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Abstract: Motivated by recent efforts to encode 11D supergravity in 4D N = 1 superfields,

we introduce a general covariant framework relevant for describing any higher dimensional

supergravity theory in external 4D N = 1 superspace with n additional internal coordinates.

The superspace geometry admits both external and internal diffeomorphisms and provides the

superfields necessary to encode the components of the higher dimensional vielbein, except for

the purely internal sector, in a universal way that depends only on the internal dimension n.

In contrast, the N = 1 superfield content of the internal sector of the metric is expected to be

highly case dependent and involve covariant matter superfields, with additional hidden higher

dimensional Lorentz and supersymmetry transformations realized in a non-linear manner.
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1 Introduction and motivation

A major difficulty in studying higher-dimensional supergravity theories is the absence of a

(finite) off-shell formulation. This leads to a number of complications, a major one being the

difficulty in writing down generic higher-derivative supersymmetric actions. This is in sharp

contrast to the situations in lower dimensions (and fewer supersymmetries) where off-shell

superspaces are available.

Standard techniques to address this always involve trade-offs. One can introduce infinite

auxiliary fields, using harmonic superspace [1, 2] (which is related to projective superspace

[3–8]) or pure spinor superspace [9–12], but the former does not seem applicable beyond six

dimensions and the latter leads to a very complicated Batalin-Vilkovisky form whose on-shell

component structure proves difficult to extract (see discussions in [13, 14]). One could take the

opposite extreme – eliminating auxiliary fields altogether – by working in light cone superspace

[15–18], but this breaks manifest Lorentz symmetry and leads to other complications – for

example, having to work only with gauge-fixed physical degrees of freedom.

A plausible middle ground is to keep manifest some number of auxiliary fields and some

amount of supersymmetry by working in some convenient low dimensional, low N superspace.

4D N = 1 superspace is the obvious choice, given its relative simplicity and presence of cer-

tain features (e.g. holomorphic superpotentials) absent in even simpler superspaces. Already

in 1983, Marcus, Sagnotti, and Siegel took this approach with the prototypical globally su-

persymmetric case by showing how to recast 10D super Yang-Mills in 4D N = 1 language

[19]. This breaks the 10D Lorentz group to SO(3, 1) × SU(3) × U(1), but keeps off-shell 1/4

of the supersymmetry.1

The natural next step, discussed already in the conclusion of [19], would be to repeat the

exercise for 11D supergravity, but as Marcus et al. noted even N = 2 supergravity had not yet

been fully written in N = 1 superfields at that time. In the intervening 35 years, a number

of papers have examined how to rewrite higher dimensional supergravity theories in N = 1

superspace. These have included 4D N = 2 supergravity [21–26], 5D N = 1 supergravity

[27–30], and 6D N = (1, 0) supergravity [31, 32], but the 11D case has remained open.

1This was extended to lower dimensions in [20], motivated in part by brane-world scenarios.
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In the last few years, that remaining case has been explored step-by-step. The initial

papers [33, 34] identified the structure of the N = 1 tensor hierarchy that descends from

the M-theory 3-form and constructed the unique cubic N = 1 Chern-Simons action. The

superfields in this tensor hierarchy turned out to encode all the spin ≤ 1 fields. In particular,

one of them contained a gauge-invariant 3-form field with which one can endow a Riemannian

7-manifold with a G2 structure [35]. Remarkably, the N = 1 Chern-Simons action, combined

with a natural choice of Kähler potential, led to a 4D scalar potential that reproduces the

internal sector of the 11D action. Most of the kinetic terms were also correctly reproduced,

except for those terms involving fields in the 7 of G2. The explanation offered in [35] was

that the gravitino superfield, which encodes the additional seven gravitini, should include

auxiliary vector and tensor fields that when integrated out modify the kinetic terms in the 7.

This was demonstrated indeed to be the case in [36] where the entire linearized action was

written down in N = 1 superspace. Then it was shown in [37] that the full action for fields of

spin ≤ 1 could be linearly coupled to the gravitino and graviton supermultiplets consistently

using its supercurrent. What remained was to include the gravitino and graviton couplings

to all orders.

The main stumbling block to this task turns out to be N = 1 superspace itself. Unlike in

globally supersymmetric cases, the superspace covariant derivatives carry geometric data in

their connections and these must be made dependent on the internal coordinates. Put another

way, one must introduce new “internal” derivatives in N = 1 superspace, and these must have

non-trivial commutators with the “external” superspace derivatives. This introduces anew

the old problem of solving superspace Bianchi identities, but with the added wrinkle of an

additional set of coordinates and a slew of new superfields describing the mixed curvatures.

It turns out this can be done in a rather universal way, which seems as applicable to

minimal 5D supergravity as to 11D supergravity, although the details of intermediate cases

have not yet been worked out. In this paper, we provide such a generic reformulation of 4D

N = 1 superspace with n additional internal coordinates. (Our interest is n = 7, of course,

but the formulae are agnostic to the specific choice.) Our construction will be motivated by

the requirement that it consistently covariantize the 11D supergravity results. It will also

make contact with existing 5D [30] and 6D results [32], where the linearized version of this

supergeometry was built explicitly out of prepotential superfields.

This paper is organized as follows. In section 2, we review some details of how 11D

supergravity is recast in 4D N = 1 language to motivate a number of choices we will make

for the Kaluza-Klein supergeometry. Section 3 is devoted to a general discussion of bosonic

Kaluza-Klein geometry that readily generalizes to superspace. In sections 4 through 6, we

discuss how to solve the superspace Bianchi identities. Section 4 provides a general discussion

in terms of abstract curvature superfields and shows how, with a certain minimal set of

constraints, the Bianchi identities can be rewritten in terms of simpler abstract curvature

operators. This leads to a set of six abstract operator equations that must be satisfied. In

section 5, we discuss the linearized solution to these identities, and then in section 6, we

address the full solution. The existence of full superspace and chiral superspace actions is
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established in section 7. In the conclusion, we sketch the remaining steps needed to rewrite

11D supergravity in N = 1 language, which will be the subject of a subsequent publication.

2 Elements of 11D supergravity and an N = 1 wishlist

In order to lay the groundwork for the Kaluza-Klein superspace we will construct, it will be

helpful to sketch what is currently known about the rewriting of 11D supergravity in N = 1

language [33–37]. (See the introduction of [37] for more details.)

2.1 A sketch of 11D supergravity

Locally, we decompose 11D spacetime into four external coordinates xm and seven internal co-

ordinates ym. Four local supersymmetries are made manifest by introducing local Grassmann

coordinates (θµ, θ̄µ̇), which are combined with xm to give an external 4D N = 1 superspace.

The 11D spectrum comprises a metric, 3-form, and a 32-component gravitino, each of which

must be decomposed into 4D N = 1 multiplets. The structure of the 3-form is easiest to

understand as its abelian gauge structure has a unique encoding in N = 1 superspace. The

component form decomposes directly into a tensor hierarchy of forms

C3 → Cmnp , Cmnp , Cmnp , Cmnp (2.1)

extending from a 0-form to a 3-form in external spacetime. The N = 1 superspace encoding

of such a tensor hierarchy is known. In terms of N = 1 superfields, it comprises a chiral

superfield Φmnp, a real vector superfield Vmn, a chiral spinor superfield Σmα, and a real

superfield X. They transform under abelian gauge transformations as (in form notation)

δΦ = ∂Λ , (2.2a)

δV = 1
2i(Λ− Λ̄)− ∂U , (2.2b)

δΣα = −1
4D̄2DαU + ∂Υα +WαyΛ , (2.2c)

δX = 1
2i(DαΥα − D̄α̇Ῡ

α̇)− ωh(Wα, U) (2.2d)

with y and ∂ denoting the interior product and de Rham differential on the internal space,

and where we have used the shorthand

ωh(χα, v) := χα
yDαv + χ̄α̇yD̄α̇v +

1

2

(

Dαχαyv + D̄α̇χ̄
α̇
yv

)

. (2.3)

The gauge parameters are a chiral superfield Λmn, a real superfield Um, and a chiral spinor

superfield Υα. The 4D N = 1 derivatives involve a Kaluza-Klein connection, D := d − LA,

which acts via the internal Lie derivative, i.e. LAU := Ay∂U + ∂(AyU). The prepotential

Vm for the connection A describes the N = 1 vector multiplet that includes the Kaluza-

Klein vector component of the higher dimensional vielbein. In this covariant formulation,

the Kaluza-Klein prepotential does not appear explicitly, but rather only via the covariant

derivative and its chiral field strength Wα
m obeying the usual Bianchi identities,

D̄α̇Wα
m = 0 , DαWα

m = D̄α̇W̄ α̇m . (2.4)
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The field strength superfields invariant under the gauge transformations (2.2) are given

in form notation as

E = ∂Φ , (2.5a)

F = 1
2i(Φ− Φ̄)− ∂V , (2.5b)

Wα = −1
4D̄2DαV + ∂Σα +WαyΦ , (2.5c)

H = 1
2i(DαΣα − D̄α̇Σ̄

α̇)− ∂X − ωh(Wα, V ) , (2.5d)

G = −1
4D̄2X +Wα

yΣα (2.5e)

and satisfy Bianchi identities

0 = ∂E , (2.6a)

0 = 1
2i(E − Ē)− ∂F , (2.6b)

0 = −1
4D̄2DαF + ∂Wα +WαyE , (2.6c)

0 = 1
2i(DαWα − D̄α̇W̄

α̇)− ∂H − ωh(Wα, F ) , (2.6d)

0 = −1
4D̄2H + ∂G+Wα

yWα . (2.6e)

From these superfields, one can construct the N = 1 supersymmetrization of the 11D Chern-

Simons term:

−12κ2 SCS =

∫

d11xd2θ
{

iΦ ∧
(

EG+
1

2
Wα ∧Wα − i

4
D̄2(F ∧H)

)

+ iΣα ∧
(

E ∧Wα − i

4
D̄2(F ∧ DαF )

)}

+

∫

d11xd4θ
{

V ∧
(

E ∧H + F ∧DαWα + 2DαF ∧ (Wα − iWαyF )
)

−XE ∧ F
}

+ h.c. (2.7)

It turns out that the on-shell field content of the N = 1 superfields above involves more

than just the 3-form fields. They also encode all of the spin-1/2 components of the 11D

gravitino and all components of the 11D metric except for the purely external part. It also

turns out that the above superspace Chern-Simons action encodes the kinetic terms for the

4D vector fields. Together with just one other Kähler-type term (whose precise form does not

concern us here), nearly the entire action of 11D supergravity for the spin ≤ 1 fields can be

encoded in N = 1 superspace [35].

The above description turns out to miss a few critical elements. The external graviton

and spin-3/2 part of the gravitino must belong to additional higher superspin multiplets.

Naturally, the N = 1 gravitino combines with the external graviton into a single supermul-

tiplet, described by a prepotential superfield Hαα̇ = (σa)αα̇Ha, subject to a linearized gauge

transformation

δHαα̇ = DαL̄α̇ − D̄α̇Lα . (2.8)
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This is the linearized prepotential of N = 1 conformal supergravity. The remaining seven

spin-3/2 components of the gravitino live in a superfield Ψmα, subject to the linearized trans-

formations

δΨmα = Ξmα +DαΩm + 2i ∂mLα , (2.9)

where Ξmα is a chiral spinor and Ωm is an unconstrained real superfield. This describes the

so-called N = 1 conformal graviton multiplet.

The parameter Lα encodes local N = 1 superconformal transformations, while Ξ and

Ω are usually interpreted as encoding extended supersymmetry. The matter fields of the

tensor hierarchy necessarily also vary under these transformations, but the precise form will

not concern us here, except for the following observation. As discussed in [37], the Ξ trans-

formations of Ψ and the other matter fields take a very simple form and do not strongly

constrain the action. Therefore, we are going to take the point of view that Ξ is not really

an extended supersymmetry transformation, but rather a symmetry naturally associated with

the prepotential structure of the N = 1 superspace we want to construct. The transformation

involving Ω will then be interpreted as an honest extended supersymmetry transformation.

Since any such transformation necessarily breaks manifest N = 1 supersymmetry, it will not

play any further role in our discussion.

If we ignore the Ω parameter in the linearized transformation (2.9), it is possible to com-

bine the linearized Hαα̇ and Ψmα into an abelian tensor hierarchy, just like the 3-form fields,

where the Kaluza-Klein gauge field appears encoded in the covariant derivatives. It turns out

that a further chiral spinor superfield Φmnα is needed. The linearized gauge transformations

read

δHαα̇ = DαL̄α̇ − D̄α̇Lα , (2.10a)

δΨ1α = Ξ1α + 2i ∂Lα , (2.10b)

δΦ2α = −∂ Ξ1α (2.10c)

where we have written the internal degrees of the forms explicitly. The derivatives D include

the Kaluza-Klein connection as with the matter fields. The corresponding curvatures are

Wγβα =
1

16
D̄2

[

iDγ
α̇DβHαα̇ +DγWβyΨ1α − 2WγyDβΨ1α

]

(γβα)
+

1

2i
W(γyWβyΦ2α) ,

(2.11a)

X1αα̇ =
1

2i
(D̄α̇Ψ1α +DαΨ̄1α̇) + ∂Hαα̇ , (2.11b)

Ψ2α = Φ2α + ∂Ψ1α , (2.11c)

Φ3α = ∂Φ2α , (2.11d)
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and they satisfy the Bianchi identities2

∂Wγβα = D̄2
[ i

16
Dγ

α̇DβX1αα̇ − 1

16
DγWβyΨ2α +

1

8
WγyDβΨ2α

]

(γβα)
+

1

2i
W(γyWβyΦ3α) ,

(2.12a)

∂X1αα̇ =
1

2i
(DαΨ̄2α̇ + D̄α̇Ψ2α) , (2.12b)

∂Ψ2α = Φ3α , (2.12c)

∂Φ3α = 0 . (2.12d)

The chiral spinor Φ2α is necessary to ensure gauge invariance of the curvatures under Ξ

transformations. The Ξ transformations are important because they preserve the “gauge-for-

gauge” symmetry of Lα, whereby a shift of Lα by a chiral spinor superfield can always be

balanced by some compensating gauge transformation elsewhere. For the case of Ψmα, this

requires that Ξmα shift by the internal derivative of that chiral spinor. This is another reason

to consider Ξ transformations as part of the purely N = 1 sector and not an honest extended

supersymmetry transformation.

It is puzzling that Φ2α was not encountered in our prior linearized analysis [36] or in

the supercurrent analysis [37]. The only sensible explanation is that when the prepotentials

above are coupled to the tensor hierarchy fields of 11D supergravity, it becomes possible to

absorb Φ2α by a field redefinition. We will argue in the conclusion that this is indeed so.

2.2 In search of a covariant completion

The complete action involving the spin ≤ 1 fields was presented in [37], but this was only

to linear order in Hαα̇ and Ψmα. The main obstruction was that unlike the tensor hierarchy

fields, Hαα̇ and Ψmα are expected to appear intrinsically non-polynomially in the action,

just like the Kaluza-Klein prepotential Vm.3 The solution to this should be, just as with

Vm, to introduce new covariant derivatives in which these prepotentials are encoded, so that

they appear only via minimal substitution and their associated field strengths. When Hαα̇ is

y-independent and decouples from the supergravity hierarchy, this can be done using N = 1

conformal superspace [38], where new covariant derivatives ∇A are introduced so that the only

field strength is the N = 1 super-Weyl tensor Wαβγ . Then the Lα pregauge transformations

of the prepotential Hαα̇ are absorbed into superdiffeomorphisms and all terms are manifestly

supercovariant. However, if the supergraviton multiplet depends on ym, the corresponding

supergeometry must be rebuilt from scratch to accommodate this. This means that we must

look for an N = 1 superspace involving not only the usual covariant external derivatives

∇A = (∇a,∇α, ∇̄α̇) but also curved internal derivatives. We can motivate the constraints

2There is an additional Bianchi identity of the form Dα̇
β
D

γWγβα +Dα
β̇
D̄

γ̇W̄γ̇β̇α̇ = · · · , but this occurs at

rather high dimension, so we won’t have much use for it.
3One could adopt a Wess-Zumino gauge and work to a certain order in these prepotentials, but that is

cumbersome in practice.
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and structure of this new superspace by requiring it to consistently covariantize the matter

and actions we already have.

