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Abstract. We give an explicit recipe for determining iterated local cohomology groups with support in ideals of
minors of a generic matrix in characteristic zero, expressing them as direct sums of indecomposable D-modules.
For non-square matrices these indecomposables are simple, but this is no longer true for square matrices where
the relevant indecomposables arise from the pole order filtration associated with the determinant hypersurface.
Specializing our results to a single iteration, we determine the Lyubeznik numbers for all generic determinantal
rings, thus answering a question of Hochster.

1. Introduction

We consider positive integers m ≥ n ≥ 1 and let X = Cm×n denote the affine space of m × n complex
matrices, equipped with the natural action of the group GL = GLm(C) × GLn(C). We denote the orbits of
the GL-action by Op, 0 ≤ p ≤ n, where Op consists of matrices of rank p, and write H•

Op
(−) for the functors

of local cohomology with support in the orbit closures. If we let S = C[xij ] denote the coordinate ring of X,
and let Ip+1 be the ideal of (p + 1) × (p + 1) minors of the matrix of indeterminates (xij), then Ip+1 is the

ideal of functions vanishing on the variety Op, and the functors H•
Op

(−) are often denoted by H•Ip+1
(−), and

referred to as the functors of local cohomology with support in the ideal Ip+1. The goal of this work is to give
an explicit recipe for computing all the iterated local cohomology groups

H•
Oi1

(H•
Oi2

(· · ·H•
Oir

(S) · · · )). (1.1)

Specializing our results to the case H•
O0

(H•
Op

(S)) we determine the Lyubeznik numbers of the coordinate ring

of each Op, and observe a dichotomy between the case of square and non-square matrices. This is explained
geometrically by the way the conormal varieties to the orbits intersect in the two cases, and algebraically by
the fact that an appropriate category of modules is semi-simple for non-square matrices, and quite interesting
for square matrices.

The groups (1.1) are finitely generated modules over the Weyl algebra DX of differential operators on X,
which in addition are equivariant for the action of the group GL. We will therefore work in the category
modGL(DX) of GL-equivariant DX -modules, which is known by a result of Vilonen [Vil94, Theorem 4.3] to
be equivalent to the category of finitely generated modules over a finite dimensional algebra, or alternatively,
to the category of finite dimensional representations of a quiver with relations. The explicit description of
the relevant quiver has been obtained in [LW19, Theorem 5.4], and it is closely related to that of the quiver
attached to a slightly larger category considered in [BG99, Section 4.1]. We identify a suitable finite set
of indecomposable objects in modGL(DX) and express each of the local cohomology groups in (1.1) as a
direct sum of these indecomposables. The multiplicities of indecomposables are encoded in terms of Gaussian
binomial coefficients (reviewed in Section 2.2). Our proofs employ the symmetries coming from the GL-action,
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the inductive structure of determinantal varieties, and the quiver description of modGL(DX), as well as a
number of vanishing results for local cohomology that we prove by working on appropriate desingularizations
of determinantal varieties, and using Grothendieck duality and the Borel–Weil–Bott theorem.

For non-square matrices (m > n) the category modGL(DX) is semi-simple by [MV86, Theorem 6.7], since
the conormal varieties to the orbits (described in [Str82]) intersect in codimension ≥ 2. This has two important
implications:

• The indecomposable modules in modGL(DX) are simple.
• The module structure of M ∈ modGL(DX) is determined up to isomorphism by its class [M ]D in the

Grothendieck group ΓD of modGL(DX) (see Section 2.4).

For this reason we begin by considering the simpler problem of determining the class in ΓD of a local coho-
mology group. We return to the general case m ≥ n and let

D0, D1, · · · , Dn

denote the simple objects in modGL(DX), where Dp has support equal to Op, and is often referred to as the

intersection homology DX -module corresponding to the orbit Op. When p = n, we have that On = X and
Dn = S is the coordinate ring of X. Our first theorem determines the class in ΓD of the local cohomology
groups of each Dp, thus generalizing the main result of [RW14] which addresses the case p = n.

Theorem 1.1. For every 0 ≤ t < p ≤ n ≤ m we have the following equality in ΓD[q]:∑
j≥0

[Hj

Ot
(Dp)]D · qj =

t∑
s=0

[Ds]D · q(p−t)2+(p−s)·(m−n) ·
(
n− s
p− s

)
q2
·
(
p− 1− s
t− s

)
q2
. (1.2)

The restriction to the case t < p is done in order to avoid trivialities. If M is any S-module whose support

is contained in Ot (such as M = Dp or M = Hj

Op
(N) for p ≤ t, j ≥ 0, and any S-module N) then

H0
Ot

(M) = M and H i
Ot

(M) = 0 for i > 0. (1.3)

For this reason, there is no harm in assuming for instance that i1 < i2 < · · · < ir in (1.1).

Example 1.2. Consider the case when m = 3 and n = 2. For p = 2 and t = 1 we have D2 = S and∑
j≥0

[Hj

O1
(S)]D · qj

(1.2)
=

1∑
s=0

[Ds]D · q3−s = [D1]D · q2 + [D0]D · q3,

which implies that the only non-zero local cohomology groups are in this case (see also [Wal99, Example 6.1])

H2
O1

(S) = D1 and H3
O1

(S) = D0.

For p = 1 and t = 0 we obtain∑
j≥0

[Hj

O0
(D1)]D · qj

(1.2)
= [D0]D · q2 ·

(
2

1

)
q2

= [D0]D · q2 + [D0]D · q4.

Combining this with the observation (1.3) it follows that the only non-zero groups H•
O0

(H•
O1

(S)) are

H2
O0

(H2
O1

(S)) = H4
O0

(H2
O1

(S)) = H0
O0

(H3
O1

(S)) = D0. (1.4)

Iterated local cohomology groups have been studied in the seminal work of Lyubeznik [Lyu93], where he
introduced a new set of numerical invariants attached to any local ring which is a quotient of a regular
local ring containing a field [Lyu93, Theorem-Definition 4.1]. These invariants are known today under the
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name of Lyubeznik numbers, and have been the subject of extensive investigation (see [NBWZ16] and the
references therein). For determinantal rings, the question of describing the Lyubeznik numbers was posed by
Mel Hochster as part of his list of “Thirteen Open Questions about Local Cohomology”. Part of our work
here is dedicated to answering this question. For p < n we have that S/Ip+1 is the coordinate ring of Op, and

we let R(p) = (S/Ip+1)m denote its localization at the maximal homogeneous ideal. The Lyubeznik numbers

λi,j(R
(p)) are characterized by the equalities

H i
O0

(Hm·n−j
Op

(S)) = D
⊕λi,j(R(p))
0 . (1.5)

We encode the Lyubeznik numbers of determinantal rings by a bivariate generating function Lp(q, w) ∈ Z[q, w],

Lp(q, w) =
∑
i,j≥0

λi,j(R
(p)) · qi · wj . (1.6)

We prefer this encoding since it is more compact than the one given by the Lyubeznik tables

Λ(R(p)) =
(
λi,j(R

(p))
)

0≤i,j≤dim(R(p))

which were first considered in [Wal01]. We have for instance from (1.4) that when m = 3 and n = 2

L1(q, w) = w3 + q2 · w4 + q4 · w4, or equivalently Λ(R(1)) =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 1


In this example, R(1) is the local ring at the vertex of the affine cone of the Segre embedding P1 × P2 −→ P5.
Since P1 × P2 is smooth, it is known that the Lyubeznik numbers have a topological interpretation, being
determined by the Betti numbers of P1×P2 [GLS98,Swi15]. By contrast, there are singular examples where the
Lyubeznik numbers at the cone point depend on the projective embedding [RSW18,Wan19], so the topology
of the projective scheme does not control on its own the Lyubeznik numbers. Nevertheless, based on the work
[RSW18], one can show that Lyubeznik numbers of the (projective) determinantal varieties do not depend on
the choice of embedding into a projective space (see [RW]).

For non-square matrices our Theorem 1.1, together with the fact that modGL(DX) is semi-simple, gives the
following description of Lyubeznik numbers.

Theorem 1.3. If m > n > p then the Lyubeznik numbers for R(p) are computed by

Lp(q, w) =

p∑
s=0

qs
2+s·(m−n) ·

(
n

s

)
q2
· wp2+2p+s·(m+n−2p−2) ·

(
n− 1− s
p− s

)
w2

. (1.7)

In fact, using Theorem 1.1 and the semi-simplicity of modGL(DX) we can determine (1.1), and in particular
describe the generalized Lyubeznik numbers as defined in [NBWZ16, Section 7]. More generally,

H•
Oi1

(H•
Oi2

(· · ·H•
Oir

(Dp) · · · ))

can be computed for any Dp. We leave the determination of the precise formulas to the interested reader.
When m = n the situation is more subtle, as can be seen already in the following simple example.

Example 1.4. Suppose that m = n = 2 and let p = 1. Applying (1.2) we get

[H1
O1

(S)]D = [D0]D + [D1]D
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butH1
O1

(S) is not the direct sum ofD0 andD1! If we write det for the 2×2 determinant, thenH1
O1

(S) = Sdet/S

contains no non-zero elements annihilated by the maximal homogeneous ideal, so it can’t contain D0 (which
is supported at 0) as a submodule. This observation is also reflected in the calculation of Lyubeznik numbers,
as follows. Since O1 is a hypersurface of (affine) dimension 3 (the cone over P1 × P1 ⊂ P3), the only non-zero

Lyubeznik number is λ3,3(R(1)) = 1, that is the only non-zero group H•
O0

(H•
O1

(S)) is

H3
O0

(H1
O1

(S)) = D0.

The non-zero local cohomology groups H•
O0

(D0) and H•
O0

(D1) are by (1.2) and (1.3)

H0
O0

(D0) = H1
O0

(D1) = H3
O0

(D1) = D0,

so the local cohomology groups of H1
O1

(S) are not the direct sums of those of D0 and D1. In particular,

specializing (1.7) to the case when m = n would give the wrong answer! Instead, we have the following.

Theorem 1.5. If m = n then Ln−1(q, w) = (q · w)n
2−1 and for 0 ≤ p ≤ n− 2 we have

Lp(q, w) =

p∑
s=0

qs
2+2s ·

(
n− 1

s

)
q2
· wp2+2p+s·(2n−2p−2) ·

(
n− 2− s
p− s

)
w2

. (1.8)

For instance, in the case of 4× 4 matrices of rank at most 2 (m = n = 4 and p = 2) we obtain

L2(q, w) = w8 + (q3 + q5 + q7) · w10 + (q8 + q10 + q12) · w12. (1.9)

Analogues of Theorems 1.3 and 1.5 for ideals of Pfaffians of a generic skew-symmetric matrix have been
obtained by Mike Perlman [Per20], but the corresponding problem for symmetric matrices remains open.

As we saw in Example 1.4, for square matrices the (iterated) local cohomology groups of S are no longer
expressible as direct sums of the simple modules Dp. We proceed instead to construct a different set of
indecomposables that play the role of the simples. We let det = det(xij) denote the determinant of the
generic n× n matrix, and let 〈det−p〉D denote the DX -submodule of Sdet generated by det−p. It is shown in
[Rai16, Theorem 1.1] that

0 ( S ( 〈det−1〉D ( · · · ( 〈det−n〉D = Sdet (1.10)

is a DX -module composition series with composition factors S ' Dn and

〈det−p〉D
〈det−p+1〉D

' Dn−p for p = 1, · · · , n. (1.11)

We define Qn = Sdet and for p = 0, · · · , n− 1, we let

Qp =
Sdet

〈detp−n+1〉D
. (1.12)

It follows from (1.10) and (1.11) that Qp has composition factors D0, · · · , Dp, hence

[Qp]D =

p∑
s=0

[Ds]D (1.13)

and the support of Qp is Op. We denote by add(Q) the full additive subcategory of modGL(DX) consisting
of modules that are isomorphic to a direct sum of copies of Q0, Q1, . . . , Qn. It follows from (1.13) that
[Q0]D, · · · , [Qn]D form a basis of the Grothendieck group ΓD, so a module M ∈ add(Q) is determined up
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to isomorphism by [M ]D. The following result (when combined with (1.2), (1.3), and (1.13)) allows one to
determine (1.1) when m = n, or more generally to describe arbitrary iterations

H•
Oi1

(H•
Oi2

(· · ·H•
Oir

(M) · · · )) where M = Dp or M = Qp, p = 0, · · · , n.

Theorem 1.6. For every 0 ≤ t < p ≤ n = m and j ≥ 0 we have that

Hj

Ot
(Dp) ∈ add(Q) and Hj

Ot
(Qp) ∈ add(Q).

