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Abstract

We consider a design problem where experimental conditions (design points X;) are presented
in the form of a sequence of i.i.d. random variables, generated with an unknown probability
measure , and only a given proportion a € (0,1) can be selected. The objective is to select good
candidates X; on the fly and maximize a concave function ® of the corresponding information
matrix. The optimal solution corresponds to the construction of an optimal bounded design
measure £ < p/a, with the difficulty that g is unknown and £ must be constructed online.
The construction proposed relies on the definition of a threshold 7 on the directional derivative
of ® at the current information matrix, the value of 7 being fixed by a certain quantile of
the distribution of this directional derivative. Combination with recursive quantile estimation
yields a nonlinear two-time-scale stochastic approximation method. It can be applied to very
long design sequences since only the current information matrix and estimated quantile need
to be stored. Convergence to an optimum design is proved. Various illustrative examples are
presented.
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1 Introduction

Consider a rather general parameter estimation problem in a model with independent observations
Y; = Y;(z;) conditionally on the experimental variables x;, with x; in some set 2". Suppose that
for any z € 2 there exists a measurable set %, € R and a o-finite measure u, on %, such that
Y (x) has the density ¢, p With respect to iz, with 0 the true value of the model parameters 8 to
be estimated, @ € R?. In particular, this covers the case of regression models, with p, the Lebesgue
measure on %, = R and Y(x) = 7(0,7) + ¢(z), where the £(z;) are independently distributed
with zero mean and known variance o7 (or unknown but constant variance o?), and the case of
generalized linear models, with ©r8 in the exponential family and logistic regression as a special
case. Denoting by 0" the estimated value of @ from data (X:,Y:), i =1,...,n, under rather weak
conditions on the x; and ¢ 29 See below, we have

V@ —8) S 4 (0,M1(£,8) asn— oo, (1.1)
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where M(&, 0) denotes the (normalized) Fisher information matrix for parameters 6 and (asymp-
totic) design ¢ (that is, a probability measure on 27),
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N /x Un 00 27 ProW) pa(dy)| £(dz).

This is true in particular for randomized designs such that the x; are independently sampled from
&, and for asymptotically discrete designs, such that £ is a discrete measure on 2~ and the empirical
design measure &, = Y i | 0, converges strongly to &; see Pronzato and Pazman (2013). The former
case corresponds to the situation considered here. The choice of u, is somewhat arbitrary, provided
that f% ¢, 5(Y) pa(dy) =1 for all z, and we shall assume that fi,(dy) = 1. We can then write

dlogp, 5(y) Olog ¢, 5(y)

M(,0) = /% M (2,0)&(dx), where A (x,0) = / 807 80T7 ¢, 5y dy

T

denotes the elementary information matrix at x.

Taking motivation from , optimal experimental design (approximate theory) aims at choos-
mg a measure £ that minimizes a scalar function of the asymptotic covariance matrix M™ (5 5) of
6", or equivalently, that maximizes a function ® of M(¢,8). For a nonlinear model . (z,0) and

M(¢,0) depend on the model parameters 8. Since 8 is unknown, the standard approach is local,
and consists in constructing an optimal design for a nominal value 8y of @. This is the point of
view we shall adopt here — although sequential estimation of @ is possible, see Section [6f When 6
is fixed at some 8¢, there is fundamentally no difference with experimental design in a linear model
for which . (z,0) and M(¢, 0) do not depend on 8. For example, in the linear regression model

V(X)) =f"(X))0 +¢;,

where the errors ¢; are independent and identically distributed (i.i.d.), with a density 905 with respect
to the Lebesgue measure having finite Fisher information for location I. = [ {[¢L(t)] /gpg )}dt <
00 (I. = 1/0? for normal errors A (0, 02)), then . (z) = I. f(x)f T (z), M(£) = I. [, f(2)f (z) {(dw).
Polynomial regression provides typical examples of such a situation and will be used for illustration
in Section The construction of an optimal design measure £* maximizing ®[M(&, 6p)] usually
relies on the application of a specialized algorithm to a discretization of the design space Z’; see,
e.g., Pronzato and Pazman (2013, Chap. 9).

With the rapid development of connected sensors and the pervasive usage of computers, there
exist more and more situations where extraordinary amounts of massive data (X;,Y;),i=1,..., N,

are available to construct models. When N is very large, using all the data to construct 6 is then
unfeasible, and selecting the most informative subset through the construction of an n-point optimal
design, n < N, over the discrete set 2y = {X;,7 = 1,..., N} is also not feasible. The objective
of this paper is to present a method to explore Zn sequentially and select a proportion n = |aV ]
of the N data points to be used to estimate 8. Each candidate X; is considered only once, which
allows very large datasets to be processed: when the X; are i.i.d. and are received sequentially, they
can be selected on the fly which makes the method applicable to data streaming; when N data
points are available simultaneously, a random permutation allows Zn to be processed as an i.i.d.
sequence. When N is too large for the storage capacity and the i.i.d. assumption is not tenable,
interleaving or scrambling techniques can be used. Since de-scrambling is not necessary here (the



objective is only to randomize the sequence), a simple random selection in a fixed size buffer may
be sufficient; an example is presented in Section

The method is based on the construction of an optimal bounded design measure and draws on
the paper (Pronzatol 2006)). In that paper, the sequential selection of the X; relies on a threshold set
on the directional derivative of the design criterion, given by the (1 — «v)-quantile of the distribution
of this derivative. At stage k, all previous X;, 7 = 1,..., k, are used for the estimation of the quantile
C}, that defines the threshold for the possible selection of the candidate Xj11. In the present paper,
we combine this approach with the recursive estimation of Cy, following (Tierney,|1983): as a result,
the construction is fully sequential and only requires to record the current value of the information
matrix My, and of the estimated quantile C}, of the distribution of the directional derivative. It relies
on a reinterpretation of the approach in (Pronzatol 2006]) as a stochastic approximation method
for the solution of the necessary and sufficient optimality conditions for a bounded design measure,
which we combine with another stochastic approximation method for quantile estimation to obtain
a two-time-scale stochastic approximation scheme.

The paper is organized as follows. Section [2]introduces the notation and assumptions and recalls
main results on optimal bounded design measures. Section [3] presents our subsampling algorithm
based on a two-time-scale stochastic approximation procedure and contains the main result of the
paper. Several illustrative examples are presented in Section We are not aware of any other
method for thinning experimental designs that is applicable to data streaming; nevertheless, in
Section [5| we compare our algorithm with an exchange method and with the IBOSS algorithm
of Wang et al. (2019) in the case where the N design points are available and can be processed
simultaneously. Section [0 concludes and suggests a few directions for further developments. A series
of technical results are provided in the Appendix.

2 Optimal bounded design measures

2.1 Notation and assumptions

Suppose that X is distributed with the probability measure p on 2 C R%, a subset of R with
nonempty interior, with d > 1. For any £ € Z1(Z"), the set of positive measure £ on 2" (not
necessarily of mass one), we denote M(§) = [, # (x) {(dz) where, for all z in 27, #(x) € M=,
the set (cone) of symmetric non-negative definite p x p matrices. We assume that p > 1 in the rest
of the paper (the optimal selection of information in the case p = 1 forms a variant of the secretary
problem for which an asymptotically optimal solution can be derived, see |Albright and Derman
(1972); [Pronzato (2001))).

We denote by ® : M= — R U {—oco} the design criterion we wish to maximize, and by Amin (M)
and Amax(M) the minimum and maximum eigenvalues of M, respectively; we shall use the 2 norm
for vectors and Frobenius norm for matrices, | M| = trace'/2[MM"]; all vectors are column vectors.
For any ¢ € R, we denote [t]" = max{t,0} and, for any ¢ € R, |¢] denotes the largest integer
smaller than ¢. For 0 < ¢ < L we denote by MZL the (convex) set defined by

MgL ={M e M : { < Apin(M) and Apax(M) < L},

and by M~ the open cone of symmetric positive definite p x p matrices. We make the following
assumptions on .

Hg @ is strictly concave on M~, linearly differentiable and increasing for Loewner ordering; its
gradient Vg (M) is well defined in M= for any M € M~ and satisfies ||V (M)|| < A(£) and



Amin[Va(M)] > a(L) for any M € Mezp for some a(L) > 0 and A({) < oo; moreover, Vg
satisfies the following Lipschitz condition: for all M; and My in M= such that Ay, (M;) >
£>0,i=1,2, there exists Ky < oo such that ||Ve(Ma) — Vo (My)|| < K¢ ||Ma — M.

The criterion ®5(M) = logdet(M) and criteria ®,(M) = —trace(M™9), ¢ € (—1,00), ¢ # 0,
with ®,(M) = —oo if M is singular, which are often used in optimal design (in particular with ¢ a
positive integer) satisfy Ho; see, e.g., Pukelsheim (1993, Chap. 6). Their gradients are Vg, (M) =
M~ and Vg, (M) = gM~(@tD) g = 0; the constants a(L) and A(f) are respectively given by
a(L) = 1/L, A(¢) = \/p/l for ® and a(L) = ¢q/LI™', A({) = q,/p/¢?™ for ®,. The Lispchitz
condition follows from the fact that the criteria are twice differentiable on M~. The positively
homogeneous versions @ (M) = det'/?(M) and oS (M) = [(1/p) trace(M~9)]~ /4, which satisfy
®T(aM) = a®T (M) for any a > 0 and any M € M=, and ®*(I,) = 1, with I, the p x p identity
matrix, could be considered too; see Pukelsheim| (1993, Chaps. 5, 6). The strict concavity of ®
implies that, for any convex subset M of M~ there exists a unique matrix M* maximizing ®(M)
with respect to M € M.

We denote by Fg (M, M) the directional derivative of ® at M in the direction M/,

Fo(M,M') = lim Q1 —y)M+M'] — (M

) _ :
oS 5 = trace[Vo(M)(M' — M)],

and we make the following assumptions on p and ..

H,, 1 has a bounded positive density ¢ with respect to the Lebesgue measure on every open subset

of Z'.
H , (i) .# is continuous on 2" and satisfies [, [|.# (z)||* p(dz) < B < oo;

(i) for any 2. C 2 of measure u(Z:) =€ > 0, Amin {f% A () ,u(dx)} > /. for some ¢, > 0.

Since all the designs considered will be formed by points sampled from p, we shall confound 2
with the support of pu: 2" = {z € R : u(By(z,€)) >0 Ve > 0}, with By(z, ) the open ball with
center x and radius e. Notice that H_4-(4) implies that Apax[M(u)] < v B and |[M(u)|| < +/p B.

Our sequential selection procedure will rely on the estimation of the (1 — a)-quantile Cj_, (M)
of the distribution Fyi(z) of the directional derivative Zpy(X) = Fp[M, .# (X)] when X ~ p, and
we shall assume that H, , below is satisfied. It implies in particular that Cy_,(M) is uniquely
defined by FM(CMJ_Q) =1-a.

H, , For all M € MEZL, P\ has a uniformly bounded density ng; moreover, for any a € (0,1),
there exists €, ;, > 0 such that on[Ci1—o(M)] > €1, and ¢ is continuous at Ci—(M).

H,, x is overrestricting (we only need the existence and boundedness of ¢y, and its positiveness
and continuity at C1_,(M)), but is satisfied is many common situations; see Section [4|for examples.
Let us emphasize that H, and H , are not enough to guarantee the existence of a density ¢, since
trace[Ve(M).# (x)] may remain constant over subsets of 2~ having positive measure. Assuming
the existence of ¢ and the continuity of ¢ on 2 is also insufficient, since ¢ is generally not
continuous when Zpp(x) is not differentiable in z, and ¢ is not necessarily bounded.



