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a b s t r a c t

This paper provides a numerical derivative based Delta method that complements the
recent work by Fang and Santos (2014) and also generalizes a previous insight by Song
(2014). We show that for an appropriately chosen sequence of step sizes, the numerical
derivative based Delta method provides consistent inference for functions of parameters
that are only directionally differentiable. Additionally, it provides uniformly valid inference
for certain convex and Lipschitz functions which include all the examples mentioned in
Fang and Santos (2014). We extend our results to the second order Delta method and
illustrate its applicability to inference for moment inequality models.
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1. Introduction

Inference on possibly nonsmooth functions of parameters has received much attention in the econometrics literature,
as in Woutersen and Ham (2013) and Hirano and Porter (2012). In particular, a recent insightful paper by Fang and
Santos (2014) studies inference for functions of the parameters that are only Hadamard directionally differentiable and not
necessarily differentiable. Fang and Santos (2014) show that while the asymptotic distribution obtained using the bootstrap
is invalid unless the target function of the parameter is differentiable, asymptotic inference using a consistent estimate of
the first order directional derivative is valid as long as the target function is Hadamard directionally differentiable. In each
of their examples studied, Fang and Santos (2014) constructed consistent analytical estimates of the directional derivative
that are tailored to each particular case.

As an alternative to using analytical estimates, we show that numerical differentiation provides a comprehensive
approach to estimating the directional derivative. The main advantage of using the numerical directional derivative is its
computational simplicity and ease of implementation. In order to compute an estimate of the directional derivative, the
user only needs to specify one tuning parameter (the stepsize), and she does not need to perform any additional calculations
beyond evaluating the target function twice for each random draw from an approximation of the limiting distribution of the
parameter estimates.

Dümbgen (1993) developed a rescaled bootstrap that was implemented for the specific problem of matrix eigenvalues.
However, his Proposition 1 essentially provides pointwise consistency of the numerical delta method under directional
differentiability. We build on and go beyond these initial contributions by demonstrating how to perform uniformly valid

✩ We thank Andres Santos, Joe Romano, Xiaohong Chen, Zheng Fang, Bruce Hansen, David Kaplan, Adam McCloskey, Frank Wolak, and participants at
the Montreal Econometric Society World Congress and various conferences and seminars for helpful comments. In particular, we appreciate the detailed
comments by the coeditor, the associate editor, and two anonymous referees that greatly helped improve the paper. We also acknowledge support by the
National Science Foundation (SES 1658950), EPR and both the IRiSS and the B.F.Haley and E.S.Shaw SIEPR dissertation fellowships.
* Corresponding author.

E-mail addresses: hanhong@stanford.edu (H. Hong), jeqli@ucsc.edu (J. Li).

https://doi.org/10.1016/j.jeconom.2018.06.007
0304-4076/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jeconom.2018.06.007
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2018.06.007&domain=pdf
mailto:hanhong@stanford.edu
mailto:jeqli@ucsc.edu
https://doi.org/10.1016/j.jeconom.2018.06.007


380 H. Hong, J. Li / Journal of Econometrics 206 (2018) 379–394

inference under convexity and Lipschitz continuity. We also generalize to the second order directional delta method and
study its application to a wider range of problems.

The results of this paper also complement Woutersen and Ham (2013), who provide a general inference method for
functions of parameters that can be nondifferentiable and even discontinuous. In contrast, our numerical differentiation
method only applies to directionally differentiable functions but can be easier to implement. We also contribute to the
understanding of the statistical properties of numerical differentiation,whichwas analyzed in Hong et al. (2015) for different
purposes. Most importantly, this paper follows up and complements the insights in Fang and Santos (2014), as well as the
extensive analytic derivations in Amemiya (1985).

In some applications, the first order directional derivative may vanish on a set of parameters, which motivates the use
of the second order numerical directional delta method. For example, the test statistics for moment inequality models often
use the negative square test function, which has the property that the first order directional derivative is exactly zero over
the null set. We demonstrate the pointwise consistency of the second order numerical directional derivative and illustrate
how it can be used to conduct pointwise valid inference using the second order directional delta method.

The rest of this paper is organized as follows. Section 2 describes the setup of the model that is mostly based on
summarizing Fang and Santos (2014), and describes inference based on numerical differentiation. Section 3 first discusses
pointwise validity of the numerical directional deltamethod for all Hadamard directionally differentiable functions and then
demonstrates the uniform asymptotic validity of the numerical directional delta method for convex and Lipschitz functions.
Convexity and Lipschitz continuity are satisfied in all the examples provided in Fang and Santos (2014) as well as for
test statistics used in certain moment inequality models. Extensions of the uniform asymptotic validity results to statistics
containing nuisance parameters are discussed in Section 3.3. Section 4 describes the second order numerical directional
delta method, and an application to partially identified models such as those studied in Bugni et al. (2015) is illustrated in
subsection A.4 of the appendix. Section 5 reports Monte Carlo simulation results on the coverage frequencies of various
types of confidence intervals obtained using the first order numerical directional delta method as well as the rejection
frequencies for a moment inequalities test based on critical values obtained using the second order numerical directional
delta method. Section 6 proposes a multiple point first order numerical directional derivative that could be used to reduce
bias, and Section 7 concludes. The appendix contains a list of commonly used symbols, verification of convexity and Lipschitz
continuity for several examples, proofs, and other technical material.

2. Numerical directional delta method

Fang and Santos (2014) study inference on a nondifferentiable mapping φ (θ) of the parameter θ ∈ Θ , where θ can be
either finite or infinite dimensional, under the requirement that θ ∈ Dφ and φ : Dφ ⊂ D → E for D endowed with norm
|| · ||D and E endowed with norm || · ||E. The domain of φ is Dφ .

The true parameter is denoted θ0, for which a consistent estimator θ̂n is available which converges in distribution at a
suitable rate rn → ∞: rn

(
θ̂n − θ0

)
⇝ G0 in the sense of Eq. (2.8) of Kosorok (2007),1 where the limit distribution G0 is

tight and is supported onD0 ⊂ D. Examples of nondifferentiable φ(·) functions arise in a variety of econometric applications
such asmoment inequalitiesmodels (Andrews and Shi, 2013; Ponomareva, 2010) and threshold regressionmodels (Hansen,
2017). Using the notation of Fang and Santos (2014), we describe each of these examples in more detail below.

Generalization of Fang and Santos (2014) Example 2.1. Define φ (θ) = aθ+
+ bθ−, where θ+

= max{θ, 0} and θ−
=

−min{θ, 0}. Let X ∈ R, θ0 = E[X], and D = E = R.

Generalization of Fang and Santos (2014) Example 2.2. θ = (θ1, . . . , θK ) for θk ∈ Rd, φ (θ) = max (θ1, . . ., θK ). D =

Rd
× Rd

× · · · × Rd and E = R.

Fang and Santos (2014) Example 2.3. Define φ (θ0) = supf∈FE [Yf (Z)] as in Andrews and Shi (2013). Here, Y ∈ R, Z ∈ Rd,
and θ0 ∈ ℓ∞ (F). F ⊂ ℓ∞

(
Rd
)
is a set of functions satisfying θ0 (f ) ≡ E [Yf (Z)] for all f ∈ F . D = ℓ∞ (F) and E = R.

Ponomareva (2010) Example. In theorem 3.5, inference is performed on φ(θ0) = maxx∈X E [m (Zi) |Xi = x] where θ0 (x) =

E [m (Zi) |Xi = x] is the conditional expectation function, D = ℓ∞
(
Rd
)
and E = R.

The goal of subsequent analysis is to approximate the distribution of φ
(
θ̂n

)
, or with proper scaling and centering, that of

rn
(
φ

(
θ̂n

)
− φ (θ0)

)
, for statistical inference concerningφ (θ0). The asymptotic distribution bootstrap (ADB)method (coined

by Woutersen and Ham (2013) and further illustrated in theorems 3 and 4 in Chernozhukov and Hong (2003)) uses the
empirical distribution formed by repeated draws from

rn

(
φ

(
θ̂n +

Z∗
n

rn

)
− φ

(
θ̂n

))
. (1)

1 Xn ⇝ Xn in the metric space (D, d) if and only if supf∈BL1 |E
∗f (Xn) − Ef (X)| → 0 where BL1 is the space of functions f : D ↦→ R with Lipschitz norm

bounded by 1.
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In the above, Z∗
n is a function of the data and additional randomness, and its distribution given the data converges to G1 in

probability, denoted Z∗
n

P
⇝ G1 in the sense of section 2.2.3 of Kosorok (2007). Here,G1 is an identical copy ofG0, the random

variable whose distribution is the limiting distribution of rn(θ̂n − θ0). Examples of Z∗
n include the following:

1. Bootstrap: here Z∗
n = rn

(
θ̂∗
n − θ̂n

)
, where θ̂∗

n are parameter estimates obtained using multinomial, wild, or other
commonly used bootstrap implementations. The bootstrap sample size can also be different from the observed sample
size. For example, we can take Z∗

n = rmn

(
θ̂∗
mn

− θ̂n

)
, where mn → ∞ as n → ∞, and θ̂∗

mn
is computed from a

multinomial bootstrap sample of size mn that are i.i.d draws from the empirical distribution. Similar modifications
apply to the next few methods.

2. When θ is a finite dimensional parameter, typically rn =
√
n andG0 = N (0, Σ) for some variance covariance matrix

Σ . Using a consistent estimate Σ̂ of Σ , Z∗
n can be a random vector whose distribution given the data is given by

N
(
0, Σ̂

)
.

3. For correctly specified parametric models, one can use Z∗
n = rn

(
θ̂∗
n − θ̂n

)
, where θ̂∗

n are MCMC draws from the
(pseudo) posterior distribution based on the likelihood or other objective functions (Chernozhukov and Hong, 2003).

