ITERATED LOCAL COHOMOLOGY GROUPS AND LYUBEZNIK NUMBERS FOR
DETERMINANTAL RINGS

ANDRAS C. LORINCZ AND CLAUDIU RAICU

ABSTRACT. We give an explicit recipe for determining iterated local cohomology groups with support in ideals of
minors of a generic matrix in characteristic zero, expressing them as direct sums of indecomposable D-modules.
For non-square matrices these indecomposables are simple, but this is no longer true for square matrices where
the relevant indecomposables arise from the pole order filtration associated with the determinant hypersurface.
Specializing our results to a single iteration, we determine the Lyubeznik numbers for all generic determinantal
rings, thus answering a question of Hochster.

1. INTRODUCTION

We consider positive integers m > n > 1 and let X = C™*™ denote the affine space of m x n complex
matrices, equipped with the natural action of the group GL = GL,,(C) x GL,,(C). We denote the orbits of
the GL-action by O,, 0 < p < n, where O, consists of matrices of rank p, and write h% (—) for the functors

of local cohomology with support in the orbit closures. If we let S = C|xz;;] denote the coordinate ring of X,
and let I, 1 be the ideal of (p+ 1) x (p + 1) minors of the matrix of indeterminates (x;;), then I, is the

ideal of functions vanishing on the variety Op, and the functors HZ (—) are often denoted by Hl‘pH(—), and

referred to as the functors of local cohomology with support in the ideal I, 1. The goal of this work is to give
an explicit recipe for computing all the iterated local cohomology groups

1y (HE (- HE (S))). (L1)
Specializing our results to the case Héo(l:% (S)) we determine the Lyubeznik numbers of the coordinate ring
p

of each 5p, and observe a dichotomy between the case of square and non-square matrices. This is explained
geometrically by the way the conormal varieties to the orbits intersect in the two cases, and algebraically by
the fact that an appropriate category of modules is semi-simple for non-square matrices, and quite interesting
for square matrices.

The groups are finitely generated modules over the Weyl algebra Dx of differential operators on X,
which in addition are equivariant for the action of the group GL. We will therefore work in the category
modgr,(Dx) of GL-equivariant Dx-modules, which is known by a result of Vilonen [Vil94, Theorem 4.3] to
be equivalent to the category of finitely generated modules over a finite dimensional algebra, or alternatively,
to the category of finite dimensional representations of a quiver with relations. The explicit description of
the relevant quiver has been obtained in [LW19, Theorem 5.4], and it is closely related to that of the quiver
attached to a slightly larger category considered in [BG99, Section 4.1]. We identify a suitable finite set
of indecomposable objects in modgr,(Dx) and express each of the local cohomology groups in as a
direct sum of these indecomposables. The multiplicities of indecomposables are encoded in terms of Gaussian
binomial coefficients (reviewed in Section. Our proofs employ the symmetries coming from the GL-action,
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the inductive structure of determinantal varieties, and the quiver description of modgr(Dx), as well as a
number of vanishing results for local cohomology that we prove by working on appropriate desingularizations
of determinantal varieties, and using Grothendieck duality and the Borel-Weil-Bott theorem.

For non-square matrices (m > n) the category modgr(Dx) is semi-simple by |[MV86, Theorem 6.7], since
the conormal varieties to the orbits (described in [Str82]) intersect in codimension > 2. This has two important
implications:

e The indecomposable modules in modgr,(Dx) are simple.
e The module structure of M € modgr(Dx) is determined up to isomorphism by its class [M]p in the
Grothendieck group I'p of modgr,(Dx) (see Section [2.4)).

For this reason we begin by considering the simpler problem of determining the class in I'p of a local coho-
mology group. We return to the general case m > n and let

DOaDh"' 7Dn

denote the simple objects in modgr,(Dx), where D, has support equal to O,, and is often referred to as the
intersection homology Dx-module corresponding to the orbit O,. When p = n, we have that O,, = X and
D, = S is the coordinate ring of X. Our first theorem determines the class in I'p of the local cohomology
groups of each D), thus generalizing the main result of [RW14] which addresses the case p = n.

Theorem 1.1. For every 0 <t < p <n < m we have the following equality in I'p[q]:
¢
A , _ 11—
STUHD (Dp)lp - @ = S [Dylp - g0+ mn). (” ) - (p ) . (1.2)
0 =0 P=5/¢ t=s Jg
The restriction to the case ¢ < p is done in order to avoid trivialities. If M is any S-module whose support
is contained in O; (such as M = D,, or M = H% (N) for p<t, j >0, and any S-module N) then
p
Hg (M) = M and Hg (M) = 0 for i > 0. (1.3)
For this reason, there is no harm in assuming for instance that i; < ig < --- < i, in (1.1).
Example 1.2. Consider the case when m =3 and n = 2. For p =2 and t = 1 we have Dy = S and
1
j i (1.2) _
S ()o@ S IDp 6" = [Dilp- ¢ + Dl -
>0 5=0
which implies that the only non-zero local cohomology groups are in this case (see also [Wal99, Example 6.1])
H (S) = Dy and H} (S) = Do,
For p =1 and ¢t = 0 we obtain
: ;
J )
S IHL (D)o
Jj=>0
Combining this with the observation 1} it follows that the only non-zero groups H%O(h%l(S )) are
H2, (H2 () = HE (H2 (S)) = HY (H (S)) = D, (1.4)

2
1

= [Dolp - ¢* - ( > = [Dolp - ¢* + [Dolp - ¢*.
q2

Iterated local cohomology groups have been studied in the seminal work of Lyubeznik [Lyu93], where he
introduced a new set of numerical invariants attached to any local ring which is a quotient of a regular
local ring containing a field [Lyu93, Theorem-Definition 4.1]. These invariants are known today under the
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name of Lyubeznik numbers, and have been the subject of extensive investigation (see [NBWZ16| and the
references therein). For determinantal rings, the question of describing the Lyubeznik numbers was posed by
Mel Hochster as part of his list of “Thirteen Open Questions about Local Cohomology”. Part of our work
here is dedicated to answering this question. For p < n we have that S/I,;; is the coordinate ring of O, and
we let R?®) = (S/I,41)m denote its localization at the maximal homogeneous ideal. The Lyubeznik numbers
Ai j(R®)) are characterized by the equalities

; — ®Ai (R
Hp, (H5" () = D 3B, (1.5)
We encode the Lyubeznik numbers of determinantal rings by a bivariate generating function L,(q, w) € Z[q, w],
Ly(g,w) = Y Xij(RW) - ¢' - w, (1.6)
4,520

We prefer this encoding since it is more compact than the one given by the Lyubeznik tables

@Y = (. .(RW®
ART) = (A”(R )>O§i,j§dim(R(P))

which were first considered in [Wal01]. We have for instance from (1.4) that when m = 3 and n = 2

00 0 10
00 0 0O
Li(q,w) =w? +¢® - w* + ¢*-w?,  or equivalently A(R(l)) =10 0 0 0 1
00 0 0O
0 0 0 01

In this example, R is the local ring at the vertex of the affine cone of the Segre embedding P* x P2 — P5.
Since P! x P? is smooth, it is known that the Lyubeznik numbers have a topological interpretation, being
determined by the Betti numbers of P! x P? |[GLS98,Swil5|. By contrast, there are singular examples where the
Lyubeznik numbers at the cone point depend on the projective embedding [RSW18, Wan19), so the topology
of the projective scheme does not control on its own the Lyubeznik numbers. Nevertheless, based on the work
[RSW18]|, one can show that Lyubeznik numbers of the (projective) determinantal varieties do not depend on
the choice of embedding into a projective space (see [RW]).

For non-square matrices our Theorem together with the fact that modgr,(Dx) is semi-simple, gives the
following description of Lyubeznik numbers.

Theorem 1.3. If m > n > p then the Lyubeznik numbers for R®) are computed by

P
2 n 2 n—1—s
L,(q,w) = s%+s-(m—n) < > P F2pts (mtn—2p-2) < > ) 1.7
p(q,w) ;q <) pos ), (1.7)

In fact, using Theorem and the semi-simplicity of modgr,(Dx) we can determine ((1.1)), and in particular
describe the generalized Lyubeznik numbers as defined in [NBWZ16, Section 7]. More generally,

HE (Y (- (D))

can be computed for any D,. We leave the determination of the precise formulas to the interested reader.
When m = n the situation is more subtle, as can be seen already in the following simple example.

Example 1.4. Suppose that m =n = 2 and let p = 1. Applying (1.2) we get
[H5,(S)]lp = [Dolp + [Di]p
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but H%l (S) is not the direct sum of Dy and D;! If we write det for the 2x2 determinant, then H%l (S) = Sqet/S

contains no non-zero elements annihilated by the maximal homogeneous ideal, so it can’t contain Dy (which
is supported at 0) as a submodule. This observation is also reflected in the calculation of Lyubeznik numbers,
as follows. Since O; is a hypersurface of (affine) dimension 3 (the cone over P! x P! C P3), the only non-zero
Lyubeznik number is A3 3(R(")) = 1, that is the only non-zero group H%O(Hél (9)) is

H§ (Hg (S)) = Do.
The non-zero local cohomology groups H%O (Do) and h%o (D;) are by 1) and 1)
Hg (Do) = Hg (D1) = HE (D1) = Dy,

so the local cohomology groups of H%I(S) are not the direct sums of those of Dy and D;. In particular,
specializing (|1.7)) to the case when m = n would give the wrong answer! Instead, we have the following.

Theorem 1.5. If m =n then L,_1(q,w) = (q- w)”2_1 and for 0 <p <n— 2 we have

P
-1 —2
Ly(q,w) = Zq32+2s . (n . > 2 P T2 ts (2n—2p-2) (n s> . (1.8)
s=0 q w

p—S
For instance, in the case of 4 x 4 matrices of rank at most 2 (m = n = 4 and p = 2) we obtain
Lo(q,w) = w® + (¢* +¢° + ¢7) - w'® + (¢ +¢'° + ¢'*) - w'?. (1.9)

Analogues of Theorems [I.3] and for ideals of Pfaffians of a generic skew-symmetric matrix have been
obtained by Mike Perlman [Per20], but the corresponding problem for symmetric matrices remains open.