2.2 Optimal design

As mentioned in introduction, when the cardinality of 2 is very large, one may wish to select only
n candidates X; among the N available, a fraction n = |aN | say, with a € (0,1). For any n < N, we
denote by M ,; a design matrix (non necessarily unique) obtained by selecting n points optimally
within 2v; that is, M, y gives the maximum of ®(M,,) with respect to M, = (1/n) >, A (X;,),
where the X, are n distinct points in 2. Note that this forms a difficult combinatorial problem,
unfeasible for large n and V. If one assumes that the X; are i.i.d., with u their probability measure
on 2, for large N the optimal selection of n = |aN | points amounts at constructing an optimal
bounded design measure &, such that ®[M(&)] is maximum and &, < p/a (in the sense £, (A) <
u(A)/a for any p-measurable set A, which makes £, absolutely continuous with respect to p).
Indeed, Lemma [A.1| in Appendix [A] indicates that limsupy_, @(MTaNJ,N) = ®[M(&))]. Also,
under Hg, E{®(M;, y)} < @[M(f:/N)] for all N > n > 0; see |Pronzato| (2006, Lemma 3).

A key result is that, when all subsets of 2" with constant Zyg(x) have zero measure, Zyyex)(z) =
Fo[M(EL), # ()] separates two sets 2 and 2\ 2, with Fo[M(&}), # (z)] > C1_, and £}, = p/a
on 27, and Fe[M(&)), #(x)] < Cf_, and & =0on 2"\ 2, for some constant C;__; moreover,
[y Fa[M(EL), A ()] £4(dx) = [, Fo[M(&L), A ()] p(dz) = 0; see Wynn| (1982); [Fedorov (1989)
and [Fedorov and Hackl (1997, Chaap. 4). (The condition mentioned in those references is that p
has no atoms, but the example in Section will show that this is not sufficient; extension to
arbitrary measures is considered in (Sahm and Schwabe, [2001)).)

For a € (0,1), denote

mi0) = {M&) = [ A@6at): e 7 (2) 60l [ catan =1}

In (Pronzato, [2006)), it is shown that, for any M € M~

1

M* (M, o) = arg a2 Fp(M, M) = — /J LiraM,. ()21 oy A () p(dz) (2.1)

where, for any proposition A, Iy 41 = 1 if A is true and is zero otherwise, and C1_o = C1-4(M) is
an (1 — a)-quantile of Fp[M, .Z(X)] when X ~ 1 and satisfies

/% Ly M. (2)]>C1 o (M)} #(dT) = . (2.2)

Therefore, M}, = M(&}) is the optimum information matrix in M(«a) (unique since ® is strictly
concave) if and only if it satisfies maxyyeni(a) Fao(Mp, M') = 0, or equivalently My, = M+ (M}, a),
and the constant C}_, equals C1_,(M},); see (Pronzato, 2006, Th. 5); see also |Pronzato| (2004).

Note that C}_, < 0 since [, Fo[M(&}), # (x)] & (dz) = 0 and Fp[M(E},), # (x)] > Cf_, on the
support of £.

3 Sequential construction of an optimal bounded design measure

3.1 A stochastic approximation problem

Suppose that the X; are i.i.d. with p. The solution of M = M™(M, ), a € (0,1), with respect to
M by stochastic approximation yields the iterations

Mt = Tk Lipy M (X )12 010 (M)}
(3.1)

My = Mo+ o2g LM, (X0 1012010 (M)} [ (Xkp1) = M, ]

5



Note that E {]I{Ep[M,//{(X >01_aM)} [ (X) — M|} = o [M* (M, a) — M]. The almost sure (a.s.)
convergence of M,,, in to M(¢}) that maximizes (M) with respect M € M(«) is proved in
(Pronzato, [2006]) under rather weak assumptions on ®, .Z and pu.

The construction (3.1)) requires the calculation of the (1 — a)-quantile C1_,(M,,, ) for all ny, see
, which is not feasible when w is unknown and has a prohibitive computational cost when we
know . For that reason, it is proposed in (Pronzatol [2006) to replace Ci_o(M,, ) by the empirical
quantile éoc,k(Mnk) that uses the empirical measure ug = (1/k) Zf‘:l dx, of the X; that have been
observed up to stage k. This construction preserves the a.s. convergence of My, to M(&}) in (3.1)),
but its computational cost and storage requirement increase with k, which makes it unadapted to
situations with very large N. The next section considers the recursive estimation of C1_q(M,y, )
and contains the main result of the paper.

3.2 Recursive quantile estimation

The idea is to plug a recursive estimator of the (1 — a)-quantile C1_o(M,, ) in (3.1). Under mild
assumptions, for random variables Z; that are i.i.d. with distribution function F such that the
solution of the equation F'(z) = 1 — « is unique, the recursion

A A B
Ci1=Ck + Pl (H{Zk+126k} - oz) (3.2)
with # > 0 converges a.s. to the quantile C1_, such that F(C1_,) = 1 — a. Here, we shall use a

construction based on (Tierney, |1983). In that paper, a clever dynamical choice of § = S is shown

to provide the optimal asymptotic rate of convergence of ék towards C_,, with \/E(ék —C1-qa) 4

N(0,0(1 —a)/f3(C1—qa)) as k — oo, where f(z) = dF(z)/dz is the p.d.f. of the Z; — note that it
coincides with the asymptotic behavior of the sample (empirical) quantile. The only conditions on
F are that f(z) exists for all z and is uniformly bounded, and that f is continuous and positive at
the unique root Cj_, of F(2) =1 —a.

There is a noticeable difference, however, with the estimation of Cj_,(M,,): in our case we
need to estimate a quantile of Zy(X) = Fp[M,, , #(X)] for X ~ p, with the distribution of Zj(X)

evolving with k. For that reason, we shall impose a faster dynamic to the evolution of ék, and

replace (3.2) by

Ciy1=Ck + (kikl)q (H{Zk(Xk+1)25k} — a) (3.3)
for some ¢q € (0,1). The combination of with yields a particular nonlinear two-time-scale
stochastic approximation scheme. There exist advanced results on the convergence of linear two-
time-scale stochastic approximation, see Konda and Tsitsiklis| (2004); Dalal et al. (2018)). To the
best of our knowledge, however, there are few results on convergence for nonlinear schemes. Con-
vergence is shown in (Borkar, [1997)) under the assumption of boundedness of the iterates using the
ODE method of [Ljung| (1977)); sufficient conditions for stability are provided in (Lakshminarayanan
and Bhatnagar, 2017), also using the ODE approach. In the proof of Theorem we provide
justifications for our construction, based on the analyses and results in the references mentioned
above.

The construction is summarized in Algorithm 1 below. The presence of the small number € is
only due to technical reasons: setting zx+1 = +00 when ng/k < €1 in (3.4) has the effect of always
selecting Xj11 when less than €1 k points have been selected previously; it ensures that ng1/k > €



for all k£ and thus that M, always belongs to Me2 ; for some £ > 0 and L < oo; see Lemma in
Appendix.

"

Algorithm 1: sequential selection («a given).
Choose ko > p, g € (1/2,1), v € (0, —1/2), and 0 < €1 < a.

Initialization: select X7, ..., Xj,, compute My, = (1/ko) Zfil A (X;). It My, is singular,
increase kg and select the next points until 1\/[,%0 has full rank. Set k = n; = kg, the number
of points selected.

Compute ¢; = Zy, (X;), fori =1,..., ko and order the ¢; as 1.k, < Coky < -+ < Chorko; denote
ki =[(1—a/2) ko] and k; = max{[(1 —3a/2)ko|,1}.

Initialize Ciy ot (f1-a)kolsos set o = Ko/ (ki = k), b = (Gt ko — Skgiho)» ko = D/ kg and
n ke
fko = [Ziil H{\Ci—éko\ghko} /(2 ko hko)'

Iteration k + 1: collect Xjy1 and compute Zg(Xpt1) = Fo[My,, A (Xjt1)]-
Ifng/k <e  set zpy1 = +00; (3.4)
otherwise set zp41 = Zi(Xgt1) - '
If zp11 > C’k, update ny into ngy41 = ni + 1 and M, into
1
My, = My, + et 1 [ A (Xj11) — My,] 5 (3.5)

otherwise, set ngy1 = ng.
Compute i = min{l/fk,ﬁo k7}; update Ch using ((3.3)).
Set hig+1 = h/(k+ 1) and update fi, into

1 1 ~
E+1)4 [2hg H{\Zk(XkH)*akléhkﬂ} = Ji

J?k+1:sz+(

k < k+ 1, return to Step 2.

Note that 6’k is updated whatever the value of Zx(Xgi1). Recursive qugntile estimation by
follows (Tierney, [1983). To ensure a faster dynamic for the evolution of Cj, than for M,,, , we
take ¢ < 1 instead of ¢ = 1 in (Tierney, 1983)), and the construction of fk and the choices of 3y,
and hj are modified accordingly. Following the same arguments as in the proof of Proposition 1
of (Tierney, |1983), the a.s. convergence of ék to C1_. in the modified version of is proved in
Theorem m (Appendix .

The next theorem establishes the convergence of the combined stochastic approximation schemes
with two time-scales.

Theorem 3.1. Under Hy, H,, Hy and H, ,, the normalized information matriz My, corre-
sponding to the ny candidates selected after k iterations of Algorithm 1 converges a.s. to the optimal
matriz MY, in M(a) as k — oo.



Proof. Our analysis is based on (Borkar}, [1997). We denote by .%,, the increasing sequence of o-fields
generated by the X;. According to (3.3), we can write Cri1 = Cr + [/ (k +1)9] Vi with Vipq =
L (xps)>6yy — @ Therefore, E{Vi1|F4} = f%[H{Zk(m)Zék} — o] pu(dr) and var{Vii1|Zr} =
Fi(Cp)[1 — Fi(Cy)], with F, the distribution function of Z(X). From Lemma (Appendix
and H, », Fj has a well defined density f; for all k, with fi(t) > 0 for all ¢t and f; bounded.
The first part of the proof of Theorem applies (see Appendix : fk is a.s. bounded and Sy, is
bounded away from zero a.s. Therefore, >, Bi/(k +1)? = oo a.s. and (k + 1)?/[B; (kK +1)] = 0
a.s.; also, > .[Bk/(k +1)7? < oo since ¢ —y > 1/2.

The o.d.e. associated with (3.3), for a fixed matrix M and thus a fixed Z(-), such that Z(X) =
Fo[M, .7 (X)] has the distribution function F' and density f, is

dC(t)

—q =1 FICM)] —a=F(Ci_a) ~ FIC(1)],

where C1_o = C1_o(M) satisfies F(C1_,) = 1 — a. Consider the Lyapunov function L(C) =
[F(C) — F(C1_o))% It satisfies dL[C(t)]/dt = —2 f[C(t)] LIC(t)] < 0, with dL[C(t)]/dt = 0 if and
only if C'= C1—q. Moreover, C1_q is Lipschitz continuous in M; see Lemma [D.1] in Appendix [D]
The conditions for Theorem 1.1 in (Borkar, 1997)) are thus satisfied concerning the iterations for Cj.