For example, one might expect that the internal derivatives should be valued in the

internal tangent space group, e.g. ∇a with a a vector of SO(n), but this would lead to an

immediate complication: we would need to introduce an internal vielbein em
a absent in [37].

Now, this is not an independent field, but is equivalent (up to an SO(n) transformation) to

the internal metric gmn; however, the internal metric is, in our approach, a composite field

related to the tensor hierarchy field strength Fmnp via the G2 structure relation

√
g gmn = − 1

144
εp1···p7 Fmp1p2Fp3p4p5Fp6p7 n . (2.13)

This equation is complicated enough without trying to take its square root to define em
a. So

we should avoid introducing any SO(n) symmetry and take our internal derivative to carry a

GL(n) index,

∇m = ∂m + · · · , (2.14)

where new connection terms (which may include external derivatives) must be added. Pre-

sumably such terms would be absent in flat space.

Let’s impose a number of additional conditions for the superspace we seek:

• In the absence of an internal vielbein, all the matter fields should be p-forms on the inter-

nal manifold. This includes chiral superfields Φmnp and Σmα. The N = 1 superspace

geometry must support the existence of such chiral superfields. This implies certain

constraints on the torsion and curvatures of the N = 1 derivatives ∇A. In addition,

the structure of the Chern-Simons action requires the existence of chiral superspace in

addition to full superspace, leading to additional restrictions.

• In flat space, the Chern-Simons action as well as the entire structure of the 3-form

tensor hierarchy is written in differential form notation, and the internal derivative

appears only via the de Rham differential. We assume that the same should be true

of its curved space version. This means that we should only expect to build covariant

quantities using suitable internal covariant de Rham differentials.

• A related point follows: we should avoid introducing a metric-compatible affine connec-

tion into ∇m, since we’re going to use only covariant de Rham differentials. This means

the composite gmn should play no role in the superspace derivatives. In fact, we’re

going to assume that none of the superfields of the tensor hierarchy play a role in the

construction of this superspace. They should appear only as consistent “matter”, that

is covariant superfields consistent with but not required by the supergeometry. This

means that the underlying supergeometry should be built only out of four fundamental

prepotentials, Hαα̇, Ψmα, Φmnα, and Vm. The curvatures of the superspace geometry

should be built only out of their five corresponding field strengths, Wαβγ , Xmαα̇, Ψmnα,

Φmnpα, and Wα
m.
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• The tensor hierarchy transformation of Φmnp should be something like δΦ3 = ∇1Λ2

where Λmn is also chiral. This means that ∇m should preserve chirality. But if ∇m

were to commute with both ∇̄α̇ and∇α, then it would commute with∇a as well, and the

supergeometry would trivialize to be y-independent. The only way to make sense of this

is to assume δΦ3 = ∇+
1 Λ2 where ∇+

m is a modified complex version of ∇m that preserves

chirality. Similarly, there will be a ∇−
m for anti-chiral superfields, with ∇−

m = (∇+
m)∗.

These should also look roughly like (2.14), meaning that they differ from each other and

from ∇m only by connection terms. In fact, such derivatives have already been built at

the linearized level to describe 5D [30] and 6D supergravity [32] in N = 1 superspace.

3 Kaluza-Klein (super)geometry

The first step towards constructing a Kaluza-Klein supergeometry is to understand its dif-

ferential geometry. It will be useful to first review how Kaluza-Klein decompositions work

in more familiar bosonic spaces. Extending these results to superspace amounts to just ex-

tending commuting world and tangent space coordinates to include anticommuting ones, i.e.

replacing m → M and a → A below. This makes no difference in formulae but complicates

notation, so we will restrict to a bosonic space here for clarity.

In addition, this will allow us to overload notation in this section and use M and A

as indices for the coordinates and tangent space of the higher-dimensional theory that we

are decomposing. Since these higher-dimensional coordinates will only appear here, we hope

there will be no confusion later on when we restore super-indices.

3.1 Decomposition of the vielbein

Suppose we begin with some D-dimensional bosonic space with local coordinates x̂M . We

are interested in locally decomposing this space into a d-dimensional “external space” with

local coordinates xm and an n-dimensional “internal space” with local coordinates ym. If

the D = (d + n)-dimensional space is equipped with a vielbein êM
A, a natural choice for its

decomposition is

êM
A =

(

em
a +Am

mχm
a Am

mem
a

χm
a em

a

)

, (3.1)

where we have split the tangent space index as A = (a, a), with a and a indices associated to

the external and internal tangent spaces. We assume that the external and internal vielbeins

em
a and em

a are invertible, with inverses ea
m and ea

m. Then the inverse of (3.1) is

êA
M =

(

ea
m −ea

mAm
m

−ea
nχn

beb
m ea

m + ea
nχn

beb
nAn

m

)

. (3.2)

In conventional Kaluza-Klein scenarios, the higher dimensional tangent space is SO(D−
1, 1) and allows one to choose an upper triangular gauge where χ = 0. But this choice will not

– 8 –



be available to us for two reasons. The first is that we are actually interested in the situation

where xm above is extended to include the θ variables of 4D N = 1 superspace – that is, xm

will be extended to (xm, θµ, θ̄µ̇), with a extended similarly to (a, α, α̇); in this case, the local

symmetries are insufficient to fix all of χ to zero. The second reason is that manifest N = 1

supersymmetry actually seems to require even the bosonic part of χ to be non-zero, at least

prior to a Wess-Zumino gauge fixing. We will elaborate on this momentarily.

The precise choice of decomposition above is motivated by how the fields transform

under external and internal diffeomorphisms. We denote these transformations by ξm and

Λm and embed them into higher dimensional diffeomorphisms ξ̂M via ξ̂m = ξm and ξ̂m =

Λm − ξmAm
m. Under internal diffeomorphisms,

δΛem
a = Λn∂nem

a , (3.3a)

δΛχm
a = ∂mΛnχn

a + Λn∂nχm
a , (3.3b)

δΛAm
m = ∂mΛm −Am

n∂nΛ
m + Λn∂nAm

m ≡ D̂mΛm , (3.3c)

δΛem
a = ∂mΛnen

a + Λn∂nem
a . (3.3d)

That is em
a transforms as an internal scalar, while χm

a and em
a transform as internal 1-forms,

and Am
m transforms as a connection. Under external diffeomorphisms,

δξem
a = D̂mξnen

a + ξnD̂nem
a , (3.4a)

δξχm
a = ξnD̂nχm

a + ∂mξnen
a , (3.4b)

δξAm
m = ξnFnm

m , (3.4c)

δξem
a = ξnD̂nem

a , (3.4d)

where we have defined D̂m := ∂m − δΛ(Am) as the covariant external derivative (with ξm

understood to be an internal scalar). The fields em
a and em

a transform as an external 1-form

and a scalar respectively. χm
a transforms as a scalar with an anomalous piece involving ∂mξn,

and Am
m transforms as a connection with field strength Fnm

p given by

Fnm
p := 2 ∂[nAm]

p − 2A[n
n∂nAm]

p . (3.5)

The field strength automatically obeys the Bianchi identity D̂[pFnm]
q = 0 and transforms as

an internal vector and external 2-form under internal and external diffeomorphisms.

It is conspicuous in the transformation laws above that not all of the components of the

higher dimensional vielbein transform into each other. In particular, the external vielbein

em
a, the Kaluza-Klein gauge field Am

m, and the additional field χm
a can be separated from

the internal vielbein em
a. This is fortuitous, as this is exactly the sort of situation we require.

The two prepotentials Hαα̇ and Vm already encode em
a and Am

m. It is natural to suppose

Ψmα encodes χm
a, and this is not hard to see. At the linearized level, δχm

a = ∂mξa arises

from δΨmα = 2i ∂mLα provided we identify χ as

χm
a =

1

4
(σ̄a)α̇α(D̄α̇Ψmα −DαΨ̄mα̇)|θ=0 . (3.6)
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Observe that the opposite combination D̄α̇Ψmα + DαΨ̄mα̇ is what contributes to the field

strength Xm
a (2.11b).

In 11D supergravity, it is possible to set the component field χm
a (as well as the bottom

component of Xm
a) to zero by an Ω transformation. That is, the usual Lorentz gauge-fixing

of Kaluza-Klein theory corresponds here to a choice of Wess-Zumino gauge, and precisely

this choice was made in the linearized analysis of [36]. But Wess-Zumino gauge fixing is

awkward at the superfield level. While we can set the bottom component of χ to zero, higher

θ components will survive, and so we cannot discard it completely. It is simpler to just keep

the Ω gauge unfixed.

As we have already mentioned, the internal vielbein em
a should not play any role. This is

because, at least in the N = 1 case, the internal metric is not its own independent superfield

but is encoded in the bottom component of the 3-form field strength Fmnp. Moreover, in

the N = 1 spectrum we have already constructed, there is no internal Lorentz group. All

superfields are in 4D representations or representations of the internal diffeomorphism group

GL(7). This means that as we build covariant external and internal derivatives, we must

forbid the use of em
a at any point. It is an important fact that this will be possible.

3.2 Covariant internal p-forms and a covariant de Rham differential

The transformation rules (3.3) and (3.4) motivate a uniform notion for how external and

internal covariant forms transform under external and internal diffeomorphisms. We remark

first that a field φ is a covariant scalar field if it transforms as

δφ = ξnD̂nφ+ Λn∂nφ (3.7)

under external and internal diffeomorphisms. This definition naturally arises by taking φ to

be a scalar on the full space, i.e. δφ = ξ̂N ∂̂Nφ, and then decomposing ξ̂N . The extension

to external or internal 1-forms is obvious. A field ωm is a covariant internal 1-form if it

transforms as

δωm = ξnD̂nωm + Λn∂nωm + ∂mΛnωn . (3.8)

Similarly, a field ωm is a covariant external 1-form if it transforms as

δωm = ξnD̂nωm + D̂mξn ωn + Λn∂nωm . (3.9)

Both of these definitions arise by requiring ωa and ωa to transform as scalars under external

and internal diffeomorphisms, and then defining ωm := em
aωa and ωm := em

aωa. This is

quite natural if we have a 1-form ω̂M on the full spacetime. Then the usual way to define its

external and internal components is to flatten the indices with the higher-dimensional vielbein

and then to unflatten with the external or internal vielbein, i.e. ωm := em
aêa

M ω̂M and

ωm := em
aêa

M ω̂M . This can be generalized to higher degree forms or mixed internal/external

forms. However, for the remainder of this section, we will mainly be interested in internal
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p-forms, since the N = 1 superfields we encounter for 11D supergravity will be in such

representations.

We now want to introduce a notion of internal and external covariant derivatives – that

is, generalizations of ∂m and ∂m that preserve covariance. Let’s start with a covariant scalar

field φ transforming as (3.7). It is obvious that êa
M∂Mφ and êa

M∂Mφ transform covariantly,

as these are just the external and internal components of DAφ. This suggests the definitions

Dm ≡ em
aDa := em

aêa
M∂M = ∂m −Am

m∂m , (3.10a)

Dm := em
aêa

M∂M = ∂m − χm
aea

m(∂m −Am
n∂n) . (3.10b)

Then Dmφ and Dmφ indeed transform covariantly. Note that the former coincides with D̂m

for a scalar field, but Dm is not identical to ∂m. In neither case does em
a appear in the

fundamental definition of the derivative.

For an internal 1-form ωm, the situation is a bit more subtle. The derivative D̂m acts as

D̂mωm = Dmωm − ∂mAm
nωn

This turns out to be covariant under internal diffeomorphisms, but it fails to be covariant

under external ones. One finds that

δξ(D̂nωm) = D̂nξ
pD̂pωm + ξpD̂pD̂nωm − ∂mξpFpn

pωp , (3.11)

The extra third term can be cancelled if we use instead the combination D̂nωm+χm
mFmn

pωp.

This suggests that we introduce an external GL(n) connection acting on the internal indices,

Γ̊mn
p, so that

∇̊nωm := Dnωm − Γ̊nm
pωp , Γ̊nm

p := ∂mAn
p − χm

aFan
p . (3.12)

It is convenient here to consider the term ∂mAn
p, originally part of the internal Lie derivative,

as part of the GL(n) connection. Or to put it another way, we define ∇̊m in terms of Dm

instead of D̂m. We have denoted this specific choice of GL(n) connection with a circle accent

˚ to emphasize that it is the simplest choice to make. Any other connection Γ will differ

from Γ̊ by some tensor field. A different choice might seem artificial, but when we choose

natural N = 1 superspace constraints, they will turn out to lead to such a modified GL(n)

connection.

Now consider the internal derivative of ωm. From flat space experience, we expect that

we should make do by covariantizing the de Rham differential, that is, ∂[mωn]. From the

scalar field case, we expect to use D̂m := ∂m − χm
aD̂a plus some additional piece. Under

internal diffeomorphisms, we find that

δΛ(D̂nωm) = ∂nΛ
pD̂pωm + ∂mΛpD̂nωp + Λp∂pD̂nωm + ∂n∂mΛpωp . (3.13)

This indeed becomes covariant if we antisymmetrize n and m. However, under external

diffeomorphisms,

δξ(D̂nωm) = ξpDpD̂nωm + ξp∂n∂mAp
pωp − χn

a∂mξmFam
pωp . (3.14)
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While the second term drops out upon antisymmetrizing, the third term remains. To cancel

it, we now introduce an internal leg to the GL(n) connection so that the antisymmetric part

of ∇̊nωm is covariant. We write this contribution as

∇̊nωm := ∂nωm − χn
a∇aωm − Γ̊nm

pωp , Γ̊nm
p :=

1

2
χn

cχm
bFcb

p .

Note that there is a contribution to the GL(n) connection coming from the second term, so

that χn
aea

nΓ̊nm
p is being added to the explicit Γ̊nm

p.

The generalization to internal p-forms is obvious, but with the caveat that only the

totally antisymmetric part of the internal covariant derivative is actually covariant. In other

words, we covariantize only the internal de Rham differential, not the internal derivative in

general. It is remarkable that χ and A alone are needed to build an internal covariant de

Rham differential.

Naturally, the next objects one might consider are external p-forms, with an eye to

generalize to mixed external/internal forms, but the situation grows more complicated. For

example, if ωm is an external 1-form, we find that 2D̂[nωm] + Fnm
pχp

cec
pωp transforms as

an external 2-form. This might suggest introducing a connection for the external coordinate

indices, but we should avoid doing this. Eventually, we want to reproduce as much as possible

the structure of existing 4D N = 1 superspace, and no affine connection plays any role there.

Instead, one deals solely with the Lorentz and other tangent space connections. In addition,

experience with 11D supergravity suggests we will deal only with covariant N = 1 superfields

without any external coordinate indices, but only internal GL(n) indices (and possibly Lorentz

spinor or vector indices), and so such objects won’t be directly encountered.4

3.3 Including tangent space connections

We want to include additional connections for gauge symmetries that act on em
a and other

tensor fields. The prototypical example is Lorentz symmetry but we will be rather general

since later on we will be considering the N = 1 superconformal group. Suppose we have a

group H that acts on em
a and χm

a as

δHem
a = em

bλxfxb
a , δHχm

a = χm
bλxfxb

a , (3.15)

where λx is a local gauge parameter and we use x, y, · · · to label the generators gx of H. We

assume Am
m is invariant. We suppose further that we are furnished an H connection with

external and internal components, hm
x and hm

x, transforming under H transformations as

δHhm
x = D̂mgx + em

agyfya
x + hm

ygzfzy
x ,

δHhm
x = ∂mgx + χm

agyfya
x + hm

ygzfzy
x . (3.16)

4The superfields of the N = 1 tensor hierarchy discussed in section 2.1 will turn out to be components of

mixed superforms in superspace.
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The constants f should obey the Jacobi identity associated with a Lie algebra that extends

H by a generator Pa, with commutation relations5

[gx, gy] = −fxy
zgz , [gx, Pa] = −fxa

bPb − fxa
ygy , [Pa, Pb] = 0 . (3.17)

One can check that the commutator of δH transformations reproduces the [g, g] algebra.