As we saw in Example for square matrices the (iterated) local cohomology groups of S are no longer
expressible as direct sums of the simple modules D,. We proceed instead to construct a different set of
indecomposables that play the role of the simples. We let det = det(x;;) denote the determinant of the
generic n X n matrix, and let (det™?)p denote the Dx-submodule of Sye; generated by det . It is shown in
[Rail6, Theorem 1.1] that

0CSC(det™)pC---C (det™)p = Sqes (1.10)
is a Dx-module composition series with composition factors S ~ D,, and
<det7p>p
——— =~ D, ,forp=1,--- n. 1.11
(det™PT1)p Ot P (L.1)

We define ), = Sqet and for p =0,--- ,n — 1, we let

Sdet
= 1.12
Qp (detp*”“b ( )
It follows from ([1.10) and (1.11) that @, has composition factors Dy, -, D,, hence
P
(@plp = _[Dilp (1.13)
s=0

and the support of @, is O,. We denote by add(Q) the full additive subcategory of modgr(Dx) consisting
of modules that are isomorphic to a direct sum of copies of Qo,Q1,...,Qn. It follows from ([1.13]) that
[Qolp, -, [Qn]p form a basis of the Grothendieck group I'p, so a module M € add(Q) is determined up
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to isomorphism by [M]p. The following result (when combined with (L.2), (1.3, and (L.13))) allows one to
determine (1.1) when m = n, or more generally to describe arbitrary iterations
Hal(Hém( : Har(M))) where M =D, or M =Qp, p=0,--- ,n.
Theorem 1.6. For every 0 <t <p<n=m and j > 0 we have that
Hja(Dp) € add(Q) and HJa(Qp) € add(Q).
Moreover,

Z]ngthYQJZEEK%hyq@tf+m9@,(n—s—1>¥.<z_j_i>¥' (1.14)

— S
>0 s=0 p

This theorem is explained in Section A formula analogous to (|1.14) holds for the groups H% (Dp),
t

and can be obtained based on 1) from the fact that H% (Dp) € add(Q) (see Theorem . To see how
t

Theorem allows for the calculation of Lyubeznik numbers, or more general iterated local cohomology

groups, we explain next how to derive (|1.9)).

Example 1.7. If m =n =4 and p = 2 then we have
Y HL (S)p-d = [Dolp - (¢" +¢° + ) + [Di]p - (¢* + ¢°) + [Da)p - ¢
Jj=0
= Qo'+ [Qp ¢+ Qoo o
By Theorem |1.6{ we have that H%Q (S) € add(Q) for all j, hence

HY (S) = Qo, HS () =Q1, and HS (S) = Qy = Do.

Using 1) we get H%O (H%Q (S)) = Do and therefore \gg(R®) = 1. Using ([1.14)) we have

> IHS (@lp ¢ = [Qolp - ¢ - <3> = Dolp- (¢’ +4"+ ")

- 1
j=0

and therefore /\3,10(R(2)) = )\5710(R(2)) = )\7710(R(2)) = 1. Using |i again we have

Sl (@l o' = Qi

- 2
j=0
and therefore )\8712(}2(2)) = )\10712(]%(2)) = )\12712(R(2)) = 1. All the remaining Lyubeznik numbers vanish,

proving (L9).

The paper is organized as follows. In Section 2] we recall some basic notions regarding weights and Schur
functors, ¢-binomial coefficients, categories of admissible representations and equivariant D-modules, and
Bott’s theorem for Grassmannians and flag varieties. We also discuss briefly families of determinantal rings
over a general base, and the inductive structure of determinantal rings. In Section [3] we prove Theorems [I.]]
and [I.3] Sections [d and [5] are concerned with a number of technical results proving the vanishing of a range of
local cohomology groups. In Section |§| we recall the quiver description of the category modgr,(Dx) and use it
in conjunction with the vanishing results of the earlier sections to provide an inductive proof of Theorem
We also derive Theorem as a quick corollary of the previous local cohomology calculations.

) =il a4 )
q
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2. PRELIMINARIES

2.1. Dominant weights and Schur functors. We write Z]; = for the set of dominant weights in Z", i.e.
tuples A = (A1, -+, \p) € Z™ with Ay > Ao > --- > \,,. When each \; > 0 we identify A\ with a partition with
(at most) n parts, and write A € NJ . When X € Z" is not dominant, it must contain inversions, i.e. pairs
(1,7) with @ < j and A; < A;. The size of A is [A| = A +--- + \,. We sometimes use Greek letters to denote
weights A € Z7  and underlined Roman letters to denote partitions € NI} . We write 2’ for the conjugate

partition of z, where 2 counts the number of parts z; with x; > i. We partially order Z]; = (and N} ) by
declaring A > pif \; > p; for alli =1,--- ,n. If a > 0 then we write a x b or (b®) for the sequence (b,b,--- ,b)
where b is repeated a times.

If V' is a vector space with dim(V) = n and A € Z} =~ we write S\V for the corresponding irreducible
representation of GL(V) (or Schur functor). Our conventions are such that if A = (d,0,---,0) then SV =
Sym?V, and if A = (1*) then S\V = A" V. More generally, one can define Sy& for any locally free sheaf £ of
rank n on some algebraic variety X. We write det(€) for A" € and call it the determinant of £. For m > n we
will always think of N7 as a subset of N' = by identifying x € N/} with (z,0™~"), and in this way S,V

dom dom dom

(resp. Sg€) is defined whenever dim(V') > n (resp. rank(€) > n).

2.2. Gaussian binomial coefficients. For a > b > 0 we define the Gaussian (or ¢-)binomial coefficient (Z)q
to be the polynomial in Z[g| defined by

(a) _ 1—q¥)-(1—-q¢* Y- (1- q@ b+
), " OB @ (0

These polynomials are generalizations of the usual binomial coefficients, satisfying the relations

()= (5) ()= () = (5) - () o

One significance of the g-binomial coefficients is that (Z)q2 describes the Poincaré polynomial of the Grass-

mannian of b-dimensional subspaces of C*. As such, the coefficient of ¢/ in (‘;)q computes the number of

Schubert classes of (co)dimension j, or equivalently the number of partitions z of size j contained inside the
rectangular partition (a — b) x b. We get

<Z>q - K(Eb;_b) glel. (2.2)

Using the fact that the map z — 2° := (b — x4—p,b — Tq—p—1, - ,b — x2,b — 1) defines an involution on the
set of partitions z < (b%7?), satisfying [2°| = b- (a — b) — |z|, we get that

<Z> N _ (Z)q g @b, (2.3)

The g-binomial coefficients also satisfy recurrence relations analogous to the Pascal identities for usual binomial

coefﬁcients, namely
q q q
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2.3. The ring of polynomial functions on m x n matrices and its equivariant ideals. We consider
positive integers m > n > 1 and let X = C"™*" denote the affine space of m x n complex matrices. We let
GL = GL,(C) x GL,(C) and consider its natural action on X via row and column operations. The orbits of

this action are the sets O, consisting of matrices of rank p, for p = 0,--- ,n, and their orbit closures are given
by
o P
0, =] o
=0

The coordinate ring S of X can be identified with the polynomial ring S = C|xz;;], where 1 < i < m and
1 < j < n. If we write I, for the ideal of p x p minors of the generic matrix (z;;), then I, is the defining
ideal of the closed subvariety bp_l of X. To keep track of the equivariance it is convenient to identify the
space of linear forms in S with the tensor product C™ ® C", which has a natural GL-action. The polynomial
ring S can then be thought of as the symmetric algebra Sym¢(C™ ® C") = @ 45, Sym?(C™ ® C"), where the
component indexed by d corresponds to homogeneous forms of degree d in the variables z;;. The structure of

S as a GL-representation is governed by Cauchy’s formula [Wey03, Corollary 2.3.3]
S= @ S.C"®S,Cn. (2.5)

zeNT

dom

We write I, C S for the ideal generated by the component S,C™ @ S;C" in the above decomposition. If
= (17) then the ideal I, coincides with the ideal I, defined earlier. As a GL-representation we have

I, = Ps,C" ®S,C". (2.6)

y>z

2.4. Equivariant D-modules and the Grothendieck group I'p. We write X = C™*™ as in the previous
section, let Dy denote the sheaf of differential operators on X, and let modgr(Dx) denote the category
of GL-equivariant coherent Dx-modules. The category modgr,(Dx) is a full subcategory of the category of
coherent Dx-modules, stable under taking subquotients (for more details on categories of equivariant Dx-
modules, see [LW19, Section 2.1]). The simple objects in modgr,(Px) are Dy, - - , Dy, where D,, denotes the
intersection homology D-module corresponding to the orbit O,. As a GL-representation, D, decomposes as
(see [RW 14} Theorem 6.1], [RW16, Main Theorem(1)], [Rail7, Theorem 5.1])

D= P SipCres\c (2.7)
Ap>p—n
>\p+1§17_m
where
)‘(p) = ()‘17 e 7>‘p’ (P - n)m—n, >‘p+l + (m - ’I’L), e 7)‘71 + (m - n)) (28)

We note that for p = n the formulas in and coincide, which is a reflection of the fact that D, = S.

We write I'p for the Grothendieck group of modgr,(Dx ), and write [M]p for the class in I'p of an equivariant
Dx-module M. We note that the group I'p is a free abelian group of rank (n+ 1), with basis given by [Dp]p,
for p=0,---,n. An important construction of new objects in modgr,(Dx) comes from considering the local
cohomology groups H%t (M) for j > 0,0 <t <n, and M € modg(Dx). A first approximation to the
structure of these groups is given by their class in I'p. To keep track of this information it is convenient to
write I'p[q] for the additive group of polynomials in the variable ¢ with coefficients in I'p, and define

HP (M;q) = 3 [H2 (M)l ¢’ € Tnla). (2.9)
j=0
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In the case when M = S, the main result of [RW14] (as interpreted in [RW16, Main Theorem(1)]) yields

t

n—t)2+(n—s)-(m—n n—1-s

HP(S:0) = Y [Dip g o (M) (210
s=0 q

We define a pairing (, )p : I'p[q] X I'p[g] — Z[g] given by

<’7( Z % '75

where v(q) = >0 [Dslp - vs(q) and v'(q) = > o[Ds]p - 74(q). The assertion ([2.10) is then equivalent to

1
<HtD(S; q), DS>D — q(n—t)2+("—8)'(m—") . <n . s) for 0 <s<t, and <HtD(S; q), DS>D =0 for s > t.
— 8 2
q
Notice that in the formula above we have written Dy instead of [Ds]p, to simplify the notation. We will
continue to do so as long as there is no possible source of confusion.

2.5. Admissible representations and the Grothendieck group I'gr,. We define an admissible represen-
tation of GL to be a representation M that decomposes as

M= @ (SxC"®S,Cr)»

for some non-negative integers ay ,. Examples of such representations include the polynomial ring in ,
the ideals , and the Dy-modules in . More generally, if M is a finitely generated GL-equivariant
S-module or Dx-module then M is an admissible representation.