4. In Hong and Li (2014),we propose a technique called the numerical bootstrap,which produces estimates θ
(
Z∗

n

)
based

on the numerical bootstrap empirical measure Z∗
n ≡ Pn + ϵn

√
n
(
P∗
n − Pn

)
, where Pn is the empirical measure, P∗

n is
the bootstrap empirical measure, ϵn is a positive scalar step size parameter that satisfies ϵn → 0, and nγ ϵn → ∞. We
show that the finite sample distribution of Z∗

n = ϵ
−2γ
n

(
θ
(
Z∗

n

)
− θ (Pn)

)
converges to the same limiting distribution

as that of nγ
(
θ̂n − θ0

)
for a class of estimators that converge at rate nγ for some γ ∈

[ 1
4 , 1

)
.

Intuitively, ADB approximates the distribution of φ
(
θ̂n

)
around φ (θ0) with that of φ

(
θ̂∗
n

)
around φ

(
θ̂n

)
, where θ̂∗

n is a

suitable version of the bootstrap in case (1); a draw from a consistent estimate of the asymptotic distribution N
(
θ̂n,

1
r2n

Σ̂

)
in case (2); a draw from the MCMC chain in case (3); and a draw from θ̂n + r−1

n Z∗
n in case (4).

Fang and Santos (2014) showed that the ADB is asymptotically valid only if φ (θ) is Hadamard differentiable. The delta
method, however, is applicablemore generally evenwhen ADB fails, as long asφ (θ) is Hadamard directionally differentiable
even if it is not Hadamard differentiable. Fang and Santos (2014) make use of the following definition:

Definition 2.1. The map φ is said to be Hadamard directionally differentiable at θ ∈ Dφ tangentially to a set D0 ⊂ D if there
is a continuous map φ′

θ : D0 → E such that:

lim
n→∞

⏐⏐⏐⏐⏐⏐⏐⏐φ (θ + tnhn) − φ (θ)

tn
− φ′

θ (h)
⏐⏐⏐⏐⏐⏐⏐⏐

E
= 0, (2)

for all {hn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, hn → h ∈ D0 as n → ∞ and θ + tnhn ∈ Dφ .

Whenφ (·) is directionally differentiable in the sense defined above andwhen the support of the limiting distributionG0 is
contained inD0, Fang and Santos (2014) showed that under suitable regularity conditions, rn

(
φ

(
θ̂n

)
− φ (θ0)

)
⇝ φ′

θ0
(G0) .

Based on this result, Fang and Santos (2014) suggested that this limiting distribution can be consistently estimated by
φ̂′
n

(
Z∗
n

)
, where Z∗

n is a consistent estimate ofG0 (such as the bootstrap, MCMC or asymptotic normal approximation), and in
particular φ̂′

n (·) is a consistent estimate of φ′

θ0
(·) in a sense that is precisely defined in their Assumption 3.3.

FS Assumption 3.3. For each fixed θ0, each compact set K ⊆ D, and for any sequence δ ↓ 0,

dδ,K

(
φ̂′

n (·) , φ′

θ0
(·)

)
≡ sup

h∈K δ

φ̂′

n (h) − φ′

θ0
(h)

E

= op (1) as n → ∞. (3)

In the above K δ denotes the δ-enlargement of a set K : K δ
≡ {a ∈ D : infb∈K ∥a − b∥D < δ}. We show that the one-sided

numerical derivative provides a φ̂′
n (·) forwhich this assumption holdswheneverφ (·) is Lipschitz. In particular, Definition 2.1

motivates the following estimate φ̂′
n (·) based on a one-sided finite difference formula. For ϵn → 0 slowly (in the sense that

rnϵn → ∞, where rn is the convergence rate of θ̂n to θ0), define

φ̂′

n (h) ≡

φ

(
θ̂n + ϵnh

)
− φ

(
θ̂n

)
ϵn

(4)

as the numerical directional derivative of φ in the direction of h ∈ D0. The rate requirement on the step size ϵn is needed
to separate numerical differentiation error from the estimation error in θ̂n, and serves the dual purposes of model selection
and numerical differentiation.

For functions that are not Lipschitz, Section 3.1 shows that the one-sided numerical derivative will continue to
consistently estimate the directional derivative as long as the function is Hadamard directionally differentiable.
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The numerical directional delta method.

Given the definition in (4), the numerical directional delta method estimates the limiting distribution of rn
(
φ

(
θ̂n

)
−

φ (θ0)

)
using the distribution of the random variable:

φ̂′

n

(
Z∗

n

)
≡

φ

(
θ̂n + ϵnZ∗

n

)
− φ

(
θ̂n

)
ϵn

(5)

which can be approximated by the following:

1. Draw Zs from the distribution of Z∗
n for s = 1, . . . , S.

2. For the given ϵn, evaluate for each s:

φ̂′

n (Zs) ≡

φ

(
θ̂n + ϵnZs

)
− φ

(
θ̂n

)
ϵn

. (6)

The empirical distribution of φ̂′
n (Zs) , s = 1, . . . , S can then be used for confidence interval construction, hypothesis testing,

or variance estimation. Consider the case when φ (·) ∈ R is a scalar. For example, a 1− τ two-sided equal-tailed confidence
interval for φ (θ0) can be formed by[

φ(θ̂ ) −
1
rn

c1−τ/2, φ(θ̂ ) −
1
rn

cτ/2

]
where cτ/2 and c1−τ/2 are the τ/2 and 1−τ/2 empirical percentiles of φ̂′

n (Zs). Symmetric confidence intervals can be formed
by, where d1−τ is the 1 − τ percentile of |φ̂′

n(Z
∗
n)|,[

φ(θ̂ ) −
1
rn

d1−τ , φ(θ̂ ) +
1
rn

d1−τ

]
Note that the random variable φ̂′

n (Zs) only requires two evaluations of the φ(·) function for each draw of Zs. The
computational simplicity of the numerical derivative is one of its main advantages. In Eq. (5), Z∗

n can be any of the four
choices discussed in the ADB method after Eq. (1). In particular, Fang and Santos (2014) recommended the bootstrap
Z∗
n = rn

(
θ̂∗
n − θ̂n

)
. Following the tradition of the literature (except Andrews and Buchinsky, 2000), we take S = ∞ in

analyzing φ̂′
n(Z

∗
n). Subsampling is also a special case of (5) when Z∗

n is the
(n
b

)
point discrete distribution of rb

(
θ̂n,b,i − θ̂n

)
(Eq. (2.1) page 42 of Politis et al. (1999)) and when ϵn = 1/

√
b. When all

(n
b

)
are used in subsampling, no simulation error is

involved (S = ∞). Simulating Zs from Zn is only relevant when one randomly draws from the
(n
b

)
blocks.

We now give the form of φ̂′
n

(
Z∗
n

)
in examples 2.1 and 2.3 of Fang and Santos (2014).

Fang and Santos (2014) Example 2.1. With Z∗
n ∼ N

(
0, σ̂ 2

n

)
and σ̂ 2

n the usual sample variance:

φ̂′

n

(
Z∗

n

)
≡

a
(
θ̂n + ϵnZ∗

n

)+

+ b
(
θ̂n + ϵnZ∗

n

)−

− aθ̂+
n + bθ̂−

n

ϵn
.

Fang and Santos (2014) Example 2.3. Note that θ̂n (f ) ≡ θ (Pn) (f ) ≡
1
n

∑n
i=1yif (zi). Itsmultinomial bootstrap version is given

by θ̂∗
n (f ) ≡ θ

(
P∗
n

)
(f ) ≡

1
n

∑n
i=1y

∗

i f
(
z∗

i

)
. Alternatively themultiplier bootstrap can be used: θ

(
P∗
n

)
(f ) ≡

1
n

∑n
i=1ξ

∗

i yif (zi) for
positive random variables ξ ∗

i with Eξ ∗

i = 1. In this case θ̂n = θ (Pn), Z∗
n =

√
n
(
θ
(
P∗
n

)
− θ (Pn)

)
, so that with themultinomial

bootstrap,

φ̂′

n

(
Z∗

n

)
≡

supf∈F θ
(
Pn + ϵn

√
n
(
P∗
n − Pn

))
(f ) − supf∈F θ (Pn) (f )

ϵn

=
supf∈F

1
n

∑n
i=1

(
yif (zi) + ϵn

√
n
(
y∗

i f
(
z∗

i

)
− yif (zi)

))
− supf∈F

1
n

∑n
i=1 yif (zi)

ϵn
,

or with multiplier bootstrap

φ̂′

n

(
Z∗

n

)
=

supf∈F
1
n

∑n
i=1

(
yif (zi) + ϵn

√
n
(
ξ ∗

i yif (zi) − yif (zi)
))

− supf∈F
1
n

∑n
i=1 yif (zi)

ϵn
.

A similar procedure can be applied to each of the examples in Fang and Santos (2014).
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In the context of a matrix eigenvalue application and a minimum distance application, Dümbgen (1993) presented a
‘‘rescaled bootstrap method’’ which corresponds essentially to the numerical delta method, where the rescaling sample size
is inversely related to the step size in numerical differentiation. Dümbgen (1993) showed pointwise consistency which is
essentially Theorem 3.1 in Section 3.1, but did not present uniformity results. The idea of using numerical differentiation
for directionally differentiable parameters also appeared in Song (2014), although Song (2014) only considered finite
dimensional θ ∈ Rd and scalar functions φ (·) ∈ R that are (1) translation equivalent: φ (θ + c) = φ (θ) + c for c ∈ R;
and (2) scale equivalent: φ (αθ) = αφ (θ) for α ≥ 0. Under these conditions Song (2014) gives the following more
specialized form of the numerical derivative formula φ̂′

n

(
Z∗
n

)
≡ φ

(
Z∗
n + ϵ−1

n

(
θ̂n − φ

(
θ̂n

)))
. Ifφ (·) is only scale equivalent

as in an L1 version of Andrews and Soares (2010) and Bugni et al. (2015) discussed in Section 3.3, then equivalently,
φ̂′
n

(
Z∗
n

)
≡ φ

(
Z∗
n + ϵ−1

n θ̂n

)
− φ

(
ϵ−1
n θ̂n

)
.

3. Asymptotic validity

This section shows that the numerical directional delta method provides consistent inference under general conditions.
We first verify pointwise consistency and then discuss uniform validity.