Moreover, ∑
j≥0

[Hj

Ot
(Qp)]D · qj =

t∑
s=0

[Qs]D · q(p−t)2+2(p−s) ·
(
n− s− 1

p− s

)
q2
·
(
p− s− 1

p− t− 1

)
q2
. (1.14)

This theorem is explained in Section 6. A formula analogous to (1.14) holds for the groups Hj

Ot
(Dp),

and can be obtained based on (1.2) from the fact that Hj

Ot
(Dp) ∈ add(Q) (see Theorem 6.1). To see how

Theorem 1.6 allows for the calculation of Lyubeznik numbers, or more general iterated local cohomology
groups, we explain next how to derive (1.9).

Example 1.7. If m = n = 4 and p = 2 then we have∑
j≥0

[Hj

O2
(S)]D · qj

(1.2)
= [D0]D · (q4 + q6 + q8) + [D1]D · (q4 + q6) + [D2]D · q4

(1.13)
= [Q2]D · q4 + [Q1]D · q6 + [Q0]D · q8.

By Theorem 1.6 we have that Hj

O2
(S) ∈ add(Q) for all j, hence

H4
O2

(S) = Q2, H
6
O2

(S) = Q1, and H8
O2

(S) = Q0 = D0.

Using (1.3) we get H0
O0

(H8
O2

(S)) = D0 and therefore λ0,8(R(2)) = 1. Using (1.14) we have∑
j≥0

[Hj

O0
(Q1)]D · qj = [Q0]D · q3 ·

(
3

1

)
q2

= [D0]D · (q3 + q5 + q7)

and therefore λ3,10(R(2)) = λ5,10(R(2)) = λ7,10(R(2)) = 1. Using (1.14) again we have∑
j≥0

[Hj

O0
(Q2)]D · qj = [Q0]D · q8 ·

(
3

2

)
q2

= [D0]D · (q8 + q10 + q12)

and therefore λ8,12(R(2)) = λ10,12(R(2)) = λ12,12(R(2)) = 1. All the remaining Lyubeznik numbers vanish,
proving (1.9).

The paper is organized as follows. In Section 2 we recall some basic notions regarding weights and Schur
functors, q-binomial coefficients, categories of admissible representations and equivariant D-modules, and
Bott’s theorem for Grassmannians and flag varieties. We also discuss briefly families of determinantal rings
over a general base, and the inductive structure of determinantal rings. In Section 3 we prove Theorems 1.1
and 1.3. Sections 4 and 5 are concerned with a number of technical results proving the vanishing of a range of
local cohomology groups. In Section 6 we recall the quiver description of the category modGL(DX) and use it
in conjunction with the vanishing results of the earlier sections to provide an inductive proof of Theorem 1.6.
We also derive Theorem 1.5 as a quick corollary of the previous local cohomology calculations.
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2. Preliminaries

2.1. Dominant weights and Schur functors. We write Zndom for the set of dominant weights in Zn, i.e.
tuples λ = (λ1, · · · , λn) ∈ Zn with λ1 ≥ λ2 ≥ · · · ≥ λn. When each λi ≥ 0 we identify λ with a partition with
(at most) n parts, and write λ ∈ Nndom. When λ ∈ Zn is not dominant, it must contain inversions, i.e. pairs
(i, j) with i < j and λi < λj . The size of λ is |λ| = λ1 + · · ·+ λn. We sometimes use Greek letters to denote
weights λ ∈ Zndom and underlined Roman letters to denote partitions x ∈ Nndom. We write x′ for the conjugate
partition of x, where x′i counts the number of parts xj with xj ≥ i. We partially order Zndom (and Nndom) by
declaring λ ≥ µ if λi ≥ µi for all i = 1, · · · , n. If a ≥ 0 then we write a× b or (ba) for the sequence (b, b, · · · , b)
where b is repeated a times.

If V is a vector space with dim(V ) = n and λ ∈ Zndom we write SλV for the corresponding irreducible
representation of GL(V ) (or Schur functor). Our conventions are such that if λ = (d, 0, · · · , 0) then SλV =
Symd V , and if λ = (1n) then SλV =

∧n V . More generally, one can define SλE for any locally free sheaf E of
rank n on some algebraic variety X. We write det(E) for

∧n E and call it the determinant of E . For m > n we
will always think of Nndom as a subset of Nmdom by identifying x ∈ Nndom with (x, 0m−n), and in this way SxV
(resp. SxE) is defined whenever dim(V ) ≥ n (resp. rank(E) ≥ n).

2.2. Gaussian binomial coefficients. For a ≥ b ≥ 0 we define the Gaussian (or q-)binomial coefficient
(
a
b

)
q

to be the polynomial in Z[q] defined by(
a

b

)
q

=
(1− qa) · (1− qa−1) · · · (1− qa−b+1)

(1− qb) · (1− qb−1) · · · (1− q)
.

These polynomials are generalizations of the usual binomial coefficients, satisfying the relations(
a

b

)
q

=

(
a

a− b

)
q

,

(
a

a

)
q

=

(
a

0

)
q

= 1, and

(
a

b

)
1

=

(
a

b

)
. (2.1)

One significance of the q-binomial coefficients is that
(
a
b

)
q2

describes the Poincaré polynomial of the Grass-

mannian of b-dimensional subspaces of Ca. As such, the coefficient of qj in
(
a
b

)
q

computes the number of

Schubert classes of (co)dimension j, or equivalently the number of partitions x of size j contained inside the
rectangular partition (a− b)× b. We get (

a

b

)
q

=
∑

x≤(ba−b)

q|x|. (2.2)

Using the fact that the map x 7→ x◦ := (b− xa−b, b− xa−b−1, · · · , b− x2, b− x1) defines an involution on the
set of partitions x ≤ (ba−b), satisfying |x◦| = b · (a− b)− |x|, we get that(

a

b

)
q−1

=

(
a

b

)
q

· q−b·(a−b). (2.3)

The q-binomial coefficients also satisfy recurrence relations analogous to the Pascal identities for usual binomial
coefficients, namely (

a

b

)
q

= qb ·
(
a− 1

b

)
q

+

(
a− 1

b− 1

)
q

. (2.4)
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2.3. The ring of polynomial functions on m × n matrices and its equivariant ideals. We consider
positive integers m ≥ n ≥ 1 and let X = Cm×n denote the affine space of m × n complex matrices. We let
GL = GLm(C)×GLn(C) and consider its natural action on X via row and column operations. The orbits of
this action are the sets Op consisting of matrices of rank p, for p = 0, · · · , n, and their orbit closures are given
by

Op =

p⋃
i=0

Oi.

The coordinate ring S of X can be identified with the polynomial ring S = C[xij ], where 1 ≤ i ≤ m and
1 ≤ j ≤ n. If we write Ip for the ideal of p × p minors of the generic matrix (xij), then Ip is the defining

ideal of the closed subvariety Op−1 of X. To keep track of the equivariance it is convenient to identify the
space of linear forms in S with the tensor product Cm ⊗Cn, which has a natural GL-action. The polynomial
ring S can then be thought of as the symmetric algebra SymC(Cm ⊗ Cn) =

⊕
d≥0 Symd(Cm ⊗ Cn), where the

component indexed by d corresponds to homogeneous forms of degree d in the variables xij . The structure of
S as a GL-representation is governed by Cauchy’s formula [Wey03, Corollary 2.3.3]

S =
⊕

x∈Nndom

SxCm ⊗ SxCn. (2.5)

We write Ix ⊂ S for the ideal generated by the component SxCm ⊗ SxCn in the above decomposition. If
x = (1p) then the ideal Ix coincides with the ideal Ip defined earlier. As a GL-representation we have

Ix =
⊕
y≥x

SyCm ⊗ SyCn. (2.6)

2.4. Equivariant D-modules and the Grothendieck group ΓD. We write X = Cm×n as in the previous
section, let DX denote the sheaf of differential operators on X, and let modGL(DX) denote the category
of GL-equivariant coherent DX -modules. The category modGL(DX) is a full subcategory of the category of
coherent DX -modules, stable under taking subquotients (for more details on categories of equivariant DX -
modules, see [LW19, Section 2.1]). The simple objects in modGL(DX) are D0, · · · , Dn, where Dp denotes the
intersection homology D-module corresponding to the orbit Op. As a GL-representation, Dp decomposes as
(see [RW14, Theorem 6.1], [RW16, Main Theorem(1)], [Rai17, Theorem 5.1])

Dp =
⊕

λp≥p−n
λp+1≤p−m

Sλ(p)Cm ⊗ SλCn, (2.7)

where

λ(p) = (λ1, · · · , λp, (p− n)m−n, λp+1 + (m− n), · · · , λn + (m− n)). (2.8)

We note that for p = n the formulas in (2.5) and (2.7) coincide, which is a reflection of the fact that Dn = S.
We write ΓD for the Grothendieck group of modGL(DX), and write [M ]D for the class in ΓD of an equivariant

DX -module M . We note that the group ΓD is a free abelian group of rank (n+ 1), with basis given by [Dp]D,
for p = 0, · · · , n. An important construction of new objects in modGL(DX) comes from considering the local

cohomology groups Hj

Ot
(M) for j ≥ 0, 0 ≤ t ≤ n, and M ∈ modGL(DX). A first approximation to the

structure of these groups is given by their class in ΓD. To keep track of this information it is convenient to
write ΓD[q] for the additive group of polynomials in the variable q with coefficients in ΓD, and define

HDt (M ; q) =
∑
j≥0

[Hj

Ot
(M)]D · qj ∈ ΓD[q]. (2.9)
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In the case when M = S, the main result of [RW14] (as interpreted in [RW16, Main Theorem(1)]) yields

HDt (S; q) =
t∑

s=0

[Ds]D · q(n−t)2+(n−s)·(m−n) ·
(
n− 1− s
t− s

)
q2
. (2.10)

We define a pairing 〈 , 〉D : ΓD[q]× ΓD[q] −→ Z[q] given by〈
γ(q), γ′(q)

〉
D =

n∑
s=0

γs(q) · γ′s(q),

where γ(q) =
∑n

s=0[Ds]D · γs(q) and γ′(q) =
∑n

s=0[Ds]D · γ′s(q). The assertion (2.10) is then equivalent to〈
HDt (S; q), Ds

〉
D = q(n−t)2+(n−s)·(m−n) ·

(
n− 1− s
t− s

)
q2

for 0 ≤ s ≤ t, and
〈
HDt (S; q), Ds

〉
D = 0 for s > t.

Notice that in the formula above we have written Ds instead of [Ds]D, to simplify the notation. We will
continue to do so as long as there is no possible source of confusion.

2.5. Admissible representations and the Grothendieck group ΓGL. We define an admissible represen-
tation of GL to be a representation M that decomposes as

M =
⊕

λ∈Zmdom
µ∈Zndom

(SλCm ⊗ SµCn)⊕aλ,µ

for some non-negative integers aλ,µ. Examples of such representations include the polynomial ring in (2.5),
the ideals (2.6), and the DX -modules in (2.7). More generally, if M is a finitely generated GL-equivariant
S-module or DX -module then M is an admissible representation.

We write ΓGL for the Grothendieck group of admissible GL-representations, and write [M ]GL for the class
in ΓGL of a representation M , and often refer to [M ]GL as a character. The admissible representations form
a semi-simple category, which implies that [M ]GL determines M up to isomorphism. We have that ΓGL is
isomorphic to the product of copies of Z indexed by sλ,µ = [SλCm ⊗ SµCn]GL, with λ ∈ Zmdom and µ ∈ Zndom.
We define ΓGL[q] in analogy with ΓD[q], and express any γ(q) ∈ ΓGL(q) as an infinite sum

γ(q) =
∑
λ,µ

aλ,µ(q) · sλ,µ, with aλ,µ(q) ∈ Z.

We consider the partially defined pairing 〈 , 〉 : ΓGL[q]× ΓGL[q] −→ Z[q]〈
γ(q), γ′(q)

〉
GL

=
∑
λ,µ

aλ,µ(q) · a′λ,µ(q) (2.11)

whenever the sum (2.11) involves only finitely many non-zero terms.
We have a forgetful map that associates to a module M ∈ modGL(DX) the underlying admissible repre-

sentation. This induces a homomorphism ΓD −→ ΓGL given by [M ]D 7→ [M ]GL. It will be important to note
that this homomorphism is injective, since the characters [Dp]GL described by (2.7) are linearly independent.
In other words, the composition factors of a GL-equivariant D-module (and their multiplicities) are uniquely
determined by its character. If we combine (1.13) with the case m = n of (2.7) (so that λ(s) = λ for all s)
then it follows that as a GL-representation Qp decomposes as

Qp =
⊕

λp+1≤p−n
SλCn ⊗ SλCn. (2.12)
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We extend the map ΓD −→ ΓGL to an injective homomorphism ΓD[q] −→ ΓGL[q], and note that for instance
the image of (2.9) via this homomorphism is

HGL
t (M ; q) =

∑
j≥0

[Hj

Ot
(M)]GL · qj (2.13)

Taking W = Sλ(p)Cm ⊗ SλCn to be any representation that appears in (2.7) it follows that〈
HDt (M ; q), Dp

〉
D =

〈
HGL
t (M ; q),W

〉
GL

(2.14)

for any M ∈ modGL(DX), which will be particularly useful for our calculations in Section 3. Notice again the
abuse of notation where we simply write W instead of [W ]GL, since there is no possibility of confusion.