Denote ﬁk =M, and p; = ny/k, so that (3.4]) implies k py, > €1 (k—1) for all k; see Lemma
in Appendix. They satisfy

Ry = = Qe
= dM =M 3.6
P+t = P+ 3 and My RS (3.6)

where Ry = ]I{Zk(Xk+1)Zak} — P, and ey = (1/pk+1)]1{zk(Xk+1)26k} M (Xp+1) = Mk] We
have E{Ry11|Z1} = [, H{Zk(a:)zék} p(dx) — pr and var{ Riy1|-Zx} = Fp(Ck)[1 — Fr(Cy)], with Fy
the distribution function of Z;(X'), which, from H, ,, has a well defined density fj for all k. Also,

Iy 1+1/k
E{Q1| 7k} = — = k s

—~

where 7, = f% H{Zk(x)zék} [//l(:c) — Mk} wu(dx). Denote Agy1 = Qi1 — Zi/pr, so that

= = 1 Tp  Appr
M =M —_— .
k+1 k+k+1pk+k—|—l

We get E{Api1]Fr}t = (ow — 1)/ [k (k pr. + 1)] Iy and

var{{Ags1}ig|Zkt = var{{Q%1}i T}
(k+1)2

= o—3 ~ M2, T2
N (k Px + 1)2 |:/Vg{ H{Zk(z)zck} {%(I’) Mk}l»] M(d.%’) {Ik}z,j ’

where (3.4) implies that p, > €1/2, and therefore (k + 1) (1 — pg)/[pr (kpr + 1)] < 4/€}, and
var{{Ax+1}ij|-Zk} is a.s. bounded from H ,-(7). This implies that >, Ag1;/(k+1) < 0o a.s. The
limiting o.d.e. associated with (3.6 and (3.7]) are

(3.7)

dp(t)
At /3{ L po (1) (@)1 o))y P(AZ) = P(E) = @ = (D),
dM(t) 1 N
dt ) /gv H{F@[ﬁ(t)v%(x)]zcl_a[ﬁ(t)}} [///(x) - M(t)] wu(dx)
a = —~
= Gy (M) - Mo}



where Mﬂﬁ(t), a] is defined by (2.1]). The first equation implies that p(t) converges exponentially
fast to «a, with p(t) = a + [p(0) — ] exp(—t); the second equation gives

—~

d®[M(1)]
dt

= trace

max Fp[M(t), M'] >0,

Ve [M(1) dt - p(t) M’eM(a)

— dﬁ(t)] a

with a strict inequality if ﬁ(t) # M, the optimal matrix in M(«). The conditions of Theorem 1.1
in (Borkar, |1997) are thus satisfied, and M}, converges to M}, a.s. |

Remark 3.1.

(2) Algorithm 1 does not require the knowledge of x and has minimum storage requirements:
apart for the current matrix M, , we only need to update the scalar variables ék and f.
Its complexity is O(d® N) in general, considering that the complexity of the calculation of
Fy[M, #(X)] is O(d?). It can be reduced to O(d*> N) when .#(X) has rank one and M, ! is
updated instead of M, (see remark (iii) below), for D-optimality and ®,-optimality with ¢
integer; see Section Very long sequences (X;) can thus be processed.

(#¢) Numerical simulations indicate that we do not need to take ¢ < 1 in Algorithm 1: (3.3) with
q = 1 yields satisfactory performance, provided the step-size obeys Kersten’s rule and does
not decrease at each iteration.

(422) The substitution of trace[Ve(M).#Z (X)] for Fo[M, # (X)| = trace{Ve(M)[# (X)—M]} ev-
erywhere does not change the behavior of the algorithm. When V¢ (M) only depends on M !
(which is often the case for classical design criteria, see the discussion following the presenta-
tion of Hg), and if .#(X) is a low rank matrix, it may be preferable to update M, ! instead of
M,,, , thereby avoiding matrix inversions. For example, if #(Xgy1) = I £(Xpr1)f T (Xps1),
then, instead of updating , it is preferable to update the following

Ml = (1 i 1) ML LM (X )T (Xpe)M)!
Nk4+1 Nk Nk ng _|_[€ fT(Xk+1)M;,€1f(Xk+1)

Low-rank updates of the Cholesky decomposition of the matrix can be considered too.

(4v) Algorithm 1 can be adapted to the case where the number of iterations is fixed (equal to the
size N of the candidate set 2 ) and the number of candidates n to be selected is imposed.
A straightforward modification is to introduce truncation and forced selection: we run the
algorithm with « = n/N and, at Step 2, we set zpy1 = —oo (reject Xgyq) if ny > n and
set zgy1 = 400 (select Xp4q) if n —ng > N — k. However, this may induce the selection of
points X; carrying little information when k£ approaches IV in case ny is excessively small. For
that reason, adaptation of « to ng, obtained by substituting oy, = (n — ng)/(N — k) for the
constant «a everywhere, seems preferable. This is illustrated by an example in Section [£.2]

(v) The case when p has discrete components (atoms), or more precisely when there exist subsets
of 2 of positive measure where Zyp(z) is constant (see Section [4.4.2)), requires additional
technical developments which we do not detail here.

A first difficulty is that H_4-(#) may not be satisfied when the matrices .# (x) do not have full
rank, unless we only consider large enough e. Unless €; in (3.4)) is large enough, Lemma
is not valid, and other arguments are required in the proof of Theorem [3.1] Possible remedies



may consist (a) in adding a regularization matrix vI, with a small v to all matrices .#(x)
(which amounts at considering optimal design for Bayesian estimation with a vague prior;
see, e.g., Pilz (1983)), or (b) in replacing the condition in by [If Amin(My, ) < €1, set
Zk1 = +00].

A second difficulty is that C1_,(M},) may correspond to a point of discontinuity of the distri-
bution function of Fg[M},, #(X)]. The estimated value f;, of the density of Fg[M,, , #(X)]
at C*k (Step 3 of Algorithm 1) may then increase to infinity and B tend to zero in . This
can be avoided by setting S = max{eo, min(1/fx, 5o k7)} for some €3 > 0.

In (Pronzato, 2006), where empirical quantiles are used, measures needed to be taken to
avoid the acceptance of too many points, for instance based on the adaptation of a through
ar = (n—ng) /(N — k), see remark (iv) above, or via the addition of the extra condition [if
ng/k > a, set zp1 = —o0] to in case n is not specified. Such measures do not appear
to be necessary when quantiles are estimated by ; see the examples in Section <

4 Examples

We always take kg = 5p, ¢ = 5/8, v = 1/10 in Algorithm 1 (our simulations indicate that these
choices are not critical); we also set €1 = 0.

4.1 Example 1: quadratic regression with normal independent variables

Take . (x) = f(x)f " (x), with f(z) = (1, z, 2%)T and ®(M) = logdet(M), and let the X; be i.i.d.
standard normal variables .4#7(0,1). The D-optimal design for x in an interval [¢,t'] corresponds
to & = (1/3) (5t + O(t4ery/2 t 5t’)- In the data thinning problem, the optimal solution corresponds
to the selection of X; in the union of three intervals; that is, with the notation of Section
ZF = (=00, —a]U[=b,b]U[a, 00). The values of a and b are obtained by solving the pair of equations
fob o(z) da+ [ ¢(z) dz = /2 and trace[M 1 (£).# (a)] = trace[M 1 (§).# (b)], with ¢ the standard
normal density and M(§) = [~ ¢ 4 (x) o(x) dz + f_bb M(x) p(x)dz + [° M (x) p(z) dz]/a.

We set the horizon N at 100000 and consider the two cases o = 1/2 and o = 1/10. In
each case we keep o constant but apply the rule of Remark [3.1}(iv) (truncation/forced selection)
to select exactly n = 50000 and n = 10000 design points, respectively. For @ = 1/2, we have
a =~ 1.0280, b ~ 0.2482, and @}, = ®(M},) = maxpem(a) (M) =~ 1.6354, C1_(M},) ~ —1.2470;
when a = 1/10, we have a ~ 1.8842, b ~ 0.0507, and P} ~ 3.2963, C1_,(M?) ~ —0.8513. The
figures below present results obtained for one simulation (i.e., one random set 2% ), but they are
rather typical in the sense that different 2 yield similar behaviors.

Figure [1] shows a smoothed histogram (Epanechnikov kernel, bandwidth equal to 1/1000 of
the range of the X; in 2% ) of the design points selected by Algorithm 1, for o = 1/2 (left) and
a = 1/10 (right). There is good adequation with the theoretical optimal density, which corresponds
to a truncation of the normal density at values indicated by the vertical dotted lines.

Figure 2| presents the evolution of ®(M,, ) as a function of k, together with the optimal value
®? (horizontal line), for the two choices of o considered (the figures show some similarity on the
two panels since the same set 2y is used for both). Convergence of ®(M,, ) to @} is fast in both
cases; the presence of steps on the evolution of ®(M,, ), more visible on the right panel, is due to
long subsequences of samples consecutively rejected.

Figure [3| shows the behavior of the final directional derivative Fg[M,,, , . (z)], after obser-
vation of all X; in Z, together with the value of its estimated quantile Cn (horizontal solid
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Figure 1: Smoothed histogram of the X; selected by Algorithm 1; the vertical dotted lines indicate the
positions of —a, —b, b, a that define the set 2 = (—oo, —a] U [=b,b] U [a, 00) where £ = u/a; N = 100 000;

Left: a =1/2 (n =50000); Right: o = 1/10 (n = 10000).

Figure 2: Evolution of ®(M,,, ) obtained with Algorithm 1 as a function of k (log scale); the horizontal line

indicates the optimal value ®%; N = 100000; Left: o = 1/2 (n = 50000); Right: o =1/10 (n =

line). The theoretical values C1_o(M},) (horizontal dashed line) and the values —a, —b

10000).

,b,a where

Fy[M:, 4 ()] = C1_o(M2) (vertical dashed lines) are also shown (Cy and Ci_o(M?) are in-

distinguishable on the right panel). Although the figure indicates that Fo[M,,, , #
significantly from Fg[M?,, # (x)], they are close enough to allow selection of the most i
X, as illustrated by Figures [T] and [2]

(x)] differs

nformative

Figure ] shows ||M,,, — M, || (Frobenius norm) as a function of k (log scale), averaged over 1000

independent repetitions with random samples 2 of size N = 10000, for « = 1/2. It su

goests that

IM,,, — M| = O(1/Vk) for large k, although the conditions in (Konda and Tsitsiklis

|2004|) are

not satisfied since the scheme we consider is nonlinear. This convergence rate is significantly faster
than what is suggested by [Dalal et al.| (2018). These investigations require further developments

and will be pursued elsewhere.
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Figure 3: Fg[M,,,.#(z)] = trace[M, ! .#(x)] — 3 as a function of z (solid line); the horizontal solid
(respectively, dashed) line indicates the value of Cy (respectively, C1-o(M})), the vertical lines indicate
the positions of —a, —b,b,a where Fg[M?, # (z)] = C1_o(M}); N = 100000; Left: o = 1/2 (n = 50000);
Right: o =1/10 (n = 10000).
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Figure 4: Evolution of log;, ||[M,, — M%| as a function of log,, k& (values averaged over 1000 random
samples 27 ); the dashed line has slope —1/2 (o« =1/2: n = 5000, N = 10000).

4.2 Example 2: multilinear regression with normal independent variables

Take .#(X) = XX, with X = (21, x2,...,24)", d > 1, and ®(M) = logdet(M), the vectors X;
being i.i.d. A(0,14) (so that p = d). Denote by ¢(x) = (27)~%?2 exp(—||x/|2/2) the probability
density of X. For symmetry reasons, for any « € (0, 1) the optimal (normalized) information matrix
is M}, = po Iy, with ®(M},) = d log pn, where

a =

1/ 2 1 2
== ex)dx = — 1x]|? ¢(x) dx
“a Jixzra do Jix||>Ra

1 2

_ 1 2 d—1
= % SR, T W eXp(—T /2) Sd(l)?" dT',
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with Sy(1) = 27%2/T'(d/2), the surface area of the d-dimensional unit sphere, and R, the solution
of

1
“= x)dx = | exp(—1?/2) S4(1) r* L dr.
/|sz& e /TZRQ @mirz SP(r7/2) 5al)

Since Fp[M, . (X)] = trace[M~1.# (X)] — d, we get Fp[M%, #(X)] = ||x||?/pa — d, C1_o(M}) =
R%/po —d <0, and ® = ®(M?) is differentiable with respect to o, with d®* /da = C1_o (M%) /a;
see Pronzato (2004, Th. 4). Closed-form expressions are available for d = 2, with R, = /=2 log a
and p, = 1 —loga; R, and p, can easily be computed numerically for any d > 2 and « € (0,1).
One may notice that, from a result by [Harman| (2004), the design matrix M? is optimal for any
other orthogonally invariant criterion ®.