3.1. Pointwise asymptotic distribution

In this subsection we show pointwise consistency of the numerical delta method using the definition of Hadamard
directional differentiability and (a bootstrap version of) the extended continuous mapping theorem. The first part of the
following theorem is a directional delta method due to Dümbgen (1993), Fang and Santos (2014), and references therein.
The second part of the theorem shows consistency of the numerical delta method. Let BL1 be the space of Lipschitz functions
f : D ↦→ R with Lipschitz norm bounded by 1. For random variables F1 and F2, let ρBL1 (F1, F2) = supf∈BL1 |Ef (F1) − Ef (F2)|
metrize weak convergence. As in Kosorok (2007) (pages 19–20), we use P

⇝ to denote weak convergence in probability
conditional on the data.2

Theorem 3.1. Suppose D and E are Banach Spaces and φ : Dφ ⊆ D ↦→ E is Hadamard directionally differentiable at θ0
tangentially to D0. Let θ̂n : {Xi}

n
i=1 ↦→ Dφ be such that for some rn ↑ ∞, rn{θ̂n − θ0} ⇝ G0 in D, where G0 is tight and its support

is included in D0. Then rn
(
φ

(
θ̂n

)
− φ (θ0)

)
⇝ φ′

θ0
(G0). Let Z∗

n
P
⇝ G0 satisfy certain measurability assumptions stated in the

appendix. Then for ϵn → 0, rnϵn → ∞,

φ̂′

n

(
Z∗

n

)
≡

φ

(
θ̂n + ϵnZ∗

n

)
− φ

(
θ̂n

)
ϵn

P
⇝ φ′

θ0
(G0) .

An alternative approach to showing consistency is to use remark 3.6 and Lemma A.6 in Fang and Santos (2014), which
place Lipschitz and Hölder continuity requirements on φ̂′

n (·), a consistent estimate of the directional derivative function.
These results in Fang and Santos (2014) apply more generally to φ̂′

n (·) constructed using alternative methods other than
numerical differentiation. The particular structure of the numerical deltamethod allows us to invoke the bootstrap extended
continuous mapping theorem directly without having to rely on these intermediate conditions. However, establishing these
conditions turns out to be important for uniform validity considerations in the next section, and are thus presented here.

Lemma 3.1 (Fang and Santos (2014) Remark 3.6 and Lemma A.6). If the directional derivative estimate is Hölder continuous in
the direction arguments, namely, if there exist some κ > 0 and fixed constant C0 < ∞ such that for all h1, h2 ∈ D0 and all n ≥ 1,

∥φ̂′

n (h1) − φ̂′

n (h2) ∥D ≤ C0∥h1 − h2∥
κ
D (7)

then Fang and Santos (2014) assumption 3.3 holds as long as pointwise for each h ∈ D0,φ̂′

n(h) − φ′

θ0
(h)

E

= op (1) . (8)

Our first result provides the simple finding thatwhenever the functionφ (·) is Lipschitz (κ = 1), so is the one-sided numerical
directional derivative.

Theorem 3.2. If φ : Dφ → E is Lipschitz, satisfying ∥φ (h1) − φ (h2) ∥E ≤ C∥h1 − h2∥D for all h1, h2 ∈ D, and for Lipschitz
constant C that does not depend on n, then so is φ̂′

n(h) ≡
φ(θ̂n+ϵnh)−φ(θ̂n)

ϵn
in h for all ϵn > 0.

2 X̂n
P
⇝ X means that X̂n is a random function of the data and supf∈BL1

⏐⏐⏐⏐E [f (X̂n)|Xn

]
− Ef (X)

⏐⏐⏐⏐ p
→ 0 (where Xn denotes the data).



384 H. Hong, J. Li / Journal of Econometrics 206 (2018) 379–394

Note also that φ′

θ (h) is Lipschitz in h for all θ whenever φ (θ) is Lipschitz:

∥φ′

θ (h1) − φ′

θ (h2) ∥E ≤ lim
t↓0

φ (θ + th1)

t
−

φ (θ + th1)

t


E

≤ C∥h1 − h2∥D. (9)

Theorem 3.2 and Lemma 3.1 imply that whenever the function φ (·) is Lipschitz, it suffices to verify the pointwise
consistency condition in (8).

Theorem 3.3. Let the conditions in Theorem 3.1 hold for φ (·) and θ̂n. If ϵn ↓ 0 and rnϵn → ∞, then for φ̂n (·) defined in (4) and
for any h ∈ D0,

φ̂′
n(h) − φ′

θ0
(h)

E

= op(1).

To summarize, we have shown that if the function φ(·) is Lipschitz in its argument of the parameter, then so is the
numerical directional derivative φ̂′

n(·) in its argument of the direction of differentiation, uniformly in the step size ϵn.
Furthermore, we have shown that φ̂′

n(h) converges in probability to φ′

θ0
(h) for each fixed h ∈ D0. Whenever φ (·) is Lipschitz,

we have shown that the numerical directional derivative φ̂′
n(h) satisfies Fang and Santos (2014) Lemma A.6, remark 3.6

and in turn Fang and Santos (2014) Assumption 3.3. Consequently, the remaining results in Fang and Santos (2014) imply
that inference based on φ̂′

n

(
Z∗
n

)
is asymptotically valid, in a formal sense. Intuitively, when ϵn is much larger than 1

rn
, the

estimation error in θ̂n does not obscure the true direction for which the derivative is being calculated. It turns out that
whenever φ (·) is Lipschitz, Hadamard differentiability is equivalent to Gateaux differentiability as noted in proposition 3.5
of Shapiro (1990).3

Theorem 3.2 depends crucially on the function φ (·) being Lipschitz in the parameter argument. This turns out to be a
rather weak requirement that is satisfied by all the examples in Fang and Santos (2014). The calculations in the appendix
verify that the Lipschitz condition holds for all the functions φ (·) in examples 2.1–2.5, as well as the convex projection
inference problem in Fang and Santos (2014). Consequently, the numerical delta method (4) provides a (pointwise)
consistent asymptotic approximation for the distribution of rn

(
φ

(
θ̂n

)
− φ (θ0)

)
in each of these examples, including the

convex projection problem in Fang and Santos (2014).
For example, for φ (θ) = infλ∈Λ∥θ − λ∥ which defines the distance between θ and its projection onto the convex set Λ,

the distribution of rn
(
φ

(
θ̂n

)
− φ (θ0)

)
is accurately approximated by

φ̂′

n

(
Z∗

n

)
=

1
ϵn

(
inf
λ∈Λ

∥θ̂n + ϵnZ∗

n − λ∥ − inf
λ∈Λ

∥θ̂n − λ∥

)
(10)

for some Z∗
n

P
⇝ G0 where rn

(
θ̂n − θ0

)
⇝ G0. Evaluating the distribution of φ̂′

n

(
Z∗
n

)
requires solving 2 × S optimization

routines, where S is the number of draws fromZ∗
n. This ismore computationally efficient than the original solutions provided

in Fang and Santos (2014), which are based on combining amodel selection schemewith analytic knowledge of the function
φ (·). To illustrate this difference, consider again Fang and Santos (2014) example 2.1.

Fang and Santos (2014) Example 2.1.
Fang and Santos (2014) proposed to estimate φ′

θ0
(h) by h if θ̂n > κn, by −h if θ̂n < −κn , and by |h| when |θ̂n| < κn, where

the selection parameter κn satisfies the same rate condition as the step size parameter ϵn: κn → 0 but κn
√
n −→ 0. In other

words, for φ (θ0) = |θ0|, φ̂′
n (h) is set to h if θ̂n is sufficiently positive, to −h if θ̂n is sufficiently negative, and to |h| if θ̂n is

sufficiently close to zero.
Instead, we use the numerical directional derivative in (4):

φ̂′

n (h) ≡

φ

(
θ̂n + ϵnh

)
− φ

(
θ̂n

)
ϵn

=
|θ̂n + ϵnh| − |θ̂n|

ϵn
, (11)

is never exactly equal to h, −h, or |h|. Instead, under the condition that ϵn → 0 and
√
nϵn → ∞, φ̂′

n (h) converges in
probability to hwhen θ0 > 0, converges to −hwhen θ0 < 0, and converges to |h| when θ0 = 0. Consistent inference follows
then from Slutsky’s lemma.

The Lipschitz assumption can be relaxed to Hölder continuity and Fang and Santos (2014) Assumption 3.3 can still be
satisfied under a stronger condition on the step size parameter, as the following theorem shows.

Theorem 3.4. If φ(·) is Holder continuous with exponent κ and rκ
n ϵn → ∞, then for all compact K ⊂ D = Rd,

sup
h∈K

φ̂′
n(h) − φ′

θ0
(h)

E

= op(1).

In finite dimension situations, K can be replaced by K δ
≡ {a ∈ D : infb∈K∥a − b∥D < δ}. In general, as in Fang and Santos

(2014), Fréchet directional differentiability might be needed to allow for replacement of K by K δ .

3 We thank a referee for pointing this out.
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3.2. Uniform inference

Uniform asymptotic validity over a class of distributions can be a desirable feature to establish for an inference procedure
(Romano and Shaikh 2008, 2012). The Lipschitz and convexity properties of φ (·) are key to establishing uniform size control
in the test of H0 : φ(θ0) ≤ 0 versus H1 : φ(θ0) > 0.

As we show in the Appendix, the φ(·) functionals considered in the examples in Fang and Santos (2014) are not only
Lipschitz but also convex, so that for λ ∈ [0, 1],

φ (λθ1 + (1 − λ) θ2) ≤ λφ (θ1) + (1 − λ) φ (θ2) .

We first note that convexity of the functional φ (·) implies subadditivity of the directional derivative φ′

θ0
, which then implies

sublinearity since the directional derivative is positively homogeneous of degree 1.