We write I'gr, for the Grothendieck group of admissible GL-representations, and write [M]gr, for the class
in T'g, of a representation M, and often refer to [M]gr, as a character. The admissible representations form
a semi-simple category, which implies that [M]qr, determines M up to isomorphism. We have that I'qy, is
isomorphic to the product of copies of Z indexed by sy, = [Sx\C™ ® S,C"]qr, with A € Z}! | and p € Z}
We define I'gp[¢] in analogy with I'p[qg], and express any 7(q) € I'gr(¢) as an infinite sum

q) = Z‘D\,M(Q) “Sxapus With ay ,(q) € Z.

dom*

We consider the partially defined pairing ( , ) :Tarlg] x Tarle] — Zlq]

V@), (@), = Zaw -a) . (q) (2.11)

whenever the sum involves only finitely many non-zero terms.

We have a forgetful map that associates to a module M € modgr(Dx) the underlying admissible repre-
sentation. This induces a homomorphism I'p — T'qp, given by [M]p — [M]gr. It will be important to note
that this homomorphism is injective, since the characters [Dp]qr, described by are linearly independent.
In other words, the composition factors of a GL-equivariant D-module (and their multiplicities) are uniquely
determined by its character. If we combine (1.13)) with the case m = n of (so that A(s) = A for all s)
then it follows that as a GL-representation (), decomposes as

Q= €P S\Cres\c. (2.12)

Ap+1<p—n
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We extend the map I'p — T'gr, to an injective homomorphism I'p[q] — T'gr[¢], and note that for instance
the image of (2.9)) via this homomorphism is

H{M(M;q) =) [HE (M)lew - ¢ (2.13)
=

Taking W = Sy(,)C™ @ SAC" to be any representation that appears in (2.7) it follows that

(HP(M;q), Dp)py = (Hi (M:q), W) (2.14)

GL
for any M € modgr(Dx ), which will be particularly useful for our calculations in Section [3} Notice again the
abuse of notation where we simply write W instead of [W]gr, since there is no possibility of confusion.

2.6. Flag varieties, Grassmannians, and Bott’s Theorem [Wey03, Chapters 3 and 4. Consider non-
negative integers p < n and a complex vector space V with dim(V) = n. We denote by Flag([p,n|; V) the
variety of partial flags

Vo V=V—=>Voq--o>»V,—>0,
where Vj is a ¢-dimensional quotient of V' for each ¢ = p,p+1,--- ,n. For ¢ € [p,n] we write Q,(V) for the
tautological rank ¢ quotient bundle on Flag([p, n]; V) whose fiber over a point V, € Flag([p,n]; V') is V. We
consider the natural projection maps

W‘(f) : Flag([p,n]; V) — Flag([p + 1,n}; V), (2.15)

defined by forgetting V), from the flag V,. For p < n —1, this map identifies Flag([p, n]; V') with the projective
bundle Priag(jpt1,0);) (Qp+1(V)), which comes with a tautological surjection

Qp+1(V) = Qp(V). (2.16)
The careful reader may have noticed that we are using the same notation Q,(V') for the tautological rank ¢
quotient bundle on each of the spaces Flag([p,n]; V) with p < ¢ < n. This should cause no confusion (but
has the advantage of simplifying the notation), as the bundle Q,(V') on Flag([p, n]; V') is simply the pull-back
along 7 of the corresponding bundle on Flag([p + 1,n]; V) when p < ¢ — 1.
The kernel of is a line bundle which we denote £,1(V) and note that

det(Qp1(V)) = Ly1 (V) @ det(Qy(V)). (2.17)

Just as with Q4(V), there is one line bundle £,(V') on each of the spaces Flag([p,n]; V') with p < ¢—1. When
p > 0, the Picard group of Flag([p,n]; V) is free of rank (n — p), with u € Z""P corresponding to the line
bundle

n—p
LHV) = () Lpys (V). (2.18)

i=1

Note that can be used to prove inductively that
det(V) @ Opiag(pnvy = £ (V) @ det(Qp(V)). (2.19)

In particular for p = 0 (when Flag([p,n]; V) is the full flag variety) we get that £") is (non-equivariantly)
isomorphic to the trivial line bundle, and the Picard group has rank (n — 1).
If we let G(p, V') denote the Grassmannian of p—dimensional quotients of V' then we have a natural map

Wl Flag([p,n); V) — G(p, V), given by i) (Va) = V. (2.20)

We abuse notation once more and write Q,(V') for the tautological rank p quotient bundle on G(p, V'), and
let Ry—p(V') denote the tautological rank (n — p) sub-bundle, whose fiber over the point corresponding to V,,
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is the kernel of the quotient map V' — Vj,. The following formulation of Bott’s theorem will be useful for us
throughout Section 4| (see [Wey03, Theorem 4.1.8]). For m > 0 and v € Z™ we let

5™ = (m —1,m —2,---,0) and 5 = sort(y + 6™ — 5™ (2.21)
where sort(y + 6(™)) € Z™ is obtained by arranging the entries of v 4+ §(™ in non-increasing order.

Theorem 2.1. Let A€ Z . 1€ Z"P, and let v = (Ap) € Z"™ be the concatenation of X and p. We write
F = Flag([p,n];V) Y = wg)), T = 778’), and let R, (resp. R'm) denote the right derived functors of 1.
(resp. 7). Using we have:

(a) If i+ 8P has repeated entries then R, (SxQ,(V) ® LA(V)) = 0 for all t. Otherwise, there exists

a unique | > 0 (equal to the number of inversions in p+ 6" P)) so that

SAQp(V) @ SipRn—p(V) ift=1;
0 otherwise.

R, (SAQp(V) ® LHM(V)) = {

(b) If v + 6™ has repeated entries then H'(F,S)Q,(V) ® LH(V)) = 0 for all t. Otherwise, there exists a
unique | > 0 (equal to the number of inversions in v + (5(”)) so that

S;V ift=1;
0 otherwise.

HYF,$)Qp(V) ® LH(V)) = {

(¢) If \p > w1 and if we let XT = (Aq, -+, A, 1) € 78 and pm = (pg, - - -  Hn—p) € Z"P~L then

dom
Sx+ Qpra(V)@ Lt (V) ift=0;
0 otherwise.

R'm(SxQp(V) @ LM(V)) = {

2.7. The relative setting. It will sometimes be convenient to work with spaces of matrices relative to some
base as follows. We let B denote an algebraic variety over Spec(C) and let F,G be locally free sheaves on B
of ranks m and n respectively. We can form

S = Symp, (F ®op 9)

and define X = Spec B(S). We identify freely quasi-coherent Ox-modules M with quasi-coherent sheaves of
S-modules on B. We simply refer to such an M as an S-module, and when M C Oy is an ideal sheaf, we call
M an ideal in §. An example of such ideal is the one defining locally matrices of rank less than p: we denote
by Z, C S the ideal generated by the subsheaf A\’ F ® A? G C Sym”(F ®G) C S. If we let Z, C X denote the
subvariety cut out by Z,;1 then we obtain a decomposition of the local cohomology groups as Opg-modules of
the form

MY, (%,0x) = DSAF ®8,6) %
A
where the multiplicities ay , are the same as in the case when B = Spec(C), X = X, and Z, = O,,.

2.8. The inductive structure. This section builds on a standard localization trick that is often used to study
determinantal varieties inductively (see [BV88| Proposition 2.4] or [LSW16]). We let X = C™*™ and consider
the basic open affine X; C X consisting of matrices with z1; # 0, whose coordinate ring is the localization
Syyy- Welet X/ = Cm=Dx("=1) "and identify its coordinate ring with S’ = Clzi;], with 2 < i, <n. We have
an isomorphism (given by performing row and column operations in order to eliminate entries on the first row
and first column of the generic matrix)

X~ X'xCcmlxcrtxcr
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where the coordinate functions on C"~ ! are z;;, 2 < i < m, those on C™~! are x1j, 2 < j < n, the coordinate
function on C* is x11, and

r_ Li1 - L1y

Ty =Ty — ———.

r11

If we let m: X; — X’ denote the projection map, and let O]’D denote the orbit of rank p matrices in X’ then
W_I(Oll)) =0pp1NXyforallp=0,---,n—1.
It follows that if we let D]’D denote the intersection homology D x/-module associated with O]’D then
™(D,) = (Dpt1)jx, = (Dpti)ay, forall p=10,---,n—1.

If m = n and if we let det’ = det(x;;) then det = z1; -det’, so (S ) = (Sdet)|x1 = Sdet - z,,- More generally,

det’
if we define the Dy/-modules @), in analogy with (1.12) then we obtain
W*(Q;) — (Qp+1)‘X1 = (Qp+1)$11 fOI' all p = 07 - ,’]’L — 1 (222)

For every S’-module (resp. Dys-module) M’ and every closed subset Z' C X', if we let Z = 7—(Z’) and
M = 7*(M’) then we have isomorphisms of S,,,-modules (resp. of Dx,-modules)

W*(Hé/(M,)) = HJZ(M) for all 7 > 0.
In particular, we obtain
w*(H%;(S’)) = H,

_ (i 0 :
o, (Sen) = <HOP+I(S>>|X1 forall p=0,--- ,n—1, and j > 0. (2.23)

3. GROTHENDIECK GROUP CALCULATION OF THE LOCAL COHOMOLOGY OF SIMPLE D-MODULES

Recall that I'p denotes the Grothendieck group of modgr,(Dx), and that if M € modgr,(Dyx) then [M]p
denotes its class in I'p. The main result of this section describes the class in I'p of the local cohomology
groups with determinantal support for the modules D,,.

Theorem 3.1. For every 0 <t < p < n < m we have the following equality in T'p[q]:
t
Py = S (79) L (01-0)
= P—=5) 2 t—s 2

We record here a special case of Theorem which will be used in Section If m = n = p and

ct = (n —t)? is the codimension of the orbit O, inside C"*™ then

[H5, (S)lp = [Dolp + [Dilp + -+ + [Di]p. (3.1)

3.1. A relation between rectangular ideals and simple equivariant D-modules. We use the nota-
tional conventions from Section and recall from Section that o/ denotes the conjugate of a partition
a. For positive integers a,d and partitions a = (a1 > ag > -+ > aq) and f = (f1 > P2 > -+ > Bm—a) We let
)\(avd;a76) = (d+a1,d+a2,-~- ad+aa7517/827"' 76m—a)
and consider the polynomial h,xq(q) € T'grlg] given by
haxd(Q) = Z[S)\(a,d;a,ﬁ)cm ® Sk(a,d;ﬁ’,a’)cn]GL : qla\+|ﬁ|’
a'/ﬁ
where the sum is over partitions «, § satisfying

a1 <n—a, of,B <min(a,d) and B} <m—a. (3.2)
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The significance of the polynomials h,y4(q) is that they describe the GL-equivariant Hilbert series of certain
simple modules over the general linear Lie superalgebra gl(m|n). As such, they provide the building blocks
of the minimal free resolution over the polynomial ring S of the ideals I,xq (see [RW17, Theorem 3.1] or
[Rail7, Theorem 6.1]), namely we have

o= 249, (T +min(a,d) —1
Z[Torf(laxda C)]GL ’ C]j = Z h(a+’r’)><(d+r)(q) q e ( ( ) > ) (33)
q

r
>0 r=0

which will be used in Section below. For now, we prove the following.
Lemma 3.2. If we let V = S;m)C™ @ §;,n)C" = det(C™ @ C") and let d > 0 then

-(m—n n
(V& Dp,haxd(q)) g, =0 fora# p and (V & Dy, hpxa(q)) g, = qp( ). (p) .
q2

Proof. To compute (V ® Dy, hqxa(q))qp,, We need to characterize the partitions «, 8 satisfying (3.2)) and for
which Sy (4,d;0,8)C™ @ Sx(a,4;87,0/)C" appears as a subrepresentation of V @ Dj,, i.e. those for which there exists
a dominant weight p € Z™ with p, > p —n, pp+1 < p —m (see (2.7)), and such that

w(p) + (™) = Na,d; o, 8)  and  p+ (m") = Na,d; 8, ). (3.4)
If p < a then it follows from (2.8) that

p={@-—n)+n>pPp +n=XNa,d;a, B)pr1 =d~+ apt1
which is in contradiction with the fact that d > 0. If p > a then

a>Pr=MNa,d;o, )ar1 = p(Plas1 +n=plar1 +n > pp+n>(p—n)+n=p

which is again a contradiction. It follows that (V' ® D, hqxa(q)) = 0 for a # p, and it remains to analyze the
case p = a. The conditions (3.4) imply that

pi=d+a; —nand a;+ (m—n) =gl foralli=1,---  p.