Now we augment the covariant derivatives defined in the previous section with the H-

connections. At the same time, we will allow the GL(n) connection Γ to differ from the

simplest choice Γ̊. Explicitly, we have

∇a = ea
m(∂m −Am

n∂n − Γmn
pgp

n − hm
xgx) ,

∇m = ∂m − χm
a∇a − Γmn

pgp
n − hm

xgx . (3.18)

The operator gm
n generates GL(n) transformations, i.e. gm

nωp = δp
nωm. In order for

the above covariant derivatives to remain covariant with respect to external and internal

diffeomorphisms, we must take the H connections to transform as6

δhm
x = D̂mξnhn

x + ξnD̂nhm
x + Λn∂nhm

x ,

δhm
x = ∂mΛnhn

x + ∂mξnhn
x + ξnD̂nhm

x + Λn∂nhm
x . (3.19)

They are also H-covariant in the sense that if Φ is some field transforming as δHΦ = λxgxΦ,

then

δH∇aΦ ≡ λxgx∇aΦ = λx(∇agxΦ− fxa
b∇bΦ) ,

δH∇mΦ ≡ λxgx∇mΦ = λx∇mgxΦ , (3.20)

which amounts to the formal operator algebra

[gx,∇a] = −fxa
b∇b − fxa

ygy , [gx,∇m] = 0 . (3.21)

Above, ∇a is playing the role of Pa in the flat algebra (3.17). The vanishing commutators of

Pa and ∂m with each other are replaced with field-dependent curvature tensors

[∇a,∇b] = −Tab
c∇c −LFab

−Rabm
ngn

m −Rab
xgx ,

[∇a,∇m] = −Tam
b∇b − LFan −Ramn

pgp
n −Ram

xgx ,

[∇m,∇n] = −Tmn
a∇a − LFmn −Rmnp

qgq
p −Rmn

xgx , (3.22)

where T a is the external torsion tensor, Fm is the internal Kaluza-Klein curvature, Rm
n is the

GL(n) curvature, and Rx is the H-curvature. L denotes the internal covariant Lie derivative,

defined so that any lower internal form indices of Fm are spectators, e.g.

LFmnωp := 2Fmn
q∇[qωp] +∇p(Fmn

qωq) = Fmn
q∇qωp +∇pFmn

q ωq . (3.23)

5We treat gx as an operator acting from the left that takes a covariant field to a covariant field, so that

δ1δ2Φ = λx
1λ

y
2gxgyΦ.

6Note the anomalous term in the transformation of hm
x that rotates it into hm

x: it is similar in structure

to the anomalous term in the transformation of χm
a that rotates it into em

a.
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We have chosen to package the internal curvature term in (3.22) as a covariant Lie derivative

(rather than a covariant derivative) because this ensures covariance of the curvature terms

separately when the commutator acts on an internal p-form. This amounts to a redefinition

of the GL(n) curvature Rm
n.

The external torsion tensors in (3.22) are given by

Tnm
a = 2D[nem]

a + 2 e[n
bhm]

xfxb
a + Fnm

pχp
a ,

Tnm
a + χm

bTnb
a = D̂nχm

a − ∂men
a + en

b hm
xfxb

a − χm
bhn

xfxb
a ,

Tmn
a + 2χ[m

cTcn]
a + χm

cχn
bTcb

a = 2∂[nχm]
a + 2χ[n

b hm]
xfxb

a . (3.24)

Here one must plug the first equation into the second and both into the third to solve for

Tnm
a and Tmn

a, and then flatten external world indices with ea
m. Similarly, the H curvatures

are given by

Rmn
x = 2D̂[mhn]

x + 2h[m
yen]

bfby
x + hm

yhn
zfzy

x + Fmn
php

x ,

Rmn
x + χn

bRmb
x = D̂mhn

x − ∂nhm
x + hm

yχn
bfby

x + em
bhn

yfyb
x

+ hm
yhn

zfzy
x ,

Rmn
x + 2χ[m

cRcn]
x + χm

cχn
bRcb

x = 2∂[mhn] + 2h[m
xχn]

afay
x + hm

yhn
zfzy

x . (3.25)

We do not give explicit expressions the GL(n) curvatures, although they can be worked out

straightforwardly. Fab
m is given by flattening the form indices of Fmn

m in (3.5) with the

external vielbein. The expressions for the mixed Fan
m and internal Fpn

m tensors can be

worked out explicitly. However, it is more helpful to observe that when Γ is chosen to be

Γ̊, one finds that F̊am
n = F̊mn

p = 0. Then deforming the GL(n) connection by a purely

covariant pieces ∆Γ, defined so that

∇a := ∇̊a −∆Γan
p gp

n , ∇m := ∇̊m −∆Γmn
p gp

n , (3.26)

one can show that

Fam
n = ∆Γam

n , Fmn
p = 2∆Γ[mn]

p . (3.27)

By construction the curvatures above must obey Bianchi identities,

∑

[abc]

[∇a, [∇b,∇c]] = 0 ,
∑

[ab]

[∇a, [∇b,∇m]] = −[∇m, [∇a,∇b]] , etc.
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Particularly useful are the Kaluza-Klein field strength Bianchi identities, which read

0 =
∑

[abc]

(

∇cFab
m + Tab

eFec
m + Fab

nFnc
m
)

,

0 =
∑

[ab]

(

−Rabm
n + 2∇aFbm

n + Tab
eFem

n + 2Tma
eFeb

n + Fab
pFpm

n + 2Fma
pFpb

n
)

,

0 =
∑

[mn]

(

− 2Ramn
p +∇aFmn

p + Tmn
cFca

p + 2Tam
eFen

p + Fmn
qFqa

p + 2Fam
qFqn

p
)

,

0 =
∑

[mnp]

(

−Rmnp
q + Tmn

eFep
q + Fmn

rFrp
q
)

. (3.28)

The first equation ensures that Fab
m is covariantly closed. The other three determine the

parts of the GL(n) curvature R that are antisymmetric in lower internal indices. Because

we will only be constructing internal covariant de Rham differentials, only the (internal)

antisymmetric parts of R will ever appear, and these are completely determined in terms of

the other quantities.

Finally, for reference we give the covariantized external diffeomorphisms of the various

connections, which arise by combining an external diffeomorphism with ξm = ξaea
m and an

H transformation with λx = −ξaea
mhm

x:

δcovξ em
a = Dmξa + hm

xξcfcx
a + em

bξc(Tcb
a − Fcb

pχp
a) ,

δcovξ χm
a = ∂mξa + hm

xξcfcx
a + ξc(Tcm

a + χm
bTcb

a) ,

δcovξ hm
x = em

bξc(Rcb
x − Fcb

php
x) + hm

yξbfby
x ,

δcovξ hm
x = ξc(Rcm

x + χm
bRcb

x) + hm
yξbfby

x ,

δcovξ Am
m = em

bξcFcb
m . (3.29)

These transformations are relevant when the relations discussed above are promoted to su-

perspace; then the fermionic component of ξA is identified with the local supersymmetry

parameter. Then it is crucial that the above transformations involve covariant tensors; this

ensures that the SUSY transformations are sensibly defined.

4 The supergeometry of 4D N = 1 Kaluza-Klein superspace

Now we are in a position to start building the general supergeometry of 4D N = 1 Kaluza-

Klein superspace. The first step is to extend the discussion of section 3 by allowing the

external space considered there to be a superspace. This is just a cosmetic change, promoting

the coordinates xm to supercoordinates zM = (xm, θµ, θ̄µ̇) and the tangent indices a to A =

(a, α, α̇). This requires promoting the external vielbein em
a, the Kaluza-Klein gauge field

Am
m, and the additional field χm

m to superfields in the obvious manner, i.e.

em
a → EM

A , Am
m → AM

m , χm
a → χm

A . (4.1)
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However, we do not modify the internal space – it remains a bosonic manifold with a GL(n)

index m. Let us not reproduce every formula, but only give a few that are directly relevant.

The superspace external covariant derivatives ∇A and internal ∇m are given by

∇A = EA
M (∂M −AM

n∂n − ΓMn
pgp

n)−HA
xgx ,

∇m = ∂m − χm
A∇A − Γmn

pgp
n −Hm

xgx , (4.2)

with the GL(n) connections defined as

ΓAm
p := EA

N∂mAN
p − χm

BFBA
p +∆ΓAm

n ,

Γnm
p := −1

2
χn

Bχm
AFAB

p +∆Γnm
p + χn

A∆ΓAm
n , (4.3)

where the ∆Γ terms transform covariantly. The covariant derivative algebra reads

[∇A,∇B ] = −TAB
C∇C − LFAB

−RABm
ngn

m −RAB
xgx , (4.4a)

[∇A,∇m] = −TAm
B∇B −LFAn

−RAmn
pgp

n −RAm
xgx , (4.4b)

[∇m,∇n] = −Tmn
A∇A − LFmn −Rmnp

qgq
p −Rmn

xgx . (4.4c)

In superspace, one is not generally interested in the precise expressions for the various

torsions and curvatures in terms of the potentials. Rather, one imposes some constraints on

the torsions/curvatures and solves the Bianchi identities in terms of some fundamental curva-

ture superfields (which obey Bianchi identities themselves).7 These quantities, e.g. Wαβγ in

N = 1 conformal superspace, or Wαβγ , R, and Gαα̇ in the conventional N = 1 Wess-Zumino

superspace (see e.g. [39–41]), are, along with the covariant derivatives, supermeasures, and

any covariant matter superfields, sufficient to construct covariant Lagrangians. In our case,

we expect these curvature superfields to be built out of the basic curvatures Wαβγ , Xmαα̇,

Ψmnα, Φmnpα, and Wα
m.

4.1 Abstract solution of the Bianchi identities

A great deal of progress can be made working almost entirely abstractly if a very strong set

of constraints is imposed from the beginning:8

{∇α,∇β} = {∇̄α̇, ∇̄β̇
} = 0 , {∇α, ∇̄β̇

} = −2i∇
αβ̇

. (4.5)

These coincide with the constraints of N = 1 super Yang-Mills and were shown in N = 1 con-

formal superspace to be the appropriate constraints to describeN = 1 conformal supergravity

[38]. These imply the existence of a coordinate system and a gauge where ∇̄α̇ = ∂/∂θ̄α̇. In

7In principle, the fundamental curvature superfields as well as all the potentials can in turn be solved in

terms of prepotential superfields explicitly. Usually this is highly non-polynomial and not immediately useful.

Typically only the linearized solution around a given background (e.g. flat space) is necessary.
8The last constraint is mainly a conventional constraint – that is, a definition of the connections in ∇a.
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such a gauge, covariantly chiral superfields are simply independent of θ̄. Such a set of con-

straints is not actually necessary for supergravity (conventional Wess-Zumino superspace does

not satisfy these constraints, for example), but we will find them to be the right constraints

in our case.

An immediate consequence of these constraints is the simplification of the external

spinor/vector commutator to only a spin-1/2 part:

[∇α,∇ββ̇
] = 2 ǫαβW̄β̇

, [∇̄α̇,∇ββ̇
] = 2 ǫ

α̇β̇
Wβ , (4.6)

where Wα is a fermionic operator, that is, it has an expansion Wα = Wα
B∇B + LWα

m +

Wαm
ngn

m +Wα
xgx. It must satisfy

{∇̄α̇,Wα} = 0 , {∇α,Wα} = {∇̄α̇, W̄ α̇} .

The first relation implies that Wα is a chiral operator – it takes chiral superfields to chiral

superfields. The second relation implies a reality condition reducing by half the number of

independent pieces in the θ expansion of W. These two identities together guarantee that the

[∇[A, [∇B ,∇C]]] = 0 Bianchi identity holds. The final external commutator is vector/vector

and is determined by the Bianchi identities to be

[∇a,∇b] = − i

2
(σab)

αβ{∇α,Wβ}+
i

2
(σ̄ab)

α̇β̇{∇̄α̇, W̄β̇
} . (4.7)

The upshot is that the external curvatures are completely determined by Wα. Because the

constraints (4.5) are the same as imposed in N = 1 super Yang-Mills, the solution looks

formally identical to that case.

Now we turn to the mixed curvature. Identifying the mixed curvature operator RmA,

[∇m,∇A] = −RmA , (4.8)

we can abstractly solve the [∇A, [∇B ,∇m]] + · · · = 0 Bianchi identity. The lowest dimension

identities involving spinor derivatives imply that

Rmαα̇ := (σa)αα̇Rma =
i

2
{∇α, Rmα̇}+

i

2
{∇̄α̇, Rmα} , ∇(αRmβ) = 0 . (4.9)

Because of the constraints (4.5), the second identity suggests to identify Rmα as the spinor

derivative of some other operator. By redefining ∇m, one can always choose that operator to

be imaginary, so that

Rmα = i[∇α,Xm] (4.10)

for some real operator Xm. This operator is thus responsible for generating all of the mixed

curvatures.

The existence of such a real operator lets us satisfy another of the entries on our wish list

in section 2.2 – the existence of a modified internal derivative ∇+
m that preserves chirality:

∇±
m := ∇m ± iXm , [∇α,∇−

m] = [∇̄α̇,∇+
m] = 0 . (4.11)
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Provided Xm preserves covariance (and we will ensure it does), ∇+
m provides a chirality-

preserving internal de Rham differential. The remainder of the [∇A, [∇B ,∇m]] + · · · = 0

Bianchi is then solved provided

[∇+
m,Wα] = −1

4
[∇̄

β̇
, {∇̄β̇ , [∇α,Xm]}]

This intertwines the external curvatures with the mixed curvatures, implying they cannot be

fixed separately.

For later use, we define R+
mα and R−

mα̇ as the mixed spinor curvatures arising from ∇+
m

and ∇−
m, respectively. They turn out to be twice the original curvatures Rmα and Rmα̇,

[∇+
m,∇α] ≡ −R+

mα = −2Rmα , [∇−
m, ∇̄α̇] ≡ −R+

mα̇ = −2Rmα̇ . (4.12)

It is helpful to give R+
mα a name distinct from Rmα because when we expand them out in

terms of derivatives and generators, we will write R+
mα in terms of ∇+

m while Rmα will be

written in terms of ∇m. For example,

R+
mA = T+

mA
C∇C + L+

F+

mA

+R+
mAn

pgp
n +R+

mA
xgx , (4.13)

where L+ denotes the covariant Lie derivative built from ∇+
m.

Now let us address the internal curvature. The existence of chiral internal derivative ∇+
m

suggests we should examine their curvatures, defined as

[∇+
m,∇+

n ] = −R+
mn (4.14)

and similarly for R−
mn. The content of the [∇A, [∇m,∇n]] Bianchi identity is now succinctly

encoded in two conditions. The first is that R+
mn is a chiral operator, [∇̄α̇, R+

mn] = 0. The

second condition is that R+
mn is related to the real Rmn via

R+
mn = Rmn − 2i∇[mXn] + [Xm,Xn] . (4.15)

The real part of this expression defines Rmn, while its imaginary part links the mixed curva-

tures to the internal curvatures.