Lemma 3.2. When φ (·) is convex and Hadamard directionally differentiable at θ0 and D0 is a convex set, then ∀0 ≤ λ ≤ 1,

φ′

θ0
(h1 + h2) ≤ φ′

θ0
(h1) + φ′

θ0
(h2) , φ′

θ0
(λh1 + (1 − λ) h2) ≤ λφ′

θ0
(h1) + (1 − λ) φ′

θ0
(h2) . (12)

Fang and Santos (2014) use the statistic rnφ
(
θ̂n

)
to test:

H0 : φ (θ0) ≤ 0 against H1 : φ (θ0) > 0. (13)

and suggested rejecting H0 whenever rnφ
(
θ̂n

)
≥ ĉ1−τ , where ĉ1−τ is the 1 − τ quantile of φ̂′

n

(
Z∗
n

)
or its simulated version

in (6). This is related to the one-sided confidence interval in Part (i) of Theorem 2.1 in Romano and Shaikh (2012):

P
(
rn
(
φ

(
θ̂n

)
− φ (θ0)

)
≤ ĉ1−τ

)
. (14)

Whenever φ (θ) is convex and Lipschitz in θ , using the 1 − τ percentile of φ̂′
n

(
Z∗
n

)
as ĉ1−τ provides uniform size control for

both (13) and (14) under the condition that rnϵn → ∞ without requiring ϵn → 0. Intuitively, convexity implies for ϵn > 1
rn

and for any realization z from G0,

rn

(
φ

(
θ0 +

z
rn

)
− φ (θ0)

)
≤

1
ϵn

(φ (θ0 + ϵnz) − φ (θ0)) , (15)

so that 1
ϵn

(φ (θ0 + ϵnG0) − φ (θ0)) first order stochastically dominates rn
(
φ

(
θ0 +

G0
rn

)
− φ (θ0)

)
.4 If we denote, using

notations from Romano and Shaikh (2012), the distribution functions of the two sides of (15) by Jn (x,G0) and Jϵn (x,G0),
then Eq. (15) immediately implies that

sup
n

sup
x∈R

{Jϵn (x,G0) − Jn (x,G0)} ≤ 0. (16)

Next, φ (θ) being Lipschitz ensures that rn
(
φ

(
θ0 +

G0
rn

)
− φ (θ0)

)
is close to rn

(
φ

(
θ̂n

)
− φ (θ0)

)
, whose distribution

function is denoted Jn (x, P), while 1
ϵn

(φ (θ0 + ϵnG0) − φ (θ0)) is close to φ̂′
n

(
Z∗
n

)
, whose conditional distribution function

given the data is Jϵn (x, P), so that Jn (x,G0) and Jϵn (x,G0) in (16) can be replaced by their feasible sample versions.
Uniformity statements in line with those in Romano and Shaikh (2012) are possible under the following assumptions.

We focus on the finite dimensional case D = Rd and E = R.

Assumption 3.1. Let P be a class of distributions such that

(i) limn→∞supP∈PρBL1

(
rn
(
θ̂n − θ (P)

)
,G0

)
= 0, limM→∞supP∈PP (|G0| ≥ M) = 0;

(ii) for each ϵ > 0, limn→∞supP∈PP
(
ρBL1

(
Z∗
n,G0

)
≥ ϵ

)
= 0.

Primitive conditions for Assumption 3.1 can be found for example in the uniform central limit theorems of Romano and
Shaikh (2008).

Assumption 3.2. Define for each x, a, d, Ca,d,x = {g : φ
(
d +

g
a

)
≤ x}. Then

sup
P∈P

P
(
G0 ∈ ∂Ca,d,x

)
= 0 for all x, a, d,

where ∂Ca,d,x denotes the boundary of Ca,d,x.

4 Eq. (15) follows from rewriting it as, for rnϵn > 1, φ
(
θ0 +

z
rn

)
≤

1
rnϵn

φ (θ0 + ϵnz) +

(
1 −

1
rnϵn

)
φ (θ0).
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Assumption 3.2 is mainly used to invoke versions of Theorem 2.11 of Bhattacharya and Rao (1986), as in Example 3.2
of Romano and Shaikh (2012). If φ (·) is scale equivariant, then it is sufficient to check all Cd,x ≡ {g : φ (d + g) ≤ x}.
Convexity is crucial in the following.

Theorem 3.5. Define P to be a class of DGPs such that rn
(
θ̂n − θ (P)

)
is asymptotically tight uniformly over P ∈ P , and

Assumptions 3.1, 3.2 both hold. If rnϵn → ∞, ϵn → 0, and φ (·) is Lipschitz and convex, then ∀ϵ > 0,

lim
n→∞

sup
P∈P

P
(
sup
x∈A

Jϵn (x, P) − Jn (x, P) ≤ ϵ

)
→ 1

lim sup
n→∞

sup
P∈P

P
(
rn
(
φ

(
θ̂n

)
− φ (θ (P))

)
≥ ĉ1−τ

)
≤ τ

where A is any set for which limλ→0supP∈Psupx∈AP
(
Jϵn (·,G0) ∈ (x, x + λ)

)
= o (1) and contains a neighborhood of both

J−1
ϵn

(1 − τ ,G0) and J−1
n (1 − τ , P) for all large n. We have used Jϵn (·,G0) to denote the random variable defined by the right

hand side of (15).

According to Theorem 3.5, whenever φ (·) is convex, the lower one-sided confidence interval
[
φ

(
θ̂n

)
−

ĉ1−τ

rn
, ∞

)
will have

uniformly asymptotically valid coverage. Similarly, if φ (·) is instead a concave function, then the same arguments will
establish that the upper one-sided confidence interval of the form of

(
−∞, φ

(
θ̂n

)
−

ĉτ
rn

]
has uniformly asymptotically valid

coverage. Furthermore, if it is known that φ (·) ≥ 0 (e.g. Andrews, 2000), we can use ϵ−1
n φ

(
θ̂n + ϵnZ∗

n

)
in place of φ̂′

n

(
Z∗
n

)
at

the cost of beingmore conservative. Furthermore, if the least favorable null distribution is desired in hypothesis testing, then
θ̂n can also be replaced by the least favorable null value θ0 if θ0 is known. In this case, φ̂′

n

(
Z∗
n

)
=

1
tn

(
φ
(
θ0 + tnZ∗

n

)
− φ (θ0)

)
consistently estimates the null distribution for any tn → 0 by the extended continuous mapping theorem. If we take
tn = r−1

n and use the bootstrap distribution Z∗
n = rn

(
θ̂∗
n − θ̂n

)
, a modified bootstrap uses rn

(
φ

(
θ0 + θ̂∗

n − θ̂n

)
− φ (θ0)

)
to

approximate the null distribution of rn
(
φ

(
θ̂n

)
− φ (θ0)

)
. However, it does not provide moment selection to improve the

power of the test and does not offer uniform size control for rn
(
φ

(
θ̂n

)
− φ (θ0)

)
under drifting sequences of θn. In some

cases, if only φ (θ) = φ0 but not θ0 is known under the null, θ̂n can be either the constrained or unconstrained estimate. Note
also that the only use of convexity of φ (·) is the stochastic dominance condition in (15) and (16). Therefore the convexity
requirement of φ (·) can be replaced by the following stochastic dominance condition:

Assumption 3.3. For all θ0, and for all t > 0, φ(θ0+tG0)−φ(θ0)
t is nondecreasing in t .

Even if φ (θ) is not convex and does not satisfy Assumption 3.3, it is still possible to establish uniform size control over
θ0 under sufficient conditions for the limiting distribution of the numerical directional derivative to stochastically dominate
the analytic limiting distribution over all θ0 that lie in the null set.

Assumption 3.4. For any θ0, for all η sufficiently close to zero and for all t > 0,
φ′

θ0
(η+tG0)−φ′

θ0
(η)

t is nondecreasing in t .

Clearly Assumption 3.3 (which in turn is implied by φ (·) being convex) is a sufficient condition for Assumption 3.4.
Assumption 3.4 is also satisfied if φ′

θ0
(h) is convex in h (which in turn follows from convexity of φ (·)), since for t2 > t1 > 0

and any realization z from G0,
φ′

θ0
(η+t1z)−φ′

θ0
(η)

t1
≤

φ′
θ0

(η+t2z)−φ′
θ0

(η)

t2
follows from rewriting φ′

θ0
(η + t1z) ≤

(
1 −

t1
t2

)
φ′

θ0
(η) +(

t1
t2

)
φ′

θ0
(η + t2z). Assumption 3.4 plays a similar role to (15) and (16) and implies for ϵnrn > 1 and any realization z from

G0,

rn

(
φ′

θ0

(
η +

z
rn

)
− φ′

θ0
(η)

)
≤

φ′

θ0
(η + ϵnz) − φ′

θ0
(η)

ϵn
= φ′

θ0

(
η

ϵn
+ z

)
− φ′

θ0

(
η

ϵn

)
(17)

In order for rn
(
φ′

θ0

(
η +

G0
rn

)
− φ′

θ0
(η)

)
to provide a good approximation to rn

(
φ

(
θ̂n

)
− φ (θ0)

)
and for φ′

θ0

(
η

ϵn
+ G0

)
−

φ′

θ0

(
η

ϵn

)
to provide a good approximation to φ̂′

n

(
Z∗
n

)
, we require the following additional assumption.

Assumption 3.5. Suppose D0 is convex. For any tn ↓ 0, ηn → ∞, and any given θ0:

lim
tn↓0,ηn→∞

⏐⏐⏐⏐ 1tn (φ (θ0 + ηn + tnh) − φ (θ0 + ηn)) −

(
φ′

θ0

(
ηn

tn
+ h

)
− φ′

θ0

(
ηn

tn

)) ⏐⏐⏐⏐ = 0.

We now state a uniformity result similar to Andrews and Soares (2010) without relying on convexity.
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Theorem 3.6. Let φ (·) be Lipschitz, rnϵn → ∞, and ϵn → 0. Define P to be a class of DGPs such that rn
(
θ̂n − θ (P)

)
is

asymptotically tight uniformly over P ∈ P , Assumptions 3.1 and 3.2 hold, and for which φ (·) satisfies either Assumption 3.3 or
Assumptions 3.4 and 3.5. Then, ∀ϵ, δ > 0 and x = J−1

n (1 − τ − ϵ, P), supP∈P
(
Jϵn (x, P) ≤ Jn (x, P) + ϵ

)
≥ 1−δ. Consequently,

lim supn→∞supP∈PP
(
rn
(
φ

(
θ̂n

)
− φ (θ (P))

)
≥ ĉ1−τ

)
≤ τ .

