Y = ont.b — , 17
(5 = B ; Bropes = 1) (17)
where N
B-1 3
rp = 1= =——5— > (/)% (18)

=1

Remark 3 The term vy is a correction term for effective subsample size. Since the subsam-
pling is with replacement, the number of unique observations in a subsample may be smaller
than n. Although the probability for this scenario to occur converges to zero if n/N — 0,
using rey helps to improve the finite sample performance of the variance-covariance estima-
tor. The correction term 1y is derived as the following. Given the full data and subsampling
probabilities, for each observation, the probability that it is included in a subsample is

B B B(nB -1 3
1—(1—W:ﬂ0)”3 R 1—{1—nB7r;‘50+L)<7rfﬁ0)2}

2 K3
nB(n2B —1) (7‘[':50)2.

Thus, the expected effective total subsample size is approzimated by

= ?”LBT(':ﬁO —

N N
3 B(nB -1 z B(nB -1 z
Nef = E {nBW;‘ﬁo _n (n2 )(7'(:50)2} —nB — n (n2 ) § :<7T;k50)2.
1=1 =1

This gives the effective subsample size ratio rey = nep/(nB) as given in (18).
From Theorem 4, for any fixed B, the conditional distribution of vnB (B 1 — ;) satisfies
(D3 Viopt DR ~Y2VnB(fr — ;) — N(0, I). (19)

9



To ensure that the bias is ignorable compared to the variance, the result in (19) requires
a fixed B while requiring n — oo. This indicates that in practice, we should choose n to
be as large as it is feasible while select a relatively small B. An overly large B value can
risk leading to incorrect inference results. Similar performance is also observed in the divide
and conquer procedures (Schifano et al., 2016; Shang and Cheng, 2017; Battey et al., 2018;
Volgushev et al., 2019). In practice, we find that often B as small as 10 is already sufficient
while it is preferably < n/10. Please refer to Section S.2-4 in the supplement for numerical
examples.

Our analysis and optimal sampling probabilities are tailored to the specific quantile level
7. In the situaiton when we need to consider several, say M, quantiles simultaneously, we
can either perform the analysis for each quantile, or opt for a sub-optimal universal approach
which is computational simpler. To this end, note that at a fixed 7,,, our L optimal subsam-
pling probabilities minimize S | {7, — I(&; < 0)}?2T2;/(N?m;), which is upper bounded by
N=2max{72, (1 — 7,,)2} SN, T a,7;'. Hence we can minimize 3 1, a7
sub-optimal universal sampling probabilities 77 = H:UZH(Zjvzl |z; )7t fori=1,...,N. We
conducted additional numerical experiments to evaluate the performance of these universal
probabilities in Section S.2-3 in the supplement, and the efficiency loss does not seem to be
severe.

z;m; to obtain the

5 Numerical experiments

5.1 Simulation

We first conduct a simulation study. Full data of size N = 10° are generated from model (1)
with the true value of 3, 5, being a 7 x 1 vector of ones. We consider the following 3 different
distributions to generate the covariate X:

1) Multivariate normal distribution N(0,Y), where ¥;; = 0.5177;
2) Multivariate ¢ distribution with degrees of freedom 3, t3(0, %); and
3) Multivariate ¢ distribution with degrees of freedom 2, ¢5(0, X).

We consider two values of 7: 0.5 and 0.75. For the distributions of the response Y given
X, we consider three different cases:

1) the standard normal distribution times (1/7) 2]7.:1 | X
2) exponential distribution with rate parameter 1 times (1/7) Zj.:l |.X;|; and
3) ty distribution times (1/7) >27_ | Xy

We take ng = 1000 and n = 1000, and calculate MSEs of BI based on S = 1000 repetitions
of the simulation using MSE = S~ 325 |18 — 5|12, where 8/ is the estimate from the
sth repetition of the simulation.

Figure 1 presents MSEs for different scenarios using 7TZ-L °P*  For better presentation, we
show MSEs on the log;, scale. For comparison, we also provide the results based on the

10



uniform subsampling. In general, 7TZ-L P outperforms the uniform subsampling probability,

and its advantage becomes more significant as the tail of the covariate distribution becomes
heavier or if 7 is further from 0.5. In general, 7TZL °P' compared with the uniform subsampling
probability, shows a significant advantage in terms of MSE, except when X follows a normal
distribution and 7 = 0.5, even though theoretically 7" does not minimize the MSE of the
original parameter. We also see that when both the covariate and the response have heavy
tail distributions (X follows the ¢, distribution and Y | X follows the t; distribution), the
uniform subsampling probability does not lead to stable results.