For the linear model with intercept, such that .#’(X) = f(X)f"(X) with f(X) = [1, X"]T,
the optimal matrix is
s (1 07
M= (g ar, )

with M}, = p, I, the optimal matrix for the model without intercept. The same design is thus
optimal for both models. Also, when the X; are i.i.d. .47(0,3X), the optimal matrix M*Z,a for

®(-) = log det(-) simply equals »1/2 M, »1/2

Again, we present results obtained for one random set 2. Figure [5] shows the evolution of
®(M,,,) as a function of k for d = 3 with & = 1/1000 and N = 100000 when we want we select
exactly 100 points: the blue dashed-line is when we combine truncation and forced selection; the
red solid line is when we adapt « according to oy, = (n — ny)/(N — k); see Remark [3.1}(iv) —
the final values, for kK = N, are indicated by a triangle and a star, respectively; we only show the
evolution of ®(M,, ) for k between 10000 and 100000 since the curves are confounded for smaller
k (they are based on the same 2% ). In the first case, the late forced selection of unimportant X
yields a significant decrease of ®(M,, ), whereas adaptation of « anticipates the need of being less
selective to reach the target number n of selected points.

155

Figure 5: Evolution of ®(M,,, ) obtained with Algorithm 1 as a function of k (log scale): d = 3, N = 100 000,
exactly n = 100 points are collected using truncation/forced selection (blue dashed line and V) or adaptation
of a (red solid line and %); see Remark (w)
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Figure [2 has illustrated the convergence of ®(M,,, ) to ®} for a fixed o as k — oo, but in fact
what really matters is that nj tends to infinity: indeed, ®(M,, ) does not converge to ®7, if we fix
ng = n and let k tend to infinity, so that @ = n/k tends to zero (see also Section . This is
illustrated on the left panel of Figure |§|, where d = 25 and, from left to right, a equals 0.5 (magenta
dotted line), 0.1, 0.05 and 0.01 (red solid line). Since the optimal value ®¥ depends on «, here we
present the evolution with k of the D-efficiency [det(M,,, )/ det(M?)]Y/? = exp[(®(M,,,) — ®%)/d].
The right panel is for fixed o = 0.1 and varying d, with, from left to right, d = 5 (red solid line), 10,
20, 30 and 50 (cyan solid line). As one may expect, performance (slightly) deteriorates as d increases
due to the increasing variability of Zyp(X), with var[Zy(X)] = var[X TMX] = 2 trace(M?).

Figure 6: Evolution of D-efficiency of M, obtained with Algorithm 1 as a function of k (log scale); the
horizontal line indicates the optimal value 1. Left: d = 25 and o = 0.5 (magenta dotted line), 0.1 (black),
0.05 (blue) and 0.01 (red solid line). Right: o = 0.1 and d = 5 (red solid line), 10 (blue), 20 (black), 30
(magenta) and 50 (cyan solid line).

4.3 Example 3: processing a non i.i.d. sequence

When the design points X; are not from an i.i.d. sequence, Algorithm 1 cannot be used directly
and some preprocessing is required. When storage of the whole sequence 2% is possible, a random
permutation can be applied to 2 before using Algorithm 1. When N is too large for that, for
instance in the context of data streaming, and the sequence possesses a structured time-dependence,
one may try to identify the dependence model through time series analysis and use forecasting
to decide which design points should be selected. The data thinning mechanism is then totally
dependent on the model of the sequence, and the investigation of the techniques to be used is
beyond the scope of this paper. Examples of the application of a simple scrambling method to
the sequence prior to selection by Algorithm 1 are presented below. The method corresponds to
Algorithm 2 below; its output sequence )Z'k is used as input for Algorithm 1. We do not study
the properties of the method in conjunction with the convergence properties of Algorithm 1, which

14



would require further developments.
Algorithm 2: random scrambling in a buffer.
1) Initialization: choose the buffer size B, set k =1 and 2" = {X;,..., Xp}.
2) Draw X, by uniform sampling within 2 (%)

3) Set 2 *+D) = 27(®)\ (X3} U{Xpop}, k < k + 1, return to Step 2.

Direct calculation shows that the probability that X L equals X; is

1\k-1

B 5 (1-3) for1<i<B
Prob{X =Xi} =¢ L (1- )" foB+1<i<B+k—1
0 for B+k—-1<1

showing the limits of randomization via Algorithm 2 (in particular, the first points of the sequence
X; will tend to appear first among the Xj). However, the method will give satisfactory results if
the size B of the buffer is large enough, as its performance improves as B increases.

As an illustration, we consider the same quadratic regression model as in Example 1, with
®(M) = logdet(M), in the extreme case where X; = x(¢;) with z(¢) a simple function of t.

First, we consider the extremely unfavorable situation where x(¢) = ¢t. When ¢ is uniformly
distributed on .7 = [0,T], the optimal design &} selects all points associated with ¢ in [0,,] U
[ty, T — tp) U [T — tq, T, for some t, < t, in 7 satisfying 2¢,+ 71 —2t, = aT. For a = 1/10, we get
ta/T =~ 0.03227 and t,/T ~ 0.48227. The horizontal black line in Figure [7] indicates the optimal
value @}, when 7' = 1. The blue dotted line shows ®(M,,, ) when Algorithm 1 is directly applied to
the points X; =i/N,i=1,..., N =100000. The red line is when randomization via Algorithm 2,
with buffer size B = aN = 10000, is applied first; the dotted curve in magenta is for B = 3 alV.
The positive effects of randomization through Algorithm 2 and the influence of the buffer size are
visible on the figure. Here, the monotonicity of the X;, which inhibits early exploration of their
range of variation, prevents convergence to the optimum.

We now consider the more favorable case where X; = sin(27vi/N), i =1,...,N = 100000, with
v = 5. The left panel of Figure |8 shows the same information as Figure [7], when Algorithm 1 is
applied directly to the X; (blue dotted line) and after preprocessing with Algorithm 2 with B = aN
(red line) and B = aN/10 (magenta dotted line). The early exploration of the range of variability of
the Xj, possible here thanks to the periodicity of z(¢), makes the randomization through Algorithm 2
efficient enough to allow Algorithm 1 to behave correctly when B = aN (red line). The situation
improves when B is increased, but naturally deteriorates if B is too small (magenta dotted line).
The right panel shows the points )N(k produced by Algorithm 2 (with B = aN = 10000) which
are selected by Algorithm 1. The effect of randomization is visible. For k < 5000 all points in the
buffer are in the interval [sin(27v(k + B)/N),1] C [—1,1] and the points selected by Algorithm 1
are near the end points or the center of this moving interval. For larger k, randomization is strong
enough to maintain the presence of suitable candidates in the buffer for selection by Algorithm 1.

4.4 Examples with Zy;(z) constant on subsets of positive measure

Here we consider situations where H, , is violated due to the existence of subsets of 2  of
positive measure on which Znyp(z) is constant. The model is the same as in Section with
X = (21, T2,...,2q) , A (X)=XXT and ®(M) = log det(M).

15



22

241

-26
10

Figure 7: Evolution of ®(M,,, ) obtained with Algorithm 1 as a function of k (log scale), the horizontal line
indicates the optimal value ®%; N = 100000, o = 1/10; direct processing of the points X; = i/N (dotted
blue line), preprocessing with Algorithm 2 with B = aN (red solid line) and B = 3aN (magenta dotted
line).
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SRRy LARANINS % DR
LIRS
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Figure 8: Left: Evolution of ®(M,,, ) obtained with Algorithm 1 as a function of %k (log scale), the horizontal
line indicates the optimal value ®*; N = 100000, o = 1/10; direct processing of the points X; = sin(27vi/N)
(dotted blue line), preprocessing with Algorithm 2 with B = aN (red solid line) and B = aN/10 (magenta
dotted line). Right: X;, i = 1,...,N = 100000 (black) and points Xj produced by Algorithm 2 with
B = aN which are selected by Algorithm 1 (red).

4.4.1 Example 4: ;4 has discrete components

This is Example 11 in (Pronzato| 2006), where d = 2, u = (1/2) u_y + (1/2) prg, with p_y corre-
sponding to the normal distribution .47(0,1) and ug the discrete measure that puts weight 1/4 at
each one of the points (+1,+1). Denote by Z(r) the closed ball centered at the origin 0 with radius
r, by u[r] the measure equal to p on its complement Z(r), and let e = exp(1). The optimal matrix
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is MY, = M(&}), with £ the probability measure defined by:

L pu[\/—2log(2a)] if0<a< s %
€a=19 gHlV2+lo—1/(2e)luq fge<04 3+ 3
Lpul\/—2log(2a —1)] if t+1l<a<l,
with associated ®-values
2 log[1 — log1(2 a)] if 01< a<a %
d(M:) ={ 2log (1+ 57) if 9o <a< g +3,
2 log (1 Letjoslal)) ip Ly o<t

Figure [9] shows the evolution of ®(M,,) as a function of k for a = 0.5 (left) and a = 0.02
(right). Note that o < 1/(2e) in the second case, but 1/(2e) < a < 1/(2e) + 1/2 in the first one,
so that & is neither zero nor p/c on the four points (+1,=+1). Figure [J] shows that Algorithm 1
nevertheless behaves satisfactorily in both cases.
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Figure 9: Evolution of ®(M,,, ) obtained with Algorithm 1 as a function of k (log scale) when d = 2 and
w=(1/2)py + (1/2) pg with a = 0.5 (left) and a = 0.02 (right); the horizontal line indicates the optimal
value ®7.

4.4.2 Example 5: the distribution of Zyp: (X) has discrete components

Let U[-#4(0,7)] denote the uniform probability measure on the d-dimensional sphere .#4(0, r) with
center 0 and radius 7. The probability measure of the X; is u = (1/3) 32, U[.74(0,7;)], the
mixture of distributions on three nested spheres with radii 1 > ro > r3 > 0. The optimal bounded
measure is

U[&’d(o,rl)] if0<a§%,
& =< L ULF(0,11)] + LUF4(0,r9)] ifi<a<?,
35 {ULZa(0,m)] + ULZa(0, 1))} + “2RUS4(0,r3)] i3 <a <1,

with associated ®-values

d log(r? /d) fo<a< %
r2/3+(a—1/3)r2
d log (r1+T2)/3;rC§a 2/3)T3) if 2 <a<l.
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Notice that for ao € (0,1/3) (respectively, o € (1/3,2/3)) & # 0 and & # p/a on #4(0,71)
(respectively, on .#4(0,r2)) although u is atomless.

The left panel of Figure gives the evolution with k of the D-efficiency [det(M,,, )/ det(M)]"/? =
exp[(®(M,,, ) — ®}%)/d], for & = 0.5 (red solid line) and o = 0.2 (blue dashed line) when d = 5. The
right panel shows the evolution of the ratio ny/k for those two situations, with the limiting value
« indicated by a horizontal line. Although assumption H, , is violated, Algorithm 1 continues to
perform satisfactorily.
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Figure 10: Left: Evolution of D-efficiency of M,,, obtained with Algorithm 1 as a function of k& (log scale)
for o = 0.5 (red solid line) and o = 0.2 (blue dashed line); the horizontal line indicates the optimal value 1;
d = 5. Right: evolution of the ratio ny/k in the same simulations.