2.6. Flag varieties, Grassmannians, and Bott’s Theorem [Wey03, Chapters 3 and 4]. Consider non-
negative integers p ≤ n and a complex vector space V with dim(V ) = n. We denote by Flag([p, n];V ) the
variety of partial flags

V• : V = Vn � Vn−1 · · ·� Vp � 0,

where Vq is a q–dimensional quotient of V for each q = p, p+ 1, · · · , n. For q ∈ [p, n] we write Qq(V ) for the
tautological rank q quotient bundle on Flag([p, n];V ) whose fiber over a point V• ∈ Flag([p, n];V ) is Vq. We
consider the natural projection maps

π
(p)
V : Flag([p, n];V )→ Flag([p+ 1, n];V ), (2.15)

defined by forgetting Vp from the flag V•. For p ≤ n− 1, this map identifies Flag([p, n];V ) with the projective
bundle PFlag([p+1,n];V )(Qp+1(V )), which comes with a tautological surjection

Qp+1(V ) � Qp(V ). (2.16)

The careful reader may have noticed that we are using the same notation Qq(V ) for the tautological rank q
quotient bundle on each of the spaces Flag([p, n];V ) with p ≤ q ≤ n. This should cause no confusion (but
has the advantage of simplifying the notation), as the bundle Qq(V ) on Flag([p, n];V ) is simply the pull-back

along π(p) of the corresponding bundle on Flag([p+ 1, n];V ) when p ≤ q − 1.
The kernel of (2.16) is a line bundle which we denote Lp+1(V ) and note that

det(Qp+1(V )) = Lp+1(V )⊗ det(Qp(V )). (2.17)

Just as with Qq(V ), there is one line bundle Lq(V ) on each of the spaces Flag([p, n];V ) with p ≤ q−1. When
p > 0, the Picard group of Flag([p, n];V ) is free of rank (n − p), with µ ∈ Zn−p corresponding to the line
bundle

Lµ(V ) =

n−p⊗
i=1

Lp+i(V )⊗µi . (2.18)

Note that (2.17) can be used to prove inductively that

det(V )⊗OFlag([p,n];V ) = L(1n−p)(V )⊗ det(Qp(V )). (2.19)

In particular for p = 0 (when Flag([p, n];V ) is the full flag variety) we get that L(1n) is (non-equivariantly)
isomorphic to the trivial line bundle, and the Picard group has rank (n− 1).

If we let G(p, V ) denote the Grassmannian of p–dimensional quotients of V then we have a natural map

ψ
(p)
V : Flag([p, n];V ) −→ G(p, V ), given by ψ

(p)
V (V•) = Vp. (2.20)

We abuse notation once more and write Qp(V ) for the tautological rank p quotient bundle on G(p, V ), and
let Rn−p(V ) denote the tautological rank (n− p) sub-bundle, whose fiber over the point corresponding to Vp
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is the kernel of the quotient map V � Vp. The following formulation of Bott’s theorem will be useful for us
throughout Section 4 (see [Wey03, Theorem 4.1.8]). For m > 0 and γ ∈ Zm we let

δ(m) = (m− 1,m− 2, · · · , 0) and γ̃ = sort(γ + δ(m))− δ(m) (2.21)

where sort(γ + δ(m)) ∈ Zm is obtained by arranging the entries of γ + δ(m) in non-increasing order.

Theorem 2.1. Let λ ∈ Zpdom, µ ∈ Zn−p, and let γ = (λ|µ) ∈ Zn be the concatenation of λ and µ. We write

F = Flag([p, n];V ), ψ = ψ
(p)
V , π = π

(p)
V , and let Rtψ∗ (resp. Rtπ∗) denote the right derived functors of ψ∗

(resp. π∗). Using (2.21) we have:

(a) If µ+ δ(n−p) has repeated entries then Rtψ∗(SλQp(V )⊗ Lµ(V )) = 0 for all t. Otherwise, there exists

a unique l ≥ 0 (equal to the number of inversions in µ+ δ(n−p)) so that

Rtψ∗(SλQp(V )⊗ Lµ(V )) =

{
SλQp(V )⊗ Sµ̃Rn−p(V ) if t = l;

0 otherwise.

(b) If γ + δ(n) has repeated entries then Ht(F,SλQp(V )⊗ Lµ(V )) = 0 for all t. Otherwise, there exists a

unique l ≥ 0 (equal to the number of inversions in γ + δ(n)) so that

Ht(F, SλQp(V )⊗ Lµ(V )) =

{
Sγ̃V if t = l;

0 otherwise.

(c) If λp ≥ µ1 and if we let λ+ = (λ1, · · · , λp, µ1) ∈ Zp+1
dom and µ− = (µ2, · · · , µn−p) ∈ Zn−p−1 then

Rtπ∗(SλQp(V )⊗ Lµ(V )) =

{
Sλ+Qp+1(V )⊗ Lµ−(V ) if t = 0;

0 otherwise.

2.7. The relative setting. It will sometimes be convenient to work with spaces of matrices relative to some
base as follows. We let B denote an algebraic variety over Spec(C) and let F ,G be locally free sheaves on B
of ranks m and n respectively. We can form

S = SymOB (F ⊗OB G)

and define X = Spec
B

(S). We identify freely quasi-coherent OX-modules M with quasi-coherent sheaves of
S-modules on B. We simply refer to such anM as an S-module, and whenM⊆ OX is an ideal sheaf, we call
M an ideal in S. An example of such ideal is the one defining locally matrices of rank less than p: we denote
by Ip ⊂ S the ideal generated by the subsheaf

∧pF ⊗
∧p G ⊂ Symp(F ⊗G) ⊂ S. If we let Zp ⊂ X denote the

subvariety cut out by Ip+1 then we obtain a decomposition of the local cohomology groups as OB-modules of
the form

HjZp(X,OX) =
⊕
λ,µ

(SλF ⊗ SµG)⊕aλ,µ

where the multiplicities aλ,µ are the same as in the case when B = Spec(C), X = X, and Zp = Op.

2.8. The inductive structure. This section builds on a standard localization trick that is often used to study
determinantal varieties inductively (see [BV88, Proposition 2.4] or [LSW16]). We let X = Cm×n and consider
the basic open affine X1 ⊂ X consisting of matrices with x11 6= 0, whose coordinate ring is the localization
Sx11 . We let X ′ = C(m−1)×(n−1), and identify its coordinate ring with S′ = C[x′ij ], with 2 ≤ i, j ≤ n. We have

an isomorphism (given by performing row and column operations in order to eliminate entries on the first row
and first column of the generic matrix)

X1 ' X ′ × Cm−1 × Cn−1 × C∗
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where the coordinate functions on Cm−1 are xi1, 2 ≤ i ≤ m, those on Cn−1 are x1j , 2 ≤ j ≤ n, the coordinate
function on C∗ is x11, and

x′ij = xij −
xi1 · x1j

x11
.

If we let π : X1 −→ X ′ denote the projection map, and let O′p denote the orbit of rank p matrices in X ′ then

π−1(O′p) = Op+1 ∩X1 for all p = 0, · · · , n− 1.

It follows that if we let D′p denote the intersection homology DX′-module associated with O′p then

π∗(D′p) = (Dp+1)|X1
= (Dp+1)x11 for all p = 0, · · · , n− 1.

If m = n and if we let det′ = det(x′ij) then det = x11 ·det′, so π∗(S′
det′

) = (Sdet)|X1
= Sdet ·x11 . More generally,

if we define the DX′-modules Q′p in analogy with (1.12) then we obtain

π∗(Q′p) = (Qp+1)|X1
= (Qp+1)x11 for all p = 0, · · · , n− 1. (2.22)

For every S′-module (resp. DX′-module) M ′ and every closed subset Z ′ ⊂ X ′, if we let Z = π−1(Z ′) and
M = π∗(M ′) then we have isomorphisms of Sx11-modules (resp. of DX1-modules)

π∗(Hj
Z′(M

′)) = Hj
Z(M) for all j ≥ 0.

In particular, we obtain

π∗(Hj

O
′
p

(S′)) = Hj

Op+1∩X1
(Sx11) =

(
Hj

Op+1
(S)
)
|X1

for all p = 0, · · · , n− 1, and j ≥ 0. (2.23)

3. Grothendieck group calculation of the local cohomology of simple D-modules

Recall that ΓD denotes the Grothendieck group of modGL(DX), and that if M ∈ modGL(DX) then [M ]D
denotes its class in ΓD. The main result of this section describes the class in ΓD of the local cohomology
groups with determinantal support for the modules Dp.

Theorem 3.1. For every 0 ≤ t < p ≤ n ≤ m we have the following equality in ΓD[q]:

HDt (Dp; q) =
t∑

s=0

[Ds]D · q(p−t)2+(p−s)·(m−n) ·
(
n− s
p− s

)
q2
·
(
p− 1− s
t− s

)
q2

We record here a special case of Theorem 3.1, which will be used in Section 6.3. If m = n = p and
ct = (n− t)2 is the codimension of the orbit Ot inside Cn×n then

[Hct
Ot

(S)]D = [D0]D + [D1]D + · · ·+ [Dt]D. (3.1)

3.1. A relation between rectangular ideals and simple equivariant D-modules. We use the nota-
tional conventions from Section 2.5, and recall from Section 2.1 that α′ denotes the conjugate of a partition
α. For positive integers a, d and partitions α = (α1 ≥ α2 ≥ · · · ≥ αa) and β = (β1 ≥ β2 ≥ · · · ≥ βm−a) we let

λ(a, d;α, β) = (d+ α1, d+ α2, · · · , d+ αa, β1, β2, · · · , βm−a)
and consider the polynomial ha×d(q) ∈ ΓGL[q] given by

ha×d(q) =
∑
α,β

[Sλ(a,d;α,β)Cm ⊗ Sλ(a,d;β′,α′)Cn]GL · q|α|+|β|,

where the sum is over partitions α, β satisfying

α1 ≤ n− a, α′1, β1 ≤ min(a, d) and β′1 ≤ m− a. (3.2)
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The significance of the polynomials ha×d(q) is that they describe the GL-equivariant Hilbert series of certain
simple modules over the general linear Lie superalgebra gl(m|n). As such, they provide the building blocks
of the minimal free resolution over the polynomial ring S of the ideals Ia×d (see [RW17, Theorem 3.1] or
[Rai17, Theorem 6.1]), namely we have∑

j≥0

[TorSj (Ia×d,C)]GL · qj =
n−a∑
r=0

h(a+r)×(d+r)(q) · qr
2+2r ·

(
r + min(a, d)− 1

r

)
q2

(3.3)

which will be used in Section 3.4 below. For now, we prove the following.

Lemma 3.2. If we let V = S(nm)Cm ⊗ S(mn)Cn = det(Cm ⊗ Cn) and let d� 0 then

〈V ⊗Dp, ha×d(q)〉GL = 0 for a 6= p and 〈V ⊗Dp, hp×d(q)〉GL = qp·(m−n) ·
(
n

p

)
q2
.

Proof. To compute 〈V ⊗Dp, ha×d(q)〉GL, we need to characterize the partitions α, β satisfying (3.2) and for
which Sλ(a,d;α,β)Cm⊗Sλ(a,d;β′,α′)Cn appears as a subrepresentation of V ⊗Dp, i.e. those for which there exists
a dominant weight µ ∈ Zn with µp ≥ p− n, µp+1 ≤ p−m (see (2.7)), and such that

µ(p) + (nm) = λ(a, d;α, β) and µ+ (mn) = λ(a, d;β′, α′). (3.4)

If p < a then it follows from (2.8) that

p = (p− n) + n ≥ µ(p)p+1 + n = λ(a, d;α, β)p+1 = d+ αp+1

which is in contradiction with the fact that d� 0. If p > a then

a ≥ β1 = λ(a, d;α, β)a+1 = µ(p)a+1 + n = µa+1 + n ≥ µp + n ≥ (p− n) + n = p

which is again a contradiction. It follows that 〈V ⊗Dp, ha×d(q)〉 = 0 for a 6= p, and it remains to analyze the
case p = a. The conditions (3.4) imply that

µi = d+ αi − n and αi + (m− n) = β′i for all i = 1, · · · , p.
Since β1 ≤ min(p, d) = p it follows from the above that β is completely determined by α via the relation
β′ = α+ ((m− n)p), which in turn implies that β = (pm−n|α′) and in particular

β1 = · · · = βm−n = p.