It turns out that the following additional condition is also satisfied in most of the examples in Fang and Santos (2014)
and in Andrews and Soares (2010): For all vn → v, |v| = 1, and all |an| → 0, φ′

θ0,v (·) = limn→∞φ′

θ0+|an|vn
(·) , which is the

limit of the directional derivative along direction v, is well defined. It is not required for results in this section, and its only
additional implication is that the asymptotic size is exact along local parameter sequences drifting sufficiently slowly: for
ϵn/|θ0| → 0, lim

n→∞
P
(
rn
(
φ

(
θ̂n

)
− φ (θ0)

)
≥ ĉ1−τ

)
= τ .

3.3. Dealing with nuisance parameters

Unlike conventional derivatives, directional derivatives are not generally linearly separable in different subsets of
parameters unless more assumptions are made. Consider now φ (θ, α)where α are a set of nuisance parameters. In addition
to requiring that φ (·, ·) be jointly Hadamard directionally differentiable in θ, α tangentially toD0 =

(
D0,θ ,D0,α

)
, we impose

the following assumption of separability and partial linearity in α:

Assumption 3.6. D0,α is convex and φ′

θ,α

(
hθ , h1

α + h2
α

)
= φ′

θ,α

(
hθ , h1

α

)
+ φ′

θ,α

(
0, h2

α

)
.

This assumption holds for example in Hansen (2017) when θ is the threshold parameter and α are the regression
coefficients. Under Assumption 3.6,while (5) can be used to estimateφ′

θ,α (hθ , hα) jointly in θ, α, it is also possible to estimate
φ′

θ,α (hθ , 0) and φ′

θ,α (0, hα) separately, using the numerical delta method and the bootstrap respectively. For rnϵn → ∞,

φ̂′

n (hθ , 0) =

φ

(
θ̂n + ϵnhθ , α̂n

)
− φ

(
θ̂n, α̂n

)
ϵn

φ̂′

n (0, hα) =rn
(
φ

(
θ̂n, α̂n + r−1

n hα

)
− φ

(
θ̂n, α̂n

))
.

(18)

Then (5) can be replaced by, with Z∗
n =

(
Z∗

n,θ ,Z
∗
n,α

)
, φ̂′

n

(
Z∗
n

)
≡ φ̂′

n

(
Z∗

n,θ , 0
)

+ φ̂′
n

(
0,Z∗

n,α

)
. In particular, when

Z∗

n,θ = rn
(
θ̂∗
n − θ0

)
and Z∗

n,α = rn
(
α̂∗
n − α0

)
, the distribution of rn

(
φ

(
θ̂n, α̂n

)
− φ (θ0, α0)

)
is approximated by

1
ϵn

(
φ

(
θ̂n + ϵnrn

(
θ̂∗
n − θ̂n

)
, α̂n

)
− φ

(
θ̂n, α̂n

))
+ rn

(
φ

(
θ̂n, α̂

∗
n

)
− φ

(
θ̂n, α̂n

))
.

The Fang and Santos (2014) assumptions (2.1, 2.2, 2.3, 3.1, 3.2 and 3.3) are implicitly understood to hold jointly in θ, α
in the rest of this section.

Theorem 3.7. The result of Theorem 3.3 holds with (18) under Assumption 3.6.

A special case of Assumption 3.6 is when estimating α does not affect the asymptotic distribution, as in for example the
weighting matrix in moment inequality models (e.g., Andrews and Soares, 2010).

Assumption 3.7. φ′

θ,α (hθ , hα) = φ′

θ,α (hθ , 0) for all h = (hθ , hα).

Under Assumption 3.7, it is natural to estimate φ′

θ,α (h) by φ̂′
n (hθ , 0), and replace φ̂′

n

(
Z∗
n

)
in (5) with

φ̂′

n

(
Z∗

n,θ , 0
)

=

φ

(
θ̂n + ϵnZ∗

n,θ , α̂n

)
− φ

(
θ̂n, α̂n

)
ϵn

Pointwise consistency of φ̂′
n (hθ , 0) for φ′

θ,α (hθ , 0) follows directly from Theorem 3.3 with h = (hθ , 0). Further-

more, φ̂′
n (hθ , 0) is Lipschitz in hθ as long as φ (θ, α) is Lipschitz in θ uniformly in α:

φ̂′
n(h1, 0) − φ̂′

n(h2, 0)

E

= φ(θ̂n+ϵnh1,α̂n)−φ(θ̂n+ϵnh2,α̂n)
ϵn


E

≤ C ∥h1 − h2∥D .

Under Assumption 3.7, we also obtain uniform size control with φ (θ, α) for (13) and (14), whenever φ (θ, α) is convex
in θ for each α. In this case, analogous to (15), for any realization z from G0,θ , where Z∗

n,θ
P
⇝ G0,θ ,

rn

(
φ

(
θ0 +

z
rn

, α0

)
− φ (θ0, α0)

)
≤

1
ϵn

(φ (θ0 + ϵnz, α0) − φ (θ0, α0)) , (19)

so that 1
ϵn

(
φ
(
θ0 + ϵnG0,θ , α0

)
− φ (θ0, α0)

)
stochastically dominates rn

(
φ

(
θ0 +

G0,θ
rn

, α0

)
− φ (θ0, α0)

)
. Directional differ-

entiability and Assumption 3.7 ensure that rn
(
φ

(
θ0 +

G0,θ
rn

, α0

)
− φ (θ0, α0)

)
is close to rn

(
φ

(
θ̂n, α̂n

)
− φ (θ0, α0)

)
while
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1
ϵn

(
φ
(
θ0 + ϵnG0,θ , α0

)
− φ (θ0, α0)

)
is close to φ̂′

n

(
Z∗

n,θ , 0
)
. Formally, under Assumptions 3.7, 3.3 and 3.4 are only required

to hold in θ0:

Assumption 3.8. For all θ0, α0, and t > 0, φ(θ0+tG0,θ ,α0)−φ(θ0,α0)
t is nondecreasing in t .

Assumption 3.9. Suppose D0,θ is convex. For any θ0 and α0, for all η and ν sufficiently close to zero, and for all t > 0,
φ′

θ0,α0
(η+tG0,θ ,ν)−φ′

θ0,α0
(η,ν)

t is nondecreasing in t . Furthermore, Assumption 3.5 holds with θ0, α0 and for any h = (hθ , hα) =

o (1).

Then we can state the following theorem.

Theorem 3.8. The conclusions of Theorem 3.5 hold under its stated conditions and Assumption 3.7, where we now call Jϵn (xn, Pn)
the distribution function of φ̂′

n

(
Z∗

n,θ , 0
)
, and Jn (xn, Pn) that of rn

(
φ

(
θ̂n, α̂n

)
− φ (θ0, α0)

)
. Furthermore, the conclusions of

Theorem 3.6 hold under its stated conditions and Assumption 3.7, when ĉ1−τ refers to the (1 − τ )th percentile of the conditional
distribution of φ̂′

n

(
Z∗

n,θ , 0
)
given the data, and if for any θ0 ∈ Θ , either Assumption 3.8 or Assumption 3.9 holds.

While we have required rn
(
α̂n − α0

)
= Op (1), in many applications the weaker condition α̂n

p
−→ α0 suffices, such as for

the variance in a t-statistic and the weighting matrix for moment conditions. However, in these problems rn
(
α̂n − α0

)
=

Op (1) always holds under stronger regularity conditions.
When φ (·, ·) is fully Hadamard differentiable, Assumption 3.6 holds with

φ′

θ,α (hθ , hα) =
∂

∂θ
φθ,α (hθ , 0) +

∂

∂α
φθ,α (0, hα) .

In this case the bootstrap can approximate the distribution of rn
(
φ

(
θ̂n, α̂n

)
− φ (θ0, α0)

)
by that of rn(

φ

(
θ̂n + r−1

n Z∗

n,θ , α̂n + r−1
n Z∗

n,α

)
− φ

(
θ̂n, α̂n

))
, or by that of

rn
(
φ

(
θ̂n + r−1

n Z∗

n,θ , α̂n

)
− φ

(
θ̂n, α̂n

)
+ φ

(
θ̂n, α̂n + r−1

n Z∗

n,α

)
− φ

(
θ̂n, α̂n

))
.

In particular, if φ (·) is a model parameter itself (now denoted θ ), and if θ denotes the underlying distribution (now denoted
P), then the distribution of θ̂n − θ0 = θ

(
Pn, α̂n

)
− θ (P, α0) can be approximated by θ

(
P∗
n , α̂∗

n

)
− θ

(
Pn, α̂n

)
, where P∗

n
is the bootstrap data set and α̂∗

n is computed on the same bootstrap data set. In some situations, if α is computed from
an independent data set such that α̂n ∼ N

(
α, Ω̂

)
, then α̂∗

n can be drawn from N
(
α̂n, Ω̂

)
. In this case an alternative

approximation is θ
(
P∗
n , α̂n

)
− θ

(
Pn, α̂n

)
+ θ

(
Pn, α̂∗

n

)
− θ

(
Pn, α̂n

)
where θ

(
P∗
n , α̂n

)
− θ

(
Pn, α̂n

)
can also be replaced by

any approximate distribution of θ̂n treating α̂n as known.

3.4. Application to partially identified models: the L1 version

As an application, we relate the numerical delta method to a L1 version of the partially identified model studied
by Andrews and Soares (2010). While the current partial identification literature chooses to work with S (x, Σ) =∑K

k=1

(
x−

k

)2, an alternative is to choose S (·) to be a Lp norm. For example, we may choose S (x) = minh∈Λ=Rk
+
||x − h||p =(∑k

i=1

(
x−

i

)p)1/p. For p = 2 and when a weighting matrixW is employed,

S (x,W ) = min
h∈Λ=Rk

+

√
(x − h)′W (x − h).