5 Comparison with other methods

5.1 Case n fixed with large N: comparison with an exchange method

The convergence of ®(M,,, ) to @}, in Algorithm 1 relies on the fact that n; grows like O(a k) for
some « > 0; see Theorem [3.1] If the number n of points to be selected is fixed, Algorithm 1 does not
provide any performance guarantee when applied to a sequence of length N — oo (the situation is
different when p = 1 where an asymptotically optimal construction is available; see|[Pronzato| (2001)).
In that case, a method of the exchange type may look more promising, although large values of N
entail serious difficulties. Typically, the algorithm is initialized by a n point design chosen within
Zn, and at each iteration a temporarily selected X; is replaced by a better point in 2. Fedorov’s
(1972) algorithm considers all n x (N —n) possible replacements at each iteration ((N —n) instead
of N since we do not allow repetitions in the present context); its computational cost is prohibitive
for large N. The variants suggested by |Cook and Nachtsheim| (1980)), or the DETMAX algorithm
of [Mitchell (1974), still require the maximization of a function ¢g(X;) with respect to X; € Zy at
each iteration, which remains unfeasible for very large N. Below, we consider a simplified version
where all N points are examined successively, and replacement is accepted when it improves the
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current criterion value.

Algorithm 3: sequential exchange (n fixed).

1) Initialization: select Xi,..., Xy, set & = n and 2" = {Xi,..., X}, compute M,,, =
(1/k) S0 A (Xi) and S(M, ).
2) Iteration k + 1: collect Xpyq. If Xppy € 237, set AR (X, Xgy1) = 0; otherwise compute

AW (X, Xr) = ma [©{Mos + (1/n)l (Xepr) = A (XD)]} = 2(M)]

If AW (X, Xpp1) > 0, set 27, = 237\ {Xi-} U Xpp1, update My, j, into My, 1 = My, +
(1/n)[ A (Xj41) — A (Xi+)], compute ©(My, jo11);

otherwise, set 2, | = 2, My, 41 = My .
3) If k+ 1 = N stop; otherwise, k < k + 1, return to Step 2.

Remark 5.1. When . (x) has rank one, with .#(z) = f(z)f" (z) and ®(M) = logdet(M) or
(M) = det'/P(M) (D-optimal design), A®) (X, X}11) > 0 is equivalent to

FT (X )M, T (X)) — £1 (XG0 )M LT (X ) + 68 (X, X ) > 0, (5.1)

where

59(X. Xp0y) = [T (X )M T (X)) — (£ (X )M T (X)) ET (XML £ (X)) 52)

n

see Fedorov| (1972, p. 164). As for Algorithm 1 (see Remark (z’z’z)), we may update M 1
instead of M, ; to avoid matrix inversions. For large enough n, the term is negligible and the
condition is almost £ T (Xp11)M 1 £ T (Xpt1) > 7 (X )M 1T (X;+); that is, Fq;.[ nides M (Xiy1)] >

Fo[M,, j,, #(X;+)]. This is the condition we use in the example below. It does not guarantee in
general that ®(M,, 1) > ®(M,, ;) (since ") (X;, Xj41) < 0 from Cauchy-Schwartz inequality),
but no significant difference was observed compared with the use of the exact condition ({5.1)).
Algorithm 3 has complexity O(nd® N) in general (the additional factor n compared with Algorithm 1
is due to the calculation of the maximum over all X; in 2" at Step 2). <

Neither Algorithm 1 with a = n/N and M,, , = M,,, nor Algorithm 3 ensures that ®(M,, n)
tends to ), = ®(M},) as N — oo. Also, we can expect to have ®(M,, 1) S @7 ), for all k& with
Algorithm 3, since under Hg the matrix M* nk corresponding to the optimal selection of n distinct
points among 2}, satisfies E{@(M;, )} < @*/k for all k£ > n > 0; see Pronzato (2006, Lemma 3).

Example 6: n fixed and N large We consider the same situation as in Example 2 (Section,
with X = (z1, @2,...,24) ", #(X) = XX T, ®(M) = logdet(M); the X; are i.i.d. .#7(0,1,), with
p=d=3. Westill take ko = 5p, ¢ =5/8, v = 1/10 in Algorithm 1. We have E{M,,, } = M(x) in
Algorithm 1, and, when n is large enough, My, ,, >~ M(p) at Step 1 of Algorithm 3, with M(u) =1,
and therefore ®(M,, ,,) ~ 0.

We consider two values of n, n = 100 and n = 1000, with o = 1073 (that is, with N = 100000
and N = 1000000, respectively). Figure [11{ shows the evolutions of ®(M,,, ) (k > ko, Algorithm 1,
red solid line) and ®(M,, ;) (k > n, Algorithm 3, blue dashed line) as functlons of k in those two
cases (n = 100, left; n = 1000, right). In order to select n points exactly, adaptation of « is
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used in Algorithm 1, see Remark (iv). The value of n is too small for ®(M,, ) to approach
®* (indicated by the horizontal black line) in the first case, whereas n = 1000 is large enough on
the right panel; Algorithm 3 performs similarly in both cases and is superior to Algorithm 1 for
n = 100; the magenta curve with triangles shows ‘b:/k, k > n, with (b;kl/k: 2 ®(M,, 1) for all k, as
expected. N

In case it is possible to store the N points X;, we can replay both algorithms on the same data
set in order to increase the final value of ® for the sample selected. For Algorithm 3, we can simply
run the algorithm again on a set 2 ]\(,2) — starting with £ = 1 at Step 1 since n points have already
been selected — with 2 ]\(,2) = Zn or corresponding to a random permutation of it. Series of runs on

sets & ]\(,2), X ]\([3), ... can be concatenated: the fact that ® can only increase implies convergence for
an infinite sequence of runs, but generally to a local maximum only; see the discussion in (Cook and
Nachtsheim, 1980, Sect. 2.4). When applied to Example 6, this method was not able to improve the
design obtained in the first run of Algorithm 3, with a similar behavior with or without permutations
in the construction of the % ]\(,Z).

Algorithm 1 requires a more subtle modification since points are selected without replacement.

First, we run Algorithm 1 with « fixed at n/N on a set 2,y = Zn U %J\(ﬁ) U---u ,%”]S,m), where
)

the replications £ ]\(,1 are all identical to £ or correspond to random permutations of it. The
values of M,, , and émN are then used in a second stage, where the N points X1,..., Xy in ZN
are inspected sequentially: starting at k¥ = 0 and n; = 0, a new point Xy is selected if ny < n
and Fo[M,, ., #(Xki1)] > Conn (orif n —np > N — k + 1, see Remark (iv)). The set Zn
is thus used m + 1 times in total. The idea is that for m large enough, we can expect M,, . to
be close to M}, and (f*mN to be close to the true quantile C1_o(M},), whereas the optimal rule for
selection is Fg[M}, 4 (Xi+1)] > Ci—o(M3). Note that the quantile of the directional derivative
is not estimated in this second phase, and updating of M, is only used to follow the evolution of

®(M,,, ) on plots.

Example 6 (continued) The black-dotted line in Figure [L1|shows the evolution of ®(M,, ) as a
function of k in the second phase (for k large enough to have ®(M,, ) > 0): we have taken m =9
for n = 100 (left), so that (m + 1)N = 1000000 points are used in total (but 10 times the same),
and m = 1 for n = 1000 (right), with 2000000 points used (twice the same). Figure |12 shows
the evolution of Oy for k = 1,...,mN, for n = 100, N = 100000, m = 9 (left), and n = 1000,
N = 1000000, m = 1 (right); the horizontal black line indicates the value of C1_o(M}). The left
panel indicates that n = 100 is too small to estimate C1_,(M},) correctly with Algorithm 1 (note
that m = 4 would have been enough), which is consistent with the behavior of ®(M,, ) observed
in Figure [L1tleft (red solid line). The right panel of Figure |12 shows that ék has converged before
inspection of the 1000000 points in 2%, which explains the satisfactory behavior of Algorithm 1
in Figure [[T}right. Notice the similarity between the left and right panels of Figure [I2] due to the
fact that the same value o = 1073 is used in both. Here the 2 ]\(,l) are constructed by random
permutations of the points in 2%, but the behavior is similar without.

5.2 Comparison with IBOSS

IBOSS (Information-Based Optimal Subdata Selection, [Wang et al. (2019)) is a selection procedure
motivated by D-optimality developed in the context of multilinear regression with intercept, where
M(X) = £(X)FT(X) with £(X) = [1, XT]T. All points X; in 2}y are processed simultaneously:
the d coordinates of the X; are examined successively; for each k = 1, ..., d, the r points with largest
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Figure 11: Evolutions of ®(M,, ) (k > ko, Algorithm 1, red solid line) ®(M,, ) (k > n, Algorithm 3,
blue dashed line), and ®* Jk (magenta curve with triangles) as functions of k; the horizontal black line
corresponds to ®%; the black dotted curve shows the evolution of ®(M,, ) as a function of k when the
selection is based on Fg[M,,, ., #(Xpt1)] > C'mN, with M, . and émN obtained with Algorithm 1
applied to 2y = 2Zx U2 U U 2™, Left: n = 100, N = 100000, m = 9; Right: n = 1000,
N =1000000, m = 1.

Figure 12: Evolution of Cy in Algorithm 1 when applied to 27,8y = ZNxU 3&”]\(,2) U---u %]\(,m), the horizontal
black line corresponds to C;_,(M}). Left: n =100, N = 100000, m = 9; Right: n = 1000, N = 1000 000,
m=1.

k-th coordinate and the r points having smallest k-th coordinate are selected (and removed from
ZN), where r = n/(2d), possibly with suitable rounding, when exactly n points have to be selected.
The design selected is sensitive to the order in which coordinates are inspected. The necessity to
find the largest or smallest coordinate values yields a complexity of O(d N); parallelization with
simultaneous sorting of each coordinate is possible. Like for any design selection algorithm, the

matrix M,, y obtained with IBOSS satisfies E{®(M,, n)} < o)y forall N > n >0 1

2006, Lemma 3). The asymptotic performance of IBOSS (the behavior of M, xy and M ) for n
xed and N tending to infinity is investigated in (Wang et al., 2019) for X following a multivariate

21



normal or lognormal distribution. Next property concerns the situation where n is a fraction of NV,
with N — oo and the components of X are independent.

Theorem 5.1. Suppose that the X; are i.i.d. with p satisfying H,, and, moreover, that their com-
ponents {X;}i are independent, with ¢y, the p.d.f. of { X1}k for k=1,...,d. Suppose, without any
loss of generality, that coordinates are inspected in the order 1,...,d. Then, for any « € (0,1], the
matric VN = (1/n) Z?Zl Xini—; corresponding to the n points X;, selected by IBOSS satisfies
Van — VIBOSS g s whenn = |aN]| and N — oo, with

(VIOS) =~ [EX)] -~ mesil(@)] . k=1....d. 58)

E[{X}e] E{X 1] -

71”“ ”’;’ m () mk,(a)] kAN, (5.4)

Rl Qo

(VEOS) e =

where E[{ X }1] = ffoooxcpk(x) dz, E{X}i] = ffooo 2?2 pp(x)dr, mp = (1 —a)[d— (k—1)a]/(d — ka),

k| 1= 3g=thi=ya1 k(1= 3=t =Dyal
sk<a>=/ (- 1”>x2sok<x>dm and mk<a>=/ (e l)})wmmx,
q

with qx(+) the quantile function for ¢y, satisfying ff’;it) or(u)du =t for any t € (0,1].