To evaluate the performance of the formula in (17) in estimating the variance-covariance
matrix, we use tr{i\/(ﬂul)} to estimate the MSE of @v], and compare the average estimated
MSE with the empirical MSE. Figure 2 presents the results for the case when 7 = 0.75. For
all the three different distributions of X and the three distributions of Y | X, the estimated
MSESs are very close to the empirical MSEs, indicating that the proposed formula works well.
Results for the case when 7 = 0.5 are similar and are omitted.

5.2 Example

Now we analyze a data set collected at the ChemoSignals Laboratory in the BioCircuits
Institute, University of California San Diego. This data set was used to develop and test
strategies for continuously monitoring or improving response time of chemical sensory sys-
tems (Fonollosa et al., 2015). It contains the readings of 16 chemical sensors exposed to the
mixture of Ethylene and CO at varying concentration levels in the air. Readings from the
second sensor contain about 20% negative values for unknown reasons, so we do not use the
readings from this sensor. For illustration, we model the 7 = 0.75 quartile for the readings
from the last sensor using other sensors’ readings. As suggested in Goodson (2011) for chem-
ical concentrations, we take log-transformation of the raw data. The data set was collected
over about 12 hours of continuous operation and we excluded the observations from the first
4 minutes before the system stabilized. Thus, the full data set used contains N = 4, 188, 261
observations with 14 predictors, and p = 15 because an intercept is included.

We implement f3; in (16) with 7TZ~LOpt, and set ng = 1000, n = 1000, and B = 10, 20, 50,
and 100. We repeat the iterative subsampling procedure for S = 1000 times. Since the true
value of § is unknown for a real data set, we use the full data estimate to access the variation
due to subsampling. We calculate the empirical MSE using MSE = S—1 Zle I ﬁu}s) — B3,
where B = (—0.591, —0.010, —0.725, 0.231, —0.433, 0.735, 0.173, 0.554, 0.025, —0.009,
—0.161, 1.052, —0.365, 0.048, —0.089)T for this data set. Figure 3 present empirical MSEs
and average estimated MSEs for different values of B. The empirical MSE decreases as
B increases, indicating better approximations with larger values of B. Furthermore, the
estimated MSEs are very close to the empirical MSEs, showing the desirable performance of
the estimator proposed in (17).

To assess the normality of B 1, we create histograms for its last component B 7,14. Figure 4
presents results for different values of B. The vertical dashed line corresponds to the value
calculated from the full data estimate, i.e., $14. The “mean” and “sd” in the legend are
the mean and standard deviation for the S values of 5;‘? 4 The red solid curve is the kernel
density estimate based on these S values and the blue dashed curve is the normal density

11



curve with the same mean and standard deviation. These histograms show clear pattern of
normality, especially for large values of B.

All the calculation were performed on a computer running Ubuntu 18.04 with an Intel
I7 CPU. For the full data estimate, using the rq function in the R package quantreg, it
took the default algorithm with br option over five hours to run. With pfn option in br
function, it implements the Frisch-Newton approach with preprocessing, in which a pilot
estimate based on an uniform random subsample is used to preprocess the data (Portnoy
and Koenker, 1997; Yang et al., 2013). With this method , it took about ten seconds to finish
the calculation. Thus, it is seen that early work on using random subsampling has already
greatly reduced the computational burden in quantile regression. For our Algorithm 2, with
ng = 1000 and n = 1000, it took about 0.458 second to approximate the optimal subsampling
probabilities 7TZL °P* The times used in the second step were 0.65, 1.29, 3.21, and 6.43 seconds
for B = 10,20, 50, and 100, respectively. Thus, the per iteration time cost in Step 2 was
about 0.065 second. Note that the Frisch-Newton approach with preprocessing only provides
a point estimate, whereas Algorithm 2 also provides standard errors for statistical inferences.
If we perform estimation only, the time to obtain a point estimator is 0.458+4-0.065, which is
about 5% of the time needed for the Frisch-Newton approach with preprocessing.
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Figure 1: log;o(MSE) against number of repeat subsampling B. The three columns 1-3
correspond to the three distributions of X (normal, t3, t5), respectively. Rows 1-3 are for
7 = 0.5 and rows 4-6 are for 7 = 0.75. Rows 1 and 4, 2 and 5, and 3 and 6 are for cases
when Y follows normal, exponential, and ¢; distributions, respectively.
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Figure 2: Empirical MSE (MSE) and estimated MSE (EMSE) against number of repeat
subsampling B when 7 = 0.75. The three columns 1-3 correspond to the three distributions
of X (normal, t3, t5), respectively. The three rows 1-3 correspond to the three conditional
distributions of Y (normal, exponential, t;), respectively.
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sponding to the value calculated from the full data estimate 314. The red solid curve is the
kernel density estimate and the blue dashed curve is the normal density curve with the same
mean and standard deviation of 5}? 4S-
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Supplementary material for
Optimal subsampling for quantile regression in big data

by HaiYing Wang and Yanyuan Ma

In this supplementary material, we prove all the theorems in the main paper and provide
additional numerical results.