A consistent estimate Ŵ of the weighting matrixW is often available, and can be treated as a nuisance parameter that does
not affect the asymptotic distribution in the sense of Assumption 3.7.

If such a Lp norm is used instead in Andrews and Soares (2010), then S (·) is convex and Theorem 3.5 can be applied. On
the one hand, whether to take the 1/p root makes no difference in a point identified model since optimization is invariant
to monotonic transformations. On the other hand, it implies a different directional derivative, and does make a difference in
set identified models and GMS methods.

Suppose we are testing H0 : θ0 ≥ 0 using the sample mean θ̂n. Let us consider the case of p = 2 and a single

moment equality. If we do not take the square root, we reject whenever n
(
θ̂−
n

)2
is greater than the (1 − α) th percentile

of
((

θ̂n
ϵn

+ Z∗
n

)−
)2

−

((
θ̂n
ϵn

)−
)2

, where Z∗
n is a normal random variable. However, if we take the square root, we reject

whenever
√
n
(
θ̂−
n

)
is greater than the (1 − α) th percentile of

(
θ̂n
ϵn

+ Z∗
n

)−

−

(
θ̂n
ϵn

)−

. The transformation for the critical
values is not the same as the transformation for the test statistic, and therefore the resulting rejection areas will be different.
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4. Second order numerical directional delta method

In situations in which the first order delta method limiting distribution is degenerate, the second (or higher) order delta
method may provide the necessary nondegenerate large sample approximation. For example, Andrews and Soares (2010)
conducts inference using φ(θ ) =

∑K
k=1

(
θ−

k

)2, which has a first order directional derivative of φ′

θ (h) = −
∑K

k=12θ
−

k hk. Under
the null hypothesis of infk=1...Kθk ≥ 0, φ′

θ (h) = 0, which leads to a degenerate first order delta method limiting distribution.
We will maintain the assumption that φ(·) is first order Hadamard differentiable at θ0. The second order Hadamard

directional derivative at θ0 in the direction h tangential to D0 ⊆ D is defined as

φ′′

θ0
(h) ≡ lim

tn↓0,hn→h∈D0

φ(θ0 + tnhn) − φ(θ0) − tnφ′

θ0
(hn)

1
2 t

2
n

(20)

Sufficient conditions for the existence of φ′′

θ0
(h) are that φ(θ ) is Hadamard differentiable uniformly in θ around some

neighborhood of θ0 and that φ′

θ (h) is directionally differentiable in θ at θ0. Although the definition of the second order
directional derivative contains only one direction h, in principle we can use different directions h1 and h2. For g

(
tn, h1

n, h
2
n

)
=

t−1
n

(
φ′

θ0+tnh1n

(
h2
n

)
− φ′

θ0

(
h2
n

))
, lim

tn↓0,
(
h1n,h2n

)
→(h1,h2)

g
(
tn, h1

n, h
2
n

)
= φ′′

θ0
(h1, h2) for h1 ∈ D0, h2 ∈ D0. In this paper, if there is

only one argument in the φ′′

θ0
(·) function, then we are assuming that h1 = h2.

Note that φ′′

θ0
(h) is continuous with respect to h ∈ D0 , and it is also positively homogeneous of degree 2: φ′′

θ0
(ch) =

c2φ′′

θ0
(h) for all c ≥ 0 and h ∈ D0. A simple illustrative example is φ(θ ) =

(
θ−
)2. For this function, the first order

directional derivative is φ′

θ (h) = −2θ−h, which is identically zero for θ ≥ 0. The second order directional derivative is
φ′′

θ0
(h) = 2

(
h−
)21 (θ0 = 0) + 2h21 (θ0 < 0).

The first part of the following theorem is due to Römisch (2005) and Shapiro (2000); in the second part we incorporate
the numerical directional derivative.5

Theorem 4.1 (Second Order Directional Delta Method). Suppose D and E are Banach Spaces and φ : Dφ ⊆ D ↦→ E is second
order Hadamard directionally differentiable at θ0 tangentially to D0. Let θ̂n : {Xi}

n
i=1 ↦→ Dφ be such that for some rn ↑ ∞,

rn{θ̂n − θ0} ⇝ G0 in D and assume the support of G0 is included in D0. Then,

r2n
[
φ(θ̂n) − φ(θ0) − φ′

θ0
(θ̂n − θ0)

]
⇝ J ≡

1
2
φ′′

θ0
(G0) (21)

Let ϵn → 0, rnϵn → ∞, and Z∗
n

P
⇝ G0. Then if φ′

θ0
(h) ≡ 0 ∀h ∈ D0,

φ

(
θ̂n + ϵnZ∗

n

)
− φ

(
θ̂n

)
ϵ2
n

P
⇝ J ≡

1
2
φ′′

θ0
(G0). (22)

Pointwise asymptotic validity of the numerical directional delta method is justified by (22). There are several alternatives
for approximating 1

2φ
′′

θ0
(G0). First, the left hand side of (22) can be replaced by φ̂′′

n

(
Z∗
n

)
where the second order directional

derivative can be estimated by

φ̂′′

n (h) ≡
φ(θ̂n + 2ϵnh) − 2φ(θ̂n + ϵnh) + φ(θ̂n)

ϵ2
n

(23)

Theorem 4.2. Under convexity of D0 and the same conditions as in Theorem 4.1, except without φ′

θ0
(h) ≡ 0, for φ̂′′

n (h) in (23),

φ̂′′
n

(
Z∗
n

) P
⇝ φ′′

θ0
(G0).

If the first derivative φ′

θ (h) is analytically known, as in Andrews and Soares (2010), another alternative is to estimate the
second order directional derivative (21) by

φ̄′′

n (h1, h2) ≡

φ′

θ̂n+ϵnh1
(h2) − φ′

θ̂n
(h2)

ϵn
(24)

Theorem 4.3. For φ̄′′
n (h, h) defined in (24), φ̄′′

n (Z
∗
n,Z

∗
n)

P
⇝ φ′′

θ0
(G0).

We can show that φ̄′′
n (h, h) =

φ′

θ̂n+ϵnh
(h)−φ′

θ̂n
(h)

ϵn
is Lipschitz whenever φ′

θ (h) is.

Theorem 4.4. If φ′

θ (h) : Dφ → E is Lipschitz in θ and h , then for all ϵn ↓ 0, φ̄′′
n (h, h) =

φ′

θ̂n+ϵnh
(h)−φ′

θ̂n
(h)

ϵn
is Lipschitz in h.

5 Recent independent work by Chen and Fang (2015) also studies inference under first order degeneracy.
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Theorem 4.1 applies when φ′

θ0
(h) ≡ 0, in which case r2n

(
φ

(
θ̂n

)
− φ (θ0)

)
⇝ J . By Theorems 4.1–4.3,

φ

(
θ̂n+ϵnZ∗

n

)
−φ

(
θ̂n
)

ϵ2n

in (22), φ̂′′
n

(
Z∗
n

)
in (23) and φ̄′′

n

(
Z∗
n,Z

∗
n

)
in (24) converge to the same limiting distribution J =

1
2φ

′′

θ0
(G0) under fixed θ0

asymptotics and under a local drifting sequence of parameters θn where rn (θn − θ0) → c for ||c|| < ∞. In the latter case,
let Zn = rn

(
θ̂n − θn

)
⇝ G0. Then r2n

(
φ(θ̂n) − φ (θn)

)
satisfies

r2n

(
φ

(
1
rn

(rn (θn − θ0) + Zn)

)
− φ(θ0)

)
− r2n

(
φ

(
1
rn

(rn (θn − θ0))

)
− φ(θ0)

)
⇝

1
2
φ′′

θ0
(c + G0) −

1
2
φ′′

θ0
(c).

The equalities follow from rn (θn − θ0)+Zn ⇝ c +G0, rn (θn − θ0) ⇝ c , and the definition of the second order delta method.

The behaviors of φ̂′′
n (Z

∗
n), φ̄

′′
n (Z

∗
n,Z

∗
n) and

φ

(
θ̂n+ϵnZ∗

n

)
−φ

(
θ̂n
)

ϵ2n
differ under amore distant local drifting sequence of parameters

θn−θ0
ϵn

→ c , when 0 < ||c|| < ∞, which implies different finite sample behaviors.

On the one hand, 1
ϵ2n

(
φ(θ̂n + ϵnZ∗

n) − φ(θ̂n)
)
⇝ 1

2φ
′′

θ0
(c + G0) −

1
2φ

′′

θ0
(c). On the other hand, for (23),

1
2
φ̂′′

n (Z
∗

n) =
1
2

1
ϵ2
n

[
φ

(
ϵn

(
θn − θ0

ϵn
+

Zn

rnϵn
+ 2Z∗

n

))
− φ(θ0)

]
−

1
ϵ2
n

[
φ

(
ϵn

(
θn − θ0

ϵn
+

Zn

rnϵn
+ Z∗

n

))
− φ(θ0)

]
+

1
2

1
ϵ2
n

[
φ

(
ϵn

(
θn − θ0

ϵn
+

Zn

rnϵn

))
− φ(θ0)

]
⇝

1
4
φ′′

θ0
(c + 2G0) −

1
2
φ′′

θ0
(c + G0) +

1
4
φ′′

θ0
(c).

It can also be shown that for (24),

1
2
φ̄′′

n (Z
∗

n,Z
∗

n) ≡

φ′

θ̂n+ϵnZ∗
n

(
Z∗
n

)
− φ′

θ̂n

(
Z∗
n

)
2ϵn

⇝
1
2
φ′′

θ0
(c + G0,G0) −

1
2
φ′′

θ0
(c,G0).