Suppose now that α is any partition with at most p parts (i.e. α′1 ≤ p) and that α1 ≤ n − p. If we define
β = (pm−n|α′) then β1 ≤ p and β′1 = α1 +m− n ≤ m− p, so the conditions (3.2) hold for a = p, since d� 0.
We next let

µi = d+ αi − n for i = 1, · · · , p, and µj = α′j−p −m for j = p+ 1, · · · , n,
and observe that µp ≥ p− n since d� 0, and that µp+1 = α′1 −m ≤ p−m, so Sµ(p)Cm ⊗ SµCn appears as a
subrepresentation of Dp. Once we verify (3.4) it follows that the pair of partitions (α, β) contributes the term

q|α|+|β| = q2·|α|+p·(m−n) to 〈V ⊗Dp, hp×d(q)〉, hence

〈V ⊗Dp, hp×d(q)〉 =
∑
α

q2·|α|+p·(m−n) (2.2)
= qp·(m−n) ·

(
n

p

)
q2
,

as desired. For 1 ≤ i ≤ p we have that

µ(p)i + n = d+ αi = λ(p, d;α, β)i, and µi +m = d+ αi +m− n = d+ β′i = λ(p, d;β′, α′)i.

We have moreover that for 1 ≤ j ≤ m− n
µ(p)p+j + n = (p− n) + n = p = βj = λ(p, d;α, β)p+j
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and that for p+ 1 ≤ j ≤ n
µj +m = α′j−p = λ(p, d;β′, α′)j and

µ(p)m−n+j + n = µj +m = α′j−p = βm−n+j−p = λ(p, d;α, β)m−n+j ,

showing that (3.4) holds for a = p and concluding our proof. �

3.2. A recursive formula for Euler characteristics. We use the notational conventions from Sections 2.4
and 2.5, and define the Euler characteristic maps

χ : ΓD[q] −→ ΓD and χs : ΓD[q] −→ Z for s = 0, · · · , n,

as follows: if γ(q) ∈ ΓD[q] is expressed as γ(q) =
∑n

s=0[Ds]D · γs(q) with γs(q) ∈ Z[q] then we let

χ(γ(q)) = γ(−1) and χs(γ(q)) = γs(−1). (3.5)

We recall the notation (2.9) where the subscript t indicates that we are considering local cohomology with
support in the orbit closure Ot. Using (2.10) and (2.1) we get that

χs
(
HDt (S; q)

)
=

{
(−1)(n−t)+(n−s)·(m−n) ·

(
n−1−s
t−s

)
for s = 0, · · · , t,

0 for s > t.
(3.6)

Lemma 3.3. For t < p the Euler characteristics χ0(HDt (Dp; q)) satisfy the following recurrence relation:

p∑
s=t+1

χ0(HDt (Ds; q)) · (−1)s·(m−n) ·
(
n− 1− s
p− s

)
= (−1)p−t ·

(
n− 1

t

)
−
(
n− 1

p

)
. (3.7)

Proof. The existence of a spectral sequence

Ei,j2 = H i
Ot

(Hj

Op
(S)) =⇒ H i+j

Ot
(S)

and the fact that Euler characteristic is invariant under taking homology, imply the equality

p∑
s=0

χ0(HDt (Ds; q)) · χs(HDp (S; q)) = χ0(HDt (S; q))

which in view of (3.6) can be reformulated as

p∑
s=0

χ0(HDt (Ds; q)) · (−1)(n−p)+(n−s)·(m−n) ·
(
n− 1− s
p− s

)
= (−1)(n−t)+n·(m−n) ·

(
n− 1

t

)
.

Dividing both sides by (−1)(n−p)+n·(m−n) and moving the term s = 0 to the right hand side yields

p∑
s=1

χ0(HDt (Ds; q)) · (−1)s·(m−n) ·
(
n− 1− s
p− s

)
= (−1)p−t ·

(
n− 1

t

)
− χ0(HDt (D0; q)) ·

(
n− 1

p

)
. (3.8)

Note that for s ≤ t we have that the support of Ds is contained in Ot and in particular H0
Ot

(Ds) = Ds and

Hj

Ot
(Ds) = 0 for j > 0. It follows that χ0(HDt (D0; q)) = 1 and χ0(HDt (Ds; q)) = 0 for 0 < s ≤ t, so (3.8) is

equivalent to the desired relation (3.7). �
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3.3. A binomial identity. The goal of this section is to use the recurrence relation from Lemma 3.3 in order
to deduce a closed formula for the Euler characteristic χ0(HDt (Dp; q)). We prove the following.

Proposition 3.4. For 0 ≤ t < p ≤ n we have that

χ0(HDt (Dp; q)) = (−1)(p−t)+p·(m−n) ·
(
n

p

)
·
(
p− 1

t

)
.

Proof. It suffices to check that the right hand side of the above equality satisfies the recursion in Lemma 3.3,
that is (after cancelling some signs)

p∑
s=t+1

(−1)(s−t) ·
(
n

s

)
·
(
s− 1

t

)
·
(
n− 1− s
p− s

)
= (−1)p−t ·

(
n− 1

t

)
−
(
n− 1

p

)
. (3.9)

It suffices to prove that the (bivariate) generating functions of the two sides coincide, so we multiply each side
by xt · yp and sum over all pairs 0 ≤ t < p of non-negative integers. We have

∑
0≤t<p

(
p∑

s=t+1

(−1)(s−t) ·
(
n

s

)
·
(
s− 1

t

)
·
(
n− 1− s
p− s

))
· xt · yp =

=
∑
s≥1

(
n

s

)
· (−y)s ·

(
s−1∑
t=0

(
s− 1

t

)
· (−x)t

)
·

∑
p≥s

(
n− 1− s
p− s

)
· yp−s

 =

=
∑
s≥1

(
n

s

)
· (−y)s · (1− x)s−1 · (1 + y)n−1−s =

(1 + y)n−1

1− x
·

∑
s≥1

(
n

s

)
·
(
−y · (1− x)

1 + y

)s =

=
(1 + y)n−1

1− x
·
[(

1− y · (1− x)

1 + y

)n
− 1

]
=

(1 + xy)n

(1− x) · (1 + y)
− (1 + y)n−1

1− x
. (3.10)

We split the generating function of the right hand side of (3.9) into two parts, as follows.

∑
0≤t<p

(−1)p−t ·
(
n− 1

t

)
· xt · yp =

∑
t≥0

(
n− 1

t

)
· (xy)t ·

(∑
p>t

(−y)p−t

)
= (1 + xy)n−1 ·

(
−y

1 + y

)
, (3.11)

and ∑
0≤t<p

(
n− 1

p

)
· xt · yp =

∑
p≥0

(
n− 1

p

)
· 1− xp

1− x
· yp =

1

1− x
·
(
(1 + y)n−1 − (1 + xy)n−1

)
. (3.12)

Taking the difference between (3.11) and (3.12) we obtain

(1 + xy)n−1 ·
(

1

1− x
− y

1 + y

)
− (1 + y)n−1

1− x
=

(1 + xy)n

(1− x) · (1 + y)
− (1 + y)n−1

1− x

which is the same as (3.10), proving the identity (3.9). �
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3.4. The proof of Theorem 3.1. The conclusion of Theorem 3.1 can be rephrased using (2.9) as〈
HDt (Dp; q), Ds

〉
D = q(p−t)2+(p−s)·(m−n) ·

(
n− s
p− s

)
q2
·
(
p− 1− s
t− s

)
q2

for s = 0, · · · , t. (3.13)

The fact that
〈
HDt (Dp; q), Ds

〉
D = 0 for s > t follows since we are considering local cohomology groups with

support in Ot, and the modules Ds with s > t have strictly larger support.
We note that the polynomial on the right hand side of the above formula is invariant under subtracting one

from each of m,n, p, t and s. If we restrict the local cohomology groups to the basic open affine X1 = (x11 6= 0)
and use the inductive structure as explained in Section 2.8 then it follows that for s > 0

〈
HDt (Dp; q), [Ds]

〉
D =

〈∑
j≥0

[Hj

O
′
t−1

(D′p−1)] · qj , [D′s−1]

〉
D

so the desired conclusion follows by induction. We are left with considering the case s = 0, where we need to
verify that 〈

HDt (Dp; q), [D0]
〉
D = q(p−t)2+p·(m−n) ·

(
n

p

)
q2
·
(
p− 1

t

)
q2
.

We consider a witness representation for the module D0 (as in (2.14)) defined by

W = S(−nm)Cm ⊗ S(−mn)Cn = det(Cm ⊗ Cn)∨.

As seen in (2.14), the multiplicity of D0 as a composition factor in some GL-equivariant D-module M is
the same as the multiplicity of W as a subrepresentation of M , so W witnesses the occurrences of D0 as a
composition factor of M . It therefore suffices to verify that〈

HGL
t (Dp; q),W

〉
GL

= q(p−t)2+p·(m−n) ·
(
n

p

)
q2
·
(
p− 1

t

)
q2
.

We prove this equality in two steps:

(1) We show the inequality ≤, where
∑
ai · qi ≤

∑
bi · qi if and only if ai ≤ bi for all i.

(2) We show that after plugging in q = −1 we obtain an equality.

For the inequality in (1) we begin by recalling that Ot is defined by the ideal It+1 of (t+ 1)× (t+ 1) minors
of the generic matrix, and that the sequence of ideals I(t+1)×d is cofinal with the sequence of powers of It+1.
It follows from [Eis05, Exercise A1D.1] that

Hj

Ot
(Dp) = lim−→

d

ExtjS(S/I(t+1)×d, Dp). (3.14)

We compute the Ext modules in the above limit from the minimal resolution of S/I(t+1)×d described in [RW17].

We have that ExtjS(S/I(t+1)×d, Dp) is the j-th cohomology group of a complex F • where

F j = TorSj (S/I(t+1)×d,C)∨ ⊗C Dp.

Notice that TorS0 (S/I(t+1)×d,C) = C so that F 0 = Dp and
〈
F 0,W

〉
GL

= 0 since p > 0. Notice also that

TorSj (S/I(t+1)×d,C) = TorSj−1(I(t+1)×d,C) for j ≥ 1,
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so taking d� 0 (in particular d ≥ t+ 1) we have that〈∑
j≥0

[F j ]GL · qj ,W

〉
GL

=

〈
W∨ ⊗Dp,

∑
j≥0

[TorSj (S/I(t+1)×d,C)]GL · qj
〉

GL

= q ·

〈
W∨ ⊗Dp,

∑
j≥0

[TorSj (I(t+1)×d,C)]GL · qj
〉

GL

=

n−1−t∑
r=0

〈
W∨ ⊗Dp, h(t+1+r)×(d+r)(q)

〉
GL
· qr2+2r+1 ·

(
r + t

t

)
q2

(3.15)

where the last equality follows from (3.3) by taking a = t + 1, using the fact that min(t + 1, d) = t + 1, and
noting that

(
r+t
r

)
q2

=
(
r+t
t

)
q2

. Letting a = t+ 1 + r and V = W∨ in Lemma 3.2 it follows that the only term

that survives in (3.15) is the one correponding to r = p− t− 1, which yields〈∑
j≥0

[F j ]GL · qj ,W

〉
GL

= qp·(m−n) ·
(
n

p

)
q2
· q(p−t)2 ·

(
p− 1

t

)
q2
.

This shows that W can only occur as a subrepresentation in F j only if j ≡ p · (m−n) + (p− t)2 (mod 2), and

in particular W does not occur in any two consecutive terms of F •. Since ExtjS(S/I(t+1)×d, Dp) is obtained

as the j-th cohomology group of F •, it follows that
〈

ExtjS(S/I(t+1)×d, Dp),W
〉

GL
=
〈
F j ,W

〉
GL

for all j, and

using (3.14) we conclude that〈
HDt (Dp; q), D0

〉
D =

〈
HGL
t (Dp; q),W

〉
GL
≤ q(p−t)2+p·(m−n) ·

(
n

p

)
q2
·
(
p− 1

t

)
q2
. (3.16)

Since the exponents of q appearing in (3.16) with non-zero coefficient have the same parity, it follows that
in order to prove the equality and conclude Step (2) of our argument, it suffices to check that equality holds
in (3.16) after plugging in q = −1. In this case the left hand side becomes χ0(HDt (Dp; q)), while the right

hand side becomes (−1)(p−t)+p·(m−n) ·
(
n
p

)
·
(
p−1
t

)
, so the conclusion follows from Proposition 3.4. �

One consequence of (3.16) is a vanishing result for the local cohomology groups Hj

Ot
(Dp), based solely on

the parity of j. Similar vanishing results, proved using more refined techniques in Sections 4 and 5, will play
an important role in analyzing square matrices.

Corollary 3.5. If j 6≡ (p − t) + p · (m − n) (mod 2) then Hj

Ot
(Dp) = 0. In particular, when m = n we may

have Hj

Ot
(Dp) 6= 0 only when j ≡ (p− t) (mod 2).