S.1 Proofs of theorems

S.1-1 Proof of Theorem 1
Define

Y

* - Pr g;'k — U; — Pr 8:
zin =y ) o)
=1 v

where v} = ATz} /\/n and ef = y; — Bz} As a function of \, Z*()) is convex and minimized
by v/n(8 — ;). Thus we can focus on Z*(\) when assessing the properties of \/n(8 — ;).
From the following identity

prt =) = o) = =vir(o0 + [ (T 5) = 1w < 0)}as,

where ¢, (u) =7 — I(u < 0), we have

) = i—v;‘@bf(emfo”fmszSs>—f<e:so>}ds

Z*
" A N7
i=1 ?
_ 1 z”: AT {r — I(e; < 0)} N z”: Joi{I(e; <s)— I(e; <0)}ds
Vn = N} — N}
= Wi+ 275, (S.1)
where
1 &Ka{r—1I(e<0)}
W* — o K3 7
NG ; Nt ’
" [YI(er < s) — I(F < 0)}ds
Z* — 0 [
2n ; Nﬂ-z*
Denote

*_
n, = )
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so Wy =n"Y2%" nf. We have

B Fy) =S T IGO0} o v, (5.2)

‘ N
=1

V0 Fr) Z {r— 51 < 0)} vl Z —x {7 —]if(ﬁi <0)} —V, —op(1), (S.3)

where ¢; = y; — Bfx;. In (S.2), E(n|Fy) is Op(N~'/?) because for each element of 7}, say
Mij>

E{E(r;|F)} = 0

V{E(m;|Fx)} = NZZV{T— I(e; < 0)}af; < Znazzng

and Chebyshev’s inequality indicates that E(n; ;| Fx) = Op(N~Y/2).
We now check Lindeberg’s conditions (Theorem 2.27 of van der Vaart, 1998) under the
conditional distribution given Fy. Specifically, we want to show that for every € > 0,

D E{lln P 1P| > Vi) | Fa}
=1

: iE{H” (P )

_ Z il {7 — I(es < 0)}21(||xz\||7 — (e <0)] 1)

N27; VnNerm;

lill* (]

< g N < NG 1) (S.4)

goes to zero in probability. If condition (8) holds, then the right hand side of (S.4) satisfies
that

N
l:ll® (] el [
< Il
Z ]\727TZ VnNer; 1) = Z N27r,~I 1121‘&5}1{\/ g > V/nNe

Thus, combining (S.3) and Assumption 2 (b), if (8) holds, Lindeberg’s conditions hold in
probability.

Given Fy, 0, ¢ = 1,...,n, are i.i.d with mean E(n}|Fy) and variance V(n;|Fy). Thus,
conditional on Fy, when n, N — oo, with probability approaching one,

(V0 | Fn)} 2{WE — VRE(nf| Fn)} — N(0, 1),
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in distribution, which implies that
(VO | Fn)} AW — N(O, ), (8:5)

in distribution because v/nE(nf|Fy)} = Op(n'/2N~12) = 0p(1).
For Z3, in (S.1), denote Z3,, = [;"{I(ef <s) — I(ef < 0)}ds, and

2ng
B(Z3) = | (Fux(s.al) - Fux(0.D)}ds
0
The conditional expectation of Z3 | E(Z; |Fx), equals

E 2ni
( N

i=1

N N N

where Zs,; = Ovi{I(ei < s) —I(g; < 0)}ds, and E(Zop;) = Ovi{Fe|X(57xi) — Fx(0,2;)}ds.
For the first term on the right hand side of (S.6), following an approach similar to that in
Section 4.2 of Koenker (2005) under the conditions in Assumption 1, we have

% ;E(ZQM) :% ;/gvi{FsX(S,ﬂﬁi) - F5|X(0,xi)}ds

1 N )\TQE,L'
> / S (0, )t + o(1)
i=1 70

N
1
= ()\TIi)2fE|X(0, l’z) + 0(1)
2N —
1 1

The second term in (S.6) has mean 0 and variance

N N
Loni — E(Z2m') n? 2
\% {nz N < WZE(Z%’)
i=1 i=1

< maxi<;<N ||$z|| % 2||>‘||\/ﬁ

N N %ZE(ZM) (S.8)

which, in view of (S.7), converges to 0 if condition (5) holds and n/N does not go to infinity.