The differences between variousmethods of estimating the second order derivativewhen θn−θ0
ϵn

→ c can be illustrated using
a simple test of H0 : θ0 ≥ 0 against H1 : θ0 < 0, which is converted to H0 : φ (θ0) = 0 against H1 : φ (θ0) > 0 using the
test function φ(θ ) =

(
θ−
)2, which has φ′

θ (h) = −2θ−h and φ′′

θ (h) = 2
(
h−
)21 (θ = 0) + 2h21 (θ < 0). Consider a level α

test with rejection region {r2nφ(θ̂n) ≥ d1−α}, where d1−α is the 1− α percentile of one of the following four distributions: (1)
1
ϵ2n

φ(θ̂n + ϵnZ∗
n); (2)

1
2

1
ϵn

(
φ′

θ̂n+ϵnZ∗
n
(Z∗

n) − φ′

θ̂n
(Z∗

n)
)
; (3) 1

ϵ2n

(
φ(θ̂n + ϵnZ∗

n) − φ(θ̂n)
)
; (4) 1

2 φ̂
′′
n (Z

∗
n). Let θ0 = 0 and θn

ϵn
→ c . The

corresponding limiting distributions are

(1) 1
2φ

′′

0 (c + G0) =
(
(G0 + c)−

)2
(2) 1

2

(
φ′
G0+c(G0) − φ′

c(G0)
)

= −(G0 + c)−G0 + c−G0

(3) 1
2φ

′′

0 (c + G0) −
1
2φ

′′

0 (c) =
(
(G0 + c)−

)2
−
(
c−
)2

(4) 1
4φ

′′

0 (c + 2G0) −
1
2φ

′′

0 (c + G0) +
1
4φ

′′

0 (c) =
1
2

(
(2G0 + c)−

)2
−
(
G−

0

)2
+

1
2

(
c−
)2

First consider the case of c > 0, which corresponds to size control. In this case it is not difficult to see that (4) ⪰ (2) ⪰

(1) = (3) in descending order of first order stochastic dominance. Furthermore, (1) through (4) all stochastically dominate
the distribution of the test statistic under the null of θ0 > 0, which is limh→∞

1
2φ

′′

θ0
(h + G0) −

1
2φ

′′

θ0
(h) = 0 because

rn (θn − θ0) → ∞ when θn−θ0
ϵn

→ c. By imposing a zero first order derivative under the null, (2) and (4) provide better
finite sample size control. However, comparing the finite sample powers of these tests when θn

ϵn
→ c < 0 does not give a

conclusive ranking. While it is clear that the recentered version (3) is always more powerful than the nonrecentered version
(1), there does not seem to be a uniform ranking among (2)–(4). The ranking might depend on the range of the alternative
hypothesis.

5. Monte Carlo simulations

In this section we report two finite sample simulations. The first uses a simple parametric example to show consistency
of the first order numerical delta method, while the second applies the second order numerical delta method to themoment
inequalities setup in Andrews and Soares (2010).

5.1. Confidence intervals in a basic model

Consider a simple set up of i.i.d data Xi
iid
∼ N(θn, 1) and θ̂n =

1
n

∑n
i=1Xi ≡ X̄ . The function of interest is φ (θ) = aθ+

+ bθ−,
where θ+

= max{θ, 0} and θ−
= −min{θ, 0}. Functions of this type appear in Hansen (2017)’s continuous threshold

regression model and in moment inequality inference models. We approximate the distribution of rn(φ(θ̂n) − φ(θn)) using

φ̂′
n

(
Z∗
n

)
=

φ

(
θ̂+ϵnZ∗

n

)
−φ

(
θ̂

)
ϵn

. where Z∗
n

P
⇝ G0 and rn(θ̂n − θn) ⇝ G0. We use Z∗

n = N(0, σ̂ ), where σ̂ =

√
1

n−1

∑n
i=1(Xi − X̄)2.
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For cα denoting the α quantile of φ̂′
n(Z

∗
n) and dα denoting the α quantile of |φ̂′

n(Z
∗
n)|, we report (1) a symmetric two sided

interval
[
φ(θ̂n) −

1
rn
d1−α, φ(θ̂n) +

1
rn
d1−α

]
; (2) an equal-tailed two-sided interval

[
φ(θ̂n) −

1
rn
c1−α/2, φ(θ̂n) −

1
rn
cα/2

]
; (3) an

upper one-sided confidence interval
(
−∞, φ(θ̂n) −

1
rn
cα
]
; (4) a lower one-sided confidence interval

[
φ(θ̂n) −

1
rn
c1−α, ∞

)
.

For a > 0, b > 0 or a > 0, b < 0, a > |b| or a < 0, b > 0, |a| < b, φ (θ) is a convex function of θ . Then Theorem 3.5
implies that the lower one-sided interval is uniformly valid at least conservatively. Both the upper one-sided interval and
as a result the equal-tailed two sided interval are only valid under fixed asymptotics, but can undercover for local drifting
parameter sequences between orders of 1/

√
n and ϵn.

Analogously, for a < 0, b < 0 or a < 0, b > 0, a < |b| or a > 0, b < 0, |a| > b, φ (θ) is a concave function of θ . Then
Theorem 3.5 implies that the upper one-sided interval is uniformly valid at least conservatively. Both the lower one-sided
interval and as a result the equal-tailed two sided interval are only valid under fixed asymptotics, but can undercover for
local drifting parameter sequences between orders of 1/

√
n and ϵn.

For the two sided symmetric interval, note that in this model, the directional derivative φ′

θ (h) is given by (1) ah if θ > 0;
(2) −bh if θ < 0; (3) ah+

+ bh− if θ = 0. It satisfies the condition that

|φ′

θ (h1 + h2) − φ′

θ (h2)| ≤ |φ′

θ (h1)|, (25)

Note that |φ′

θ (G0 + c) − φ′

θ (c)| and |φ′

θ (G0)| are, respectively, the analytic limit and numerical delta method limit under
the Fang and Santos (2014) local sequence θn = c/

√
n. Therefore (25) implies that the symmetric two sided interval is

at least conservatively valid under the local sequence of θn = c/
√
n. The two sided symmetric interval may undercover,

however, for the local parameter sequence of θn = cϵn. In other words, when
√
nϵn → ∞, neither the symmetric nor the

equal-tailed two sided intervals are uniformly valid, but the symmetric interval is valid for a wider range of local parameter
sequences than the equal-tailed interval.

The set of tables titled ‘‘Monte Carlo Simulations for the Normal Mean Model’’ show empirical coverage frequencies for
a = 1.5, b = 0.5, which corresponds to convex φ (θ). Results for concave φ (θ) are analogous and omitted for brevity.
Empirical coverage frequencies are computed for four different values of ϵn: n−1/6, n−1/3, n−1/2, n−1; and eleven different
values of θn: −2, −n−1/6, −n−1/3, 0, n−1, n−1/1.5, n−1/2, n−1/3, n−1/6, n−1/10, and 2. The empirical coverage frequencies for
the four different kinds of confidence intervals (symmetric two-sided, equal-tailed two-sided, upper one-sided, and lower
one-sided) when ϵn = n−1/6, ϵn = n−1/3, ϵn = n−1/2, and ϵn = n−1 are summarized in tables 1 through 4, tables 5 through
8, tables 9 through 12, and tables 13 through 16 respectively. The nominal coverage frequency is 95%.

When
√
nϵn → ∞, the symmetric two-sided confidence intervals have an empirical coverage frequency close to the

nominal frequency in the regions θn ∈ {0, n−1, n−1/1.5, n−1/2
} and θn

ϵn
→ ±∞. The empirical coverage frequency is below the

nominal frequencywhen θn
ϵn

→ c for 0 < c < ∞. The equal-tailed two-sided confidence intervals have an empirical coverage
frequency close to the nominal frequency in the regions θn ∈ {0, n−1

} and θn
ϵn

→ ±∞. In the region where θn
√
n → c1 for

0 < |c1| ≤ ∞ and θn
ϵn

→ c2 for 0 ≤ |c2| < ∞, the empirical coverage frequency is far below the nominal frequency.
When

√
nϵn → ∞, the lower one-sided confidence intervals provide conservatively valid coverage for all values of θn ,

which is to be expected given the theoretical results. On the other hand, the upper one-sided confidence intervals undercover
for values of θn that satisfy θn

√
n → c1 for |c1| > 0 and θn

ϵn
→ c2 for 0 ≤ |c2| < ∞ while providing coverage close to the

nominal frequency for the other values of θn.

5.2. Small step size in the basic example

While the theory in the previous sections is provided for larger step sizes (
√
nϵn → ∞), it turns out that in the example

above a small step size might also be a possible choice for constructing confidence intervals in some situations. In this
section we let

√
nϵn → 0 and examine the consequences for the numerical delta method. Let Zn =

√
n
(
θ̂n − θn

)
so that(

Z∗
n,Zn

)
⇝ (G1,G0), where G1 ∼ N (0, 1), G0 ∼ N (0, 1), G1 ⊥ G0. Also note that φ (θ) = aθ+

+ bθ− is homogeneous of
degree one. We can write down the following heuristic calculations.

φ̂′

n

(
Z∗

n

)
=φ

(
θ̂n

ϵn
+ Z∗

n

)
− φ

(
θ̂n

ϵn

)
= φ

(
Zn

√
nϵn

+
θn

ϵn
+ Z∗

n

)
− φ

(
Zn

√
nϵn

+
θn

ϵn

)
Also note that

√
n
(
φ

(
θ̂n

)
− φ (θn)

)
= φ

(
Zn +

√
nθn
)
− φ

(√
nθn
)
. We now consider three regimes separately.