Since $; < min(p,d) = p it follows from the above that § is completely determined by « via the relation
B = a+ ((m —n)P), which in turn implies that 8 = (p™ "|a/) and in particular

Bi=-=Bnn=p.

Suppose now that « is any partition with at most p parts (i.e. ¢} < p) and that a; < n — p. If we define
B = (p™ ") then 81 < p and 8] = a1 + m —n < m — p, so the conditions (3.2)) hold for a = p, since d > 0.
We next let
/
Jj—p
and observe that p, > p — n since d > 0, and that p,11 =af —m <p—m, so SupC" ®@8S,C" appears as a
subrepresentation of D,,. Once we verify (3.4]) it follows that the pair of partitions («, 3) contributes the term

o8l = gZleltp(m=n) 46 (V @ D,, hpyxa(q)), hence

Jal+p-(m—n) 22) 5.(m—-n n
<V®Dp7hp><d(Q)>:Zq2l I+p( )qp( ). < > 2’
@ q

pi =d+o;—nfori=1,---,p, and y; =’ _, —mfor j=p+1,--- ,n,

p
as desired. For 1 < i < p we have that
p(p)i +n=d+ai=ANp,d;a,B)i, and p; + m=d+a;+m—n=d+ B = Np,d; §',a);.
We have moreover that for 1 <j<m—n

wP)p+j +n=@-—n)+n=p=;=Ap,d;a, B)p+;



ITERATED LOCAL COHOMOLOGY GROUPS AND LYUBEZNIK NUMBERS FOR DETERMINANTAL RINGS 13

and that forp4+1<j<n
Wi +m = a;,p = Xp,d; 8, d'); and

N(p)m—n+j +n=p+m= Oé;;p = Bm—n+tj—p = Ap, d; B)m—n-i—j’
showing that (3.4)) holds for a = p and concluding our proof. ([l

3.2. A recursive formula for Euler characteristics. We use the notational conventions from Sections 2.4]
and and define the Euler characteristic maps

X :I'plg] — I'p and x5 : I'plg] — Z for s =0,--- ,n,
as follows: if v(q) € T'p[qg] is expressed as v(q) = > o_o[Ds|p - 7s(¢q) with v5(q) € Z[g] then we let

x(7(9)) = 7(=1) and xs(v(q)) = 7s(=1). (3.5)

We recall the notation (2.9) where the subscript ¢ indicates that we are considering local cohomology with
support in the orbit closure O;. Using (2.10) and (2.1) we get that

Xs (HtD(S; q)) _ {(—1)(nt)+(ns)-(mn) . (n;—ls_s) for s =0,---,t,

3.6
0 for s > t. (3.6)

Lemma 3.3. Fort < p the Euler characteristics xo(HE (Dy;q)) satisfy the following recurrence relation:
P
(m—n n—1-—s _ n—1 n—1
Z xo(HP (Dy; q)) - (=1)s =) = (=1 — . (3.7)
s=t+1 p—s t p

Proof. The existence of a spectral sequence
Ey? = H%t(H%p(S)) == Hzaj(S)

and the fact that Euler characteristic is invariant under taking homology, imply the equality
P
D xo(HP (Ds;q) - xs(HY (S59)) = xo(HP (S q))
s=0
which in view of (3.6)) can be reformulated as

p
> xaHP (D) - (~1)r PR (ML) pyegennen (M),
p—S
s=0
Dividing both sides by (—1)(”_p)+”’(m_”) and moving the term s = 0 to the right hand side yields
P n—1—s n—1 n—1
> ot (D) - (<0 (ML) o (M) P osay- (M) 89
s=1

p—s t D

Note that for s < ¢t we have that the support of Dy is contained in O; and in particular H%t (Ds) = Dy and

HZ (D) = 0 for j > 0. Tt follows that xo(HP(Do; q)) = 1 and xo(HP(Ds; q)) = 0 for 0 < s < ¢, s0 1; is
t

equivalent to the desired relation (3.7]).
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3.3. A binomial identity. The goal of this section is to use the recurrence relation from Lemma [3.3|in order
to deduce a closed formula for the Euler characteristic xo(HZ (Dp;q)). We prove the following.

Proposition 3.4. For 0 <t < p <n we have that

Xo(HP (Dy; q)) = (—1)=0+#(m=n). <Z> , (p; 1>.

Proof. Tt suffices to check that the right hand side of the above equality satisfies the recursion in Lemma
that is (after cancelling some signs)

sil(—l)m). (Z) , (s ; 1) _ <n;;s> _(—1pt <n;1> B (n; 1>' @9)

It suffices to prove that the (bivariate) generating functions of the two sides coincide, so we multiply each side
by z! - P and sum over all pairs 0 < t < p of non-negative integers. We have

S (e () (50) e

0<t<p

S0 e (G0 ) (20,59 )-
= ; <Z> (=) (=) ()i = Aty Irf);_l : 2 <:> . <_y1(iy_$)> =
p (Gl o e B e Ry

We split the generating function of the right hand side of (3.9) into two parts, as follows.

S (M) =2 (M) (Z(WH) ey (GR). G

p>t

Z (n—1> 'l‘t‘ypzz<n_1>-1_xp-yp:1;}‘((14‘3/)”_1—(1—1—1@)”_1)_ (3.12)

1—=x
o<t<p © P >0~ P

Taking the difference between (3.11) and (3.12) we obtain

1 y ) 4yt (Qtay) (1+y)"!

l—z 1+y -z  (1-2) (1+y) 1—=x

(1+zy) - (

which is the same as (3.10]), proving the identity (3.9)). O
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3.4. The proof of Theorem The conclusion of Theorem can be rephrased using ([2.9) as

D . _ -0 (p-s)(mm) (0 S\ (P—1l=s _0... 1
(H; (Dp7q)7DS>D q (p—s>q2 < s ) for s=0,---,t. (3.13)

The fact that <HtD (Dp3 q), DS>D = 0 for s > t follows since we are considering local cohomology groups with

support in Oy, and the modules D, with s > ¢ have strictly larger support.

We note that the polynomial on the right hand side of the above formula is invariant under subtracting one
from each of m,n, p,t and s. If we restrict the local cohomology groups to the basic open affine X; = (z1; # 0)
and use the inductive structure as explained in Section [2.§] then it follows that for s > 0

<HF(Dp§Q);[Ds]>D:<Z[Hé;1( AR ;_1]>
D

320

so the desired conclusion follows by induction. We are left with considering the case s = 0, where we need to
verify that

—1
<H?<Dp;q>,[Do]>D=q<P—t>2+p~<m—n>.<n> .(p ) '
P/ 42 t q?

We consider a witness representation for the module Dy (as in (2.14))) defined by
W = S(_nm)Cm ® S(_mn)(C" =det(C" ® (Cn)v

As seen in (2.14)), the multiplicity of Dy as a composition factor in some GL-equivariant D-module M is
the same as the multiplicity of W as a subrepresentation of M, so W witnesses the occurrences of Dy as a
composition factor of M. It therefore suffices to verify that

1
HEL(D, . ) W . = g0 p(m=n) | <”> .<p > .
< ¢+ (Dpiq) >GL q p) " 2

We prove this equality in two steps:

(1) We show the inequality <, where > a; - ¢* < >_b; - ¢* if and only if a; < b; for all i.
(2) We show that after plugging in ¢ = —1 we obtain an equality.

For the inequality in we begin by recalling that Oy is defined by the ideal I; ;1 of (t+ 1) x (t+ 1) minors
of the generic matrix, and that the sequence of ideals I(;;1)xq is cofinal with the sequence of powers of I;;.
It follows from [Eis05, Exercise A1D.1] that

HL (Dy) = lim Ext§(S/ Iy 11)xas Dp)- (3.14)
d
We compute the Ext modules in the above limit from the minimal resolution of S/ I (t+1)xq described in [RW17].
We have that Ext%(S/I(41)xq, Dp) is the j-th cohomology group of a complex F'* where
Fj = TOYJS(S/[(t+1)Xd, (C)V ®(C Dp.
Notice that Torg(S/I(tH)Xd, C) = C so that F° = D,, and <F0, W>GL = 0 since p > 0. Notice also that

Torf(S/I(t+1)><d7(c) = Torffl(j(t+1)><da C) for j > 1,
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so taking d > 0 (in particular d > ¢ 4+ 1) we have that

<Z[Fj]GL e W> B <WV ® Dy, Y _[Tor} (/I 1)xa C)lar - qj>
GL GL

J=0 j=0

=4q- <WV ® Dp, Z[Torf(l(tﬂ)xd, Oler - qj> (3.15)
320 GL

n—1—t

2 r+t

= Z <WV & Dpah(t+1+r)><(d+r)(Q)>GL q" el ( " > ,
r=0 q
where the last equality follows from (3.3]) by taking a = ¢ + 1, using the fact that min(¢ + 1,d) = ¢+ 1, and
noting that (Tjt) 2= (T;rt) o Lettinga =t 4147 and V = WV in Lemma it follows that the only term
that survives in (3.15)) is the one correponding to r = p — ¢t — 1, which yields

<Z[Fj]GL o, W> = g"(m=n). <n> gD (p N 1) .
20 o P/ g2 b /e

This shows that W can only occur as a subrepresentation in F7 only if j = p- (m —n)+ (p—t)* (mod 2), and
in particular W does not occur in any two consecutive terms of F'®. Since Ext]S(S /I (¢+1)xa> Dp) is obtained

as the j-th cohomology group of F'*°, it follows that <Ext§(S/I(t+1)Xd, D,), W>GL = <Fj, W>GL for all 7, and
using (3.14)) we conclude that

-1
(HP (Dyi ). Do) = (HEH (D). W)y, <00 (M) L (P70) 0 aag)
P q? q?
Since the exponents of ¢ appearing in (3.16]) with non-zero coefficient have the same parity, it follows that
in order to prove the equality and conclude Step of our argument, it suffices to check that equality holds
in (3.16) after plugging in ¢ = —1. In this case the left hand side becomes xo(HF (Dy;q)), while the right

hand side becomes (—1)(p*t)+p'(m*”) . (Z) . (p ;1), so the conclusion follows from Proposition ]

One consequence of (3.16) is a vanishing result for the local cohomology groups H% (Dp), based solely on
t

the parity of j. Similar vanishing results, proved using more refined techniques in Sections [4] and [5} will play
an important role in analyzing square matrices.