The final Bianchi identity, [[∇[m,∇n],∇p]] = 0, can equivalently be formulated in terms

of ∇+
m. It leads immediately to [∇+

[p, R
+
mn]] = 0.

In summation, we have uncovered three basic operators: a complex spinor Wα, a real

1-form Xm, and a complex 2-form R+
mn that must obey six abstract Bianchi identities:

{∇̄α̇,Wα} = 0 (BI.1)

{∇α,Wα} = {∇̄α̇, W̄ α̇} (BI.2)

[∇+
m,Wα] = −1

4
[∇̄

β̇
, {∇̄β̇ , [∇α,Xm]}] (BI.3)

[∇̄α̇, R+
mn] = 0 (BI.4)

i

4
R+

mn − i

4
R−

mn = [∇[m,Xn]] (BI.5)

[∇+
[p, R

+
mn]] = 0 (BI.6)
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In terms of these, the external curvatures RAB = −[∇A,∇B ] are given by

Rαβ = 0 , R
α̇β̇

= 0 , R
αβ̇

= 2i∇
αβ̇

,

Rαb = −(σb)αα̇W̄ α̇ , Rα̇
b = (σ̄b)

α̇αWα ,

Rab =
i

2
(σab)

αβ{∇α,Wβ} −
i

2
(σ̄ab)

α̇β̇{∇̄α̇, W̄β̇} , (4.16)

the internal curvatures Rmn = −[∇m,∇n] are given by

Rmn =
1

2
(R+

mn +R−
mn)− [Xm,Xn] , (4.17)

and the mixed curvatures RmA = −[∇m,∇A] are given by

Rmα = i[∇α,Xm] , Rmα̇ = −i[∇̄α̇,Xm] ,

Rma = −1

4
(σ̄a)

α̇α{∇α, [∇̄α̇,Xm]}+ 1

4
(σ̄a)

α̇α{∇̄α̇, [∇α,Xm]} (4.18)

For reference, it is also useful to give the mixed curvatures when written in terms of ∇+
m:

R+
mα = 2i[∇α,Xm] , R+

mα̇ = 0 ,

R+
ma =

1

2
(σ̄a)

α̇α{∇̄α̇, [∇α,Xm]} . (4.19)

Our goal in subsequent sections will be to impose further constraints on the operators

appearing above and to identify the fundamental curvature superfields that comprise them.

Before doing that, we need to elaborate a bit more on the structure group H we will be using.

4.2 The superconformal structure group

The conformal superspace approach to N = 1 conformal supergravity introduced in [38]

involves choosing the generators gx to be the set of Lorentz transformations (Mab), dilata-

tions and U(1)R transformations (D and A), S-supersymmetry transformations (Sα and

S̄α̇), and finally special conformal boosts (Ka). Together with the covariant derivatives

∇A = (∇a,∇α, ∇̄α̇), they furnish a representation of the N = 1 superconformal algebra

with (anti)commutators

[Mab,∇c] = 2 ηc[a∇b] , [Mab,Kc] = 2 ηc[aKb] ,

[D,∇a] = ∇a , [D,Ka] = −Ka ,

[Ka,∇b] = 2 ηabD+ 2Mab , [Mab,Mcd] = 2 ηc[aMb]d − 2 ηd[aMb]c ,

[Mab,∇γ ] = −(σab)γ
β∇β , [Mab, Sγ ] = −(σab)γ

βSβ ,

[Mab, ∇̄γ̇ ] = −(σab)
γ̇
β̇∇̄β̇ , [Mab, S̄

γ̇ ] = −(σab)
γ̇
β̇S̄

β̇ ,

[D,∇α] =
1
2∇α, [D, Sα] = −1

2Sα,

[D, ∇̄α̇] = 1
2∇̄α̇ , [D, S̄α̇] = −1

2 S̄
α̇ ,
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[A,∇α] = −i∇α, [A, Sα] = +iSα,

[A, ∇̄α̇] = +i∇̄α̇ , [A, S̄α̇] = −iS̄α̇ ,

[Ka,∇α] = i(σa)αβ̇S̄
β̇ , [Ka, ∇̄α̇] = i(σ̄a)

α̇βSβ ,

[Sα,∇a] = i(σa)αβ̇∇̄β̇, [S̄α̇,∇a] = i(σ̄a)
α̇β∇β ,

{Sα,∇β} = ǫαβ(2D − 3iA)− 4Mαβ , {S̄α̇, ∇̄β̇} = ǫα̇β̇(2D + 3iA)− 4M α̇β̇ ,

{Sα, S̄α̇} = 2i(σa)αα̇Ka . (4.20)

The operators gx = {Mab,D,A, Sα, S̄
α̇,Ka} are taken to commute with ∇m. Here we use

Mαβ = −1
2(σ

ab)αβMab for the anti-self-dual part of Mab and similarly for M α̇β̇ .

If the ∇A obeyed the flat N = 1 superspace algebra, the algebra of the operators gx and

∇A would just be the N = 1 superconformal algebra. Because the ∇A curvatures instead

involve the curvature operator Wα, the flat superconformal algebra becomes deformed. This

is the sense in which the N = 1 superconformal algebra has been gauged.

Consistency of the above relations with the algebra of covariant derivatives implies that

the basic curvature operators Wα, Xm, and R+
mn are conformal primaries. That is, their

(anti)commutators with Sα, S̄
α̇, and Ka all vanish. These imply a number of conditions on

the various pieces of these operators, which were useful in our analysis as checks, but we will

not comment on them explicitly. Wα additionally carries dilatation and U(1)R weights 3/2

and +1, whereas the other operators are inert.

5 The linearized solution to the Bianchi identities

In this section, we are going to sketch a solution to the Bianchi identities (BI.1) – (BI.6)

at the linearized level, where it is possible to be very explicit about how the prepotentials

appear. This will allow us also to make more transparent contact with the 5D [30] and 6D

cases [32], which worked to linear order in the gravitino superfield Ψmα.

We treat the supergeometry as linearized around a nearly flat background, whose only

non-vanishing curvature is the Kaluza-Klein curvature. The background covariant derivatives

are ∇M = DM = ∂M − LAM
and ∇m = ∂m with curvature operators

Wα = Wα
m∂m + ∂mWα

ngn
m , Xm = 0 , R+

mn = 0 . (5.1)

The linearized fluctuations around this background are denoted

∇M = ∇M + δ∇M , ∇m = ∂m + δ∇m (5.2)

with linearized curvatures

Wα = Wα + δWα , Xm = δXm , R+
mn = δR+

mn . (5.3)
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The basic constraints (4.5) are solved (up to a gauge transformation) by choosing

δ∇α = −i[∇α,V] , δ∇̄α̇ = +i[∇̄α̇,V] , (5.4)

with the linearized external curvature δWα being given by

δWα = −1

4
[D̄

β̇
, {D̄β̇, [Dα,V]}] + i[Wα,V] . (5.5)

If we were discussing an abelian gauge theory, V would be the vector multiplet prepotential

and δWα would be its linearized field strength. Here both become operators, whose form we

will discuss shortly. Preserving the chirality constraint [∇+
m, ∇̄α̇] = 0 then tells us that

δ∇+
m = i[∂m,V]− Λm , (5.6)

where Λm is a chiral operator, [D̄α̇,Λm] = 0. It follows that δ∇m = −1
2(Λm + Λ̄m) and

Xm = [∂m,V]− 1

2i
(Λm − Λ̄m) , R+

mn = 2 [∂[m,Λn]] , (5.7)

Specifying the linearized geometry amounts to specifying the operators V and Λm. There

is some redundancy to this choice, as they can be taken to transform under pregauge trans-

formations

δV =
1

2i
(Λ− Λ̄) , δΛm = [∂m,Λ] , (5.8)

where Λ is a chiral operator.

5.1 Structure of the prepotentials

The operator V is real but as yet unconstrained, with an expansion

V = HADA + Vm∂m + (∂mVn + Vm
n)gn

m +
1

2
V(M)abMab

+ V(D)D+ V(A)A + V(S)αSα + V(S)α̇S̄α̇ + V(K)aKa . (5.9)

We have denoted VA by HA, which is common in superspace literature. The superfield Ha is

the N = 1 gravitational prepotential. The superfield Vm describes fluctuations of the Kaluza-

Klein prepotential about the background. All the other prepotentials must be constrained

in some way or turn out to be gauge artifacts as a consequence of the pregauge freedom

Λ. The proper way to uncover the constraints is to take certain curvature tensors to vanish

and to derive conditions on the prepotentials from these. We assume that V is a primary

operator, but, aside from Ha, Vm, and Vm
n, the individual prepotentials in its expansion are

not primary.

The chiral operator Λm has a similar expansion

Λm = Λm
ADA + Λm,

n∂n + (∂nΛm,
p + Λm,n

p)gp
n +

1

2
Λm(M)abMab

+ Λm(D)D + Λm(A)A +Λm(S)αSα + Λm(S)α̇S̄
α̇ + Λm(K)bKb . (5.10)
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The chirality constraint implies that the components of Λm
A are given by

Λm
α̇α = −D̄α̇Ψm

α , Λm
α =

i

8
D̄2Ψm

α , Λmα̇ unconstrained (5.11)

where Ψm
α will play the role of the gravitino superfield. The internal diffeomorphism and

GL(n) parameters are given as

Λm,
n = ϕm,

n −WβnΨmβ , Λm,n
p = ϕm,n

p + ∂nΨm
βWβ

p (5.12)

where ϕm,
n and ϕm,n

p are chiral superfields and Wα
m is the background Kaluza-Klein field

strength. The other parameters are found to be

Λm(D) = ϕm − 1

2
D̄γ̇Λmγ̇ , Λm(A) =

i

2
ϕm − 3i

4
D̄γ̇Λmγ̇ ,

Λm(M)
α̇β̇

= D̄(α̇Λmβ̇) , Λm(M)αβ = ϕmαβ ,

Λm(S)α = σmα , Λm(S)α̇ =
1

8
D̄2Λm

α̇ ,

Λm(K)α̇α = −iD̄α̇σm
α , (5.13)

where ϕm and ϕmαβ are chiral and σmα is complex linear. If Λm is required to be primary,

then the extra superfields Λmα̇, ϕm, ϕmαβ and σmα are not primary and should be written

in terms of other superfields that are.

The operator Λ describing pregauge transformations is identical to Λm, but with the m

index deleted. We relabel some of its components as

Ψm
α → 2i Lα , ϕm,

n → ℓn , ϕm,n
p → ℓn

p ,

ϕm → ℓ , ϕmαβ → ℓαβ , σmα → σα . (5.14)

We emphasize that the ℓ’s above are chiral while σα is complex linear. A few prepotentials

can already be eliminated by a gauge choice using the pregauge Λ transformations. Λα̇ and

Λ̄α are unconstrained superfields and can be used to fix Hα̇ and Hα. In order to keep V as a

primary operator, one actually should choose

Hα ∗
= − i

8
D̄α̇H

α̇α , Hα̇
∗
= − i

8
DαHαα̇ . (5.15)

We denote this equality with a ∗ to emphasize that this is a choice. Similarly, the chiral

superfield ℓm
n can be used to eliminate ϕm,

n,

ϕm,
n ∗
= 0 . (5.16)

The other extra parameters in V and Λm must be eliminated by imposing curvature constraints

so that only Hαα̇, Vm, and Ψmα (and possibly some chiral superfield Φmnα) remain.

– 22 –



5.2 Choosing curvature constraints on Wα and Xm

From the definition of Xm, one can show that

Xm
α̇α = ∂mH α̇α − i

2
(D̄α̇Ψm

α +DαΨ̄m
α̇) , (5.17a)

Xm
α = ∂mHα − 1

16
D̄2Ψm

α − i

2
Λ̄m

α , (5.17b)

Xmα̇ = ∂mHα̇ − 1

16
D2Ψ̄mα̇ +

i

2
Λmα̇ . (5.17c)

The presence of the unconstrained Λ̄m
α and Λmα̇ mean Xm

α and Xmα̇ can be set however

we wish, in analogy to Hα and Hα̇. Xm
α̇α matches the linearized curvature (2.11b). The

equations for Xm
α and Xmα̇ can be interpreted as definitions of Λ̄m

α and Λmα̇ in terms of

these arbitrary curvatures. If we want Xm to be a primary operator, the natural choice is

Xm
α ∗
= − i

8
D̄α̇Xm

α̇α , Xmα̇
∗
= − i

8
DαXmαα̇ . (5.18)

It follows that

Λmα̇
∗
= − i

8
DβD̄α̇Ψm

β , Λ̄m
α ∗
=

i

8
D̄β̇DαΨ̄mβ̇

. (5.19)

Next, let’s impose a constraint on δWα. The simplest constraint we can impose is that

Wα
b = δWα

b = 0. Using (5.5) and being careful to account for the variation of the covariant

derivatives in the operator δWα, one finds

V(M)α
β +

1

2
δα

β(V(D) − 2iV(A)) = DαH
β − δα

βD̄α̇Hα̇ − i

4
D̄γ̇DαH

γ̇β

− i

2
Wα

mΨm
β + chiral superfield . (5.20)

The entire expression appears under D̄β̇ and so there is an undetermined chiral superfield on

the right-hand side. Assuming V is primary, this chiral superfield is also primary. In fact, it

can be eliminated using the chiral superfields ℓ and ℓαβ in the Λ pregauge freedom:

V(M)α
β +

1

2
δα

β(V(D)− 2iV(A)) ∗
= DαH

β − δα
βD̄α̇Hα̇ − i

4
D̄γ̇DαH

γ̇β − i

2
Wα

mΨm
β .

(5.21)

From this and its complex conjugate, one can determine V(M)ab, V(D), and V(A).
Taking the same combination of Xm’s, one can show that

Xm(M)α
β +

1

2
δα

β(Xm(D)− 2iXm(A)) = DαXm
β − δα

βD̄α̇Xmα̇ − i

4
D̄γ̇DαXm

γ̇γ

+
i

2
Wα

nΨnm
β − i

2
Wα

nΦnm
β

− 1

16
D̄2DαΨm

β +
i

2
ϕmδα

β +
i

2
ϕmα

β . (5.22)
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In computing the above, we have introduced a new field Φmn
α and required

Ψnm
β = 2 ∂[nΨm]

β +Φnm
β (5.23)

to be invariant under Ξ transformations. At this point, the introduction of Φmn
α was ad hoc

in order to ensure a Ξ invariance we are imposing by hand. The last four terms of (5.22) are

chiral potentials, while the rest are curvatures. Making the choice

i

2
ϕmδα

β +
i

2
ϕmα

β ∗
=

1

16
D̄2DαΨm

β +
i

2
Wα

nΦnm
β , (5.24)

which also determines the chiral prepotentials ϕm and ϕmαβ separately, one finds

Xm(M)α
β +

1

2
δα

β(Xm(D)− 2iXm(A))
∗
= DαXm

β − δα
βD̄α̇Xmα̇

− i

4
D̄γ̇DαXm

γ̇β +
i

2
Wα

nΨnm
β . (5.25)

From this expression, one can determine Xm(M)ab, Xm(D), and Xm(A).

Now let’s compute another curvature in Wα. It turns out that Wα
β vanishes as a conse-

quence of Wα
b vanishing. The next curvature is W

αβ̇
. Without going into great detail, one

can show that

Wαα̇ = −2iWα
mXmα̇ − 1

2
WβmDβXmαα̇ − 1

4
DβWβ

mXmαα̇ + iYa(σ
a)αα̇ (5.26)

where Ya is a real quantity given by

Yαα̇ = 2V(K)αα̇ + 2iDαV(S)α̇ + 2iD̄α̇V(S)α − i

4
DαD̄2Hα̇ − i

4
D̄α̇D2Hα

− 1

32
(DβD̄2D̄

β̇
+ D̄

β̇
D2D̄β̇)Hαα̇ +

1

8
DβWβ

m(DαΨ̄mα̇ − D̄α̇Ψmα)

− i

4
WβmDβ(∂mHαα̇ − iD̄α̇Ψmα) +

i

4
W̄

β̇
mD̄β̇(∂mHαα̇ − iDαΨ̄mα̇) . (5.27)

The choice of V(K)a amounts to a choice of Ya. Two natural choices are to fix Ya
∗
= 0 or to

choose Ya so that Wαα̇
∗
= −W̄α̇α, but the specific choice does not affect the following analysis.