Here, the second inequality in (S.8) is from the facts that Zs,; is nonnegative and
)\T

T4

T < /ﬁ {I(e < 5) — I(e; < 0)}|ds| <
0
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From (S.6), (S.7), and (S.8),

E 2n4
{ i=1 N

based on Chebyshev’s inequality.
Now we exam the conditional variance of Z3, . Nothing that conditional on Fy, Z3 ;s
are independent and identically distributed, we have

" 75 (Z3 )2 n 73
V 2n4 E 2ni - “2ni
{, N }—N} N2 { (m¥)? } N2 g T

N
< 2/ Z sl e I 2/ 7

1<z<N T N2

N} ~ Z Zomi = ATDN)\ + op(1) (S.9)

_ il 2]l
TS T AN NZZ”” (5-10)

From (S.7), (S.10), and condition (8), we have

n *
2ni
%
e~ N¥
=1 g

From (S.9), (S.11), and Chebyshev’s inequality,

]-"N} = op(1). (S.11)

ﬁ — §>\TDN)\ = opiry(1). (S.12)

i=1

Here a = op|£, (1) means a converges to zero in conditional probability given Fy in probabil-

ity, namely, for any 6 > 0, Pr(|a| > §|Fxn) — 0 in probability. Note that Pr(|a| > §|Fn) < 1,

thus it converges to 0 in probability if and only if Pr(|a] > §) = E{Pr(|a| > §|Fn)} — 0.

Therefore, a = opr, (1) is equivalent to a = op(1), and we will use the notation of op only.
From (S.1) and (S.12), we have

1
Zi(N) = XTW; + SN DyA + op(1).

Since Z(\) is convex, from the corollary in page 2 of Hjort and Pollard (2011), its minimizer,

Vn(B — B;), satisfies that
V(B —B) = —Dy'Wyi + 0p(1),
Thus, we have

(DNVaDRY) V206 = Bi) = — (DR Ve D) V2D Wi + op(1).
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Combining the the fact that (Dy'V,Dy') V2D ' VoD (Dy'VaDy')™Y/? = I, the results
in (S.3) and (S.5), and Slutsky’s Theorem, we have that (D 'V, Dy")~/%\/n(3—3;) converges
to N(0, ) in conditional distribution given Fy in probability. This means that for any z

Pr{(D3'Va DY )™ 2/n(B — B,) < x| Fn} — ®(x), (S.13)

in probability, where ®(z) is the cumulative distribution function of the standard multivariate
normal distribution. Note that the conditional probability in (S.13) is a bounded random
variable, thus convergence in probability to a constant implies convergence in the mean.
Therefore, the unconditional probability

Pr{(Dy'VaDy) ™ 2v/n(B = B) < «}
= E[Pr{(Dy'VaDy) " *Vn(B — B) < 2| Fx}] = @(a).
This finishes the proof of Theorem 1.

S.1-2 Proof of Theorem 2
Note that

tr(Vy) = [

i €l<0)} ]
_ % [{T— 51;())} }
S{E
>

1
N?

I(ei < 0)} [E2S

> ( {T— I(; < o>}2||xz-||2>

> {ZIT—I(@- < o>|||xi||} ,

=1

1
N2

where the last step is from the Cauchy-Schwarz inequality and the equality in it holds if and
only if when 7; o< |7 — I(g; < 0)|||:]|-

S.1-3  Proof of Theorem 3
Note that

T
tr(D;,lV,TD;,l) — [ -1 Z {T 81 < O)} Z; D;[l

i |:{7' —1I(g; < 0)}2DN1xiaciTDNl}

T
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N _
1 {1 = I(es < 0)}?|| Dy ai]|”
Ly

T

al N {7 — I(e < 0)}2]| Dy a2
(Z”") (Z{ <O u)

i=1

2
1
> W{Zv Ie; < 0)lIDy xzn}

where the last step is from the Cauchy-Schwarz inequality and the equality in it holds if and
only if when m; oc |7 — I(g; < 0)||| Dy il

]

1
N

S.1-4 Proof of Theorem 4
Recall the notations v; = ATat/\/n, ef =y — ,and ¥, (u) =7 — I(u < 0). Let

N :i priei — vfg pr(ch).
Vi, (e]) + [ {1 (ef < 5) = I(e] <0)}ds
_Z Jo {1 ) — I( }