Proof. By construction, IBOSS asymptotically first selects all points such that {X}; does not
belong to Z; = (qi[a/(2d)], q1[1 — a/(2d)]), then, among remaining points, all those such that
{X}2 & To = (g2[a/(2d(1 — /d))], 1[1 — a/(2d(1 — «/d))]). By induction, all points such that
{X} e & T, = (qra/(2[d— (E=1)a])], qx[1 —a/(2]d— (k—1)a])]) are selected at stage k € {3,...,d}.
Denote x = (1,...,24) . We have

1 1
{VLBOSS}k,k _ / , 3 o(x)dx = — / Ty gp(x)dx—/d j, ¢(x) dx
a J o[, 7, a\Jx [Te=1 Ze

— -~ {X}k H Pr{{X}g € Ig} /I z? gpk(l‘) dz

(£ k

—

Direct calculation gives Pr{X € [[¢_, Zx} =1 — a and

l—« l1—«

Pr{{X}g EI@} = = Y =Tk,
g PI‘{{X}k S Ik} 1-— —h—T)a
which proves (5.3]). Similarly,
1 1
{VLBOSS}k7k/ = — / Tk Tt (p(x) dx = — / Tl Tt QO(X) dx — / Tk Tt QO(X) dx
o Jo\[1e, 7, a e -1 Ze
1
=~ [ERX I E[{X N - I[I Pri{x} e} | mu(a)mp(a)l ,
O£k, 02K
with
11—« T T
Pr{{X}, € Z,} = = :
E#,fl’_e[#, Pr{{X}, € Z;} Pri{X}p € Iy} 11—«
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which proves (5.4 and concludes the proof. [

A key difference between IBOSS and Algorithm 1 is that IBOSS is nonsequential and therefore
cannot be used in the streaming setting. Also, IBOSS is motivated by D-optimal design and may
not perform well for other criteria, whereas Algorithm 1 converges to the optimal solution when
n = |aN| and N — oo for any criterion satisfying Hg. Moreover, IBOSS strongly relies on the
assumption that .2 (X) = £f(X)f"(X) with f(X) =[1, XT]" and, as the next example illustrates,
it can perform poorly in other situations, in particular when the X; are functionally dependent.

Example 7: quadratic regression on [0,1] Take f(X) = [X, X?]T, with X uniformly dis-
tributed in [0, 1] and ®(M) = logdet(M). For a < a, ~ 0.754160, the optimal measure £ equals
pu/aon[1/2—a,1/24b]U[1—(a—a—b), 1] for some a > b (which are determined by the two equations
FoM}, #(1/2—a)] = Fo[ M}, #(1/2+b)] = Fo[M},, #(1—(—a—"0))]). For a > a, & = p/a
on [1 —a,1]. When n = |aN | when N — oo, the matrix M'TEJC\),SS obtained with IBOSS applied to
the points f(X;) converges to M!BOSS = M(¢!BOSS) with ¢/BOSS = 11/ on [0, /2] U [1 — /2, 1].
The left panel of Figure [13| shows det(M?) (red solid line) and det(M!BOSS) (blue dotted line) as
functions of a € [0, 1]. We have det(M!BO5%) = (1/960)a?(a +25 — 40a + 26a? — 8a?), which tends
to 0 as a — 0. N

Next examples show that IBOSS performs more comparably to Algorithm 1 for multilinear
regression with intercept, where . (X) = f(X)f " (X) with f(X) = [1, X T]T. Its performance may
nevertheless be significantly poorer than that of Algorithm 1.

Example 8: multilinear regression with intercept, ®(M) = log det(M)

X is uniformly distributed in [~1,1]2. Direct calculation shows that, for any o € [0, 1],
the optimal measure &% equals p1/a on [—1,1]?\ %2(0, R,,), with %5(0,7) the open ball centered at
the origin with radius . Here, Ry, = 24/(1 — a)/7m when o > 1 — /4, and R, > 1 is solution of
1+7R?/4—+VR%2—1— R? arcsin(1/R) = a when o € (1 — 7/4,1]. The associated optimal matrix
is diagonal, M} = diag{1, pa, pa }, with

= [2/3 —2(1 — @)?/n] if0<a<1l-m/4,
P :{ L [2/3+7TR3/8— (RL/2) arcsin(1/Ry) — /R2 — 1(R§+2)/6} ifl-m/d<a<l.

Extension to d > 2 is possible but involves complicated calculations.

When n = |aN| and N — oo, the matrix ME]?]SS obtained with IBOSS converges to M!BOSS —
M(¢/BOSS) when n = |aN| and N — oo, with £BO5 = y1/a on [-1,1]?\ ([-1+a,1 —a] x [-1 +
b,1 — b)), with @ = /2 and b = a/(1 — a) > a. The matrix M'BOSS is diagonal, M!BOSS —
diag{1, Do 1, Do 2}, where VIBOSS — diag{D,, 1, Dy} is the matrix in Theorem [5.1| with Dy =
(8 —ba + a?)/12 and Dyo = (8 — 1la + 4a?)/[3(2 — a)?]. The right panel of Figure |13 shows
det(M?) (red solid line) and det(M!BOSS) (blue dashed line) as functions of a € [0,1]. Note that
det(M%) — 1 whereas det(M!B955) — 4/9 when o — 0. The problem is due to selection by IBOSS
of points having one coordinate in the central part of the interval. <

X is normally distributed .#°(0,I;). The expression of the optimal matrix M} has been
derived in Section ; the asymptotic value for N — oo of the matrix M|,y n is

1 of
IBOSS
M, "> = ( 0 VIBOSS ) ;
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Figure 13: det(M?) (red solid line) and det(M!'BO5) (blue dotted line) as functions of o € [0,1]. Left:
quadratic regression on [0, 1]; Right: multilinear regression with intercept on [—1,1]2.

where the expression of V!BOSS (here a diagonal matrix) is given in Theorem Figure |14] shows
the D-efficiency det!/(4+1)(M!BOSS) / det!/(4+1)(M*) as a function of o € (0,1] for d = 3 (left)
and d = 25 (right), showing that the performance of IBOSS deteriorates as d increases. We also
performed series of simulations for d = 25, with 100 independent repetitions of selections of n =
|aN | points within Zx (N = 10000) based on IBOSS and Algorithm 1. Due to the small value of
N, we apply Algorithm 1 to replications 2,y = Zn U 3&”]\(,2) u---u e%”]\(,m) of Zn, see Section
with m = 99 for @« < 0.1, m = 9 for 0.1 < a < 0.5 and m = 4 for & > 0.5. The colored areas
on Figure show the variability range for efficiency, corresponding to the empirical mean + 2
standard deviations obtained for the 100 repetitions, for IBOSS (green, bottom) and Algorithm 1
(magenta, top); note that variability decreases as n = |aV | increases. The approximation of M, x
obtained with IBOSS by the asymptotic matrix M'BOSS is quite accurate although N is rather
small; Algorithm 1 (incorporating m repetitions of Z) performs significantly better than IBOSS
although the setting is particularly favorable to IBOSS — it is significantly slower than IBOSS,
however, when m is large.

6 Conclusions and further developments

We have proposed a sequential subsampling method for experimental design (Algorithm 1) that
converges to the optimal solution when the length of the sequence tends to infinity and a fixed
proportion of design points is selected. Since the method only needs to keep the memory of the
current information matrix associated with the design problem (or its inverse), and to update a pair
of scalar variables (an estimated quantile, and an estimate of the p.d.f. value at the quantile), it can
be applied to sequences of arbitrary length and is suitable for data streaming.

We have not tried to optimize the choice of initialization and tuning parameters in Algorithm 1.
Although it does not seem critical (the same tuning has been used in all the examples presented),
there is certainly an opportunity to improve, in particular concerning Gy and éko (for instance,
using the information that C7_, < 0 whereas @0 > 0 for small a with the initialization we use).

We have only considered the case of linear models, where the information matrix does not de-
pend on unknown parameters (equivalent to local optimum design in case of a nonlinear model),
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Figure 14: D-efficiency of IBOSS (blue solid line) as a function of o € (0,1] for d = 3 (left) and d = 25
(right). The enveloppes on the right panel show the empirical mean efficiency + 2 standard deviations
obtained for 100 independent repetitions with n = [@N| and N = 10000 for IBOSS (green, bottom) and
Algorithm 1 (magenta, top).

but extension to online parameter estimation in a nonlinear model with .#(z) = .# (x,0) would
. . . . AT .

not require important modifications. Denote by @ the estimated value of the parameters af-

ter observation at the n design points selected, Xj,,...,X;,, say. Then, we can use Mnk0 =

(1/ko) Zfﬁl ///(Xi,éko) at Step 1 of Algorithm 1, and M, 1 given by can be replaced by
My, +1 = [1/(ng + D] D25, ///(Xij,énk) + M (Xps1,0™)] at Step 2. Recursive estimation can be
used for k > ko to reduce computational cost. For instance for maximum likelihood estimation,
with the notation of Section [l we can update 8" as

o 1 _, Ologox, ,0(Yri1)
np+1 et 00 0—p"k

~np+1

0

when X1 is selected; see Ljung and Soderstrom| (1983); ' Tsypkin| (1983). A further simplification
would be to update M, as M, ,, = My, + [1/(nj, +1)] [#(X}+1,0 ") — M, ]. When the X; are
iid. with p satisfying H,,, the strong consistency of 6" holds with such recursive schemes under
rather general conditions when all X; are selected. Showing that this remains true when only a
proportion « is selected by Algorithm 1 requires technical developments outside the scope of this

paper, but we anticipate that M,,, — M:;g a.s., with MZ@ the optimal matrix for the true value

)

0 of the model parameters.

Algorithm 1 can be viewed as an adaptive version of the treatment allocation method presented
in (Metelkina and Pronzato|, [2017): consider the selection or rejection of X; as the allocation of indi-
vidual ¢ to treatment 1 (selection) or 2 (rejection), with respective contributions .#(X;) = #(X;)
or #>(X;) = 0 to the collection of information; count a cost of one for allocation to treatment
1 and zero for rejection. Then, the doubly-adaptive sequential allocation (4.6) of Metelkina and
Pronzato, (2017) that optimizes a compromise between information and cost exactly coincides with
Algorithm 1 where C}, is frozen to a fixed C, i.e., without Step 3. In that sense, the two-time-scale
stochastic approximation procedure of Algorithm 1 opens the way to the development of adap-
tive treatment allocation procedures where the proportion of individuals allocated to the poorest
treatment could be adjusted online to a given target.
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Finally, the designs obtained with the proposed thinning procedure are model-based: when
the model is wrong, £}, is no longer optimal for the true model. Model-robustness issues are not
considered in the paper and would require specific developments, following for instance the approach
n (Wiens, 2005; Nie et al., 2018)).

A Maximum of ®(M,,)

The property below is stated without proof in (Pronzato, [2006). We provide here a formal proof
based on results on conditional value-at-risk by [Rockafellar and Uryasev| (2000) and Pflug (2000).

Lemma A.1l. Suppose that ni/k — o as k — oo. Then, under Hy and H 4, for any choice of ny
points X; among k points i.i.d. with p, we have limsup,_, ., ®(M,, 1) < ®(M},) a.s., where M},
mazimizes (M) with respect to M € M(«).

Proof. Denote by M*k  the matrix that corresponds to choosing ny distinct candidates that max-
imize ®(M,,, ). The concavity of ® implies

(M, 1) < B(My,) + trace[Ve (M)(

ng,k

M;)|. (A.1)

nkk_

The rest of the proof consists in deriving an upper bound on the second term on the right-hand side

of .