Corollary 3.5. If j Z (p—t)+p-(m —n) (mod?2) then H%t(Dp) = 0. In particular, when m = n we may
have H%t(Dp) # 0 only when j = (p—t) (mod?2).

Proof. By (83.16)), ¢/ may appear with non-zero coefficient only when j = p- (m —n) + (p —t)? (mod 2). Since
(p —t)? and (p — t) have the same parity, the conclusion follows. O

3.5. The proof of Theorem We have
Ly(g.w) = Y (Ho, (HZ"(9). Do) -q'-u

1,520

=3 | 3 P Puby it | (115 0e)

i>0 \ s=0 >0
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where the first equality follows from ((1.5)) and the second from the fact that modgr,(Dx) is semisimple, and
the fact that local cohomology commutes with direct sums. We obtain by reversing the summation order that

p
Ly(g,w) = Y (HF (Dsiq). Do)y, - (Hy (S;w™"), Da)y - ™
s=0
£ Zp:q82+s-(m—n) . (n) . w—(n—p)Q—(n—s)-(m—n) . (TL -1- 8> Cw™m
5=0 5/ ¢ P=5 /w2

Using (2.3)), it follows that in order to prove (|1.7) it suffices to verify the identity
PP +2p+s-(m+n—2p-2)=—(n—p?—(n—s)-(m—n)—=2-(p—s)-(n—1—p)+mn

which follows by inspection after expanding the products.

4. VANISHING OF LOCAL COHOMOLOGY FOR THE SUBQUOTIENTS J,

Throughout this section we let m = n, and in order to keep track of the two distinct copies of C™ we will
denote them by F and G respectively. We will then let X = (F®G)Y and S = Sym¢(F®G) be the coordinate
ring of X. Finally, we write GL = GL(F') x GL(G). The goal of this section is to revisit the construction of a
class of GL-equivariant S-modules which have played a prominent role in describing the graded components
of Ext and local cohomology modules for determinantal ideals and their thickenings [RW14,/Rail8|, and to
prove vanishing results for some of their local cohomology groups. These modules are indexed by pairs (z, p)
with z a partition and p a non-negative integer, and are denoted J,, (see Section for their construction).
We write m for the maximal homogeneous ideal of the polynomial ring S, so that Hj(—) = H g)o(—). Our key
vanishing result below will be proved in Section

Theorem 4.1. Suppose that 0 < p < n and that x € N = with x1 = --- = x,. We have

dom
(a) Hh(Ext}(Jpp. S)) =0 for all j > 0.
(b) If 0 <t < p then H%t(J%p) =0 for k#p—t (mod 2).

4.1. The J,,-modules and their relative versions. Recall the notation from Section ForO<p<n
we define

X = Flag([p, n}; F) x Flag([p, n]; G),
noting that X = Spec(C). On X we have a natural sheaf of algebras given by

S — Symo_ (Qp(F) ® Qp(G)) = P S:9.(F) ©5.0,(G),

zeNP

dom

where the last equality comes from Cauchy’s formula just like (2.5). Note that when p = n we get S = §.
We define Y(?) = Spec X<p)8 (?) which is a vector bundle over X ®) whose fiber can be identified locally with

the space of p x p matrices (see Section . For z € Nzom we let Iép ) denote the ideal in S® (see also li
generated by S; 9, (F') ® S; Qp(G), and define

Igf) = Z Iép) for any subset X C N¥

dom*
zeEX

We define for | < p and z € N the subset of N,

dom

succ(z,l;p) ={y € NV 4> 2 and y; > 2; for some i > 1},
7 dom * <
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and consider the S®)-modules defined by
jg(zl)) — 7(p) /I(p)

) z suce(z,l;p)’

with the convention that succ(z, p;p) = 0 and jg(f;) — 7P

2. Whenp=mnandxz € N = we have I, = Ién) as in
1) and we write J,; = jﬁ). The ideals I, and the S-modules .J; ; have been studied in [RW14, Section 2B]

and |Rail8, Section 2.1]. As noted in [RW14, Lemma 3.1(a)], if we consider the line bundle
det®) = det Q,(F) ® det Q,(G) (4.1)

then we have jﬁ) ® det® = jx(i)(lp) . This allows us to define j)fﬁ) for any A € Z5 : if A\ = z — (dP) for

dom*
some d € Z>o and z € Ngom, we let

®R(—d)
g =" e <det(p)) . (4.2)
For p + 1 < ¢ < n, we consider the line bundle on X® given by (see the notation in 1}
Lg=Ly(F)®Ly(G)
and for p € Z" P we define in analogy with (2.18)
_ i
Lh = ®'Cp+i'
i=1
For \ € Zsom, [ <pand p e Z" P we define the S®-module (with SW)_action inherited from j/\(ﬁ))
)
MY =T e .
As an Oy )-module, we have a direct sum decomposition
MU = P SsQu(F)©550,(G) @ LH. (4.3)
>A
§;=\; for i>1
We note that if y € N/, ¥ and d > yi, and if we define z € N} by letting
r1=--=xp=dand zpy; =y; fori=1,--- ,n—p, (4.4)

then the module MEZZ,) by coincides with the one denoted by M, in [RW14, (3-8)]. It follows from [RW14,

Lemma 3.2] that if we define z as in (4.4)) then

J, ifk=0
ik (x® aq®) _ JJap ’ 4.
( M (dP) J’;E) 0 otherwise. 45)

We will be interested more generally in the cohomology groups of ./\/lg\p l) i for [ < p, which are naturally

S-modules. It will be useful to note that (2.19) yields det™ = det® @ £1"™") and therefore

M (p)

— p@) n
A+(1P) LpH(1nP) T M/\]?l;u ® det™) . (4.6)
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Theorem 4.2. Let 0 < g < p and k > 0, suppose that A € Zflom with \y = --- = Xy, and that p € Z"7P.
The cohomology group HF (X(p),/\/lg\p;,u) admits an S-module composition series with composition factors

isomorphic to J,; forl < q and v € Zy, . Moreover, if A\, < i for some j then the composition series can
be chosen in such a way that each J,; appearing as a composition factor satisfies v1 = -+ = V41.

Proof. Using (4.6) and the fact that det™ is a trivial bundle with fiber det(F) ® det(G) we obtain

(X0 ME) ) = HE (X0 MP) ) @ (det(F) @ det(@)).

Since we also have that J,(1n); = J,; @ (det(F) @ det(G)), it follows that we may assume without loss of
generality that A € Nzom and p € N"P. We next reduce ourselves to the case when y is dominant. Consider

G¥ = G(p,F) x G(p,C)
and the natural map ¢® = ¢(p) X w(p) : X — G (see (2.20))). Using Theorem [2.1{a) we get that
F G

R (M) = B2 (M) ) for all i € 7,

where [ is the number of inversions in p + 6 7). We know moreover that R%,Ep ) (Mg\p ()1, M) is non-zero for at

most one value of i, so the Leray spectral sequence degenerates and yields
E(x® a® \ _ gk—i () pi,,®) (p)
H* (X0, MP) ) = B (69, Ryl (M), )
_ k=i (~(p) pi—21,,(p) (p) _ k=2l (v () A4 )
= B (G, B2y (M) L)) = B2 (X0,
Notice that if A\, < p; for some j, then (2.21) forces A, < fi;. With these reductions, we prove our Theorem

by induction on p and q. When p = ¢ = 0 we have /\/lg\p ;_ u = L¥. Since p is dominant, it follows that its
higher cohomology groups vanish and

70 (X(p), M(f;m) =S, F ®S,G = J,0,

proving the base case. Suppose next that 0 < ¢ < p, consider the natural map (see (2.15]))
2D Z ) s 0 o) x )
and define
A" = (A, ,\p_1) and ut = (Aps 1415+ fn—p)-
We have using Theorem [2.1]c) that
e () - [0 1=

- apt .
AT 0 otherwise.

The Leray spectral sequence degenerates again, showing that
Efv® a0 ) _ gk v-1) -1
1 (X ’Mz\,q;u) =1 (X ’/\/l/\iq;;fr
and allowing us to obtain the desired conclusion by induction on p.
Finally, the most interesting situation is when p = ¢ > 0, in which case A = (dP) for some d > 0. If d >
then it follows from 1) that Mg\p ()]_ u has no higher cohomology and

H° <X(p),ME\I?()W> = Jup, where v = (dP, 1, , pin—p)-
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Note that in this case v, # V41! If d < 1 then we obtain a filtration of M = Mg\p;.# given by

M=My> MDD My, g, where My = MP) - fori =0, —d,

where the inclusions are the natural ones, compatible with the decomposition (4.3)). In particular, each M,
is a direct summand in M; (as an O y(,)-module, but not as an S (P)-module!), and we obtain a filtration

H* (X(p),./\/l) > HF (X(p),/\/ll) D...D HF (X(p),Mmfd> ) (4.7)
It follows from that H* (X®), M,,,_4) =0 for k > 0 and
HO (X(p),/\/lul_d> =J,pwhere vy =--- =vp 1 =1 and vy = p; fori =2,--- n—p.
Moreover, since

Mi/ My = Mf\e?p_lw, where A = (d+4)P"! and p' = (d + i, py, - - s n—p),

it follows that the intermediate quotients in the filtration (4.7)) have the form
H* (X0, Mi/ Mg ) = HE (XO M0 )

A p—1ipt
which by induction (on ¢) have an S-module filtration with composition factors as in the statement of the
Theorem. Therefore (4.7)) can be further refined to obtain the desired filtration for H* (X ®), M) O

We will use Theorem [£.2] in conjunction with the following vanishing result. Recall that m is the maximal
homogeneous ideal of the polynomial ring S.