Identifying Wαβγ as (proportional to) the totally symmetric part of Wα(M)βγ , we find

W(α(M)βγ) = 2iWαβγ = Wα
nϕnβα − 1

4
D̄2D(αV(M)βγ) . (5.28)

From the above expressions, one can show that

Wαβγ
∗
=

1

16
D̄2

[

iDα
γ̇DβHγγ̇ +Dα(WβyΨ1γ)−WαyDβΨ1γ

]

(αβγ)
− i

2
W(αyWβyΦ2γ) . (5.29)

This is exactly the expression for Wαβγ that we have been seeking. The remaining trace part

is also a chiral superfield Zα. Writing

Wα(M)βγ = −ǫα(βZγ) + 2iWαβγ (5.30)
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we find that

Zα = −1

4
D̄2

[

4V(S)α +DαV(D) +
2i

3
DαV(A) +

i

6
WαyDβΨ1

β − 2

3
W̄ α̇

yX1αα̇

]

+
1

3
WαyWβyΦ2

β . (5.31)

The remaining undetermined prepotential V(S)α lets one choose Zα however one wishes, at

least in principle. A natural choice is

Zα
∗
= 0 =⇒ V(S)α determined . (5.32)

This determines V(S)α up to a complex linear superfield, which corresponds to the pregauge

freedom ℓ(S)α within the chiral Λ operator. A curious feature of this choice is that it seems

to require a non-covariant expression for V(S)α, as one must introduce a prepotential for the

background Wα or for the field Φ2α in order to extract a D̄2 from the last term in (5.31).

We have nearly exhausted all of the freedom to choose the components of the operator

V. The last element is Vm
n. This can be fixed by observing that

Xm
n = −Vm

n + ∂mVn +
i

2
(Λm,

n − Λ̄m,
n) . (5.33)

We will then make the simplifying choice

Xm
n ∗
= 0 =⇒ Vm

n ∗
= ∂mVn +

i

2
(Λm,

n − Λ̄m,
n) . (5.34)

Now that all components of the operator V have been fixed, all components of Wα must

now be determined, up to terms coming from undetermined pieces in the chiral Λm operator.

Indeed, we find for the other dimension-1 components of Wα that

Wα(M)
α̇β̇

= −D̄(α̇Wαβ̇) ,

Wα(D) =
1

2
D̄γ̇Wαγ̇ −

1

4
D̄2(Xmαα̇W̄ α̇m) +

3

2
Zα ,

Wα(A) =
3i

4
D̄γ̇Wαγ̇ −

i

8
D̄2(Xmαα̇W̄ α̇m) +

3i

4
Zα ,

Wαm
n =

1

4
D̄2(Xmαα̇W̄ α̇n) +Wα

p
(

2ϕ[p,m]
n +Φ[pm]

βWβ
n
)

∗
=

1

4
D̄2(Xmαα̇W̄ α̇n) . (5.35)

In the last equality, we have chosen ϕm,n
p to simplify the expression and build a curvature.

This does not determine the symmetric part of ϕm,n
p, but this will drop out of explicit

expressions because lower form indices generally end up antisymmetrized.

The only remaining piece of Λm that is undetermined is the complex linear component

σmα. This contributes to Xm(S)α,

Xm(S)α = ∂mV(S)α − 1

2i
(Λm(S)α − Λ̄m(S)α)

= ∂mV(S)α − 1

2i
(σmα − 1

8D2Λmα) (5.36)

– 25 –



This curvature then obeys the Bianchi identity

1

4
D̄2

[

4Xm(S)α +DαXm(D) +
2i

3
DαXm(A) − i

6
Wα

nDβΨnm
β − 2

3
∂m(W̄ α̇nXnαα̇)

]

= −∂mZα +
1

3
Wα

nWβ
pΦpnm

β . (5.37)

5.3 Some lower dimension results for R+
mn

The remaining curvature operator we have not directly addressed is R+
mn, which is built by

taking the curl of the chiral operator Λm. We find for T+
mn

A and F+
mn

p the results

T+
mn

α̇α = −D̄α̇Ψmn
α , (5.38a)

T+
mn

α =
i

8
D̄2Ψmn

α , (5.38b)

T+
mnα̇ = 2 ∂[mΛn]α̇

∗
= − i

8
DβD̄α̇Ψmn

β , (5.38c)

F+
mn

p = 2Λ[m,n]
p ∗
= −Ψmn

αWα
p . (5.38d)

The other linearized curvatures can be computed directly in a similar way, but their forms

will not be terribly enlightening.

5.4 Comparison to 5D and 6D results and summary

We have now accounted for all of the prepotentials and field strengths and uncovered the

appropriate curvature constraints to remove all but one unconstrained spinor prepotential

V(S)α and a complex linear prepotential σmα. These unfixed prepotentials can be eliminated

by breaking manifest background covariance, but we will find it simpler to just leave them

unfixed in the remainder, keeping in mind that they appear mainly in two curvatures – a

chiral spinor superfield Zα and the curvature superfield Xm(S)α, which are related in terms

of a complicated Bianchi identity (5.37) involving the field strength Φmnpα.

At this stage, we can make a few brief comments connecting with the existing 5D and 6D

work involving linearized supergravity. In the explicit linearized 5D construction of Sakamura

[30], the covariant derivative ∂̂y can be identified with the linearized ∇+
m when acting on chiral

superfields, with the rescaling of Ψ5D
α → i

2Ψmα.
9 Similarly, the gravitational superfield Uµ is

identified with −Ha here (keeping in mind σµ → −σa) and U4 there is identified with −Vm

here. Similar comments pertain to the 6D results of Abe, Aoki, and Sakamura [32].

The major difference between our linearized results and previous results is that those

papers fully describe 5D and 6D supergravity, whereas we aim only to describe the minimal

extension of N = 1 conformal supergravity necessary to encode y-dependent superfields. We

make no effort to identify the internal sector of the metric, with the understanding that from

an N = 1 perspective that sector must correspond to “matter”, i.e. some appropriately

defined covariant superfields. Thus, in our formulation, there is no analogue to their gauge

9The precise identification requires going to a (complex) chiral gauge where ∇̄α̇ = D̄α̇ and ∇
+
m = ∂m−Λm.

– 26 –



parameter N ; that parameter is the 5D or 6D analogue of the complex 11D parameter Ωm,

and it encodes details of the higher dimensional sector beyond what is purely required for a

covariant N = 1 supergeometry.

At this stage, we have developed enough intuition to address the full non-linear geometry.

That will be our next task.

6 Exploring the non-linear Bianchi identities

Solving the Bianchi identities (BI.1) – (BI.6) in terms of curvature superfields Wαβγ , Xmαα̇,

Ψmnα, Φmnpα, and Wα
m is a rather involved task, as most of the Bianchi identities just serve

as consistency checks on lower dimension ones. Typically in superspace, one can invoke some

version of Dragon’s theorem [42], which states that the curvature superfields are completely

determined by the torsion superfields, so solving the torsion tensor Bianchi identities is the

only necessary step. In its original formulation, Dragon’s theorem is limited to dimensions

higher than three and for a tangent space group consisting of the Lorentz and R-symmetry

groups. For this reason, it does not directly apply to either conformal superspace (where S and

K curvatures are present) or to its extension here with internal torsion and GL(n) curvatures.

Moreover, in boiling the Bianchi identities down to (BI.1) – (BI.6), we have already solved a

number of them! It is possible that a modification of Dragon’s theorem is possible, but we

found it more direct to analyze the identities (BI.1) – (BI.6) exhaustively, taking guidance

from the linearized case. In this section, we provide a summary of their solution, with some

guideposts for the enterprising reader to reproduce. The reader interested only in the result

may consult Appendix A where we summarize the supergeometry.

6.1 The chiral Bianchi identities (BI.1) and (BI.4)

The easiest Bianchi identities to solve are the ones imposing chirality on Wα and R+
mn, eqs.

(BI.1) and (BI.4). In both cases, to make the chirality analysis simpler, it is convenient to

choose a chiral basis of derivatives – that is, we will choose to use ∇+
m instead of ∇m. In

general, this means Wα must possess an expansion of the form

Wα = Wα
b∇b +Wα

β∇β +Wαβ̇∇̄β̇ +Wα
m∇+

m +
(

∇+
nWα

m +Wαn
m
)

gm
n

+Wα(D)D+Wα(A)A +Wα(M)βγMβγ +Wα(M)β̇γ̇M
β̇γ̇

+Wα(S)
βSβ +Wα(S)β̇ S̄

β̇ +Wα(K)bKb . (6.1)

We have chosen to include an explicit ∇+
nWα

m term in the GL(n) piece so that it combines

with Wα
m∇+

m to give the covariant internal Lie derivative L+ built from ∇+
m.

Now we impose the constraint

Wα
b = 0 . (6.2)
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In the linearized theory, recall this has the effect of fixing the underlying prepotentials V(M),

V(D), and V(A). The Bianchi identity implies several simple conditions:

Wα
β = 0 , ∇̄α̇Wα

m = 0 , ∇̄α̇Wαm
n = 0 , ∇̄α̇Wα(M)βγ = 0 . (6.3)

No condition is imposed yet on Wαα̇, but higher curvatures are determined in terms of it:

Wα(D) =
1

2
∇̄γ̇Wαγ̇ + φα , Wα(A) =

3i

4
∇̄γ̇Wαγ̇ +

i

2
φα ,

Wα(M)
α̇β̇

= −∇̄(α̇Wαβ̇) , Wα(S)α̇ =
1

8
∇̄2Wαα̇ , (6.4)

where φα is an undetermined chiral superfield. The remaining chirality conditions amount to

∇̄2Wα(S)
β = 0 , Wα(K)β̇β = i∇̄β̇Wα(S)

β . (6.5)

The superfield Wα
m corresponds in the flat limit to the Kaluza-Klein field strength, and

we have recovered its chirality condition. As in the linearized case, we expect the totally

symmetric part of Wα(M)βγ to be the superfield Wαβγ , and this is what happens if we drop

the internal derivatives to recover N = 1 conformal superspace. The other superfields will

turn out to be composite, or correspond to curvatures that can be turned off by redefining

certain connections.

The chirality condition on R+
mn is also simple to analyze. Taking a similar decomposition

R+
mn = T+

mn
B∇B + F+

mn
p∇+

p +
(

∇+
p F

+
mn

q +Rmnp
q
)

gq
p

+R+
mn(D)D+R+

mn(A)A+R+
mn(M)βγMβγ +R+

mn(M)
β̇γ̇
M β̇γ̇

+R+
mn(S)

βSβ +R+
mn(S)β̇S

β̇ +R+
mn(K)cKc (6.6)

one immediately finds that the chirality condition implies

T+
mn

β̇β = −∇̄β̇Ψmn
β , T+

mn
β =

i

8
∇̄2Ψmn

β , (6.7)

for some 2-form spinor superfield Ψmnα. The remaining components of the Bianchi identify
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impose no condition on T+
mnβ̇

. The other components are

F+
mn

p = −Ψmn
αWα

p +Φmn
p , (6.8a)

R+
mn(M)αβ = −Ψmn

γWγ(M)αβ +Φmnαβ , (6.8b)

R+
mn(M)α̇β̇ = ∇̄(α̇Ψmn

γWγβ̇) + ∇̄(α̇T
+
mnβ̇) , (6.8c)

R+
mn(D) = −Ψmn

αφα +Φmn − 1

2
∇̄γ̇T+

mnγ̇ −
1

2
∇̄γ̇Ψmn

γWγγ̇ , (6.8d)

R+
mn(A) = − i

2
Ψmn

αφα +
i

2
Φmn − 3i

4
∇̄γ̇T+

mnγ̇ −
3i

4
∇̄γ̇Ψmn

γWγγ̇ , (6.8e)

R+
mn(S)α = −Ψmn

γWγ(S)α +Σmnα , (6.8f)

R+
mn(S)α̇ =

1

8
∇̄2T+

mnα̇ +
1

8
∇̄2Ψmn

γWγγ̇ −
1

4
∇̄φ̇Ψmn

γ∇̄φ̇Wγγ̇ , (6.8g)

R+
mn(K)αα̇ = −i∇̄α̇R

+
mn(S)α − i∇̄α̇Ψmn

βWβ(S)α , (6.8h)

R+
mnp

q = −Ψmn
αWαp

q +∇+
p Ψmn

αWα
q +Φmnp

q (6.8i)

In deriving these results, we used the explicit forms of some of the Wα superfields. But there

remain certain undetermined pieces. These are the chiral superfields Φmn
p, Φmnαβ , Φmn, and

Φmnp
q, as well as the complex linear superfield Σmnα, which obeys ∇̄2Σmnα = 0. From the

linearized analysis, we know that Φmn
p can be eliminated by redefining a connection, so we

choose it to vanish,

Φmn
p = 0 .

6.2 Interlude: The Xm operator and variant covariant derivatives

Let us pause to make a few comments that will be useful very soon. We take the operator

Xm that translates between the chiral internal derivative and the antichiral one to have an

expansion as

Xm = Xm
A∇A +Xm

xgx +Xmn
pgp

n . (6.9)

That is, we explicitly turn off any Xm
n∇n term. This is sensible because Xm

n has dimension

zero and no such superfield seems possible to construct given our constituents. It is also

justified from the linearized analysis. Recall that Xm
a coincides at the linearized level to

(2.11b). Other Xm fields are of higher dimension and will correspond either to composite

quantities or fields that can be removed by redefinitions.

We observe that the primary condition, [Sα,Xm] = 0, implies for the lowest three Xm

fields that

SβXm
a = 0 , SβXm

α = 0 , SβXmα̇ = −iXmβα̇ , (6.10)

and similarly for their complex conjugates. So Xm
a is primary, as expected for a fundamental

curvature. The conditions on Xm
α suggest that it be written as

Xm
α = − i

8
∇̄α̇Xm

α̇α + primary superfield (6.11)
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and it is tempting to set the primary superfield above to zero, just as at the linearized level.

However, it is going to be more useful to keep the non-primary superfield Xm
α unfixed and

work with it directly.

Assuming the above structure for the X operator, we can already compute some parts of

the mixed curvature Rmα. We are interested in the Kaluza-Klein curvature piece,

Fmα
n = iXmαα̇W̄ α̇n . (6.12)

As anticipated, this is non-vanishing, which means the ∇A we are using do not coincide with

the ∇̊ introduced in section 3.3 with the simplest GL(n) connections. Rather, we find that

∇̊α = ∇α − Fmα
n gn

m . (6.13)

These derivatives do not satisfy the first constraint of (4.5), whereas they do lead to vanishing

mixed Kaluza-Klein curvatures, F̊mA
n = 0. The advantage of using ∇α is that it anticom-

mutes with itself and the natural superfields we will be using are chiral or antichiral with

respect to it.

Actually, we are going to discover that, at least when working with ∇+
m, there is yet

another spinor derivative that makes an appearance. It is defined by

∇̂α := ∇α − 2Fmα
n gn

m . (6.14)

It is not hard to see that [∇̂α,∇+
m] has no Kaluza-Klein curvature. For this reason, {∇̂α, ∇̄α̇,∇+

m}
turn out to be a convenient set of derivatives to use when dealing with chiral objects as we

have shoved all of the GL(n) connection into ∇̂α. We will see this derivative begin to make

appearances very soon. Similarly, {∇α, ∇̂α̇,∇−
m} turn out to be convenient to use with anti-

chiral objects, where ∇̂α̇ := ∇̄α̇ − 2Fm
α̇n gn

m.