Denote z; = trace[Vg(M}).# (X;)] for all i = 1,..., k and let the z; denote the version sorted
by decreasing values. Since ® is increasing for Loewner ordering, ®(M) < ®(M + zz') for any
M € M= and any z € RP, and concavity implies ®(M +zz') < ®(M) +z' V4 (M)z, showing that
Vo (M) € MZ. Therefore, 2., > 0 for all 4.

First, we may notice that trace[Ve(Mg)M, ] < (1/n%) >3 2k and that

* * 1 *
tracel Va(MIME] = = | Tmeowaoty oo ) tracelVo(M2).4/(@)] (o)

with ¢;_ > 0 and such that fgf Lftrace[ Ve (M2 ). (2)]>c1_o ) H(dT) = a; see (2.2).
Following Rockafellar and Uryasev| (2000); [Pflug (2000), we then define the functions g(z; 3,a) =
a+(1/B) [trace[Ve(Mp).# (x)—al*, z € 27, B € (0,1), a € R. We can then write, for any 8 € (0,1),

trace[Ve(Mpj)Mj] = E{g(X;8,c1-5)} = i%f E{9(X;B8,a)} > c1-5, (A.2)

and

1

Nk

Z Zik = E/Lk{g(X Q, Zny,: k)} = lgf Euk{g(X; ag, CL)} ’
1=1
where ay, = ny/k € (a/2,1] for all k larger than some k; and where E,, {-} denotes expectation for
the empirical measure pg = (1/k) 2% 6.

Next, we construct an upper bound on z,, .. For k > ki, the matrix My, = (1/k) Ele A (X;)
satisfies

k
trace[Ve (M) My] = (1/k) > zik > (nk/k) znen > (/2) Znek (A.3)
=1

Now, M7, = M(&)) with £ = p/a on a set 27 C 2 and £, = 0 elsewhere, and p(Z2;) =
al (X)) =al(Z) = a. Hy-(ii) then implies that Apin (M) = (1/a) Amin fx* M (z) p(dz)] >
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lo/a, and Hg implies that ||[Ve(M})|| < A(ly/a) < co. Therefore trace[Ve (MY )M(u)] < Aq =
A(ly/a)y/pB from H_4-(i). Since trace[Ve(M*)Myg] tends to trace[Ve(IME)M(p)] a.s. as k — oo,
implies that there exists a.s. kp such that, for all k > ko, z,,.1x < Aa/(40).

To summarize, implies

(P(M:Lk,k,’) < (I)(Mz) + Euk{g(X; Qf, an:k)} - E{g(X7 Qa, lea)}
< (I)(MZ) + |E,uk{g(X; g, an:k)} - E{g(Xa ag, leak)H
+ |trace[Ve (M}, )M, | — trace[Ve (M, )M}]| .

The last term tends to zero as k tends to infinity, due to (A.2) and the continuity of conditional
value-at-risk; see (Rockafellar and Uryasev, [2002, Prop. 13). Since ¢1—q, < trace[Ve(M, MY, ],
see (A.2), and ap — «, for all k large enough we have ¢;_o, < 2 trace[Ve(M},)M}]. Denote
a = max{4,/(4a),2 trace[Ve (M} )M?*]}. The second term can then be rewritten as

| {9(Xs ar, znr)} — E{g(X5an,c1-a,)} = aeir[éfa] Eu{9(X;0p,a)} — aeif[(ljfa] E{9(X;ar,a)}
< Jnax [Ep{9(X;ap,a)} — E{g(X; o, a)}] .

The functions ¢(-;t,a) with ¢t € («/2,1], a € [0,a], form a Glivenko-Cantelli class; see (van der
Vaart, 1998, p. 271). It implies that max,¢(oq) |Ep, {9(X; ok, a)} — E{g(X; ax,a)}| — 0 a.s., which
concludes the proof. [ ]

The class of functions g(-;¢,a) is in fact Donsker (van der Vaart, [1998, p. 271). The strict
concavity of ®(-) implies that optimal matrices are unique, and in complement of Lemma we
get HMﬂ[akJ,k — M || = Oy(1/Vk). Note that when an optimal bounded design measure & is
known, a selection procedure such that ny/k — o and ®(M,, ) — ®(M},) a.s. is straightforwardly

available: simply select the points that belong to the set 2. on which &, = u/a.

B Non degeneracy of M,,

To invoke H,, 4 in order to ensure the existence of a density oM, having the required properties for
all k& (which is essential for the convergence of Algorithm 1, see Theorem [3.1]), we need to guarantee
that M,,, € I\\/JIEZL for all k, for some ¢ and L. This is the object of the following lemma.

Lemma B.1. Under H ,, when €1 > 0 in Algorithm 1, ngi1/k > €1 for all k and there exists a.s.
>0 and L < oo such that M, € MZZL for all k > k.

Proof. Since the first ko points are selected, we have ni/k = 1 > €, for k < ko. Let k. be the
first k for which ng/k < €. It implies that ng, = ng,_1 > (ks — 1) €1, and implies that
Nk, +1 = nk, + 1. Therefore, ng, 41/k« > €1 + (1 — €1)/ky > €1, and ng/(k — 1) > €1 for all £ > 1.
If the ng points were chosen randomly, ny > (k — 1) ¢; would be enough to obtain that, from
H./, Amin(My,,) > £e, /2 and Apax(My,,) < VB/2 for all k larger than some k1. However, here the
situation is more complicated since points are accepted or rejected according to a sequential decision
rule, and a more sophisticated argumentation is required. An expedite solution is to consider the
worst possible choices of nj, points, that yield the smallest value of Apin(My, ) and largest value of
Amax(My,, ). This approach is used in Lemma presented below, which permits to conclude the
proof. [ |
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Lemma B.2. Under H,, any matric M, obtained by choosing ny points out of k indepen-
dently distributed with p and such that ng/k > € > 0 satisfies iminfy_, o Amin(Mp,) > ¢ and
lim supy,_, oo Amax(Mp, ) < L a.s. for some £ >0 and L < cc.

Proof. We first construct a lower bound on lim infy_, oo Amin(My,,). Consider the criterion ®1 (M) =
Amin (M), and denote by M;‘Lk . the ng-point design matrix that minimizes @} over the design

space formed by k points X; ii.d. with p. We can write MY, , = (1/ng) Y 0%, A (Xy,), where
k

the k; correspond to the indices of positive u; in the minimization of f(u) = @3[> 7 u; A (X;)]
with respect to u = (uy,...,u;) under the constraints u; € {0,1} for all i and >, u; = ny.
Obviously, any matrix M, obtained by choosing n;, distinct points X; among X7, ..., X}, satisfies
)\min(Mnk) Z )\min(M;k’k)-

For any M € M=, denote (M) = {u € R? : [ju|| = 1, Mu = Apin(M)u}. Then, for

any u € % (M5 ), 0 M) 1= Agin (M ) = mingepe, |vj=1 V' M5 v = (1/ng) S0k zi(w),

where the z;.;(u) correspond to the values of u'.# (X;)u sorted by increasing order for i = 1,..., k.
For any m € {1,...,n; — 1}, we thus have
1 m
)\min(Mthk) > % z;zi:k(u) > )\min( ;kn7k)7
1=

showing that the worst situation corresponds to the smallest admissible ny; that is, we only have
to consider the case when ny/k — € as k — oo.
Since @7 is concave, for any M’ € M= we have

Amin(M) < Ain (M, 1) + Fr (M7, . M), (B.1)

where Fy+ (M, M') = min,cq (m) u' (M’ — M)u is the directional derivative of ®%, at M in the
direction M.

For any « € (0,1) and any &, < p/a, there exists a set Z, C 2 such that &, > (1—a)p on 2,
and pu(2%) > o?. Indeed, any set 2 on which &, < (1 —a)u is such that £,(2) < (1 —a) u(Z) <
(1 — «); therefore, taking 2, = 2\ 2, we get u(2a) > aéa(Zs) > a?. Denote ay, = ny/k, with
ap > € and oy — € as k — 00, and take any M’ = M(&,, ) € M(ay). Applying H_4-(ii) to the set
Za, defined above, we get

Amin(M') = Amin ( /J A (1) £ak(dfﬂ)> > Amin< ) A (1) fak(dfﬂ)>

> (1 — ax) Amin < A () ,u(dm)) > (1 — o) loz -

Loy,

For k larger than some k; we have oy € (€, 2¢), and therefore A\yin(M') > ¢. = (1 —2¢) ¢z > 0. The
inequality (B.1]) thus gives, for k > k1,

¢ < Amin (M i i (™M — M . B.2
Ce < Amin( nk,k)+ue%r§11\1411;k7k)M,glﬁl(l%)u ( gk ) (B.2)

The rest of the proof follows from results on conditional value-at-risk by |[Rockafellar and Uryasev
(2000) and [Pflug (2000)). For a fixed u € RP, u # 0, and a € (0, 1), we have

1

T T
N M'u = o /% L™ #(z)u<an )y (@ A (z)u] p(dz),
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where the a-quantile aq(u) satisfies [, Iry™ 4 (s)u<an ()} #(d7) = . For any a € R and u € R?,
denote

1

h(z;a,a,u) =a——[a—u' A(x)u|", ze 2.

«
We can write minypeno)u' M'u = E{h(X;a,aq(u),u)} = sup,cg E{h(X;a,a,u)}, where the
expectation is with respect to X distributed with p (Rockafellar and Uryasev, 2000). Also, from
Pflug (2000), for any u € % (M, ;) we can write uTM:k,ku = E, {h(X;ak, zn6(u),u)} =
SUPyeRr Eup 1R(X; ok, a,u)}, where E, {-} denotes expectation for the empirical measure pp =

(1/k) 35 6x,.-

Now, from H_4-(7), for any u € R? with ||u|| =1,
(1—a)ag(u) < /9/ Liu™ #(@)usan(u) [0 (z)u] p(dz) < VB. (B.3)

We also have (k — ni) znge(w) < S5, 1 2ik(n) < 30 zie(u) = k(u"Mgpu) <k Amax(My),
with My, — M(u) a.s. as k — oco. Denote Z = 2vB/(1 — 2¢); since oy, — ¢, from H_;2-(i) there
exists a.s. kg such that, for all k > kg, 2,,,.1(u) < Z¢ and, from , Aoy, (1) < Ze.

Therefore, for large enough k, for any u € %(M;kk),

min  ul (M= M, Ju = E{h(X; a, ey (), 1)} — By {A(X; g, 2y (), w)}
M’ eM(ay,)

IA

sup |E{h(X;ag,a,u)} — E, {M(X;ap,a,u)}| .
a€[0,z¢]
The functions h(-; o, a,u) with a € (¢,2¢), a € [0,Z] and u € RP, ||u|| = 1, form a Glivenko-
Cantelli class; see (van der Vaart, (1998, p. 271). This implies that there exists a.s. k3 such that

max sup |E{h(X;ag,a,u)} — E, {h(X;ap,a,u)}| <c/2, Vk> k3.
ueRP:[lull=1 g¢[0,%]

Therefore, from (B.2]), Apin(M*

nk,k) > ¢¢/2 for all k > ks, which concludes the first part of the
proof.