Proof. By (3.16), qj may appear with non-zero coefficient only when j ≡ p · (m−n) + (p− t)2 (mod 2). Since
(p− t)2 and (p− t) have the same parity, the conclusion follows. �

3.5. The proof of Theorem 1.3. We have

Lp(q, w) =
∑
i,j≥0

〈
H i
O0

(
Hmn−j
Op

(S)
)
, D0

〉
D
· qi · wj

=
∑
i≥0

 p∑
s=0

〈
H i
O0

(Ds), D0

〉
D · q

i ·

∑
j≥0

〈
Hmn−j
Op

(S), Ds

〉
D
· wj


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where the first equality follows from (1.5) and the second from the fact that modGL(DX) is semisimple, and
the fact that local cohomology commutes with direct sums. We obtain by reversing the summation order that

Lp(q, w) =

p∑
s=0

〈
HD0 (Ds; q), D0

〉
D ·
〈
HDp (S;w−1), Ds

〉
D · w

mn

(3.13),(2.10)
=

p∑
s=0

qs
2+s·(m−n) ·

(
n

s

)
q2
· w−(n−p)2−(n−s)·(m−n) ·

(
n− 1− s
p− s

)
w−2

· wmn

Using (2.3), it follows that in order to prove (1.7) it suffices to verify the identity

p2 + 2p+ s · (m+ n− 2p− 2) = −(n− p)2 − (n− s) · (m− n)− 2 · (p− s) · (n− 1− p) +mn

which follows by inspection after expanding the products.

4. Vanishing of local cohomology for the subquotients Jx,p

Throughout this section we let m = n, and in order to keep track of the two distinct copies of Cn we will
denote them by F and G respectively. We will then let X = (F⊗G)∨ and S = SymC(F⊗G) be the coordinate
ring of X. Finally, we write GL = GL(F )×GL(G). The goal of this section is to revisit the construction of a
class of GL-equivariant S-modules which have played a prominent role in describing the graded components
of Ext and local cohomology modules for determinantal ideals and their thickenings [RW14, Rai18], and to
prove vanishing results for some of their local cohomology groups. These modules are indexed by pairs (x, p)
with x a partition and p a non-negative integer, and are denoted Jx,p (see Section 4.1 for their construction).

We write m for the maximal homogeneous ideal of the polynomial ring S, so that Hj
m(−) = Hj

O0
(−). Our key

vanishing result below will be proved in Section 4.2.

Theorem 4.1. Suppose that 0 ≤ p ≤ n and that x ∈ Nndom with x1 = · · · = xp. We have

(a) H1
m(ExtjS(Jx,p, S)) = 0 for all j ≥ 0.

(b) If 0 ≤ t ≤ p then Hk
Ot

(Jx,p) = 0 for k 6≡ p− t (mod 2).

4.1. The Jx,p-modules and their relative versions. Recall the notation from Section 2.6. For 0 ≤ p ≤ n
we define

X(p) = Flag([p, n];F )× Flag([p, n];G),

noting that X(n) = Spec(C). On X(p) we have a natural sheaf of algebras given by

S(p) = SymO
X(p)

(Qp(F )⊗Qp(G)) =
⊕

x∈Npdom

SxQp(F )⊗ SxQp(G),

where the last equality comes from Cauchy’s formula just like (2.5). Note that when p = n we get S(n) = S.

We define Y (p) = Spec
X(p)S(p), which is a vector bundle over X(p) whose fiber can be identified locally with

the space of p× p matrices (see Section 2.7). For x ∈ Npdom we let I(p)
x denote the ideal in S(p) (see also (2.6))

generated by SxQp(F )⊗ SxQp(G), and define

I(p)
X =

∑
x∈X
I(p)
x for any subset X ⊂ Npdom.

We define for l < p and z ∈ Npdom the subset of Npdom
succ(z, l; p) = {y ∈ Npdom : y ≥ z and yi > zi for some i > l},
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and consider the S(p)-modules defined by

J (p)
z,l = I(p)

z /I(p)
succ(z,l;p),

with the convention that succ(z, p; p) = ∅ and J (p)
z,p = I(p)

z . When p = n and x ∈ Nndom we have Ix = I(n)
x as in

(2.6), and we write Jx,l = J (n)
x,l . The ideals Ix and the S-modules Jx,l have been studied in [RW14, Section 2B]

and [Rai18, Section 2.1]. As noted in [RW14, Lemma 3.1(a)], if we consider the line bundle

det(p) = detQp(F )⊗ detQp(G) (4.1)

then we have J (p)
x,l ⊗ det(p) = J (p)

x+(1p),l. This allows us to define J (p)
λ,l for any λ ∈ Zpdom: if λ = x − (dp) for

some d ∈ Z≥0 and x ∈ Npdom, we let

J (p)
λ,l = J (p)

x,l ⊗
(

det(p)
)⊗(−d)

. (4.2)

For p+ 1 ≤ q ≤ n, we consider the line bundle on X(p) given by (see the notation in (2.17))

Lq = Lq(F )⊗ Lq(G)

and for µ ∈ Zn−p we define in analogy with (2.18)

Lµ =

n−p⊗
i=1

L⊗µip+i .

For λ ∈ Zpdom, l ≤ p and µ ∈ Zn−p we define the S(p)-module (with S(p)-action inherited from J (p)
λ,l )

M(p)
λ,l;µ = J (p)

λ,l ⊗ L
µ.

As an OX(p)-module, we have a direct sum decomposition

M(p)
λ,l;µ =

⊕
δ≥λ

δi=λi for i>l

SδQp(F )⊗ SδQp(G)⊗ Lµ. (4.3)

We note that if y ∈ Nn−pdom and d ≥ y1, and if we define x ∈ Nndom by letting

x1 = · · · = xp = d and xp+i = yi for i = 1, · · · , n− p, (4.4)

then the module M(p)
(dp),p;y coincides with the one denoted by Mx,p in [RW14, (3-8)]. It follows from [RW14,

Lemma 3.2] that if we define x as in (4.4) then

Hk
(
X(p),M(p)

(dp),p;y

)
=

{
Jx,p if k = 0,

0 otherwise.
(4.5)

We will be interested more generally in the cohomology groups of M(p)
λ,l;µ for l ≤ p, which are naturally

S-modules. It will be useful to note that (2.19) yields det(n) = det(p)⊗ L(1n−p) and therefore

M(p)
λ+(1p),l;µ+(1n−p)

=M(p)
λ,l;µ ⊗ det(n) . (4.6)
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Theorem 4.2. Let 0 ≤ q ≤ p and k ≥ 0, suppose that λ ∈ Zpdom with λ1 = · · · = λq, and that µ ∈ Zn−p.
The cohomology group Hk

(
X(p),M(p)

λ,q;µ

)
admits an S-module composition series with composition factors

isomorphic to Jν,l for l ≤ q and ν ∈ Zndom. Moreover, if λp ≤ µj for some j then the composition series can
be chosen in such a way that each Jν,l appearing as a composition factor satisfies ν1 = · · · = νl+1.

Proof. Using (4.6) and the fact that det(n) is a trivial bundle with fiber det(F )⊗ det(G) we obtain

Hk
(
X(p),M(p)

λ+(1p),q;µ+(1n−p)

)
= Hk

(
X(p),M(p)

λ,q;µ

)
⊗ (det(F )⊗ det(G)).

Since we also have that Jν+(1n),l = Jν,l ⊗ (det(F ) ⊗ det(G)), it follows that we may assume without loss of

generality that λ ∈ Npdom and µ ∈ Nn−p. We next reduce ourselves to the case when µ is dominant. Consider

G(p) = G(p, F )×G(p,G)

and the natural map ψ(p) = ψ
(p)
F × ψ

(p)
G : X(p) −→ G(p) (see (2.20)). Using Theorem 2.1(a) we get that

Riψ
(p)
∗

(
M(p)

λ,q;µ

)
= Ri−2lψ

(p)
∗

(
M(p)

λ,q;µ̃

)
for all i ∈ Z,

where l is the number of inversions in µ+ δ(n−p). We know moreover that Riψ
(p)
∗

(
M(p)

λ,q;µ

)
is non-zero for at

most one value of i, so the Leray spectral sequence degenerates and yields

Hk
(
X(p),M(p)

λ,q;µ

)
= Hk−i

(
G(p), Riψ

(p)
∗

(
M(p)

λ,q;µ

))
= Hk−i

(
G(p), Ri−2lψ

(p)
∗

(
M(p)

λ,q;µ̃

))
= Hk−2l

(
X(p),M(p)

λ,q;µ̃

)
.

Notice that if λp ≤ µj for some j, then (2.21) forces λp ≤ µ̃1. With these reductions, we prove our Theorem

by induction on p and q. When p = q = 0 we have M(p)
λ,q;µ = Lµ. Since µ is dominant, it follows that its

higher cohomology groups vanish and

H0
(
X(p),M(p)

λ,q;µ

)
= SµF ⊗ SµG = Jµ,0,

proving the base case. Suppose next that 0 ≤ q < p, consider the natural map (see (2.15))

π(p−1) = π
(p−1)
F × π(p−1)

G : X(p−1) −→ X(p)

and define
λ− = (λ1, · · · , λp−1) and µ+ = (λp, µ1, · · · , µn−p).

We have using Theorem 2.1(c) that

Riπ
(p−1)
∗

(
M(p−1)

λ−,q;µ+

)
=

{
M(p)

λ,q;µ if i = 0;

0 otherwise.

The Leray spectral sequence degenerates again, showing that

Hk
(
X(p),M(p)

λ,q;µ

)
= Hk

(
X(p−1),M(p−1)

λ−,q;µ+

)
and allowing us to obtain the desired conclusion by induction on p.

Finally, the most interesting situation is when p = q > 0, in which case λ = (dp) for some d ≥ 0. If d > µ1

then it follows from (4.5) that M(p)
λ,q;µ has no higher cohomology and

H0
(
X(p),M(p)

λ,q;µ

)
= Jν,p, where ν = (dp, µ1, · · · , µn−p).
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Note that in this case νp 6= νp+1! If d ≤ µ1 then we obtain a filtration of M =M(p)
λ,p;µ given by

M =M0 ⊃M1 ⊃ · · · ⊃ Mµ1−d, where Mi =M(p)
λ+(ip),p;µ for i = 0, · · · , µ1 − d,

where the inclusions are the natural ones, compatible with the decomposition (4.3). In particular, eachMi+1

is a direct summand in Mi (as an OX(p)-module, but not as an S(p)-module!), and we obtain a filtration

Hk
(
X(p),M

)
⊇ Hk

(
X(p),M1

)
⊇ · · · ⊇ Hk

(
X(p),Mµ1−d

)
. (4.7)

It follows from (4.5) that Hk
(
X(p),Mµ1−d

)
= 0 for k > 0 and

H0
(
X(p),Mµ1−d

)
= Jν,p where ν1 = · · · = νp+1 = µ1 and νp+i = µi for i = 2, · · · , n− p.

Moreover, since

Mi/Mi+1 =M(p)

λi,p−1;µi
, where λi = (d+ i)p−1 and µi = (d+ i, µ1, · · · , µn−p),

it follows that the intermediate quotients in the filtration (4.7) have the form

Hk
(
X(p),Mi/Mi+1

)
= Hk

(
X(p),M(p)

λi,p−1;µi

)
which by induction (on q) have an S-module filtration with composition factors as in the statement of the

Theorem. Therefore (4.7) can be further refined to obtain the desired filtration for Hk
(
X(p),M

)
. �

We will use Theorem 4.2 in conjunction with the following vanishing result. Recall that m is the maximal
homogeneous ideal of the polynomial ring S.

Lemma 4.3. Suppose that 0 ≤ l ≤ n and that ν ∈ Zndom is such that ν1 = · · · = νl. If l 6= 1 or if l = 1 and
ν1 = ν2 then

H1
m(Jν,l) = 0.

Proof. Using graded local duality, the desired vanishing is equivalent to

Extn
2−1
S (Jν,l, S) = 0.

Based on (4.2), we may assume without loss of generality that ν ∈ Nndom so we can apply [RW14, Theorem 3.3]

which completely describes the graded components of all the modules ExtjS(Jν,l, S). Based on the said theorem,

the vanishing of Extn
2−1
S (Jν,l, S) amounts to proving that it is impossible to find integers

0 ≤ s ≤ t1 ≤ · · · ≤ tn−l ≤ l and dominant weights α ∈ Zndom

simultaneously satisfying the following conditions:
l2 + 2

∑n−l
j=1 tj = 1

αn ≥ l − νl − n
αtj+j = tj − νn+1−j − n for j = 1, · · · , n− l
αs ≥ s− n and αs+1 ≤ s− n

where by convention α0 =∞. The first condition already forces l = 1 and t1 = · · · = tn−1 = 0. Applying the
third condition for j = n− 1 we obtain αn−1 = −ν2 − n. Since α is dominant we must then have

−ν2 − n = αn−1 ≥ αn ≥ 1− ν1 − n,
which in turn implies ν1− 1 ≥ ν2 and in particular ν1 6= ν2. It follows that if l 6= 1 or if l = 1 and ν1 = ν2 the

above conditions cannot be satisfied and Extn
2−1
S (Jν,l, S) = 0, concluding our proof. �
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Remark 4.4. If l = 1 and ν1 > ν2 then H1
m(Jν,l) 6= 0. As explained in the proof above we may assume that ν

is a partition. We can then take s = t1 = · · · = tn−1 = 0 and define α ∈ Zndom by letting

αj = −νn+1−j − n for j = 1, · · · , n− 1, and αn = 1− ν1 − n.