However, we emphasize that when we discuss the curvature tensors R+
mn and R+

mα, they

are always here to be understood to be built using ∇α, rather than ∇̂α, so as to avoid

confusion.

6.3 The Wα reality Bianchi identity (BI.2)

We introduce the abstract operator

Y := −1

4
{∇α,Wα} (6.15)

The content of the Bianchi identity (BI.2) is that this is a real operator. Let’s take its lowest

engineering dimension components, Ym and Ya. The first leads to

Ym = −1

4
∇̂αWα

m = −1

4
∇̂α̇W̄ α̇m , (6.16)

which reduces in flat space to the Bianchi identity for the Kaluza-Klein field strength. Note

that it is ∇̂α above, rather than ∇α. The other lowest engineering dimension component is

iYαα̇ = Wαα̇ − i

2
WβmTmβαα̇ +

1

4
∇WmXmαα̇

= Wαα̇ − i

4
WβmT+

mβαα̇ +
1

4
∇̂WmXmαα̇ (6.17)
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where the mixed torsion tensor is given in Appendix A. Because Ya is real, this constrains

the real part of Wαα̇ to be

Wαα̇ − W̄α̇α = −2i (Wα
mXmα̇ + W̄α̇

mXmα)−
1

2
Wβm∇̂βXmαα̇ − 1

2
∇̄

β̇
(W̄ β̇mXmαα̇) . (6.18)

From the linearized analysis, we know that Ya can be fixed by a connection redefinition. One

convenient choice is

Ya
∗
= 0 =⇒ Wαα̇

∗
=

i

4
WβmT+

mβαα̇ − 1

4
∇̂WmXmαα̇ . (6.19)

Another choice is to take

Wαα̇
∗
= −W̄α̇α

∗
= −i (Wα

mXmα̇ + W̄α̇
mXmα)−

1

4
Wβm∇̂βXmαα̇ − 1

4
∇̄

β̇
(W̄ β̇mXmαα̇) .

(6.20)

The Bianchi identity involving Yα is a bit more intricate. It allows one to determine the

non-linear version of the combination (5.25),

Xm(M)α
β +

1

2
δα

β(Xm(D)− 2iXm(A)) = ∇̂αXm
β − δα

β∇̄γ̇Xmγ̇ +
i

4
∇̄γ̇∇̂αXm

β
γ̇

+X
mαβ̇

W̄ β̇β +
i

2
Wα

nΨnm
β (6.21)

where ∇̂α = ∇α − 2Fmα
ngn

m. In principle, there is an undetermined chiral superfield on the

right-hand side, but it can be set to zero by a connection redefinition as in the linearized

analysis. Separating Wγ(M)βα into spin-1/2 and spin-3/2 pieces as in the linearized analysis,

Wα(M)βγ = −ǫα(βZγ) + 2iWαβγ (6.22)

the Yα Bianchi then relates Zα to φα in (6.4) as

2

3
φα = Zα − 1

6
∇̄2(W α̇mXmαα̇) . (6.23)

The remaining Bianchi identities in (BI.2) are more complicated. The ones at dimension

two allow us to determine Wα(S)
β . Employing the shorthand,

Z
x := ∇αWα

x + i∇αWα
mXm

x + 2WαmRmα
x

= ∇αWα
x + i∇̂αWα

mXm
x +WαmR+

mα
x (6.24)

the remaining Bianchi identities provide a definition for Wα(S)
β as

Wα(S)
β :=

1

8
δα

β(Z (D)− Z̄ (D)) +
i

12
δα

β(Z (A)− Z̄ (A)) − 1

4
(Z (M)α

β − Z̄ (M)α
β) .

(6.25)
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In addition, one finds a consistency condition

∇̄α̇Wα(S)
α = Z (S)α̇ − Z̄ (S)α̇ (6.26)

and a Bianchi identity

Z (K)a = Z̄ (K)a . (6.27)

The last corresponds to a complicated modification of the dimension-3 Bianchi identity that

relates derivatives of Wγβα to its complex conjugate. This is one of the fundamental Bianchi

identities of the geometry, mentioned in footnote 2, but it lies at such high dimension one

does not usually need its explicit form. As we have not worked out a useful compact way of

writing it, we do not give it explicitly here.

These relations are compact, but not necessarily useful. For example, it is not imme-

diately clear that the expression for Wα(S)
β satisfies the complex linearity condition (6.5).

This can be made more apparent by expanding it out:

Wα(S)
β = −1

4

(

∇γWγ(M)α
β + 2Fm

γmWγ(M)α
β +WγmR+

mγ(M)α
β
)

+
1

12
δα

β(∇γφγ + 2Fm
γmφγ) +

1

8
δα

βWγm(R+
mγ(D) +

2i

3
R+

mγ(A))

+ ∇̄γ̇

[1

4
W̄ γ̇(M)α

β − i

2
W̄ γ̇mXm(M)α

β
]

+ δα
β ∇̄γ̇

[

− 1

8
W̄ γ̇(D) +

i

4
W̄ γ̇mXm(D)− i

12
W̄ γ̇(A)− 1

6
W̄ γ̇mXm(A)

]

. (6.28)

The last two lines are manifestly complex linear. The first two lines are complex linear by

virtue of the Bianchi identities involving ∇+
mWγ(M)α

β and ∇+
mφα, which we will encounter

below. The expression could be evaluated further but we will postpone that for now.

6.4 The ∇+
m
Wα Bianchi identity (BI.3)

The Bianchi identity that directly links Wα to Xm is (BI.3), which can be rewritten as

[∇+
m,Wα] =

i

8
[∇̄α̇, {∇̄α̇, R+

mα}] . (6.29)

We expand R+
mα in terms of ∇+

m, leading to

R+
mα = F+

mα
n∇+

n + T+
mα

B∇B +R+
mα

xXx +∇+
nF

+
mα

pgp
n +R+

mαn
pgp

n . (6.30)

Expanding out both sides of (6.29) leads to a number of identities. Simplifications occur

upon using

i

8

(

8iT+
mα

β + 2∇̄β̇T
+
mα

β̇β
)

= −Wα
nΨnm

β , (6.31)
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which holds on account of the explicit expression (6.21). The terms in (6.29) involving

covariant derivatives become

0 = −Wαm
n +Wα

p
(

F+
pm

n +Ψpm
βWβ

n
)

− i

8
∇̄2F+

mα
n , (6.32a)

0 = Wα
nT+

nm
a − i

8
∇̄2T+

mα
a +

1

2
∇̄β̇T+

mα
β(σa)

ββ̇
, (6.32b)

0 = Wα
nT+

nm
β − i

8
∇̄2T+

mα
β , (6.32c)

0 = ∇+
mWαα̇ +Wα

n
(

T+
nmα̇ +Ψnm

γWγα̇

)

− i

8

(

∇̄2T+
mαα̇ + ∇̄α̇R

+
mα(D) + 2i∇̄α̇R

+
mα(A) + 2∇̄

β̇
R+

mα(M)β̇ α̇ + 8R+
mα(S)α̇

)

. (6.32d)

The first identity is solved by

Wαm
n = − i

4
∇̄2Fmα

n . (6.33)

The second and third identities hold automatically. The fourth identity leads to a definition

of Xm(K)a in terms of lower dimension quantities:

iXm(K)αα̇ =
1

4
∇+

mWαα̇ +
1

4
Wα

n(T+
nmα̇ +Ψnm

γWγα̇)

+ ∇̄α̇Xm(S)α − Fmα̇
nXn(S)α +

1

16
∇̄2

[

∇αXmα̇ − 2Fmα
nXnα̇

]

+
1

8
∇̄

β̇

(

δm
n∇α − 2Fmα

n
)(

Xn(M)β̇ α̇ +
1

2
Xn(D) δβ̇ α̇ + iXn(A) δ

β̇
α̇

)

− h.c. (6.34)

At dimension two, we find the Bianchi identities

0 = ∇+
mWα(D) +Wα

n
(

R+
nm(D) + Ψnm

γWγ(D)
)

− i

8

[

∇̄2R+
mα(D) + 4ǫβ̇α̇∇̄α̇R

+
mα(S)β̇

]

,

0 = ∇+
mWα(A) +Wα

n
(

R+
nm(A) + Ψnm

γWγ(A)
)

− i

8

[

∇̄2R+
mα(A) + 6iǫβ̇α̇∇̄α̇R

+
mα(S)β̇

]

,

0 = ∇+
mWα(M)

β̇γ̇
+Wα

n
(

R+
nm(M)

β̇γ̇
+Ψnm

γWγ(M)
β̇γ̇

)

− i

8

[

∇̄2R+
mα(M)

β̇γ̇
− 8∇̄(β̇R

+
mα(S)γ̇)

]

,

0 = ∇+
mWα(M)βγ +Wα

n
(

R+
nm(M)βγ +Ψnm

δWδ(M)βγ
)

− i

8

[

∇̄2R+
mα(M)βγ

]

. (6.35)

The first three Bianchi identities hold on account of (6.32d) provided that

Xm(S)α = −1

4

[

∇̂αXm(D) +Xmαα̇W̄ α̇(D)
]

− i

6

[

∇̂αXm(A) +Xmαα̇W̄ α̇(A)
]

+Σ(1)
mα ,

(6.36)

where Σ
(1)
mα is a non-primary superfield obeying

−3

2
∇̄2Σ(1)

mα = ∇+
mφα +Wα

nΦnm . (6.37)
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From the trace part of ∇+
mWα(M)βγ , we find a similar relation

Xm(S)α =
1

6
∇̂βXm(M)βα − 1

6
X

mββ̇
W̄ β̇(M)βα +

i

6
∇+

mFpα
p +Σ(2)

mα (6.38)

where

−3

2
∇̄2Σ(2)

mα = ∇+
mφα −WβnΦnmβα . (6.39)

Equating the two competing expressions for Xm(S)α, one can compute the difference between

Σ
(1)
mα and Σ

(2)
mα. This leads to

Wβn
(

ǫαβΦnm +Φnmαβ

)

= Wβn ∇̄2
[

− i

8
∇̂βΨnmα − i

4
ΨnmβFpα

p +
1

16
T+
n(β,γ)γ̇T

+
m(α,

γ)γ̇
]

,

(6.40)

which implies

Φnmαβ = ∇̄2
[

− i

8
∇̂(βΨnmα) −

i

4
Ψnm(βFpα)

p − 1

4
∇̂(βX[nγ)γ̇∇̂(αXm]

γ)γ̇
]

−W(α
pΦpnmβ) ,

Φnm = ∇̄2
[ i

16
∇̂γΨnmγ +

i

8
Ψnm

γFpγ
p
]

+
1

2
WβpΦpnmβ , (6.41)

for some chiral primary 3-form superfield Φpnmα. From the linearized analysis, we know this

should indeed be the curvature Φ3α whose linearized form is ∂Φ2α. Then one may define a

primary superfield Σmα by the relation

Xm(S)α = −1

4

[

∇̂αXm(D) +Xmαα̇W̄ α̇(D)
]

− i

6

[

∇̂αXm(A) +Xmαα̇W̄ α̇(A)
]

− 1

4
∇̄α̇∇̂αXmα̇

− 2

3
Wα

n
( i

16
∇̂βΨnmβ +

i

8
Ψnm

βFpβ
p
)

− i

6
∇+

mFpα
p +Σmα , (6.42)

where Σmα obeys

∇̄2Σmα = −∇+
mZα − 1

3
Wα

nWβpΦpnmβ . (6.43)

This is a natural generalization of (6.36), where we have aimed to make Σmα primary and to

express it in terms of Zα rather than φα. One could instead have aimed for a generalization

of (6.38) (or some combination of (6.36) and (6.38)). This would involve shifting Σmα by

some primary complex linear superfield.

From the totally symmetric part of the ∇+
mWα(M)βγ Bianchi identity, we find

∇+
mWαβγ =

1

16
∇̄2

[

∇̂α
γ̇∇̂βXmγγ̇ − ∇̂α(Wβ

nΨnmγ) + 4∇̂αXmβγ̇W̄ γ̇nXnγ + 2i ∇̂αXmβγ̇W̄ γ̇
γ

]

(αβγ)

+
i

2
W(α

nΦnmβγ) . (6.44)

This is the non-linear generalization of the fundamental Bianchi identity (2.12a).
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The three highest dimension Bianchi identities are

0 = ∇+
mWα(S)

β +Wα
n
(

R+
nm(S)β +Ψnm

γWγ(S)
β
)

− i

8

[

∇̄2R+
mα(S)

β + 2i∇̄β̇R
+
mα(K)β̇β

]

,

0 = ∇+
mWα(S)β̇ +Wα

n
(

R+
nm(S)β̇ +Ψnm

γWγ(S)β̇

)

− i

8

[

∇̄2R+
mα(S)β̇

]

,

0 = ∇+
mWα(K)b +Wα

n
(

R+
nm(K)b +Ψnm

γWγ(K)b
)

− i

8

[

∇̄2R+
mα(K)b

]

. (6.45a)

The first should be a consequence of the explicit form of Wα(S)
β that we have derived in

(6.28). It is not hard to show that the second and third are consequences of lower dimension

identities.

6.5 The ∇
+
[mR

+
np] = 0 Bianchi identity (BI.6)

Next, we analyze (BI.6). The lower dimension ones are

0 = −R+
[mnp]

q + T+
[mn

BF+
Bp]

q + F+
[mn

rF+
rp]

q , (6.46a)

0 = ∇+
[p
T+
mn]

B + T+
[mn

CT+
Cp]

B + F+
[mn|

qT+
q|p]

B , (6.46b)

0 = ∇+
[pR

+
mn](D) + T+

[mn
CR+

Cp](D) + F+
[mn|

qR+
q|p](D) , (6.46c)

0 = ∇+
[pR

+
mn](A) + T+

[mn
CR+

Cp](A) + F+
[mn|

qR+
q|p](A) , (6.46d)

0 = ∇+
[pR

+
mn](M)βγ + T+

[mn
CR+

Cp](M)βγ + F+
[mn|

qR+
q|p](M)βγ , (6.46e)

0 = ∇+
[pR

+
mn](M)β̇γ̇ + T+

[mn
CR+

Cp](M)β̇γ̇ + F+
[mn|

qR+
q|p](M)β̇γ̇ , (6.46f)

and the higher dimension ones involving Sα, S̄
α̇ and Ka follow the same pattern.

In analyzing the Bianchi identity on T+
mn

a, one discovers that

∇+
[pΨmn]α = − i

4
∇̄β̇Ψ[mn

βT+

p]β αβ̇
+Ψ[mn|

βWβ
qΨq|p]α +

1

3
Φpmnα , (6.47)

generalizing the linearized result (2.12c). This identity is found under an antichiral derivative,

so the chiral superfield Φ3α is undetermined. From our linearized analysis, we know it involves

∂Φ2α.

The Bianchi identity involving T+
mnβ̇ is not immediately useful because we do not yet

have an independent expression for it. The remainder of the Bianchi identities lead to

∇+
mφα = −Wα

nΦnm +
i

8
∇̄2

[

3
2R

+
pα(D) + iR+

pα(A)
]

,

∇+
[pΦmn] =

1

3
Φpmn

αφα +
i

8
∇̄2

[

Ψ[mn
α
(

3
2R

+
p]α(D) + iR+

p]α(A)
)]

,

∇+
[pΦmn]αβ =

1

3
Φpmn

γWγ(M)αβ +
i

8
∇̄2(Ψ[mn

γR+
p]γ(M)αβ) ,

∇+
[pΣmn]α =

1

3
Φpmn

βWβ(S)α +
i

8
∇̄2(Ψ[mn

βR+
p]β(S)α)−

1

4
∇̄β̇(Ψ[mn

βR+
p]β(K)

αβ̇
) ,

Φ[mnp]
q = −1

3
Φmnp

αWα
q − i

8
∇̄2(Ψ[mn

βF+
p]β

q) . (6.48)
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The first corresponds to an identity we have seen already. The remaining ones should hold

on account of the definitions of these various quantities, although we do not here give explicit

forms for Σmnα and Φmnp
q.