We construct now an upper bound on lim supy,_, ., Amax (M, ) following steps similar to the above
developments but exploiting now the convexity of the criterion M — 1/®F (M) = Apax(M).
Its directional derivative is F1/<I>foc(M’M/) = maxyeyanu' (M — M)u, with (M) = {u €
RP : fluf| = 1, Mu = Apax(M)u}. Denote by My . the ny-point design matrix that maxi-
mizes 1/®__ over the design space formed by k points X; i.i.d. with u. We can write M;k,k =
(1/ng) S, M (Xk,), where the k; correspond to the indices of positive u; in the maximization of
flu) = )\max[zle w; A (X;)] with respect to u = (uy,...,u;) under the constraints u; € {0,1}
for all ¢ and ), u; = ng. Any matrix M,, obtained by selecting nj distinct points X; among
Xi,..., X}, satisfies Apax(Mp, ) < )‘maX(M;k,k)'

For any u € % (M;, ;) we can write uTM;k’ku = Amax (M, ;) = maxycgro: ||v|=1 VTM;‘;k’kV =
(1/ng) S, zik(u), where the z;.x(u) correspond to the values of u' . (X;)u sorted by decreasing
order for i = 1,..., k. For any m € {1,...,n; — 1}, we thus have

* 1 - *
AmaX(Mnk”k) < E Z'Z’Lk(u) < Amax( m,k)?
=1
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showing that the worst case corresponds to the smallest admissible ng, and we can restrict our
attention to the case when oy = ni/k — € as k — co.
The convexity of 1/®*__ implies that, for any M/ € M~

Amax(M') > Amax (MG, ) + Fy g (M5, 5, M) (B.4)

Take M’ € M(ay), corresponding to some &,,. From H_,-(i),

A (M) = Aunas [ [ e 5ak<dx>] _alkxmax[M(u)k\/E.

ag
Therefore, there exists some k; such that, for all & > k1, Amax(M’) < 2v/B/e, and (B.4) gives
2VB

€

>\ M* +  max max u' (M’ —M*
=z maX( mmk) ueg//(M,’;bk)M’EM(%) ( nk,)

Fora € R, a € (0,1) and u € R?, denote h(z; o, a,u) = a+(1/a)[u’ .4 (x)u—a]t, z € 2. We have
Amax(My, ) = (1/n) 32025 zik(w) = Epy {h(X; o, 2npek(w), 0)} = inf, E {h(X:ap.a,0)}, u €
%(M;k i), With z,, .k (u) satisfying 0 < ng, zp,.x(u) < D0 zip(u) < Zi:l zik(0) = k Apaz(Mp).
Also, for any o € (0,1) and u € RP, u # 0, maxppen(a)u' M'u = E{A(X;a,aq(u),u)} =
inf, E{R(X; v, a,u)}, where aq(u) satisfies [, IiyT g (z)usan )} #(dz) = a, and H 4-(i) implies
that 0 < aq(u) < (1/0) [4 LT #(2)usan(u)} u' . (x)up(dz) < VB/a. Since o = ng/k — €
and My, — M(u) a.s., there exists a.s. ko such that, for all k& > kg, 0 < ag,(u) < 2v/B/e and
0 < z,,.k(u) < 2v/B/e. This implies that, for u € % (M, ;) and k> ko,

max uT(M Mzk, ) = E{h(X;ak’aOék(u)?u)} - Euk{h(X;akaznk:k(u)au)}
MIEM(Oék)

< osup  [E{A(X;ak,a,u)} — By {R(X;ax, a,u)}
a€[0,2v/B/€|

The rest of the proof is similar to the case above for Apin, using the fact that the functions h(-; a, a, u)
with a € (¢,2¢), a € [0,2v/B/e] and u € RP, |Ju|| = 1, form a Glivenko-Cantelli class. [ ]
C Convergence of Cj

We consider the convergence properties of (3.3 when the matrix My, is fixed, that is,

s~ 5 Bk
Cun = Cit (L se — @) » (C.1)

where the Zj have a fixed distribution with uniformly bounded density f such that f(Cy_,) > 0.
We follow the arguments of [Tierney (1983). The construction of fj is like in Algorithm 1, with
B = max{min(1/ fk, 0 k7)} and f following the recursion

1 1 -~
fk+1 fk + (k+1)4 [2 hit1 ]I{\Zkﬂ—ak\ﬁhkﬂ} N fk} (C2)

with hy = h/k7.
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Theorem C.1. Leta € (0,1), fo >0, h>0,1/2<q<1,0<~y<q—1/2. Let F be a distribution
function such that f(t) = dF(t)/dt exists for all t, is uniformly bounded, and is strictly positive in a
neighborhood of C1_q, the unique value of C' such that F(C) =1—a. Let (X;) be an i.i.d. sequence
distributed with F' and define Cy, and fk by and respectively, with [, = min{l/fk, Bo k7}
and hi, = h/kY. Then, Cy, — Ci_o a.s. when k — oo.

Proof We ﬁrst show that fk is a.s. bounded. From the mean-value theorem, there exists a t; in
[Ck — hk+1,0k + hgt1] such that Pr{|Zy.q — Ck| < hpy1} = F(Ck + hgt1) — (Ck — hgy1) =
2 hyy1 f(tr). Denote wiy1 = H{|Zk+1—ck|§hk+1} 2 hiy1 f(tx). We can write

i1 = (1= By) fi + Ax + 4,
where B, = 1/[(k 4+ 1)9], Ay = wit1/[2 hiey1 (B + 1)) and A}, = By, f(tx). Therefore,

k k k
fin=R[Ia-B)+> (4 +4) [ a-By).
=1 J=1 1=j+1

We have Hle(l — B;) < exp(— Zle B;) — 0 as k — oo since ¢ < 1. Next, for hy = h/kY and
0<vy<q—1/2, 3. 1/[hk9* < o0, Z§:1 A;j forms an #?-bounded martingale and therefore
converges a.s. to some limit. Lemma 2 of Albert and Gardner| (1967, p. 190) then implies that
Z?Zl A; Hf:jJrl(l—Bi) — 0 a.s. as k — oo. Consider now the term Ty = 2?21 Al HZ i1 (1=B;).
Since f is bounded, A; < f Bj for some f < oo and
k k k
Tk<fz H (1-B)=Ff [1—1—[(1—32-) <f,

=1

where the equality follows from Albert and Gardner (1967, Lemma 1, p. 189). This shows that fk
is a.s. bounded. Therefore, 5, = min{1/fx, Bo k7 } is a.s. bounded away from zero.
We consider now the convergence of (C.1)). Following Tierney| (1983), define

L{H - B F(C)—(1-a)
(k+1)7 UtZen=Crl (k+1) ak ~Cioa

Dy, = F(@k)]} and By =

Denote by .7 the increasing sequence of o-fields generated by the Xl, we have E{Dy[F;} = 0
and E{D}|Z} = gF(Ck) [1— (Ck)]/(k +1)%9. We can rewrite as Cpy1 — Cl_a = (Cr —
Ci1—a) (1 = Ex) 4+ Dy, which gives

B2

(it D)2 F(Cy)[1 - F(Cy)].

E{(Chr1 — C1—a)?|Fx} = (Cr — C1_0)* (1 — Ex)* +

Ej, > 0for all k, [F(Cy)—(1—)]/(Ck —C1_q) is bounded since f is bounded, and therefore Ej — 0.
Since Bx < Bok” and 0 < v < q—1/2, >, B2/(k + 1)* < co. Robbins-Siegmund Theorem (1971)
then implies that Cj converges a.s. to some limit and that Yol (Co—C1_a)?[1—(1—Ep)?] < 0 a.s.;

since Ej, — 0, we obtain Zk(C’k —(01_4)? Ep < 00 a.s. Since ¢ < 1, B, is a.s. bounded away from
zero, and f is strictly positive in a neighborhood of Ci_,, we obtain that ), Ey = oo, implying
that ék — (1_q a.s., which concludes the proof. [ |

Tierney| (1983)) uses ¢ = 1; the continuity of f at C1_, then implies that f — f(Ci—4) a.s., and

his construction also achieves the optimal rate of convergence of @k to Ci_q, with V& (ék —Ci-a) 4
N(0,a(l — a)/f3(C1_q) as k — oco.
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D Lipschitz continuity of Cy_,(M)

Lemma D.1. Under Hy and H, n, the (1 — a)-quantile C1_o(M) of the distribution Fyp of
Zm(X) = Fo[M, # (X)) is a Lipschitz continuous function of M € MeZL

Proof. For any A € M~ define the random variable T (X) = trace[A.# (X)] and denote G4 its
distribution function and @1 (A) the associated (1—a)-quantile. We have Zyp(X) = Ty, (v (X) —
trace[Ve(M)M], and therefore

Cl_a(M) = Ql_a[Vq)(M)] — trace[V<1>(M)M] . (D.l)

We fist show that trace[Ve(M)M] is Lipschitz continuous in M. Indeed, for any M, M’ in
M;L, we have

|trace[Ve (M)M'] — trace[Ve(M)M]| < [[M]| [Vo (M) — Vo(M)[| + [ Vo (M)]| [M' — M]|
< [LypKe+ A M' = M|, (D.2)

where we used Hg and the fact that M, M’ € MKZL.
Consider now G'o and G- for two matrices A and A’ in M~. We have

Ga(t) —Ga(t) = /7 (Ittrace[ar.z ()] <t} — Ljtrace[a.a(2)]<t}) H(d),
and therefore

|Gar(t) — Ga(t)] < Prob{min{trace[A’.Z(X)], trace[A.#(X)]} <t
< max{trace[A’ . (X)], trace[A.Z (X)]} }
< Prob {trace[(A — ||A — A'||L,).#(X)] <t < trace[(A + ||A — A'||L,).#(X)]} ,

with I, the p x p identity matrix. Since A — Apin(A) I, € MZ, denoting by = 1 — ||A — A'||/Amin(A)
and by = 1+ ||JA — A'||/Amin(A), we obtain

|Ga/(t) — Ga(t)] < Prob{b; trace[A.#(X)] <t < by trace[A.#(X)]}

= Prob {trace[A.///( <0 /\ trace[A.Z (X)] > bt2 }

= GA(t/b1) — GA(t/b2). (D.3)

In the rest of the proof we show that Q1_o[Vs(M)] is Lipschitz continuous in M. Take two matrices
M,M € M;L, and consider the associated (1 — «a)-quantiles Q1_o[Va(M)] and Q1-o[Vae(M')],
which we shall respectively denote Q1_, and Q}_,, to simplify notation. From H, ,, the p.d.f. ¢m
associated with GV¢(M) is continuous at Q1_, and satisfies Ynm(Q1—-«) > €. From the identities

Ql—a Qll—a
[ o= [T e =1 -0,
we deduce

Ql_u
/ o
11—«

= |Gy (Q1_0) — Gyvao(@1_0)| - (D-4)

'/ [ (2) — m(2)] dz
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From Hg, when substituting V¢ (M) for A and V(M) for A’ in by and be, we get by > By =
1 — Ky||M' —M||/a(L) and by < By = 1+ K;||M’' — M]||/a(L), showing that Q}_, — Qi—q as

M’ — M|| — 0. Therefore, there exists some (; such that, for |[M’' — M|| < 31 we have

/

/ o Ym(z)dz| > é Qo —Qia| €L (D.5)

Using (D.3]), we also obtain for |[M’ — M|| smaller than some [
Gy (Q1_0) = Gyoan(@Q1-0)| < Guaau)(@1_a/B1) — Gyyovy(Q)_o/B2)

< wM(Qaa)( B ;;)

a(L) |
2(L)/K7 — M/~ M)

< AIM = M@ ) Qo

Therefore, when |[M’ — M|| < a(L)/(KV?2),

|Gop ) (@1-a) — Gyyamy(@1_a)| < 5 [IM — M|

with & = 8¢m Q' _, K¢/a(L), where @y is the upper bound on ¢y in Hy, . Using (D.4)) and
(D.5) we thus obtain, for |[M’ — M]|| small enough,

|Q1-a[Va(M')] = Q1-a[Va(M)]| < 26/eqr, [|M — M'[|,

which, combined with (D.2)) and (D.1)), completes the proof. [
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