It follows that SαF ⊗ SαG appears as a subrepresentation of Extn
2−1
S (Jν,l, S), proving that H1

m(Jν,l) 6= 0.

Corollary 4.5. Suppose that p, q, λ, µ are as in the statement of Theorem 4.2 . If λp ≤ µj for some j then

H1
m

(
Hk
(
X(p),M(p)

λ,q;µ

))
= 0 for all k.

Proof. We know by Theorem 4.2 that each of the groups Hk
(
X(p),M(p)

λ,q;µ

)
has an S-module filtration with

composition factors isomorphic to Jν,l where ν1 = · · · = νl+1, so it suffices to prove that H1
m(Jν,l) = 0 for each

such factor. Since no factor has l = 1 and ν1 6= ν2, the desired vanishing follows from Lemma 4.3. �

We record for later use one more vanishing result which is a direct consequence of Bott’s Theorem.

Lemma 4.6. Suppose that M decomposes as an OX(p)-module into a direct sum of sheaves of the form

B = SνQq(F )⊗ Lµ(F )⊗ SνQq(G)⊗ Lµ(G),

where ν ∈ Zpdom and µ ∈ Zn−p. We have that

Hk
(
X(p),M

)
= 0 for k odd.

Proof. Combining the Künneth Theorem with Theorem 2.1(b) we see that B has non-vanishing cohomology

if and only if (ν|µ) + δ(n) has no repeated entries, in which case its only non-vanishing cohomology group is

H2l(X(p),B) = H l (Flag([p, n];F ),SνQq(F )⊗ Lµ(F ))⊗H l (Flag([p, n];G),SνQq(G)⊗ Lµ(G))

where l is the number of inversions in (ν|µ) + δ(n). In particular Hk(X(p),B) = 0 for k odd, so the same is
true for M, concluding the proof. �

Remark 4.7. The above vanishing applies when M = M(p)
λ,q;µ, where 0 ≤ q ≤ p, λ ∈ Zpdom is such that

λ1 = · · · = λq, and µ ∈ Zn−p.

4.2. Proof of Theorem 4.1. We fix 0 ≤ p ≤ n and x ∈ Nndom with x1 = · · · = xp. We write X = X(p),

Y = Y (p), and consider the commutative diagram

Y �
� ι //

φ &&

T = SpecS ×X

π

��

πT // X

SpecS

We can identify T with the total space of the trivial bundle (F ⊗G)∨ over X , and Y with a subbundle of T
via the inclusion ι. We write πY = πT ◦ ι for the projection map Y → X .

We define y ∈ Nn−pdom by letting yi = xp+i for i = 1, · · · , n− p, set d = x1 and let M =M(p)
(dp),p;y. We write

S = S(p), D = det(p), and thinking of M as an S-module on X we have that

M = S ⊗OX V where V = D⊗d ⊗OX L
y is a line bundle on X . (4.8)

We can then think of M as being locally (on the base X ) isomorphic to S, or as the invertible sheaf π∗YV on
Y. The relationship between M and Jx,p is given by (4.5), which can be interpreted as the equality

Rφ∗(M) = Jx,p (4.9)
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in the derived category, where Jx,p is considered as a complex concentrated in cohomological degree 0.

Proof of Theorem 4.1(a). Observe that ExtjS(Jx,p, S) = Rj HomS(Jx,p, S). Using (4.9) and Grothendieck
Duality [Har66, Theorem 11.1] we obtain

RHomS(Jx,p, S) = RHomS(Rφ∗(M), S) = Rφ∗(RHom Y(M, φ!S)) = Rφ∗(M∨ ⊗OY φ
!S)) (4.10)

where the last equality follows from the fact that M is locally free. By functoriality we have φ!S = ι!(π!S)
and π!S = π∗TωX [dimX ], where [−] indicates the shift in cohomological degree and ωX is the canonical bundle
on X (see [Har66, Section III.2]). We have moreover using [Har66, Section III.6] that

φ!S = ι!(π∗TωX [dimX ]) = ι∗RHom T (ι∗OY , π∗TωX [dimX ])

= det(NY|T )[dim(Y)− dim(T )]⊗OY π
∗
YωX [dimX ]

(4.11)

where NY|T is the normal bundle of Y in X . We have NY|T = π∗Yξ
∨, where

ξ = ker ((F ⊗G)⊗OX −→ Qp(F )⊗Qp(G)) ,

so in order to compute det(NY|T ) it suffices to compute det(ξ). We have

det(ξ) = det(F ⊗G)⊗ det(Qp(F )⊗Qp(G))∨ =
(

det(n)
)⊗n
⊗OX

(
det(p)

)⊗(−p)
= D⊗(n−p) ⊗OX L

(nn−p),

where the last equality follows from the fact that det(n) = det(p)⊗OXL(1n−p). We have moreover that

dim(Y)− dim(T ) + dim(X ) = −n+ p,

and the canonical bundle on X is given by (see for instance [Wey03, Exercise 13, Chapter 3])

ωX = D⊗(p−n) ⊗OX L
(2p+1−n,2p+3−n,··· ,n−1).

We can therefore rewrite (4.11) as

φ!S = π∗Y

(
D⊗(2p−2n) ⊗OX L

(2p+1−2n,2p+3−2n,··· ,−1)
)

[−n+ p]

Tensoring this with M∨ = π∗Y
(
D⊗(−d) ⊗OX L

−y) we obtain

M∨ ⊗OY φ
!S =M(p)

λ,p;µ[−n+ p], where

λ = ((2p− 2n− d)p) and µi = 2p+ 2i− 1− 2n− yi for 1 ≤ i ≤ n− p.
It follows from (4.10) that

ExtjS(Jx,p, S) = Rjφ∗

(
M(p)

λ,p;µ[−n+ p]
)

= Hj−n+p
(
X(p),M(p)

λ,p;µ

)
.

Since d ≥ y1 it follows that λp = 2p − 2n − d ≤ µ1 = 2p + 1 − 2n − y1, so we can apply Corollary 4.5 to

conclude that H1
m(ExtjS(Jx,p, S)) = 0 for all j. �

Proof of Theorem 4.1(b). We let Zt = φ−1(Ot) and note that working relative to the base X , Zt is locally the
variety of p×p matrices of rank at most t. It is cut out inside Y by the sheaf of ideals I(t+1)×1 ⊂ S. It follows
from the discussion in Section 2.7 that if we set m = n = p in (2.10) then

HjZt(Y,OY) = HjI(t+1)×1
(X ,S) =

{
0 if j 6≡ (p− t) (mod 2),⊕

SλQp(F )⊗ SλQp(G) if j ≡ (p− t) (mod 2),
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where the direct sum is over some collection of weights λ ∈ Zpdom (with repetitions allowed), whose precise
description follows from (2.7), but is not relevant for the rest of the argument. It follows from (4.8) that

HjZt(Y,M) =

{
0 if j 6≡ (p− t) (mod 2),

V ⊗OX (
⊕

SλQp(F )⊗ SλQp(G)) if j ≡ (p− t) (mod 2).
(4.12)

Writing ΓZ for the functor of sections with support in Z, we get a natural isomorphism

ΓOt ◦ φ∗ = φ∗ ◦ ΓZt

which yields in the derived category

RΓOt(Jx,p) = RΓOt(Rφ∗M) = Rφ∗(RΓZt(M)).

This means that we have a spectral sequence

Ei,j2 = H i(Y,HjZt(Y,M)) =⇒ H i+j

Ot
(Jx,p).

We have noted in (4.12) that HjZt(Y,M) = 0 when j 6≡ (p− t) (mod 2), and it follows from Lemma 4.6 and

(4.12) that H i(Y,HjZt(Y,M)) = 0 when i is odd. It follows that

Ei,j2 = 0 when i+ j 6≡ (p− t) (mod 2),

proving that Hk
Ot

(Jx,p) = 0 for k 6≡ (p− t) (mod 2), as desired. �

5. More vanishing of local cohomology

The goal of this short section is to prove two vanishing results, which are based on Theorem 4.1 and will
constitute important ingredients in describing the module structure of local cohomology groups for square
matrices. We continue to assume as in Section 4 that m = n.

Theorem 5.1. For all p < n and all j ≥ 0 we have that

H1
m(Hj

Op
(S)) = 0.

Proof. As in (3.14) we can write

Hj

Op
(S) = lim−→

d

ExtjS(S/I(p+1)×d, S).

Since local cohomology commutes with direct limits, it is sufficient to prove that

H1
m(ExtjS(S/I(p+1)×d, S)) = 0.

Using [RW14, Lemma 2.2] (with the notation there, we choose x to be the zero partition and y = (dp+1)),
we see that the modules S/I(p+1)×d admit a finite filtration by S-submodules whose successive quotients are
of the form Jz,p, with z1 = · · · = zp(= zp+1). By [RW14, Corollary 3.5] (see also [Rai18, Theorem 3.2]), this

induces a filtration on ExtjS(S/I(p+1)×d, S) with successive quotients ExtjS(Jz,p, S). The conclusion follows
now from Theorem 4.1(a). �

Recall the definition of Qp from (1.12). The following should be seen as an analogue of Corollary 3.5.

Theorem 5.2. If t ≤ p then we have that for all k 6≡ p− t (mod 2)

Hk
Ot

(Qp) = 0.
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Proof. Note that since Sdet = Qn, we have by (2.12) a decomposition

Sdet =
⊕

λ∈Zndom

SλCn ⊗ SλCn,

analogous to (2.5), with the only difference that λ is allowed to be any dominant weight, as opposed to just
a partition. In analogy with Ix, we can then define the fractional ideals Iλ to be the S-submodules of Sdet

generated by SλCn ⊗ SλCn. We have Iλ = det−1 ·Iλ+(1n), and it follows from (2.6) that

Iλ =
⊕
µ≥λ

SµCn ⊗ SµCn. (5.1)

We can write

Sdet = lim−→
d

(det−d ·S) = lim−→
d

I(−dn).

Using (1.12) and (2.12) it follows that

〈detp−n+1〉D =
⊕

λp+1≥p+1−n
SλCn ⊗ SλCn

and in particular using (5.1) we get

I(−dn) ∩ 〈detp−n+1〉D = I((p+1−n)p+1,(−d)n−p−1).

for d� 0. We can then rewrite (1.12) as

Qp = lim−→
d

I(−dn)

I((p+1−n)p+1,(−d)n−p−1)
= lim−→

d

detd ·I(−dn)

detd ·I((p+1−n)p+1,(−d)n−p−1)

= lim−→
d

S

I(p+1)×(d+p+1−n)
.

Since local cohomology commutes with direct limits, it is enough to show that

Hk
Ot

(S/I(p+1)×(p−n+d+1)) = 0 for k 6≡ p− t (mod 2) and d� 0.

As seen in the proof of Theorem 5.1, the modules S/I(p+1)×(p−n+d+1) admit a finite composition series by
S-submodules, with composition factors of the form Jz,p, with z1 = · · · = zp. The desired vanishing now
follows from Theorem 4.1(b). �

6. Module structure of local cohomology groups

The goal of this section is to describe for X = Cn×n the decomposition into a sum of indecomposable
objects in modGL(DX) of the local cohomology groups H•

Ot
(Dp) and H•

Ot
(Qp). In the case of non-square

matrices (m > n) we have noted that modGL(DX) is semi-simple, so the indecomposable objects are the
simple modules D0, · · · , Dn, and the decomposition of the local cohomology groups into a sum of simple
modules is already encoded by their class in the Grothendieck group described in Theorem 3.1. We will
therefore only be concerned with the case when m = n for the rest of the section.