9

N=n *50
Z—/\Tx*{T— I(er <0)} Zfo {Ié? <s)—1I(ef <0)}ds
\/_ N=n *50 N *50 )
EATW;'; + 73 (S.14)
Denote
o —o{r —I(ef <0)}
e NW%BO
We have
N _a{r—I(e; < 0)}
o TN T — L& _ ~1/2
E (15 1Fw, Bo) —; ~ — Op(N7'12)
~ o K r = I(e < 0))2zal
V(i | v, o) =) - L op(1) (S.15)
i=1 NQWEO

Aopt Aopt (2
For w7 — 7Y (30) and we have

{r — I(g; < 0)}2ax}
; NQW?Opt(EO)

1 T—1I(g; < 0)}2a; xT 1< 3 ~ ~ ~
:NZ ’ { [( go O)|)|TD 1 X _Z ’T - I(giﬁo < O)lHDK[lIZH = A1 X AQ- (816)
i=1 |T — <
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Now we show that El — Ay =op(1) and KQ — Ay = 9]3(1)7 where A; and A, have the same

expression of 81 and 32, respectively, except that 5? O =y — EOT x; and IN)N are replaced by
g; and Dy, respectively. Denote 7, = min(r,1 — 7). For the j;, joth element of A; — Ay,
.j17j2 = 17 s Py

| A1|]1.72 _NZ

—I(es < 0)P[lz]® {7 = I(ei < 0)}* || |?
_ 1% < 0)||Ditas| 1T — (e < O)l[[ Dyl

{r—1(e <OPllz)* _ {r = I(e: < 0)}||]|” (8.17)
o= 1P < OlID @]l |7~ 1(ef < 0)[[| Dy'ai]
N .
Z =T < Olall® | = I < )il + op(1)
i1 < < 0)|||D il = I < )| Dyt
1 |I I(e: < 0)l|:*
‘l‘Op(l)
TN 2; ||D i
Anax {1+ 0p(1)} g
S ; 1(2 < 0) = I(e; < 0)[[Ja]| + op(1), (S.18)

in which AP is the largest eigenvalue of D. Here, the term in (S.17) is op(1) due to the

uniform convergence of f5| +(0,2); the second last inequality also used By — 3, = 0p(1); and
Dy can be replaced in the last step by its limit D because of condition (4). For any € > 0,

{ Z — I(e: < O} >6}

< Z E{|I(c < 0) — I(¢; < 0)[}|i]. (S.19)

Note that for each i, |1 (5? * <0)—1I(g; < 0)| is bounded and converges in probability to 0, as
ng — 0o and n — oo. Thus, E{|I(e™ < 0) — I(¢; < 0)|} — 0. This indicates that the term
in (S.19) converges to 0, which implies that the term in (S.18) converges in probability to 0.
Thus, A; — Ay = op(1). Using a similar approach, it can be shown that Ay — Ay = 0p(1).
These facts, together with (S.15) and (S.16), show that, for 7",

V(3751 Fw, Bo) Z {r =1 < O} iz, + op(1). (S.20)

N2r1 Aopt

Lopt B Lopt [ 7
For =, Op,wfozwi‘)p (Bo), and we have

{r—I(g; < 0)Yux}
; N2 (5o)
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— l<0 2 ; T 1 N _ _ B
Z{T Z Dot S 1 <Ol = B x B (821)
S -1 <0)llell NS

Now we show that Az — Ay = op(1) and Ay — Ay = 0p(1), where As and A, have the

same expression of Ag and A4, respectlvely, except that 56 % is replaced by ¢;. Note that the
J1, joth element of Ag — Az or A4 — Ay, j1,J2 = 1, ..., p, is bounded by

N

1 ~

¥ > (e < 0) = I(zi < 0)][|]. (S.22)
=1

Using a similar approach used for the case of 7Pt (S.22) can be shown to be op(1). Thus,
Ay — Ay = op(1) and Ay — Ay = op(1). These facts, together with (S.15), yield that, for

Lopt
T, ,

N

Vi Faa ) = 3

i=1

T —1(g; < 0) Y2z}
N2glopt

We now check the Lindeberg’s condition given Fy and Eo-
For every ¢ > 0,

ZE(HH P PT| > vne)| Fas Bo)

B e L= L R

_ZH%H {T— €z<0)} I(HﬂffiHlT—I(ﬁg< 0)] >1)
im1 50 \/ﬁNEWiﬁO
N N
1 Hff?zH2 !l’z’H HIZH 1 [i]|”
— = 1) <17 —>1)— —. S.24