Case 1:. If
√
nθn → 0, then

√
n
(
φ

(
θ̂n

)
− φ (θn)

)
⇝ aG+

0 + bG−

0 . Also,

φ̂′

n

(
Z∗

n

)
⇝ W =

{
aG+

1 with probability P (G0 > 0)
−bG−

1 with probability P (G0 < 0)

It can be verified that |W | and aG+

0 + bG−

0 have the same distribution, so that two sided symmetric intervals are valid. By
symmetry, so are the two sided equal-tailed intervals.
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Case 2:. If
√
nθn = an → ±∞, both two sided intervals are valid since the analytic limit and the numeric limit have the

same distribution:
√
n
(
φ

(
θ̂n

)
− φ (θn)

)
⇝

{
aG0 if an > 0
−bG0 if an < 0 φ̂′

n

(
Z∗

n

)
⇝

{
aG1 if an > 0
−bG1 if an < 0

Case 3:. If
√
nθn → c , where 0 < |c| < ∞, then the two distributions differ, and two sided intervals are generally invalid

since
√
n
(
φ

(
θ̂n

)
− φ (θn)

)
⇝ a(c + G0)

+
+ b(c + G0)

−
− ac+

− bc−,

φ̂′

n

(
Z∗

n

)
⇝

{
aG1 with probability P (G0 > −c)
−bG1 with probability P (G0 < −c)

However, in a special case of case 3, when a = b = 1, the analytic limit becomes |G0+c|−|c| and the numeric limit becomes
G1. Since |G1| first order stochastically dominates ||G0 + c|−|c|| , symmetric two sided intervals are at least conservatively
valid.

The knife-edge case of ϵn = n−1/2 corresponds essentially to the bootstrap. With the bootstrap,

φ̂′

n

(
Z∗

n

)
⇝ φ

(
G0 + G1 + lim

√
nθn
)
− φ

(
G0 + lim

√
nθn
)

Comparing this to
√
n
(
φ

(
θ̂n

)
− φ (θn)

)
= φ

(
Zn +

√
nθn
)

− φ
(√

nθn
)
⇝ φ

(
G0 + lim

√
nθn
)

− φ
(
lim

√
nθn
)
shows

that when θn = 0, the analytic limit is φ (G0) and the numerical limit is φ (G0 + G1) - φ (G0). Since |φ (G0)| first order
stochastically dominates |φ (G0 + G1) − φ (G0)|, the bootstrap symmetric two-sided interval will undercover. However,
when

√
n|θn| is larger (e.g. when

√
nθn → ∞), the bootstrap symmetric two-sided interval will not undercover.

5.3. Second order numerical derivative

The purpose of these Monte Carlo simulations is to investigate the power and size of moment inequality tests of the form
H0 : infj=1...Jθn,j ≥ 0 and H1 : infj=1...Jθn,j < 0. Let φ(θ ) =

∑J
j=1

(
θ−

j

)2
=
∑J

j=1(−min{θj, 0})2 and φ′

θ (h) = −
∑J

j=12θ
−

j hj. Data

are drawn from Xi
iid
∼ N(θn, I2) and θ̂n =

1
n

∑n
i=1Xi ≡ X̄ . We reject when r2nφ(θ̂n) > ĉ1−α , where ĉ1−α is the 1 − α quantile of

one of the following four ways of estimating the second order numerical derivative:

1. Andrews and Soares (2010) with 4th GMS function: 1
ϵ2n

φ(θ̂n + ϵnZ∗
n)

2. Derivative of Analytic First Order Derivative: 1
2

1
ϵn

(
φ′

θ̂n+ϵnZ∗
n
(Z∗

n) − φ′

θ̂n
(Z∗

n)
)

3. Numerical Second Order Derivative 1: 1
ϵ2n

(
φ(θ̂n + ϵnZ∗

n) − φ(θ̂n)
)

4. Numerical Second Order Derivative 2: 1
2 φ̂

′′
n (Z

∗
n) =

1
2

φ(θ̂n+2ϵnZ∗
n)−2φ(θ̂n+ϵnZ∗

n)+φ(θ̂n)
ϵ2n

We takeZ∗
n = N(0, σ̂ ), where σ̂ =

√
1

n−1

∑n
i=1(Xi − X̄)2. We use four different choices of ϵn:

√
log(n)/

√
n, n−1/6, n−1/3, n−1/2

and eleven different choices of θn:−n−1/6,−n−1/3,−n−1/2,−n−1/1.5,−n−1, 0, n−1, n−1/1.5, n−1/2, n−1/3, and n−1/6. The choice
of ϵn =

√
log(n)/

√
n is the one proposed by Andrews and Soares (2010). The set of tables titled ‘‘Monte Carlo Simulations

for the Second Order Directional Delta Method’’ show the empirical rejection frequencies for the four different tests.
We can see that when ϵn =

√
log(n)
√
n , the Andrews and Soares (2010) test has lower power than the other three tests for

alternatives of the form θn ∈ {−n−1/3, −n−1/2, −n−1/1.5, −n−1
}. The Andrews and Soares (2010) test also has worse size

control than all of the other tests except for the numerical second order derivative 1 test. The tests using the derivative of
the analytic first order derivative and the numerical second order derivative 2 have the highest power against all alternatives
and exhibit good size control.

As we go from ϵn =

√
log(n)
√
n to ϵn = n−1/6, the power of the Andrews and Soares (2010) test increases so that it is

approximately equal to the power of the tests using the derivative of the analytic first order derivative and the numerical
second order derivative 2 for all alternatives except θn = −n−1/2, in which case the Andrews and Soares (2010) test has
lower power. The Andrews and Soares (2010) test has slightly better size control than the tests using the derivative of the
analytic first order derivative and the numerical second order derivative 2 when θn ∈ {0, n−1

}.
As we decrease ϵn from n−1/6 to n−1/2, the power of the Andrews and Soares (2010) test for alternatives of the form

θn ∈ {−n−1/6, −n−1/3, −n−1/2
} decreases dramatically, and the size for θn ∈ {n−1, n−1/1.5, n−1/2

} increases to above the
nominal size. In contrast, for the test using the numerical second order derivative 2, the power for alternatives of the form
θn ∈ {−n−1/6, −n−1/3, −n−1/2, −n−1/1.5

} and the size for all nonnegative θn are not greatly affected. The power of the test
using the derivative of the analytic first order derivative is not greatly affected for θn ∈ {−n−1/6, −n−1/3

} but the power does
decrease dramatically for alternatives drifting faster to zero. The size of the test using the derivative of the analytic first order



H. Hong, J. Li / Journal of Econometrics 206 (2018) 379–394 393

derivative decreases to almost 0 when ϵn = n−1/2 while the size of the test using the numerical second order derivative 2 is
not greatly affected.

Note that for a given value of ϵn and any value of θn in the alternative, the power of the Andrews and Soares (2010) test
is always no greater than the power of the test using the numerical second order derivative 1. This is consistent with our
prediction at the end of Section 4.Moreover, for all values of θn in the alternative and for ϵn ∈ {

√
log(n)/

√
n, n−1/6, n−1/3

}, the
power of the test using the numerical second order derivative 2 is the greatest among the four tests. Only when ϵn = n−1/2

and only for alternatives θn ∈ {−n−1/1.5, −n−1
} drifting very quickly to zero is its power lower than that of the Andrews

and Soares (2010) test and the test using the numerical second order derivative 1, while still having higher power than the
test using the derivative of the analytic first order derivative.

6. Bias reduction

If the functional of interest φ (θ) admits a higher order directional Taylor expansion with a nondegenerate first order
derivative, it is possible to modify the first order numerical directional delta method to make use of a higher order multiple
point differentiation formula to reduce the bias in approximating the first order directional derivative numerically (Hong
et al., 2015). Estimating the first derivative using multiple point numerical differentiation is akin to the use of (one sided)
higher order kernel and local polynomial methods for bias reduction. Specifically, assume that, for φ

(j)
θ (h) being functionals

of h that are homogeneous of degree j, for hn → h,

φ (θ + thn) =

r∑
j=0

1
j!
φ

(j)
θ (hn) t j + O

(
t r+1) , φ

(j)
θ (hn) − φ

(j)
θ (h) = O (hn − h) = o (1) . (26)

Consider a p-point operator for estimating the first order directional derivative, with p ≤ r ,

Lϵn
θ,p (h) =

1
ϵn

p∑
l=0

alφ (θ + ϵnlh) =
1
ϵn

p∑
l=0

al

⎡⎣ r∑
j=0

1
j!
φ

(j)
θ (h) ϵ j

nl
j
+ O

(
ϵr+1
n

)⎤⎦
=

p∑
j=0

φ
(j)
θ (h)

ϵ
j−1
n

j!

p∑
l=0

allj + O
(
ϵp
n

)
The coefficients al, l = 0, . . . , p are determined by the system of equations:

p∑
l=0

allj =

{
1 for j = 1
0 for j ̸= 1, j ≤ p. (27)

Using these choices for al and ϵn → 0 leads to

Lϵn
θ,p (h) = φ

(1)
θ (h) + O

(
ϵp
n

)
(28)

The p-point first order numerical derivative is

φ̂′

n

(
Z∗

n; p
)

≡ Lϵn
θ̂ ,p

(
Z∗

n

)
(29)

For example, φ̂′
n

(
Z∗
n

)
=

φ

(
θ̂n+ϵnZ∗

n

)
−φ

(
θ̂n
)

ϵn
corresponds to p = 1, a0 = −1, a1 = 1. When p = 2, a0 = −

3
2 , a1 = 2, a2 = −

1
2 :

φ̂′

n

(
Z∗

n; 2
)

≡

−
1
2φ

(
θ̂n + 2ϵnZ∗

n

)
+ 2φ

(
θ̂n + ϵnZ∗

n

)
−

3
2φ

(
θ̂n

)
.

ϵn
(30)

It is straightforward to generalize Theorem 3.1 to show consistency of (29).

Theorem 6.1. Let (26) and the conditions in Theorem 3.1 hold. Then φ̂′
n

(
Z∗
n; p

) P
⇝ φ′

θ0
(G0).

7. Conclusion

We have proposed a one-sided finite difference numerical directional derivative as a computationally simple estimator
for the directional directive developed in Fang and Santos (2014). We have demonstrated that when the φ(·) function is
Lipschitz, the numerical directional derivative is a consistent estimator for the directional derivative. Additionally, we have
shown how to conduct uniformly valid inference using the first order directional delta method when φ(·) is a convex and
Lipschitz function. Lastly, we have demonstrated how to consistently estimate the second order directional derivative and
use the second order directional delta method to conduct pointwise valid inference.
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Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.06.007.
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