Lemma 4.3. Suppose that 0 <1 <n and that v € Z} is such that vy = --- =y Ifl # 1 or if I =1 and
v, = vy then

HY(J,;) =0.

Proof. Using graded local duality, the desired vanishing is equivalent to
Ext? ~'(J,1,5) = 0.
Based on (4.2), we may assume without loss of generality that v € N} so we can apply [RW14, Theorem 3.3]

dom

which completely describes the graded components of all the modules Ext%(J,,;, S). Based on the said theorem,
the vanishing of Exth_l(J,,J, S) amounts to proving that it is impossible to find integers
0<s<t3 <---<t,_; <l and dominant weights a € ZJ,,,

simultaneously satisfying the following conditions:

P2yl =1

ap > l—v—n

Qtrj =t —Vpy1—j — N forj=1,---,n—1

as>s—nand agr; <s—n

where by convention oy = co. The first condition already forces [ =1 and t; =--- =t,_1 = 0. Applying the
third condition for j = n — 1 we obtain a,,—1 = —v» — n. Since « is dominant we must then have

—V—n=0ap 120, >1-v1—mn,

which in turn implies ;1 — 1 > 15 and in particular vy # vs. It follows that if [ # 1 or if { = 1 and v; = 1 the
above conditions cannot be satisfied and Extgz_l(J,,J, S) =0, concluding our proof. O
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Remark 4.4. If | =1 and v; > vy then HY(J,;) # 0. As explained in the proof above we may assume that v

is a partition. We can then take s =ty =--- =t,_1 = 0 and define o € Z}], by letting
aj=—Vpyi—j—nforj=1,--- n—-1 and oy =1 -1 — n.

It follows that S, F ® S,G appears as a subrepresentation of Extngl(J,,J, S), proving that HY(J,;) # 0.

Corollary 4.5. Suppose that p,q, A\, u are as in the statement of Theorem - If Ap < pj for some j then

HL. (Hk (X@),Mg%)) — 0 for all k.

Proof. We know by Theorem that each of the groups H* (X ) pmP) > has an S-module filtration with

PTG
composition factors isomorphic to J,; where v1 = --- = 1141, so it suffices to prove that H,}l(Jl,J) = 0 for each
such factor. Since no factor has [ = 1 and vy # s, the desired vanishing follows from Lemma 4.3 g

We record for later use one more vanishing result which is a direct consequence of Bott’s Theorem.
Lemma 4.6. Suppose that M decomposes as an Oy )-module into a direct sum of sheaves of the form
B=5,0,(F)® L'(F) ©5,0,(G) ® L'(G),
where v € Zﬁom and u € Z"P. We have that
HF (X(p),/\/l) =0 for k odd.

Proof. Combining the Kiinneth Theorem with Theorem (b) we see that B has non-vanishing cohomology
if and only if (v|u) + 6(") has no repeated entries, in which case its only non-vanishing cohomology group is
H?(XP), B) = H! (Flag([p, n]; F),S,Qq(F) ® L"(F)) ® H' (Flag([p, n}; G), Sy Qq(G) ® L(G))
where [ is the number of inversions in (v|u) + 8. In particular H*(X®) B) = 0 for k odd, so the same is
true for M, concluding the proof. d
Remark 4.7. The above vanishing applies when M = ME\pl)w, where 0 < g < p, A € Zﬁom is such that

Al =---=MAg and p € Z"7P.

4.2. Proof of Theorem We fix 0 < p <nandx € Nj  withzy =--- =2, We write X = X(p),
Y =Y® and consider the commutative diagram

yC%T:SpeCSXXLX

S

Spec S
We can identify T with the total space of the trivial bundle (F ® G)Y over X, and ) with a subbundle of T
via the inclusion ¢. We write my = 7 o for the projection map Y — X
We define y € NZO_£ by letting y; = xpy; for i =1,--- ,n —p, set d = z1 and let M = MEZL),p
S=8W D= det(p), and thinking of M as an S-module on X we have that
M =S8 ®0, V where V = D @0, LY is a line bundle on X. (4.8)

We can then think of M as being locally (on the base X') isomorphic to S, or as the invertible sheaf myV on
Y. The relationship between M and J,, is given by (4.5), which can be interpreted as the equality

Ry (M) = Jap (4.9)

" We write
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in the derived category, where J, ) is considered as a complex concentrated in cohomological degree 0.

Proof of Theorem [4.1(a). Observe that Exté(JLp,S) = R/Homg(Jy,,S). Using 1) and Grothendieck
Duality [Har66, Theorem 11.1] we obtain

RHomg(Jyp, S) = RHomg(Rps (M), S) = Rps(R Hormy(M,¢'S)) = Rp (MY @0, ¢'S)) (4.10)

where the last equality follows from the fact that M is locally free. By functoriality we have ¢'S = /'(7'S)
and 'S = Thwy[dim X, where [~] indicates the shift in cohomological degree and wy is the canonical bundle
on X (see [Har66, Section II1.2]). We have moreover using |[Har66, Section II1.6] that

$'S = i (mhwx[dim X)) = o* R Homr (1.0, whwy[dim X))
= det(Nyp)[dim(Y) — dim(T)] ®o,, mywxr[dim X]
where N7 is the normal bundle of Y in X. We have Ny = 73,¢", where
{=ker((F®G)®0x — Q(F) ® Qp(G)),
so in order to compute det(Nyr) it suffices to compute det(£). We have

(4.11)

®(—p)

n n—
det(€) = det(F ® G) @ det(Q,(F) ® Q,(G))Y = (det(")) R0, <det(p)) = DB g, L"),

where the last equality follows from the fact that det™ = det® @0 Xﬁ(lnip). We have moreover that
dim(Y) — dim(T) + dim(X) = —n + p,
and the canonical bundle on X is given by (see for instance [Wey03| Exercise 13, Chapter 3])

Wy = D®(p—n) Q0 £(2p+1—n,2p+3—n7-..7n—1)'
We can therefore rewrite (4.11]) as
¢S — o (D®(2p72n) R0, £(2p+172n,2p+372n,~-,71)) [~ + ]
Tensoring this with MY = 73, (D®(’d) ®0, L7Y) we obtain

MY @0, P'S = Mgfl)w[—n + p], where
A=(2p—2n—d)P)and p; =2p+2i—1—-2n—y; for 1 <i<n—p.
It follows from (4.10]) that

Ext)(Jyp, S) = R, (M(ff;m[—n + p]> _ it ( X0, ) W) _

Since d > yi it follows that A\, = 2p —2n —d < p1 = 2p + 1 — 2n — y1, so we can apply Corollary to
conclude that HJ(Ext%(Jyp,S)) = 0 for all j. O

Proof of Theorem (b) We let Z; = ¢~!(O;) and note that working relative to the base X, Z; is locally the
variety of p X p matrices of rank at most ¢. It is cut out inside ) by the sheaf of ideals Z(; 1)1 C S. It follows
from the discussion in Section that if we set m = n = p in (2.10]) then

0 if j # (p— 1) (mod 2),

J O-) = H X.S) =
Hz, PV, 0y) =Hy,, (X05) {@SAQP(F)Q@SAQP(G) if j = (p—t) (mod 2),
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where the direct sum is over some collection of weights A € Zgom (with repetitions allowed), whose precise
description follows from ([2.7)), but is not relevant for the rest of the argument. It follows from (4.8) that

0 if j # (p —t) (mod 2),
V @0y (BSAQp(F) ®82Qp(G)) if j = (p—1) (mod 2).

Writing I'z for the functor of sections with support in Z, we get a natural isomorphism

Fbt 0 Py = Py OPZt

My, (V. M) = { (4.12)

which yields in the derived category
RUg, (Jop) = Rl'g, (R M) = Rou(RT z,(M)).
This means that we have a spectral sequence

Ey? = H'(V, 1, (Y, M) = HS? (e p).

We have noted in 1) that ’Hth (Y, M) =0 when j # (p—t) (mod 2), and it follows from Lemma and
(4.12) that H*(Y, H%, (¥, M)) = 0 when i is odd. It follows that

E;] =0 when i+ j # (p—t) (mod 2),
proving that Hgt(‘]ﬂ’) =0 for k # (p—t) (mod 2), as desired. O

5. MORE VANISHING OF LOCAL COHOMOLOGY

The goal of this short section is to prove two vanishing results, which are based on Theorem and will
constitute important ingredients in describing the module structure of local cohomology groups for square
matrices. We continue to assume as in Section [ that m = n.

Theorem 5.1. For all p < n and all > 0 we have that
HL(HY (5)) = 0.

Proof. As in (3.14) we can write
HJ@(S) = %Eth(S/I(p+l)><da 5).

Since local cohomology commutes with direct limits, it is sufficient to prove that
Hl‘%‘L(EthS’(S/I(p—I—l)xda S)) =0.

Using [RW14, Lemma 2.2] (with the notation there, we choose z to be the zero partition and y = (dP*1)),
we see that the modules S/1(,11)xq admit a finite filtration by S-submodules whose successive quotients are

of the form J,,, with 21 = -+ = 2p(= 2p+1). By [RW14, Corollary 3.5] (see also [Rail8, Theorem 3.2]), this
induces a filtration on Ext§(S/I(,41)xa,S) with successive quotients Extg(.J;,,S). The conclusion follows
now from Theorem [4.1f(a). O

Recall the definition of @, from (1.12). The following should be seen as an analogue of Corollary
Theorem 5.2. Ift < p then we have that for all k Z p —t (mod 2)

Hgt(Qp) =0.
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Proof. Note that since Sqet = Qn, we have by (2.12) a decomposition

Saet = €D SAC" @8,C7,
AEZT

dom

analogous to (2.5)), with the only difference that X is allowed to be any dominant weight, as opposed to just
a partition. In analogy with I, we can then define the fractional ideals I to be the S-submodules of Sget
generated by SyC" ® S,C". We have I, = det™! Iy @1n), and it follows from 1) that

I, =Ps.cr@s,Cm. (5.1)
B>

We can write

Saet = limy(det ™7 -S) = lim I(_gn).
d d

Using (1.12)) and (2.12) it follows that

(detP"™Mp = P SHC"@S,C”
Ap+12p+1-n

and in particular using we get
Teamy N {det? ™ D = T(p1-mypss (~aynv-1).
for d > 0. We can then rewrite as
I—qmy det? I _gn) S

=1 =1 .
) ? det? -I((p+1,n)p+17(,d)n—p—1) d I(p+1)><(d+p+17n)

Qp =1
& I
Since local cohomology commutes with direct limits, it is enough to show that

Hgt(S/I(pH)X(p,nerH)) =0 for k #p—t (mod 2) and d > 0.

pH1—n)PHL (—d)n P

As seen in the proof of Theorem the modules S/I(,41)x(p—ntd+1) admit a finite composition series by
t

S-submodules, with composition factors of the form J,,, with 21 = --- = z,. The desired vanishing now
follows from Theorem [4.1|(b). O

6. MODULE STRUCTURE OF LOCAL COHOMOLOGY GROUPS

The goal of this section is to describe for X = C"*™ the decomposition into a sum of indecomposable
objects in modgr,(Dx) of the local cohomology groups Ha (Dp) and Ha(Qp). In the case of non-square

matrices (m > n) we have noted that modgy,(Dx) is semi-simple, so the indecomposable objects are the
simple modules Dy, -, D,, and the decomposition of the local cohomology groups into a sum of simple
modules is already encoded by their class in the Grothendieck group described in Theorem We will
therefore only be concerned with the case when m = n for the rest of the section.