Now we show that the term on the right-hand-size of (S.24) is op(1).
Aopt

||5’7§H _ HxZH Z = Bo < O)mf)&l%H
= I(e <0)|||D Ll 5=
N ||$Z‘| L,
< D
o [ Dy Z ”
NAQQVX |‘rl|| N)\gax V ( 0)
< )\DN ||I H _Z H JH < /\D {1 +OP(1)}7
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where the op(1) does not depend on i. Thus,

|zl _ NAmax/tr(Do)
max " < D {1+ o0p(1)}. (S.25)

Uy; min

From (S.24) and (S.25),

ZE(Hn P PI | > vre)| Fas Bo)

< - =
= N2 Z Bo 1<’L<N \/_NEW'BO >1
\D \/tr(DD) ||5U ||2
< _[ “max V" \Y) 1 > 1 i 1 '
For m P,
i B P&
% = : S 1 <Ol < -3 ) (5.26)
AN L (GRS [ e T 5

Thus, using an approach similar to that used for the case of 7TZA °P' the right hand side of
(S.24) is op(1).

Given Fy and Sy, 7/, ¢ = 1,...,n, are i.i.d with mean op(1) and variance Vp + op(1),
Where V;pt has the expressmn of VLopt in (14) for 7TL°pt or Viept inn (15) for ﬂAOpt Note that if

-1 Zl @il tza! is asymptotically positive definite, then Vj is asymptotically positive
deﬁmte because |7 — I(g; < 0)] is bounded away from both 0 and infinity and Dy converges
to a finite positive definite matrix. Thus, given Fy and [y in probability, as ng — oo,
n — oo, and N — oo, if n/N — 0, then

Vo PWr — N(0, 1),

opt

in distribution.

Note that Z3,, = fOU:{I(E <s)— I(s < 0)}ds and E(Za,)* = [, {F?(s) = fox (0, 27) Yds.

For the second term in (S.14), i.e. Z3

o, We have

. ~ "I n < 1
E(Z3,|Fn, Bo) =E {Z . — - | Bo} = > Zowi = §ATDNA +op(1), (S.27)
i=1 7Ti i=1

where the last equality is from (S.9).
Now we exam its variance, which is

n VA (Z* ')2
VAT I lry Byt < nEQ
{2; Nﬂ'*ﬁ N2 (7.[.:,30)2
24
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=1 i




DN ol ¢ e Il 2L S
Z e C B

_ lzill 2HAH
— 1I£Lag>](\[ 71_50 N Z Z2m
A

IA

Considering (S.25) or (S.26), corresponding to m " or 7-°P"| respectively, and results in
(S.9), we have
7% a . Zéknz _1/2
=1 7T

From (S.27), (S.28), and Chebyshev’s inequality,

n

z5 1
> ~ 2:;0 §ATDNA = op(1). (S.29)
i=1 VT,

From (S.14) and (S.29),
% Tyi/* 1 T
Zr(N) =AW+ 5)\ DyX+op(1). (5.30)

Since Z*(\) is convex, from the corollary in page 2 of Hjort and Pollard (2011), its
minimizer, v/n(8 — ), satisfies that

Vi(Bop = Br) = =Dy Wy + op(1),

Aopt
i"p °P' Thus, we have

where Bopt = Bropt for m and ﬁopt = ,BAOpt for

(DN Vot D)™ *V/0(Bop — i) = =(Dy Vo D) 2D Wi 4 0p(1),

which implies that (Dy!Vope Dy')~Y2/n(fopt — ) converges to N(0,I) in conditional dis-
tribution given Fy and (3, in probability, meaning that for any z

Pr{(D3 Vopt DY) Y2/ Bopt — B1) < 2| Fn, Bo} — ®(x),

in probability. Since the conditional probability is a bounded random variable, convergence
in probability to a constant implies convergence in the mean. Therefore, the unconditional
probability converges and this finishes the proof of Theorem 4.
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S.2 Additional numerical results

S.2-1 Multiple quantile levels, including some extreme levels

In this section, we carry out simulations to assess the performance of the proposed method in
comparison with the full data estimator at multiple quantile levels, including some extreme
levels. Specifically, we let 7 = 0.01,0.02,0.05,0.1,0.3,0.5,0.7,0.9,0.95,0.98 and 0.99. We
set the full data sample size N = 10°%; set the pilot subsample size ng = 10%; and set the
subsample size n = 10,2 x 10%,3 x 10, and 5 x 103 with B = 10 so the total subsample sizes
are n = 10%,2 x 10%,3 x 10%, and 5 x 10%, respectively. The same model setup as presented
in Section 5 of the main paper is used here.