To state the main results of the section, we begin by considering the full additive subcategory add(Q) of
modGL(DX) formed by the DX -modules that are isomorphic to a direct sum of copies of Q0, Q1, . . . , Qn. We
let Ψ denote the semigroup of isomorphism classes of objects in add(Q), where the semigroup operation is
given by direct sum. We write [M ] for the class in Ψ of a module M ∈ add(Q). We have a natural inclusion
of Ψ as a sub-semigroup of ΓD, given by [M ] 7→ [M ]D. Our first theorem describes the local cohomology
groups H•

Ot
(Dp) as elements of add(Q) as follows.
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Theorem 6.1. For every t, p, j with 0 ≤ t < p ≤ n and j ≥ 0 we have that Hj

Ot
(Dp) ∈ add(Q). Moreover,

∑
j≥0

[Hj

Ot
(Dp)] · qj =

t∑
s=0

[Qs] · q(p−t)2 ·ms(q
2)

holds in Ψ[q], where ms(q) ∈ Z[q] is computed by mt(q) =

(
n− t
p− t

)
q

and

ms(q) =

(
n− s
p− s

)
q

·
(
p− 1− s
t− s

)
q

−
(
n− s− 1

p− s− 1

)
q

·
(
p− 2− s
t− 1− s

)
q

for s = 0, · · · , t− 1.

Proof. The main content of the theorem is the assertion that Hj

Ot
(Dp) ∈ add(Q), which will be proved in

Proposition 6.11. Since Ψ embeds into ΓD, we can determine the polynomials ms(q) by expressing [Hj

Ot
(Dp)]D

in terms of [Qs]D. Using the fact that [Ds]D = [Qs]D − [Qs−1]D for s ≥ 1 and [D0]D = [Q0]D, the desired
formula for ms(q) follows from the case m = n of Theorem 3.1. �

In order to be able to compute iterated local cohomology groups, we need to be able to describe the local
cohomology groups of the modules Qp.

Theorem 6.2. For every t, p, j with 0 ≤ t < p ≤ n and j ≥ 0 we have that Hj

Ot
(Qp) ∈ add(Q). Moreover,

∑
j≥0

[Hj

Ot
(Qp)] · qj =

t∑
s=0

[Qs] · q(p−t)2+2(p−s) ·
(
n− s− 1

p− s

)
q2
·
(
p− s− 1

p− t− 1

)
q2

holds in Ψ[q]. (6.1)

6.1. The quiver description of modGL(DX). We recall from [LW19] the quiver-theoretical description of
the category modGL(DX), referring the reader to [LRW19, Section 2.4] for a quick summary of the notation
and properties of quiver representations that we will use. In particular, for a quiver representation W we
write Wx for the vector space associated to a vertex x, and write W(α) for the linear transformation attached
to an arrow α. We consider the quiver with relations pictured as

ÂAn : (0)
α1 // (1)
β1
oo

α2 // · · ·
β2
oo

αn−1// (n− 1)
βn−1

oo
αn // (n)
βn
oo (6.2)

where the relations are given by the condition that all 2-cycles are zero (i.e. αiβi = 0 = βiαi for all i =
1, . . . , n). By [LW19, Theorem 5.4] we have an equivalence of categories

modGL(DX) ' rep(ÂAn) (6.3)

between modGL(DX) and the category of finite-dimensional representations of ÂAn. For instance, under this
equivalence the simple DX -module Dp corresponds to the irreducible representation

D(p) : 0
0 // · · ·
0

oo
0 // 0
0
oo

0 // C
0

oo
0 // 0
0
oo

0 // · · ·
0

oo
0 // 0
0
oo ,

where a one dimensional vector space C is placed at vertex (p), and 0 is placed at all the other vertices. It
will be important to identify the quiver representations corresponding to the modules Qp in (1.12).
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Lemma 6.3. For each p = 0, · · · , n, we consider the representation Q(p) ∈ rep(ÂAn) obtained by letting

Q
(p)
(i) = C for 0 ≤ i ≤ p, and Q

(p)
(i) = 0 for i > p, and with maps as pictured below

Q(p) : C
1 // C
0
oo

1 // · · ·
0

oo
1 // C
0
oo

0 // 0
0
oo

0 // · · ·
0

oo
0 // 0
0
oo (6.4)

We have that Q(p) contains D(p) as its unique irreducible subrepresentation, and that Q(p)/D(p) ' Q(p−1).

Moreover, the DX-module Qp corresponds via (6.3) to the representation Q(p) for all 0 ≤ p ≤ n.

Proof. The fact that D(p) is a subrepresentation of Q(p) and the identification Q(p)/D(p) ' Q(p−1) follow from

the definition of Q(p). If W ⊆ Q(p) is a subrepresentation with W(i) = C for some i < p, then W(i+1) contains

the image under Q(p)(αi+1) of W(i), that is W(i+1) = C. It follows that W(j) = C for all j = i, · · · , p, and in
particular W contains Dp as a subrepresentation.

To prove that Qp corresponds to Q(p) via (6.3) we argue by descending induction on p. Using (1.10–1.12)
we get that Qp−1 ' Qp/Dp, proving the inductive step. It remains to address the base case p = n, when
Qn = Sdet. If we apply [LRW19, Lemma 2.4] with G = GL, Y = Cn×n, U = O = On the dense orbit of
rank n matrices, and j : U −→ Y the natural inclusion, it follows that Sdet = j∗j

∗S is the injective envelope
of S = Dn in modGL(DX), so Sdet corresponds via (6.3) to the injective envelope of D(n). Using the quiver

description of the injective envelope of a simple representation from [LRW19, (2.15)], it follows that Q(n) is

the injective envelope of D(n), concluding the proof. �

For each p = 0, · · · , n we consider the full subcategory

mod
Op
GL(DX)

of modGL(DX) consisting of modules with support contained in Op. This subcategory is closed under exten-

sions and taking subquotients, and it corresponds via (6.3) to the subcategory rep(ÂAp) of rep(ÂAn), obtained

by forgetting the vertices (p + 1), · · · , (n) of the quiver ÂAn. We have the following important observation,

which follows from [LRW19, (2.15)] and the equivalence with rep(ÂAp).

Lemma 6.4. Inside the category mod
Op
GL(DX), the module Qp is the injective envelope of Dp and the projective

cover of D0. In particular, Qp is indecomposable.

To describe local cohomology groups we will work mainly in the additive subcategory add(Q) of modGL(DX).
One property that will be important for us is that add(Q) is closed under taking extensions and quotients.

Lemma 6.5. For every 0 ≤ i, j ≤ n we have that Ext1
modGL(DX)(Qi, Qj) = 0. In particular, every short exact

sequence in modGL(DX)
0 −→M1 −→ N −→M2 −→ 0, (6.5)

with M1,M2 ∈ add(Q) splits, and hence N ∈ add(Q). More generally, if N ∈ modGL(DX) has a composition
series with composition factors in add(Q), then N ∈ add(Q).

Proof. For the first assertion, we let p = max(i, j) and note that since mod
Op
GL(DX) is closed under taking

extensions it suffices to prove that
Ext1

mod
Op
GL(DX)

(Qi, Qj) = 0.

By Lemma 6.4, if p = i then Qi is projective in mod
Op
GL(DX), while if p = j then Qj is injective, so the above

vanishing follows. Since Ext1 commutes with finite direct sums, it follows that Ext1
modGL(DX)(M2,M1) = 0
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for M1,M2 ∈ add(Q), and therefore (6.5) splits. To prove the last assertion, we argue by induction on the
length of the composition series. We write N as an extension (6.5), where M2 ∈ add(Q) and M1 has a shorter
composition series with composition factors in add(Q). By induction we have that M1 ∈ add(Q), hence (6.5)
splits and N is also in add(Q). �

Lemma 6.6. Any quotient of Qp in modGL(DX) is isomorphic to Qq for some 0 ≤ q ≤ p. More generally, if
M ∈ add(Q) then any quotient of M is also in add(Q).

Proof. We prove the first assertion by induction on p. By Lemma 6.3 and (6.3), Dp is the unique simple
submodule of Qp, and therefore every proper quotient of Qp factors through Qp/Dp = Qp−1. By induction,
every quotient of Qp−1 is isomorphic to Qq for some 0 ≤ q ≤ p − 1, so the same must be true about every
proper quotient of Qp.

For the last assertion we argue by induction on the length of M . We consider a quotient π : M � P and
write M = Qp ⊕N with N ∈ add(Q), and let P ′ = π(Qp). Using the previous paragraph, P ′ ' Qq for some
0 ≤ q ≤ p. The map π induces a map of short exact sequences, where P ′′ = P/P ′,

0 // Qi //

��

M //

��

N //

��

0

0 // P ′ // P // P ′′ // 0

where the vertical maps are surjective. Since N has smaller length than M , it follows that P ′′ ∈ add(Q),
hence P ∈ add(Q) by Lemma 6.5. �

6.2. Local cohomology of the polynomial ring S. The goal of this section is to prove that the local
cohomology groups of S are in add(Q), thus proving the case p = n of Theorem 6.1. Our argument will be
inductive, starting with the observations in Section 2.8. We let X1 ⊂ X denote the basic open affine where
x11 6= 0, let U = X \ {0}, and let j1 : X1 → U denote the open immersion.

Lemma 6.7. If M,N ∈ modGL(DU ) are such that there exists a DX1-module isomorphism j∗1M ' j∗1N then
M ' N .

Proof. We let Z = U \X1 and consider the exact sequences

0 // H0
Z(M) // M

α // j1∗j
∗
1M

α′ //

φ '
��

H1
Z(M) // 0

0 // H0
Z(N) // N

β // j1∗j
∗
1N

β′ // H1
Z(N) // 0

where φ exists by assumption. Since Z contains no invariant closed subset of U , it follows that no non-zero
subquotient of M and N can have support in Z. Hence, we have H0

Z(M) = H0
Z(N) = 0 and therefore α, β

are injective. Moreover, we have β′ ◦ φ ◦ α = 0 and α′ ◦ φ−1 ◦ β = 0, so that φ ◦ α (resp. φ−1 ◦ β) lifts to an
injective DU -module homomorphism φ1 (resp. φ2). Since M and N have finite length, it follows that their
lengths coincide, and φ1 and φ2 must be isomorphisms. �

Proposition 6.8. For all t < n and i ≥ 0 we have H i
Ot

(S) ∈ add(Q).

Proof. We proceed by induction on n: if t = 0 then each H i
Ot

(S) is a direct sum of copies of D0 = Q0, so

it is in add(Q). We may assume then that n > t ≥ 1 and let j : U −→ X denote the inclusion. For any
DX -module M , we have the exact sequence

0 −→ H0
m(M) −→M −→ j∗j

∗M −→ H1
m(M) −→ 0. (6.6)
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We let Q0
p = j∗Qp for 1 ≤ p ≤ n and prove that j∗Q

0
p = Qp. From Lemma 6.3 we see that Qp has no

submodules supported at O0, so H0
m(Qp) = 0. Choosing M = Qp in (6.6) gives then the exact sequence

0 −→ Qp −→ j∗Q
0
p −→ H1

m(Qp) −→ 0.

Since H1
m(Qp) is a direct sum of copies of D0 = Q0, it follows from Lemma 6.5 that the above sequence splits.

If we set M = j∗Q
0
p in (6.6) and note that the map j∗Q

0
p → j∗j

∗j∗Q
0
p is an isomorphism, we get H0

m(j∗Q
0
p) = 0.

Since H1
m(Qp) is a summand of j∗Q

0
p supported at O0, this shows that H1

m(Qp) = 0 and j∗Q
0
p = Qp.

We now claim that each j∗H i
Ot

(S) is a direct sum of copies of the DU -modules Q0
1, . . . , Q

0
n. To prove this,

it suffices by Lemma 6.7 to show that an isomorphism exists after restricting to X1. For that we have

j∗1j
∗H i

Ot
(S) =

(
H i
Ot

(S)
)
|X1

(2.23)
= π∗(H i

O
′
t−1

(S′))
(2.22)

=
⊕

1≤s≤t
(Q⊕ass )|X1

=
⊕

1≤s≤t
j∗1(Q0

s)
⊕as

where the equality labelled (2.22) uses also the induction hypothesis, and where the numbers as are in Z≥0.
Since j∗H i

Ot
(S) is a direct sum of copies of Q0

1, . . . , Q
0
n, and j∗Q

0
p = Qp for 1 ≤ p ≤ n, it follows now that

j∗j
∗H i

Ot
(S) ∈ add(Q). Setting M = H i

Ot
(S) in (6.6) we obtain using Theorem 5.1 the exact sequence

0→ H0
m(H i

Ot
(S)) −→ H i

Ot
(S) −→ j∗j

∗H i
Ot

(S) −→ 0.

Since H0
m(H i

Ot
(S)) ∈ add(Q), it follows from Lemma 6.5 that H i

Ot
(S) ∈ add(Q), concluding the proof. �

6.3. The structure of the modules H•
Op−1

(Qp). In this section we prove the case t = p−1 of Theorem 6.2.

Lemma 6.9. For all j ≥ 0 and t < n we have Hj

Ot
(Sdet) = 0.