As an integrability condition, one can now check ∇+
1 ∇+

1 Ψ2α. This leads to

0 = ∇+Φ3α +
1

8
∇̄2

[

iΨ2
β∇̂βΨ2α + iΨ2

βΨ2β Fmα
m −X1αγγ̇X1

βγ̇γΨ2β

]

(6.49)

where X1αββ̇ := ∇̂(αX1β)β̇ . This is the non-linear generalization of (2.12d). It confirms that

one cannot set the field strength Φ3α consistently to zero.

6.6 The R+ − R− Bianchi identity (BI.5)

The last batch of Bianchi identities to discuss are those arising from (BI.5),

∇[mXn] =
i

4
R+

mn − i

4
R−

mn .

In expanding this expression, we must write both sides in terms of ∇m rather than ∇+
m or

∇−
m. The lowest dimension pieces read

X[mn]
p +X[m

BFn]B
p =

i

4
F+
mn

p − i

4
F−
mn

p , (6.50a)

∇[mXn]
a +X[m

BTn]B
a =

i

4
(T+

mn
a − T−

mn
a)− 1

4
(T+

mn
p + T−

mn
p)Xp

a , (6.50b)

∇[mXn]
α +X[m

BTn]B
α =

i

4
(T+

mn
α − T−

mn
α)− 1

4
(T+

mn
p + T−

mn
p)Xp

α , (6.50c)

∇[mXn]α̇ +X[m
BTn]Bα̇ =

i

4
(T+

mnα̇ − T−
mnα̇)−

1

4
(T+

mn
p + T−

mn
p)Xpα̇ . (6.50d)

The first equation defines Xmn
p up to the symmetric part. There is no constraint on the

symmetric part because lower GL(n) indices will always be antisymmetrized in our approach.

Writing it as a vector-valued 2-form, we have several equivalent expressions:

X2
1 = − i

4
Ψ2

αWα
1 − 1

8
X1βα̇X1

α̇α∇̂βWα
1 − 1

4
X1γγ̇∇̂γX1

γ̇αWα
1 +

i

2
X1

α̇αF1α
1
yF1α̇

1 + h.c.

= − i

4
Ψ2

αWα
1 − 1

8
X1βα̇X1

α̇α∇βWα
1 − 1

4
X1γγ̇∇γX1

γ̇αWα
1

− i

4
X1γγ̇X1

γφ̇W̄
φ̇
1
yX1

γ̇αWα
1 + h.c. (6.51)

A useful chiral form of this expression is

X2
1 =

i

4
(F+

2
1 − F−

2
1) +

i

4
X1

β̇β∇̄
β̇
F1β

1 +
1

4
X1

β̇β∇̂βX1γβ̇Wγ1 +
i

2
X1

aX1
bFba

1 . (6.52)

The second equation (6.50b) gives

∇[mXn]
a +X[m

BTn]B
a =

i

4
(T+

mn
a − T−

mn
a)− 1

4
(F+

mn
p + F−

mn
p)Xp

a . (6.53)
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This gives the generalization of the linearized Bianchi identity (2.12b) relating Xma to Ψmnα.

The remaining two equations (6.50c) and its complex conjugate (6.50d) give

T+
mnα̇ = T−

mnα̇ − i(F+
mn

p + F−
mn

p)Xpα̇ − 4i
(

∇[mXn]α̇ +Xm
BTnBα̇

)

= − i

8
∇2Ψmnα̇ − i(F+

mn
p + F−

mn
p)Xpα̇ − 4i

(

∇[mXn]α̇ +Xm
BTnBα̇

)

(6.54)

as well as it complex conjugate. This defines the expression T+
mnα̇, which previously had not

been determined.

The remaining identities, which we have not explicitly written out, lead to, among other

consistency relations, explicit but complicated expressions for Φmn, Φmnαβ and Σmn. For

example,

i

2
Φmn =

i

2
Ψmn

αφα +
i

2
∇̄γ̇T+

mnγ̇ +
i

4
∇γT

−
mn

γ +
i

2
∇̄γ̇Ψmn

γWγγ̇ +
i

4
∇γΨ̄mn

γ̇W̄γ̇γ

+∇[m(Xn](D)− 2iXn](A)) +X[m
B(Rn]B(D)− 2iRn]B(A))

+
1

4
(F+

mn
p + F−

mn
p)(Xp(D)− 2iXp(A)) , (6.55)

i

4
Φmnαβ = ∇[mXn](M)αβ +X[m

DRn]D(M)αβ +
1

4
(F+

mn
p + F−

mn
p)Xp(M)αβ

+
i

4
∇(αΨmnγ̇W̄

γ̇
β) +

i

4
∇(αT

−
mnβ) +

i

4
Ψmn

γWγ(M)αβ . (6.56)

It is a complicated exercise to check that the explicit solutions (6.41) that we found somewhat

indirectly are consistent with these relations. We have confirmed this to leading order in

curvatures.

7 Action principles

Having established the superspace geometry, we now turn to establishing the existence of

superspace actions and the various technical rules for manipulating these actions, both in

superspace and in components. The results in this section will not come as a surprise to the

superspace expert. In short order, we establish:

• the consistency of both full and chiral superspace integration, provided one is given a

suitable Lagrangian,

• the formula for converting a full superspace to a chiral superspace integral,

• the rules for integrating by parts in full and chiral superspace, and

• the expression for a component action arising from a chiral superspace integral.

Because the details are rather technical and only the results are important, we mainly sketch

the computations required.
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What we will not be concerned with here is describing how to build the Lagrangians

required. As mentioned elsewhere, this will be the concern of a subsequent paper. The reader

may keep in mind the 11D Chern-Simons action (2.7) as a prototype. It will turn out (with

some minor modifications) to take the same form in this superspace.

7.1 Consistency of full and chiral superspace integration

A full superspace integral can be written

S =

∫

d4xdny d4θ E L =
1

n!

∫

d4xdny d4θ E ǫm1···mnωm1···mn
(7.1)

where ωm1···mn
is a real covariant n-form on the internal space and E = sdet(EM

A) is the full

superspace measure, defined as the superdeterminant (or Berezinian) of the supervielbein.

Above we are denoting L ≡ 1
n! ǫ

m1···mn ωm1···mn
where the antisymmetric tensor density

ǫm1···mn has constant entries of ±1. Thus ωm1···mn
is a top-form on the internal manifold and

L is its scalar density.

In order for the action to be gauge invariant, ωm1···mn
(equivalently, L ) must be a

conformal primary (annihilated by S-supersymmetry) of Weyl weight two.

The vielbein transforms under external diffeomorphisms (with parameter ξM ), H-gauge

transformations (with parameter gx), and internal diffeomorphisms (with parameter Λm) as

δEM
A = D̂MξNEN

A + ξND̂NEM
A + EM

BgxfxB
A + Λn∂nEM

A . (7.2)

This means that the full superspace measure transforms as

δE = D̂M (ξME) + Λm∂mE + gxfxA
A(−)A E . (7.3)

We require L to transform as

δL = D̂ML + ∂m(Λm
L )− gxfxA

A (−)A L . (7.4)

This is consistent with requiring ωm1···mm
to transform as an n-form under internal diffeomor-

phisms, a scalar field under external diffeomorphisms, and as a tensor with weight −fxA
A(−)A

underH-gauge transformations. The action (7.1) is manifestly invariant under all but external

diffeomorphisms. For these, we find (using internal form notation)

δS =

∫

d4xd4θ D̂M

(

ξME ω
)

=

∫

d4xd4θ
{

∂M

(

ξME ω
)

− ∂
(

ıξMAM
ωE

)}

= 0 (7.5)

where we have used the property that ω is a top form on the internal space.

Showing consistency of chiral superspace integration is more involved. The basic integral

looks like

Sc =

∫

d4xdny d2θ E Lc =
1

n!

∫

d4xdny d2θ E ǫm1···mnωc
m1···mn

(7.6)
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where ωc
m1···mn

is a covariant chiral n-form. The meaning of chirality here is that ∇̄α̇ωc
m1···mn

=

0. The measure E must be defined. We are going to take the approach used in Appendix A

of [43]. Write the full supervielbein and its inverse as

EM
A =

(

EMA EMα̇

Eµ̇A Eµ̇
α̇

)

, EA
M =

(

EA
M EAµ̇

EA
M Ē α̇

µ̇

)

(7.7)

with M = (m,µ) and A = (a, α) describing the coordinates and tangent space of chiral

superspace. We have given special names to the blocks EMA and Ē α̇
µ̇ and assume both of

these are invertible with inverses EAM and Ē µ̇
α̇. The chiral measure is E = sdet EMA.

Since EMA = EM
A, we can use (7.2) for its transformations. Invariance of Sc under

internal diffeomorphisms proceeds as before because E is a scalar and Lc is a scalar density.

Invariance under H-gauge transformations requires fx
β̇A = 0. This can be understood as an

integrability condition for the existence of H-invariant chiral superfields. It also means that

the chiral part of the vielbein only transforms into itself under H transformations, leading to

δHE = E gxfxA
A(−)A =⇒ δHLc = −Lc g

xfxA
A(−)A . (7.8)

To show invariance under external diffeomorphisms, it helps to consider covariant ex-

ternal diffeomorphisms: these are a special combination of external diffeomorphisms and

H-gauge transformations with gx = ξMHM
x. For the full supervielbein, these become

δcov(ξ)EM
A = D̂M ξNEN

A + ξND̂NEM
A + EM

BξNHN
xfxB

A

= ∇MξA + EM
BξCTCB

A − EM
BξCFCB

mχm
A (7.9)

where we have rewritten the last line in terms of ξA = ξMEM
A. We remind the reader that

the field χm
A, discussed in detail in the bosonic case in section 3.1, can be understood as a

component of a super-sehrvielbein on a larger superspace.

We now consider separately chiral external diffeomorphisms with ξM = (ξM, 0) and

anti-chiral covariant external diffeomorphisms with ξA = (0, ξα̇).
10 Chiral external diffeo-

morphisms lead to an invariant action just as before. Under anti-chiral covariant external

diffeomorphisms, one finds

δEMA = EM
Bξγ̇

(

T γ̇
B
A − F γ̇

B
mχm

A
)

=⇒

E−1δE = ξγ̇

(

T γ̇
A
A − F γ̇

A
mχm

A
)

+ EAMEMβ̇
ξγ̇

(

T γ̇β̇A − F γ̇β̇mχm
A
)

(7.10)

Provided we satisfy the conditions

T γ̇β̇A = 0 , F γ̇β̇m = 0 , (7.11)

the second batch of terms vanishes. The first batch of terms does not. In our case, it leads to

E−1δE = ξγ̇Wγ
m(σ̄b)

γ̇γ
(

iXm
b − χm

b
)

(7.12)

10These span the entire space of external diffeomorphisms only when Ē
α̇
µ̇ is invertible.
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In order for invariance to be maintained Lc must obey

D̂α̇
Lc = −Lc (σ̄b)

α̇βWβ
m
(

iXm
b − χm

b
)

. (7.13)

This derivative D̂ is the original D̂ derivative augmented with the H connection. It does not

possess the GL(n) connection. Recall the GL(n) connection involves

ΓMn
p ∼ −χn

NFNM
p +∆ΓMn

p =⇒ Γα̇
n
p ∼ −(σ̄b)

α̇αWα
p
(

iXn
b − χn

b
)

(7.14)

where we have used (3.27) for the shifted part of the GL(n) connection ∆Γ. (The piece

involving ∂nAM
p is already contained in D̂.) It follows that

∇̄α̇
Lc = Dα̇

Lc − Γα̇
p
p
Lc = 0 (7.15)

as the condition for chiral integration to be well-defined.

We emphasize that the redefinition of the GL(n) connection was key to finding this simple

chirality condition. With the original connection, we would have found ∇̊α̇Lc 6= 0, which is

less convenient to work with.

7.2 Converting full superspace to chiral superspace

Now that we know that full superspace and chiral superspace separately exist, we should

establish how to move from one to the other. We claim that (generalizing the flat superspace

result)
∫

d4xdny d4θ E L = −1

4

∫

d4xdny d2θ E ∇̄2
L . (7.16)

The proof goes as follows. Because of the basic condition {∇̄α̇, ∇̄β̇} = 0, we can adopt a

chiral gauge where

∇̄α̇ =
∂

∂θα̇
− Γα̇

m
ngn

m . (7.17)

The GL(n) connection is

Γα̇
m
n = −χm

bFb
α̇n + F α̇

m
n = (χm

α̇α − iXm
α̇α)Wα

n . (7.18)

The full superspace and chiral superspace measures are equal, E = E , and furthermore,

∂α̇E = E
(

T α̇
b
b − F α̇

b
pχp

b
)

= EWα
m(σ̄b)

α̇α
(

iXm
b − χm

b
)

= −Γα̇
m

m (7.19)

It follows that
∫

d4xdny d4θ E L = −1

4

∫

d4xdny d2θ E (∂̄α̇ − Γα̇n
n)(∂̄α̇ − Γα̇

m
m)L (7.20)

The operators appearing in parentheses are just ∇̄α̇ in chiral gauge, so it follows that the

two sides of (7.16) are equal to each other in chiral gauge. But because they are both gauge

invariant expressions, they must be equal in all gauges.

– 40 –



7.3 Rules for integrations by parts

There turn out to be three useful expressions for integrating by parts in superspace. These

are most simply formulated in terms of the vanishing (or near vanishing) of certain total

covariant derivatives.

The first expression is relevant for integrating by parts with external covariant derivatives

in full superspace. Suppose V A = (V a, V α, Vα̇) is some covariant expression, with not nec-

essarily all of these entries nonzero. (Of course, V A must be a scalar density under internal

diffeomorphisms.) Then one can show that

∫

d4xdny d4θ E∇AV
A (−)A = −

∫

d4xdny d4θ
(

E V B(TBA
A(−)A + FBm

m) +HM
xgx(EV M )

)

= −
∫

d4xdny d4θHM
xgx(EV M ) . (7.21)

The first equality follows rather generally, while the second follows for the particular con-

straints on our superspace torsion and curvature tensors we have chosen. The residual term

arises if E V M = E V AEA
M is not a gauge singlet; in practice, this involves only the S and

K connections and such terms cancel out if, after a series of integrations by parts, the initial

and final forms are both primary.

The other expressions involve integrating by parts with internal covariant derivatives. In

full superspace, one can use either ∇m or ∇±
m and the results are structurally similar:

∫

d4xdny d4θ E∇mV m = −
∫

d4xdny d4θ E V m
(

T±
mA

A(−)A + F±
mn

n
)

= 0 (7.22)
∫

d4xdny d4θ E∇±
mV m = −

∫

d4xdny d4θ E V m
(

T±
mA

A(−)A + F±
mn

n
)

= 0 . (7.23)

Here we assume EV m is H-invariant for simplicity (as well as an internal vector density) so

that H connections do not appear. This will always be the case when we need to integrate

internal covariant derivatives by parts. As before, the expressions involving the traces of the

torsion and curvature tensors cancel out for our superspace geometry. In chiral superspace,

we will only need to integrate ∇±
m by parts. Its rule is similar:

∫

d4xdny d2θ E ∇+
mVm = −

∫

d4xdny d2θ E Vm
(

T+
mA

A(−)A + F+
mn

n
)

= 0 . (7.24)

To be well-defined, Vm must be chiral, a vector density, and transform so that EVm is H-

invariant.