To evaluate the relative efficiency of the proposed method compared with the full data
estimator, the first plot in Figure S.1 presents the relative performance MSE¢/MSELqpt.
Clearly, as the subsample size n increases, the estimation efficiency of the proposed method
gets higher. It is also seen that all relative MSEs are smaller than one, meaning that
the performance in terms of MSE of the full data estimator is always better than that of
the subsample estimator, regardless of the quantile level. This is because the subsample
based analysis provides estimators at v/nB-rate while the full data based analysis generates
estimators at \/N -rate.

To eliminate the effect from different sample sizes, we also reported the sample size
adjusted MSE ratio, (N MSEgy)/(nB MSEpopt), in the second plot of Figure S.1 for more
informative comparisons. This ratio can be interpreted as a measure to compare the per-
observation efficiency between the proposed method and the full data analysis. It is seen that
most of the ratios are larger than one, expect for extreme quantile levels such as 7 = 0.01
and 7 = 0.99. This indicates that smaller sample size is hardly enough to provide useful
information for extreme quantile levels. As soon as the sample size is sufficient to perform
meaningful analysis, the adjusted MSE improves very fast. Interestingly, as soon as the
sample size is reasonably large for the corresponding quantile estimation, the subsample
analysis tends to outperform the full data analysis in terms of adjusted MSE. This is because
the optimized subsampling probabilities select better subsamples for which the observations
are on average more informative than the observations in the full data.
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Figure S.1: Ratio of MSE for the subsample estimator to that of the full data estimator
against 7. Here B = 10 and n are set to four different values, X ~ t3, and the conditional

distributions of Y is exponential.
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S.2-2 Sensitivity with respect to the subsample size

In this section, we investigate the sensitivity issue of the proposed method with respect to
subsample size n. We consider two scenarios: one with relatively large subsample sizes and
one with small subsample sizes.

Figure S.2 provides the sensitivity of bias and variance to the subsample size n when n
is relatively large. From Theorem 4, we know that when the subsample size is large, the
variance decreases at the n~! rate, so we plot nxvariance against n, where the variance is the
sum of variances for all regression coefficients. The exact convergence of the bias is unknown
so we plot the sum of the absolute biases for all regression coefficients. From Figure S.2, we
see that the bias has a clear decreasing trend when sample size increases, and the variance is
clearly decreasing at the n~! rate for most quantile levels because the curves are relatively
flat. For extreme quantile levels such as 7 = 0.01,0.02, and 0.99, there is a decreasing pattern
for nxvariance, meaning that a larger sample size is required for the asymptotic distribution
to be precise. Figure S.3 provides similar sensitivity analysis results when n is small. The
general trend is the same, in that both the bias and the variance decrease when n increases.
Interestingly, even though the sample sizes are small, at most quantile levels, we can still see

the decreasing of the variance at the n=! rate.
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Figure S.2: Absolute bias and nxvariance against relatively large values of n with B = 10
and different quantile levels. Logarithm is taken for better presentation. Here, X ~ t3 and
the conditional distributions of Y is exponential.
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Figure S.3: Absolute bias and nxvariance against small values of n with B = 1 and different
quantile levels. Logarithm is taken for better presentation. Here, X ~ t3 and the conditional
distributions of Y is exponential.

S.2-3 Universal subsampling probabilities for multiple quantile
levels.

In this section, we provide additional numerical results to evaluate the performance of the
sub-optimal universal sampling probabilities 77’s derived at the end of Section 4 in the
main paper. We use the same model setup and sample size configurations as presented in
Section S.2-1. Figure S.4 presents the MSE for subsampling estimator based on both 7"
and 7¥. We see that although 7¥ may not be as efficient as 7" for most quantile levels,
the efficiency loss is not severe.
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Figure S.4: log1o(MSE) against against quantile level 7 for different subsample size n and a
fixed B = 10. X ~ t3 and the conditional distributions of Y is exponential.
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S.2-4 Relation between confidence interval and choice of B

In this section, we create confidence intervals and evaluate the proposed method in terms
of the empirical coverage probability. We first use the same model set up and sample size
configurations as in Section 5 of the main paper. Table S.1 provides the corresponding
results. We see that most of the empirical coverage probabilities are close to the nominal
level of 0.95. Only when B = 10, some empirical coverage probabilities may be lower than
0.95.

To further investigate the scenario that B is relatively large compared with n, we set
n = 100 and set B = 10,20, 50, 100, and 500. Results are presented in Table S.2. It is seen
that the empirical coverage probabilities for the case of 7 = 0.75 drop significantly. This
indicates that B should be much smaller compared with n in order to obtain valid inference,
which agree with our theoretical requirement in Section 4 of the main paper. This also echos
the results in the divide and conquer literature that the number of partitions should be much
smaller than the sample size in each data partition (e.g., Schifano et al., 2016; Shang and
Cheng, 2017; Battey et al., 2018; Volgushev et al., 2019). Note that the proposed method
produces good results with B = 100 and 500 when 7 = 0.5 in Table S.2. However, this
should not be interpreted as that the proposed method is valid with n > B. In fact, we do
not know the asymptotic distribution for this scenario, and the results here may happen by
chance.