To state the main results of the section, we begin by considering the full additive subcategory add(Q) of
modgr,(Dx) formed by the Dx-modules that are isomorphic to a direct sum of copies of Qq, Q1,...,Qn. We
let U denote the semigroup of isomorphism classes of objects in add(Q), where the semigroup operation is
given by direct sum. We write [M] for the class in ¥ of a module M € add(Q). We have a natural inclusion
of U as a sub-semigroup of I'p, given by [M] — [M]p. Our first theorem describes the local cohomology
groups H%t(Dp) as elements of add(Q) as follows.
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Theorem 6.1. For every t,p,j with 0 <t <p <n and j > 0 we have that H% (Dp) € add(Q). Moreover,
t

t

S IHL (Dy)] - ¢ =Y [Qd] - a7 - m(e?)

3>0 5=0

—t
holds in W[q|, where m4(q) € Z[q] is computed by m(q) = <” t) and
P—=1t/y

— —1- —s—1 —-2-—
ms(q) = <n S> .<p 8) — (n s ) ‘(p S) fors=0,---,t—1.
P—5/, t—s g p—s—1 g t—1—s q

Proof. The main content of the theorem is the assertion that H% (Dp) € add(Q), which will be proved in
t

Proposition|6.11} Since ¥ embeds into I'p, we can determine the polynomials ms(q) by expressing [H% (Dp)lp
t

in terms of [Qs|p. Using the fact that [Ds]p = [Qs]p — [@s—1]p for s > 1 and [Do]p = [Qo]p, the desired
formula for mg(q) follows from the case m = n of Theorem 0

In order to be able to compute iterated local cohomology groups, we need to be able to describe the local
cohomology groups of the modules Q.

Theorem 6.2. For every t,p,j with 0 <t <p <mn and j > 0 we have that H% (Qp) € add(Q). Moreover,
t

Y HL (Qp)]-¢' = Zt:[Qs] 2 (n T 1>q2 : (p meT 1>q2 holds in Wlgl.  (6.1)

>0 5=0 p=s p—t—1

6.1. The quiver description of modgr,(Dx). We recall from [LW19] the quiver-theoretical description of
the category modgr,(Dx), referring the reader to [LRW19, Section 2.4] for a quick summary of the notation
and properties of quiver representations that we will use. In particular, for a quiver representation 20 we
write 20, for the vector space associated to a vertex x, and write 20(«) for the linear transformation attached
to an arrow «. We consider the quiver with relations pictured as

o751 (o) Qn—1 Qn

ﬂn . (0 1 e n—1)=—(n 6.2
()Bl()ﬁ2 5n_1( )ﬁn() (6.2)
where the relations are given by the condition that all 2-cycles are zero (i.e. «;8; = 0 = [y for all i =
1,...,n). By [LW19, Theorem 5.4] we have an equivalence of categories

modgr,(Dx) ~ rep(AA4,) (6.3)

between modgr,(Dyx) and the category of finite-dimensional representations of ﬂn For instance, under this
equivalence the simple Dx-module D, corresponds to the irreducible representation

0 0 0 0 0 0
2P . o 0 C 0 0,
0 0 0 0 0 0

where a one dimensional vector space C is placed at vertex (p), and 0 is placed at all the other vertices. It
will be important to identify the quiver representations corresponding to the modules @, in (1.12).
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Lemma 6.3. For each p = 0,--- ,n, we consider the representation QP ¢ rep(mn) obtained by letting

QE];)) =C for0<i<p, and ng)) =0 for i > p, and with maps as pictured below
1 1 1 0 0 0

Q. ¢ C C 0 0 (6.4)
0 0 0 0 0 0

We have that QP) contains ©P) as its unique irreducible subrepresentation, and that Q(p)/Q(p) ~ Q-1
Moreover, the Dx-module @, corresponds via to the representation QP for all 0 < p <n.

Proof. The fact that ®®) is a subrepresentation of Q® and the identification Q® /D®) ~ Q@=1 follow from
the definition of Q® . If 20 € Q®) is a subrepresentation with ;) = C for some i < p, then W, 1) contains
the image under Q(p)(ai+]_) of W;, that is W41y = C. It follows that W;) = C for all j =4,--- ,p, and in
particular 2 contains ©,, as a subrepresentation.

To prove that @, corresponds to 0P via 1) we argue by descending induction on p. Using 1 1.12))
we get that Qp,—1 ~ Qp/D,, proving the inductive step. It remains to address the base case p = n, when

Qn = Sget- If we apply [LRW19, Lemma 2.4] with G = GL, Y = C"*", U = O = O,, the dense orbit of
rank n matrices, and j : U — Y the natural inclusion, it follows that Sget = 7«55 is the injective envelope
of S = D,, in modgr,(Dx), 80 Sqet corresponds via to the injective envelope of ®(. Using the quiver
description of the injective envelope of a simple representation from [LRW19, (2.15)], it follows that Q™ is

the injective envelope of ©( | concluding the proof. g
For each p =0,--- ,n we consider the full subcategory
mod2? (Dx)

of modgr,(Dx) consisting of modules with support contained in O,,. This subcategory is closed under exten-
sions and taking subquotients, and it corresponds via to the subcategory rep(ﬂp) of rep(ﬂn), obtained
by forgetting the vertices (p + 1),---,(n) of the quiver ﬂn We have the following important observation,
which follows from [LRW19, (2.15)] and the equivalence with rep(ﬂp).

Lemma 6.4. Inside the category modgi(Dx), the module Q, is the injective envelope of D, and the projective
cover of Dg. In particular, @, is indecomposable.

To describe local cohomology groups we will work mainly in the additive subcategory add(Q) of modgr,(Dx).
One property that will be important for us is that add(Q) is closed under taking extensions and quotients.

1

Lemma 6.5. For every 0 < 4,5 < n we have that EXtmodGL(DX)

(Qi,Qj) = 0. In particular, every short exact
sequence in modgr,(Dx)

0 — My — N — My — 0, (6.5)
with My, Ms € add(Q) splits, and hence N € add(Q). More generally, if N € modgy,(Dx) has a composition

series with composition factors in add(Q), then N € add(Q).

Proof. For the first assertion, we let p = max(7,j) and note that since modgi(Dx) is closed under taking
extensions it suffices to prove that

Ext! 5 (Qi,Q;)=0.

modgi (Dx)

By Lemma if p =1 then Q); is projective in modgf(Dx), while if p = j then @) is injective, so the above

vanishing follows. Since Ext! commutes with finite direct sums, it follows that ExtrandGL(DX)(MQ, M) =0
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for My, My € add(Q), and therefore splits. To prove the last assertion, we argue by induction on the
length of the composition series. We write N as an extension (6.5]), where M, € add(Q) and M has a shorter
composition series with composition factors in add(Q). By induction we have that M; € add(Q), hence ([6.5)
splits and N is also in add(Q). O

Lemma 6.6. Any quotient of Q, in modgr,(Dx) is isomorphic to Qq for some 0 < q < p. More generally, if
M € add(Q) then any quotient of M is also in add(Q).

Proof. We prove the first assertion by induction on p. By Lemma and , D, is the unique simple
submodule of @), and therefore every proper quotient of @, factors through @Q,/D, = Qp—1. By induction,
every quotient of (),—1 is isomorphic to ()4 for some 0 < g < p — 1, so the same must be true about every
proper quotient of Q.

For the last assertion we argue by induction on the length of M. We consider a quotient 7 : M — P and
write M = Q, ® N with N € add(Q), and let P’ = 7(Qp). Using the previous paragraph, P’ ~ @, for some
0 < g < p. The map 7 induces a map of short exact sequences, where P’ = P/P’,

0 Q; M N 0

0 P P P’ 0
where the vertical maps are surjective. Since N has smaller length than M, it follows that P” € add(Q),
hence P € add(®) by Lemma O

6.2. Local cohomology of the polynomial ring S. The goal of this section is to prove that the local
cohomology groups of S are in add(Q®), thus proving the case p = n of Theorem Our argument will be
inductive, starting with the observations in Section We let X1 C X denote the basic open affine where
x11 # 0, let U = X \ {0}, and let j; : X; — U denote the open immersion.

Lemma 6.7. If M, N € modgr(Dy) are such that there exists a Dx,-module isomorphism jiM =~ jiN then
M~ N.

Proof. We let Z = U \ X; and consider the exact sequences

0 —— HL(M) —= M —= j1, i M —= HL(M) —0

%:
0 B . B 1
where ¢ exists by assumption. Since Z contains no invariant closed subset of U, it follows that no non-zero
subquotient of M and N can have support in Z. Hence, we have H% (M) = H%(N) = 0 and therefore a, 3
are injective. Moreover, we have 3/ o poa =0 and o/ 0o =1 o B = 0, so that ¢ o a (resp. ¢! o 3) lifts to an

injective Dy-module homomorphism ¢; (resp. ¢2). Since M and N have finite length, it follows that their
lengths coincide, and ¢; and ¢o must be isomorphisms. O

Proposition 6.8. For allt <mn and i > 0 we have H%t(S) € add(Q).

Proof. We proceed by induction on n: if ¢ = 0 then each H%t(S) is a direct sum of copies of Dy = (g, so
it is in add(®). We may assume then that n >t > 1 and let j : U — X denote the inclusion. For any
Dx-module M, we have the exact sequence

0 — HY(M) — M — j,j*M — HL(M) — 0. (6.6)
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We let Q?) = 77Qp for 1 < p < n and prove that j*Qg = @p. From Lemma m we see that @), has no
submodules supported at Og, so Hg(Qp) = 0. Choosing M = Q, in gives then the exact sequence
0 — Qp — jsQp — Hy(Qp) — 0.
Since H,}l(Qp) is a direct sum of copies of Dy = g, it follows from Lemma that the above sequence splits.
If we set M = j*Qg in and note that the map j*Qg — j*j*j*Qg is an isomorphism, we get Hg(j*Qg) =0.
Since HL(Q,) is a summand of j*Qg supported at Oy, this shows that HL(Q,) = 0 and j*Qg = Qp.
We now claim that each j *Hza(S ) is a direct sum of copies of the Dy-modules QY,...,Q%. To prove this,
it suffices by Lemma to show that an isomorphism exists after restricting to X;. For that we have
Sk ok TT ] (2-23) . L s - s
S () = (H5,(9)) B wrh, (9) 5 @ @), = P @)
%, B 1<s<t 1<s<t
where the equality labelled ([2.22)) uses also the induction hypothesis, and where the numbers a, are in Zx>o.
Since j*Ha(S) is a direct sum of copies of QY,...,Q%, and j*Qg = (Qp for 1 < p < n, it follows now that
j*j*Hgt(S) € add(Q). Setting M = H%t(S) in we obtain using Theorem |5.1| the exact sequence

0 — Hu(Hg (S)) — Hg (S) — j.j*Hg (S) — 0.
Since HS,(H%t(S)) € add(Q), it follows from Lemma that H%t(S) € add(Q), concluding the proof. O

6.3. The structure of the modules H%P (Qp). In this section we prove the case t = p—1 of Theorem

-1

Lemma 6.9. For all j > 0 and t < n we have H%t(Sdet) = 0.