Proof. Multiplication by the polynomial det induces an S-module isomorphism Sdet
· det−→ Sdet, which in turn

gives rise to an isomorphism Hj

Ot
(Sdet)

· det−→ Hj

Ot
(Sdet) for each j ≥ 0. Since the polynomial det vanishes on

Ot it follows that every element m ∈ Hj

Ot
(Sdet) is annihilated by detk for some k. Since multiplication by

detk is an isomorphism, we conclude that m = 0 and, since m was arbitrary, that Hj

Ot
(Sdet) = 0. �

Lemma 6.10. For all p ≤ n and j ≥ 0, we have Hj

Op−1
(Qp) ∈ add(Q) and

H0
Op−1

(Qp) = H1
Op−1

(Qp) = 0. (6.7)

Proof. The case p = n follows from Lemma 6.9, so we may assume that p < n. We consider the spectral
sequence

Ei,j2 = H i
Op−1

(Hj

Op
(S)) =⇒ H i+j

Op−1
(S).

If we let cp = (n− p)2 denote the codimension of Op in X, then we know that Hj

Op
(S) has support contained

in Op−1 if j 6= cp, and therefore Ei,j2 = 0 if i 6= 0 and j 6= cp. Moreover, combining Proposition 6.8 with (1.13)
and (3.1) we see that H

cp

Op
(S) ∼= Qp, so we have

E
i,cp
2 = H i

Op−1
(Qp) for i ≥ 0 and E0,j

2 = Hj

Op
(S) for j 6= cp. (6.8)

It follows that the potentially non-zero groups Ei,j2 are arranged along a hook shape centered around the point
(i, j) = (0, cp), and that the only potentially non-zero maps in the spectral sequence are the homomorphisms

E
0,cp+r−1
2 = E

0,cp+r−1
r

dr−→ E
r,cp
r = E

r,cp
2 for r ≥ 2. (6.9)
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It follows that

E
0,cp+r−1
∞ = ker(dr) and E

r,cp
∞ = coker(dr) for r ≥ 2.

Since Hk
Op−1

(S) = 0 for k ≡ cp (mod 2) by the case p = m = n and t = p− 1 of Corollary 3.5 it follows that

E0,j
∞ = 0 when j ≡ cp (mod 2). Since E0,j

2 = 0 for j 6≡ cp (mod 2) by (6.8) and Corollary 3.5, we conclude

that E0,j
∞ = 0 for all j ≥ 0, and in particular that all the maps dr in (6.9) are injective. The vanishing of E0,j

∞
and the shape of the spectral sequence show that

E
i,cp
∞ = H

i+cp

Op−1
(S) for all i ≥ 0, (6.10)

and therefore we obtain short exact sequences

0 −→ E
0,cp+r−1
2

dr−→ E
r,cp
2 −→ H

r+cp

Op−1
(S) −→ 0

Since the modules E
0,cp+r−1
2 and H

r+cp

Op−1
(S) are in add(Q) by Proposition 6.8 and (6.8), it follows from Lemma

6.5 that the same is true for E
r,cp
2 , i.e. Hr

Op−1
(Qp) ∈ add(Q) for all r ≥ 2.

Since the maps (6.9) do not involve any of the modules E
i,cp
r for i = 0, 1, it follows that

H i
Op−1

(Qp)
(6.8)
= E

i,cp
2 = E

i,cp
∞

(6.10)
= H

i+cp

Op−1
(S) = 0 for i = 0, 1,

where the vanishing of H
i+cp

Op−1
(S) follows from the fact that

cp−1 = (n− p+ 1)2 > i+ cp = i+ (n− p)2 for i = 0, 1 and p < n,

proving (6.7) and concluding our proof. �

6.4. Local cohomology of the simples Dp. We are now ready to finalize the proof of Theorem 6.1.

Proposition 6.11. For every j ≥ 0 and t, p with 0 ≤ t < p ≤ n we have Hj

Ot
(Dp) ∈ add(Q).

Proof. We prove the result by descending induction on the pair t < p. We begin with the case when t = p− 1
and consider the short exact sequence

0 −→ Dp −→ Qp −→ Qp−1 −→ 0.

Since H0
Op−1

(Qp−1) = Qp−1, Hj

Op−1
(Qp−1) = 0 for j > 0 by (1.3), and Hj

Op−1
(Qp) = 0 for j = 0, 1 by (6.7), we

obtain by the long exact sequence in cohomology that

H0
Op−1

(Dp) = 0, H1
Op−1

(Dp) = Qp−1, and Hj

Op−1
(Dp) = Hj

Op−1
(Qp) for j ≥ 2. (6.11)

It follows from Lemma 6.10 that Hj

Op−1
(Dp) ∈ add(Q) for all j ≥ 0. For the inductive step we consider

1 ≤ t < p and the spectral sequence

Ei,j2 = H i
Ot−1

(Hj

Ot
(Dp)) =⇒ H i+j

Ot−1
(Dp).

By induction, the modules Hj

Ot
(Dp) belong to add(Q), and their summands are among Q0, . . . , Qt, since they

have support contained in Ot. Using the fact that for s ≤ t− 1 we have H0
Ot−1

(Qs) = Qs and H i
Ot−1

(Qs) = 0,

together with the fact that H i
Ot−1

(Qt) ∈ add(Q) proved in Lemma 6.10, we conclude that each Ei,j2 belongs

to add(Q). Our final goal is to prove that Ei,j∞ ∈ add(Q), since the modules Ei,j∞ constitute the composition
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factors of H i+j

Ot−1
(Dp) with respect to the filtration induced by the spectral sequence. By Lemma 6.5, this will

imply that Hk
Ot−1

(Dp) ∈ add(Q) for all k ≥ 0, concluding the inductive step.

Using Theorem 3.1 we have that Hk
Ot−1

(Dp) = 0 for k ≡ p − t (mod 2), so we only need to consider the

modules Ei,j∞ when i+ j 6≡ p− t (mod 2). We will prove by induction on r ≥ 2 that Ei,jr is a quotient of Ei,j2
when i+ j 6≡ p− t (mod 2). Since Er+1 = ker(dr)/Im(dr), it suffices to check that the differentials

di,jr : Ei,jr −→ Ei+r,j−r+1
r are identically 0 for i+ j 6≡ p− t (mod 2).

Since i+ r ≥ 2 this is in turn is implied by the vanishing

Ei,j2 = 0 for i ≥ 2 and i+ j ≡ p− t (mod 2), (6.12)

which we explain next. Theorem 3.1 implies that Hj

Ot
(Dp) = 0 for j 6≡ p − t (mod 2), so we only need to

prove (6.12) when i ≥ 2 is even and j ≡ p − t (mod 2). Since H i
Ot−1

(Qs) = 0 for i > 0 and s ≤ t − 1, and

since Hj

Ot
(Dp) is a direct sum of copies of Q0, · · · , Qt, it suffices to check that

H i
Ot−1

(Qt) = 0 for i even,

which follows from Theorem 5.2, and concludes our proof. �

6.5. Local cohomology of the indecomposables Qp. The goal of this section is to prove Theorem 6.2.

Proof of Theorem 6.2. If p = n then it follows from Lemma 6.9 that Hj

Ot
(Qn) = 0 for all 0 ≤ t < n, which

coincides with the formula (6.1) since
(
n−s−1
n−s

)
q2

= 0 for all s. We may therefore assume that t ≤ n− 2, and

proceed by induction on p, starting with the case p = t + 1. Combining (6.7) with (6.11) and Theorem 6.1,

we get that Hj

Op−1
(Qp) ∈ add(Q) for all j ≥ 0 and moreover

[Qp−1] · q +
∑
j≥0

[Hj

Op−1
(Qp)] · qj =

∑
j≥0

[Hj

Op−1
(Dp)] · qj =

p−1∑
s=0

[Qs] · q ·ms(q
2),

where mp−1(q) =
(
n−p+1

1

)
q

= 1 + q + q2 + · · ·+ qn−p and

ms(q) =

(
n− s
p− s

)
q

−
(
n− s− 1

p− s− 1

)
q

(2.4)
= qp−s ·

(
n− s− 1

p− s

)
q

.

Using the fact that mp−1(q)− 1 = q ·
(
n−p

1

)
q
, we obtain

∑
j≥0

[Hj

Op−1
(Qp)] · qj =

p−1∑
s=0

[Qs] · q1+2·(p−s) ·
(
n− s− 1

p− s

)
q2

which agrees with (6.1) in the case when t = p− 1.
For the induction step, we assume that p ≥ t+ 2 and consider the short exact sequence

0 −→ Dp −→ Qp −→ Qp−1 −→ 0 (6.13)

Combining Theorem 5.2 with Theorem 6.1 we obtain

Hj−1

Ot
(Qp−1) = Hj

Ot
(Qp) = Hj

Ot
(Dp) = 0 for j 6≡ p− t (mod 2).
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It follows that the long exact sequence in cohomology associated with (6.13) splits into short exact sequences

0 −→ Hj−1

Ot
(Qp−1) −→ Hj

Ot
(Dp) −→ Hj

Ot
(Qp) −→ 0. (6.14)

Since the module Hj

Ot
(Qp) is a quotient of Hj

Ot
(Dp), and the latter belongs to add(Q) by Proposition 6.11, it

follows from Lemma 6.6 that the former also belongs to add(Q). It is then sufficient to verify that (6.1) holds
in ΓD[q]. Using (6.14), Theorem 6.1, and the induction hypothesis we get∑
j≥0

[Hj

Ot
(Qp)]D · qj =

∑
j≥0

[Hj

Ot
(Dp)]D · qj − q ·

∑
j≥0

[Hj

Ot
(Qp−1)]D · qj

=

t∑
s=0

[Qs]D ·

[
q(p−t)2 ·ms(q

2)− q · q(p−1−t)2+2·(p−1−s) ·
(
n− s− 1

p− s− 1

)
q2
·
(
p− s− 2

p− t− 2

)
q2

]
Since 1 + (p− 1− t)2 + 2 · (p− 1− s) = (p− t)2 + 2 · (t− s), in order to prove (6.1) it suffices to check that

ms(q)− qt−s ·
(
n− s− 1

p− s− 1

)
q

·
(
p− s− 2

p− t− 2

)
q

= qp−s ·
(
n− s− 1

p− s

)
q

·
(
p− s− 1

p− t− 1

)
q

. (6.15)

When s = t, we have
(
p−s−2
p−t−2

)
q

=
(
p−s−1
p−t−1

)
q

= 1 by (2.1), so (6.15) amounts to the equality(
n− t
p− t

)
q

−
(
n− t− 1

p− t− 1

)
q

= qp−t ·
(
n− t− 1

p− t

)
q

which follows from (2.4). When s < t we get
(
p−s−2
p−t−2

)
q

=
(
p−s−2
t−s

)
q

and
(
p−s−1
p−t−1

)
q

=
(
p−s−1
t−s

)
q

using (2.1), so we

can rewrite (6.15) as(
p− s− 1

t− s

)
q

·

[(
n− s
p− s

)
q

− qp−s ·
(
n− s− 1

p− s

)
q

]
=

[
qt−s ·

(
p− s− 2

t− s

)
q

+

(
p− s− 2

t− s− 1

)
q

]
·
(
n− s− 1

p− s− 1

)
q

which follows by applying (2.4) to both sides of the equation. �

6.6. The proof of Theorem 1.5. If p = n− 1 then On−1 is a hypersurface so its only non-zero Lyubeznik
number is λn2−1,n2−1(R(n−1)) = 1. We assume that p ≤ n− 2 and get as in Section 3.5 that

Lp(q, w) =
∑
i,j≥0

〈
H i
O0

(
Hn2−j
Op

(S)
)
, D0

〉
D
· qi · wj

=
∑
i≥0

 p∑
s=0

〈
H i
O0

(Qs), D0

〉
· qi ·

∑
j≥0

〈
Hn2−j
Op

(S), Ds −Ds+1

〉
D
· wj


where we used the fact that the groups Hn2−j

Op
(S) belong to add(Q), and that the multiplicity of Qs as a

summand in M ∈ add(Q) can be computed using (1.13) by the formula 〈M,Ds −Ds+1〉D. We obtain that

Lp(q, w) =

p∑
s=0

〈
HD0 (Qs; q), D0

〉
D ·
〈
HDp (S;w−1), Ds −Ds+1

〉
D · w

n2

(6.1),(2.10)
=

p∑
s=0

qs
2+2s ·

(
n− 1

s

)
q2
· w−(n−p)2 ·

[(
n− 1− s
p− s

)
w−2

−
(
n− 2− s
p− s− 1

)
w−2

]
· wn2
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Using (2.4) we have (
n− 1− s
p− s

)
w−2

−
(
n− 2− s
p− s− 1

)
w−2

= w−2·(p−s) ·
(
n− 2− s
p− s

)
,

and combining this with (2.3) it follows that in order to prove (1.8) it suffices to verify the identity

p2 + 2p+ s · (2n− 2p− 2) = −(n− p)2 − 2 · (p− s)− 2(p− s) · (n− 2− p) + n2

which follows again by inspection.
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