Table S.1: Coverage probabilities of 95% confidence intervals for regression coefficients with
different values of B and 7 when N = 10° and ny = n = 1000. X ~ t3 and the conditional
distributions of Y is exponential.

7=0.5 7=0.75
B=10 B=20 B=50 B=100 B=10 B=20 B=50 B=100
61 0.931 0.927 0.941 0.950 0.923 0.943 0.943 0.948
By 0.940 0.938 0.940 0.940 0.931 0.940 0.944 0.937
B3 0.936 0.957 0.939 0.949 0.946 0.932 0.934 0.936
By 0.924 0.941 0.947 0.951 0.944 0.940 0.945 0.944
Bs  0.914 0.938 0.935 0.952 0.929 0.936 0.930 0.941
Bs  0.949 0.937 0.931 0.938 0.939 0.939 0.937 0.933
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Table S.2: Coverage probabilities of 95% confidence intervals for regression coefficients with
different values of B and 7 when N = 10° and ny = n = 100. X ~ t3 and the conditional
distributions of Y is exponential.

7=0.5 7=0.75

B= 10 20 50 100 500 10 20 50 100 500

51 0.916 0.950 0.949 0.927 0.954 0.935 0.927 0.950 0.918 0.830
Ba 0.942 0.933 0.951 0.936 0.944 0.932 0.948 0.930 0.919 0.844
(3 0.932 0.938 0.954 0.945 0.952 0.928 0.941 0.917 0.938 0.832
54 0.936 0.941 0.938 0.945 0.945 0.919 0.938 0.934 0.923 0.835
(s 0.937 0.934 0.954 0.955 0.954 0.933 0.946 0.947 0.924 0.838
Be 0.926 0.945 0.949 0.950 0.945 0.923 0.949 0.942 0.925 0.826
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S.2-5 Computational time

We provide additional results in terms of computational time and compare the performance
of the proposed method with that of the divide and conquer method.

We first plot the MSE against the CPU time (in seconds) for the proposed method based
on both Lopt subsampling and uniform subsampling. The CPU time is recorded as the
average time of ten repetitions of different methods. In each repetition, we recalculate the
optimal subsampling probabilities so that this overhead time is taken into account. The
model set up and sample size configurations are the same as Section 5 of the main paper. It
is seen from Figure S.5 that the MSE decreases as the CPU time increases.
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Figure S.5: Empirical MSE vs CPU time (seconds) with n = 1000 and different values of B.
Here X ~ ty and the distribution of Y is exponential.

Now we carry out additional numerical experiment to further compare the computation
time of our proposal with that of the divide and conquer method. For the divide and conquer
method, we divide the full data into B blocks with equal number of observations and obtain
the estimate from each block of data. Let these estimates be 3, for b = 1, ..., B. We then
form the divide and conquer estimator via

. 1 Ea o
ﬁDCZEbZ;ﬂb-

Figure S.6 plots CPU times against B. Interestingly, we find that our proposal is much faster
than divide and conquer method. This shows that even though there is overhead involved
in our method, it is still computationally much less demanding than the divide and conquer
method.

Note that the divide and conquer method uses the full data, while our method is based
on a subsample, hence the additional computational time of the divide and conquer method
also brings gain in terms of MSE. This is similar to the fact that MSE based on the full
data is much smaller than that based on a subsample. To further illustrate this fact, we
plotted the MSE as a function of computation time in Figure S.7. We see that the two
methods occupy different regions in the plots, indicating that the computation times of the
two methods are very different and their estimation precisions are also very different. When
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both computation and precision are taken into account, there is no clear winner. Hence
which method is more applicable depends on the practical needs.
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Figure S.6: CPU time (seconds) vs B with n = 1000. Here X ~ ¢, and the distribution of
Y is exponential.

-3.2
-3.4

-3.8
4.0

log10(MSE)

3.6

42|
44

1=0.5

=@- Lopt
-0-DC

G- 0—O =4

0 20 40 60 80 100 120
Time (seconds)

log10(MSE)

-3.0

33 1

-3.6

39 r

1=0.75

=@- Lopt
-0-DC

0 !5 50 75 100

Time (seconds)

Figure S.7: Empirical MSE vs CPU time (seconds) with n = 1000 and different values of B.
Here X ~ t5 and the distribution of Y is exponential.
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