Proof. Multiplication by the polynomial det induces an S-module isomorphism Sget ieg Sdet, which in turn

gives rise to an isomorphism H%t(Sdet) 2deg H%t(Sdet) for each j > 0. Since the polynomial det vanishes on

O, it follows that every element m € H% (Sget) is annihilated by det® for some k. Since multiplication by
t

det® is an isomorphism, we conclude that m = 0 and, since m was arbitrary, that H% (Saet) = 0. ]
t

Lemma 6.10. For allp <n and j > 0, we have H% (Qp) € add(Q) and
P

HS (@)= HY Q) =0. (67)

Proof. The case p = n follows from Lemma so we may assume that p < n. We consider the spectral
sequence
G _ pri J i+j
Ey’ = H@,,l(H@o(S)) = H@il(S).
If we let ¢, = (n — p)? denote the codimension of O, in X, then we know that HZ (S) has support contained
in Op_1 if j # ¢p, and therefore E57 = 0 if i # 0 and j # ¢,. Moreover, combining Proposition With li
and 1} we see that ng(S ) = @Qp, so we have

E;’C” = H% 1(Qp) for ¢ > 0 and Eg’j = H% (S) for j # cp. (6.8)
p— P

It follows that the potentially non-zero groups E;J are arranged along a hook shape centered around the point
(2,7) = (0,¢p), and that the only potentially non-zero maps in the spectral sequence are the homomorphisms

—1 -1 d, ) ’
Ryl = peetrTl ey prer - DO for p > 2, (6.9)
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It follows that
B =ker(d,) and EL” = coker(d,) forr > 2.

Since Hg 1(S) =0 for k = ¢, (mod 2) by the case p=m =n and t = p — 1 of Corollary [3.5|it follows that
) p— )
E% = 0 when j = ¢p (mod 2). Since Eg’] =0 for j # ¢, (mod 2) by and Corollary we conclude

that E% = 0 for all J > 0, and in particular that all the maps d, in are injective. The vanishing of E%I
and the shape of the spectral sequence show that

i,Cp 14c .
Ex’ = pripl(S) for all i > 0, (6.10)

and therefore we obtain short exact sequences

0, -1 d, X
0 — By ™0 5 By — HLTP(S) — 0
p—1

Since the modules Eg =l and ngc‘l (S) are in add(Q) by Proposition and , it follows from Lemma,
e
that the same is true for E,7, i.e. HE  (Qp) € add(Q) for all r > 2.
p

-1

Since the maps do not involve any of the modules E,l;’c” for ¢ = 0,1, it follows that

1 (@) 2 By = Bl B e (s) —ofor i = 0,1,
P p=

-1

where the vanishing of ng Cpl (S) follows from the fact that
o

Cp—1 = (n—p+1)> >z'+cp:i—|—(n—p)2 for i =0,1and p <mn,
proving and concluding our proof. O
6.4. Local cohomology of the simples D,. We are now ready to finalize the proof of Theorem
Proposition 6.11. For every j > 0 and t,p with 0 <t < p < n we have H%i(Dp) € add(Q).

Proof. We prove the result by descending induction on the pair t < p. We begin with the case when t =p—1
and consider the short exact sequence

0— D, —Qp — Qp_1—0.

Since H%pil(Qp_l) = Qp1, H%pil(Qp_l) =0 for j >0 by 1p and H%p (Q,) =0 for j = 0,1 by 1; we

-1
obtain by the long exact sequence in cohomology that

Hg (Dp) =0, Hy (D) = Qp-1, and Hp  (Dy) = Hp (@) for j = 2. (6.11)

—1

It follows from Lemma [6.10] that H% (Dp) € add(Q) for all j > 0. For the inductive step we consider
p—1
1 <t < p and the spectral sequence

By = Hz@_l(H]@ (Dp)) = Hl@til(Dp)‘

By induction, the modules H% (Dp) belong to add(QR), and their summands are among Q, . . ., Q, since they
have support contained in Oy. Using the fact that for s < ¢ —1 we have H%t (Qs) = Qs and H’a (Qs) =0,

-1 —1

together with the fact that H%t (Q¢) € add(Q) proved in Lemma [6.10, we conclude that each E;’] belongs

—1

to add(@). Our final goal is to prove that EY e add(Q®), since the modules E%J constitute the composition
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factors of ngj ) (Dp) with respect to the filtration induced by the spectral sequence. By Lemma this will
t—
imply that Hgt—l(Dp) € add(Q) for all k£ > 0, concluding the inductive step.
Using Theorem we have that Hgt—l( D,) =0 for k = p—t (mod 2), so we only need to consider the

modules E% when i + jZp—t (mod 2). We will prove by induction on r > 2 that EY is a quotient of E;J
when i +j #Z p—t (mod 2). Since E,1 = ker(d,)/Im(d,), it suffices to check that the differentials

diJ . EY — ESTITTH are identically 0 for i 4+ j # p —t (mod 2).
Since ¢ + r > 2 this is in turn is implied by the vanishing
Ey =0fori>2andi+j=p—t (mod 2), (6.12)

which we explain next. Theorem implies that H% (Dp) = 0 for j # p—t (mod 2), so we only need to
t .
prove (6.12) when i > 2 is even and j = p — t (mod 2). Since Ha (Qs) =0fori>0and s <t—1, and

-1

since H% (Dy) is a direct sum of copies of Qo, - - - , Qy, it suffices to check that
t
H%t_l(Qt) = 0 for i even,
which follows from Theorem and concludes our proof. O
6.5. Local cohomology of the indecomposables @),. The goal of this section is to prove Theorem

Proof of Theorem[6.3 If p = n then it follows from Lemma that H% (Qn) = 0 for all 0 < t < n, which
t
coincides with the formula 1) since (”;f;l)qQ = 0 for all s. We may therefore assume that ¢t <n — 2, and

proceed by induction on p, starting with the case p =t + 1. Combining with (6.11)) and Theorem
we get that HZ  (Qp) € add(Q) for all j > 0 and moreover
p—1

p—1
Qo] a+ D MHS (@) =Y [H5 (D) = [Qd]-q-ma(g),

j=0 j>0 s=0

where m,_1(q) = (”‘f“)q =14+q¢g+¢*+---+¢"Pand

n—s n—s—1\ @4 ,_ n—s—1
i () (72, 2 (5,
p—s/, p—s—lq p—s /,

Using the fact that m,_1(¢) —1=¢- (”Ip)q, we obtain

p—1
Z[H%pfl(Qp):l ’ qj = Z[Qs] : q1+2'(p—s) . <n -5~ 1> 2

— S
§>0 s=0 p

which agrees with (6.1)) in the case when ¢t = p — 1.

For the induction step, we assume that p > ¢ + 2 and consider the short exact sequence
0— D), —Qp — Qp—1 —0 (6.13)
Combining Theorem [5.2] with Theorem [6.1] we obtain
- . . .
H%t (Qp-1) = HJa(Qp) = H]@ (Dp) =0 for j #p—t (mod 2).
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It follows that the long exact sequence in cohomology associated with (6.13)) splits into short exact sequences

0 — HLH(Qp1) — HL (Dy) — HL (Qp) — 0. (6.14)

Since the module H% (Qp) is a quotient of H%t (Dp), and the latter belongs to add(Q) by Proposition |6.11}, it
follows from Lem that the former also belongs to add(Q). It is then sufficient to verify that (6.1)) holds

in I'p[g|. Using (6.14)), Theorem and the induction hypothesis we get

Y IHE Qo ¢’ =Y [HS (D)o ¢ —q- Y [H (Qp-vp - ¢’

§>0 j>0 320

t
=3 l@up [ () = g RO (T (P
5=0 p—s—1 pe: p—t—2 2
Since 1+ (p—1—-t)2+2-(p—1—35)=(p—t)2+2-(t — s), in order to prove (6.1)) it suffices to check that
_ n—s—1 p—s—2 _ n—s—1 p—s—1
mea) — - () e () (D) e
p—s—1 q p—t—2 g p—s /, p—t—1 q
When s = t, we have (g:i:g)q = (’;:ij)q =1by |i so (6.15)) amounts to the equality
(n—t) B (n—t—l) _ gt (n—t—l)
p—t q p—t—1 q p—t q
which follows from 1’ When s < t we get (Z:i:;)q = (p ;ff)q and (’; :ij)q = (p ;fgl)q using || SO we
can rewrite (6.15)) as

oG e () | e ) G o),

which follows by applying (2.4) to both sides of the equation. O

6.6. The proof of Theorem If p=n — 1 then O,_1 is a hypersurface so its only non-zero Lyubeznik
number is >‘n2—1,n2—1(R(n_1)) = 1. We assume that p < n — 2 and get as in Section that

Lylg.w)= Y (Hb, (Hy *(S)) . Do) -d'-w

1,j=0

P
2_, -
=SS @ o X (19D D)
i>0 | s=0 7>0
where we used the fact that the groups H n? (S) belong to add(@®), and that the multiplicity of Qs as a
summand in M € add(Q) can be computed usmg 1.13)) by the formula (M, Dy — Ds;1)p. We obtain that

p

Lp(Qa w) = Z <H(7))(QS;Q)7DO>D : <HpD(Sa w_l)aDs - Ds+1>D w
s=0

P
Zq82+28'<n1> .w(np)z'[<nls> _<n2s) ]'w"Q
gt s ) D=8 )2 p—s—1), -2

n2
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Using (2.4) we have
(n—l—s) _(n—2—s> :w_Q,(p_s).<n—2—s>,
D=8 )2 p—s—1), -2 p—3s

and combining this with (2.3]) it follows that in order to prove (1.8) it suffices to verify the identity
PPA2pts-(2n—2p-2)=—(n-p)?-2-(p—s)—2(p—s) (n—2-p)+n?

which follows again by inspection.
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