The proof of (7.21) is completely standard. The proof of (7.22) is only a bit more

involved. We give a few steps to guide the reader. Discarding total derivatives in equalities
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and suppressing gradings,

E∇mV m = −∇mEV m − χm
N∇N (EVm)− 2Γ[mn]

n(EV m)

= −∇N

(

EV mχm
N
)

− EV m(TmA
A + FNm

nχn
N )− 2Γ[mn]

n(EV m)

= (FNn
n − χn

MFMN
n)
(

EV mχm
N
)

− EV m(TmA
A + FNm

nχn
N )− 2Γ[mn]

n(EV m)

= −EV m(TmA
A + Fmn

n) . (7.25)

The corresponding expression for (7.23) follows just by affixing ± superscripts to the internal

connections and curvatures, defining them with respect to ∇±
m. The rule for (7.24) is a

bit more involved but the fact that it vanishes follows from (7.23) by converting to chiral

superspace and identifying Vm = −1
4∇̄2V m.

7.4 Chiral superspace to components

The final result we should discuss is how to convert a superspace integral to components. Since

any full superspace integral may be converted to chiral superspace using (7.16), it suffices to

show how to evaluate the chiral θ integrations. The result we want to establish is

Sc =

∫

d4xdny d2θ E Lc =

∫

d4xdny eLc (7.26)

where

Lc = −1

4
∇2

Lc +
i

2
(ψ̄mσ̄m)α∇αLc − ψ̄mσ̄mnψ̄n Lc

− 2i W̄α̇
m(χm

α̇ + iXm
α̇)Lc + i ea

mψ̄mα̇ W α̇m(χm
a + iXm

a)Lc . (7.27)

Some of the above result may be guessed without much work. The first term is the flat

superspace result, and the rest of the first line is its generalization to conformal supergravity.

Additional terms essentially can only involve the terms found in the second line, and some of

the relative coefficients can be determined by S-invariance.

A standard way of deriving the above result is to exploit the ectoplasmic approach [44, 45].

In conventional N = 1 superspace, this amounts to treating the component Lagrangian as a

4-form in superspace, writing

Sc =

∫

M

1

4!
EAEBECED JDCBA (7.28)

where the integral is restricted to the bosonic spacetime M lying at θ = 0. The condition

that the action is supersymmetric amounts to J being a closed superform. Choosing the

components of J appropriately then leads to the desired result. While the ectoplasmic ap-

proach does lead to (7.27), it is a bit subtle because in our case the full superspace is actually

extended by the n internal coordinates and so J is actually a (4 + n)-form. Care must be

taken to account for this.
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A technically simpler approach is to use a brute force normal coordinate method. Starting

from chiral superspace lying at θ̄ = 0, use the residual θ-dependent coordinate and gauge

transformations to set ∇α = ∂α − Γαm
ngn

m where Γαm
n = −(χm

a + iXm
a)(σa)αα̇W α̇n. In

this gauge, E = det(em
a) = e, so evaluating the θ integrals gives

eLc = −1

4
∂α∂α(eLc) . (7.29)

To evaluate these terms, the following results are useful (in this gauge):

∂αem
a = Tαm

a − Fαm
pχp

a = i(σaψ̄m)α + (σm)αα̇W̄ α̇p(χp
a + iXp

a) ,

e−1∂αe = i(σmψ̄m)α − Γαm
m ,

1

2
∂αψmβ̇ = Tαmβ̇ − Fαm

pχpβ̇ = (σm)αα̇W̄ α̇p(χpβ̇ + iXpβ̇) ,

∂α(eLc) = e∇αLc + i(σmψ̄m)αeLc . (7.30)

Putting these results together leads to (7.27).

8 Conclusion and outlook

The goal of this paper has been to construct a general framework in 4D N = 1 superspace that

is suitable for describing a higher-dimensional supergravity theory in 4+n dimensions. While

this is motivated by previous work on 11D supergravity [33–37] and 5D minimal supergravity,

it is expected to be applicable to other cases.

Let us say a few words on that point. One potential argument against the wider applica-

bility of this framework is that both 11D and 5D minimal supergravities correspond to very

particular cases where the number of internal dimensions and the number of hidden supersym-

metries coincide (respectively, 7 and 1). This is important because the superfield Ψmα, which

here plays only the role of the prepotential of the lower left block of the higher-dimensional

vielbein, should pull double duty as a prepotential for the additional spin-3/2 gravitino mul-

tiplets. The simplest way this can work is when the number of additional gravitini matches

the internal dimension. Nevertheless, we can learn a lesson from the 6D situation [32]. There,

one indeed has two fields Ψmα, but in constructing minimal 6D supergravity, one encounters

a constraint that permits one of these fields to be eliminated (see section 5 of [32]) – this is

important as there is only one additional gravitino (not two) in this framework. This may

well persist for other cases where the number of extra gravitini is smaller than the number

of extra dimensions. For the reverse situation, where the number of extra gravitini is larger

than the internal dimension, we may point to IIA supergravity, which can be constructed by

dimensionally reducing 11D supergravity in this framework. In that case, one of the gravitini,

say Ψ7α, is “ungeometrized” and becomes a matter superfield, albeit a high superspin one.

It would be interesting to understand both of these cases better.

There are several topics that we did not directly address in this paper. One outstanding

issue is the application to 11D supergravity itself. This paper only provides the geometric
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superspace framework necessary to describe that case. We still must analyze how the flat

results reviewed in section 2.1 are generalized. This involves constructing the abelian tensor

hierarchy descending from C3 in the curved supergeometry we have introduced. In principle,

this should be fully fixed by the supergeometry itself so that the intricate structure described

in flat space in section 2.1 is maintained. As we have stressed throughout, this will be the

subject of a future publication.

A technical issue that we have sidestepped is how to address the differences in the su-

pergeometry we have encountered relative to the linearized results [36, 37]. The point of

mismatch is the three additional prepotentials – the chiral superfield Φmnα, the complex lin-

ear superfield σmα, and the unconstrained superfield V(S)α. These appear in the curvatures

Φmnpα, Σmα (which is a part of Xm(S)α), and Zα. These are related by (6.43) and it is

tempting to declare them all to vanish. However, we have shown this is not possible due to

the integrability condition (6.49). While Zα may consistently be turned off, Φmnpα and thus

Σmα appear inescapable.

One potential solution to this is that the additional prepotentials can be eliminated by

field redefinitions even in the presence of additional matter fields of the tensor hierarchy. This

would be similar to the way in which the conventional Wess-Zumino superspace (see e.g. [39]),

which manifestly describes old minimal Poincaré supergravity, may actually be understood to

describe conformal supergravity, by introducing a super-Weyl transformation that acts as a

Weyl rescaling of the metric. Provided one only couples to matter in a super-Weyl invariant

way, only the conformal part of the gravity multiplet survives. It is plausible that the same

sort of mechanism occurs here.

Indeed, we have already seen in the linearized case that Zα and Σmα can be shifted

around by redefinitions of underlying prepotentials V(S)α and σmα. The same can be done

by analyzing linearized fluctuations about a generic curved background. Showing that the

same is true for Φmnα is a bit more involved, as we have introduced that prepotential by

hand in defining the linearized Ψmnα. Seeing this at the non-linear level is a bit involved.

The key idea is to introduce a shift δρΨmnα = ρmnα, where ρmnα is a chiral superfield 2-form.

This corresponds just to a shift δΦmnα = ρmnα in the underlying extraneous prepotential.

One must then demonstrate that ρ-transformations can be consistently imposed at the non-

linear level on curvatures and covariant derivatives. One finds, for example, that Wαβγ

shifts under ρ exactly as one would expect from its linearized expression (5.29). Provided

ρ transformations can be extended to the p-form superfields of 11D supergravity, one can

guarantee that the extraneous prepotential can always be removed. We will describe this in

greater detail elsewhere.
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A Superspace curvatures

Our superspace and spinor conventions follow [39]. The curvatures of GL(n) Kaluza-Klein

superspace are abstractly given in terms of three operators Wα, Xm, and R+
mn in the following

manner. Letting R
ÂB̂

:= −[∇
Â
,∇

B̂
] where Â = (a, α, α̇,m), we find that

Rαβ = 0 , Rα̇β̇ = 0 , Rαβ̇ = 2i∇αβ̇ ,

Rαb = −(σb)αα̇W̄ α̇ , Rα̇
b = (σ̄b)

α̇αWα ,

Rab =
i

2
(σab)

αβ{∇α,Wβ} −
i

2
(σ̄ab)

α̇β̇{∇̄α̇, W̄β̇
} ,

Rmα = i[∇α,Xm] , Rmα̇ = −i[∇̄α̇,Xm] ,

Rma = −1

4
(σ̄a)

α̇α{∇α, [∇̄α̇,Xm]}+ 1

4
(σ̄a)

α̇α{∇̄α̇, [∇α,Xm]} ,

Rmn =
1

2
(R+

mn +R−
mn)− [Xm,Xn] . (A.1)

When written in terms of ∇+
m = ∇m + iXm, the mixed curvatures become

R+
mα = 2i[∇α,Xm] , R+

mα̇ = 0 ,

R+
ma =

1

2
(σ̄a)

α̇α{∇̄α̇, [∇α,Xm]} . (A.2)

A.1 Expressions for Wα

The chiral operator Wα is defined as:

Wα = W
αβ̇

∇̄β̇ +Wα
m∇+

m +
(

∇+
nWα

m +Wαn
m
)

gm
n

+Wα(D)D+Wα(A)A +Wα(M)βγMβγ +Wα(M)
β̇γ̇
M β̇γ̇

+Wα(S)
βSβ +Wα(S)β̇ S̄

β̇ +Wα(K)bKb . (A.3)

The Kaluza-Klein superfield Wα
m is chiral and obeys a reduced chirality condition,

∇̂αWα
m = ˆ̄∇α̇W̄ α̇m , ∇̂α := ∇α − 2Fmα

ngn
m , Fmα

n := iXmαα̇W̄ α̇n . (A.4)

The superfield Wαα̇ is related to its conjugate by

Wαα̇ − W̄α̇α = −2i (Wα
mXmα̇ + W̄α̇

mXmα)−
1

2
Wβm∇̂βXmαα̇ − 1

2
∇̄

β̇
(W̄ β̇mXmαα̇) . (A.5)
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The other linear combination Wαα̇ + W̄α̇α can be fixed to whatever we wish by a redefinition

of the superspace connections. Other terms are related to those above:

Wα(D) =
1

2
∇̄γ̇Wαγ̇ + φα , Wα(A) =

3i

4
∇̄γ̇Wαγ̇ +

i

2
φα ,

Wα(M)βγ = −ǫα(βZγ) + 2iWαβγ , Wα(M)
α̇β̇

= −∇̄(α̇Wαβ̇) ,

Wαm
n = − i

4
∇̄2Fmα

n , Wα(S)α̇ =
1

8
∇̄2Wαα̇ ,

Wα(K)β̇β = i∇̄β̇Wα(S)
β . (A.6)

The chiral superfields φα and Zα are related by

φα =
3

2
Zα −Wαm

m (A.7)

Zα can be fixed to whatever we wish by a connection redefinition. The superfield Wα(S)
β is

complex linear and can be written

Wα(S)
β = −1

4

(

∇γWγ(M)α
β + 2Fm

γmWγ(M)α
β +WγmR+

mγ(M)α
β
)

+
1

12
δα

β(∇γφγ + 2Fm
γmφγ) +

1

8
δα

βWγm(R+
mγ(D) +

2i

3
R+

mγ(A))

+ ∇̄γ̇

[1

4
W̄ γ̇(M)α

β − i

2
W̄ γ̇mXm(M)α

β
]

+ δα
β ∇̄γ̇

[

− 1

8
W̄ γ̇(D) +

i

4
W̄ γ̇mXm(D)− i

12
W̄ γ̇(A)− 1

6
W̄ γ̇mXm(A)

]

. (A.8)

A.2 Expressions for Xm

The operator Xm = − i
2(∇+

m −∇−
m) is given by

Xm = Xm
A∇A +Xm(D)D+Xm(A)A +Xm(M)αβMαβ +Xm(M)α̇β̇M

α̇β̇

+Xmn
pgp

n +Xm(S)αSα +Xm(S)α̇S̄
α̇ +Xm(K)aKa . (A.9)

We leave Xmα and Xm
α̇ unfixed and give other quantities in terms of these. Xm(M), Xm(D),

and Xm(A) are determined by

Xm(M)α
β +

1

2
δα

β(Xm(D)− 2iXm(A)) = ∇̂αXm
β − δα

β∇̄γ̇Xmγ̇ +
i

4
∇̄γ̇∇̂αXm

β
γ̇

+X
mαβ̇

W̄ β̇β +
i

2
Wα

nΨnm
β . (A.10)

The antisymmetric part of the GL(n) component Xmn
p is

X[mn]
p = − i

4
Ψmn

αWα
p − 1

4
X[mβα̇Xn]

α̇α∇̂βWα
p − 1

2
X[mγγ̇∇̂γXn]

γ̇αWα
p

+ iX[m
α̇αFn]α

qFqα̇
p + h.c. (A.11)
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The S-supersymmetry piece is

Xm(S)α = −1

4

[

∇̂αXm(D) +Xmαα̇W̄ α̇(D)
]

− i

6

[

∇̂αXm(A) +Xmαα̇W̄ α̇(A)
]

− 1

4
∇̄α̇∇̂αXmα̇

− i

24
Wα

n
(

∇̂βΨnmβ + 2Ψnm
βFpβ

p
)

− i

6
∇+

mFpα
p +Σmα , (A.12)

where Σmα obeys an inhomogeneous complex linearity condition,

∇̄2Σmα = −∇+
mZα − 1

3
Wα

nWβpΦpnmβ . (A.13)

Because Φpnmα cannot be set to zero, we cannot eliminate Σmα. However, a connection

redefinition shifts it by an arbitrary complex linear superfield.

Finally, Xm(K)a is given by

iXm(K)αα̇ =
1

4
∇+

mWαα̇ +
1

4
Wα

n(T+
nmα̇ +Ψnm

γWγα̇)

+ ∇̄α̇Xm(S)α − Fmα̇
nXn(S)α +

1

16
∇̄2

[

∇αXmα̇ − 2Fmα
nXnα̇

]

+
1

8
∇̄β̇

(

δm
n∇α − 2Fmα

n
)(

Xn(M)β̇ α̇ +
1

2
Xn(D) δβ̇ α̇ + iXn(A) δ

β̇
α̇

)

− h.c. (A.14)

A.3 Expressions for R+
mn

The operator R+
mn is given abstractly by

R+
mn = T+

mn
B∇B + F+

mn
p∇+

p +
(

∇+
p F

+
mn

q +Rmnp
q
)

gq
p

+R+
mn(D)D+R+

mn(A)A+R+
mn(M)βγMβγ +R+

mn(M)
β̇γ̇
M β̇γ̇

+R+
mn(S)

βSβ +R+
mn(S)β̇S

β̇ +R+
mn(K)cKc . (A.15)

The torsion and KK curvature parts are

T+
mn

β̇β = −∇̄β̇Ψmn
β , T+

mn
β =

i

8
∇̄2Ψmn

β ,

T+
mnα̇ = − i

8
∇2Ψmnα̇ − i(F+

mn
p + F−

mn
p)Xpα̇ − 4i

(

∇[mXn]α̇ +Xm
BTnBα̇

)

,

F+
mn

p = −Ψmn
αWα

p . (A.16)
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The other components are

R+
mn(M)αβ = −Ψmn

γWγ(M)αβ +Φmnαβ ,

R+
mn(M)

α̇β̇
= ∇̄(α̇Ψmn

γW
γβ̇) + ∇̄(α̇T

+
mnβ̇) ,

R+
mn(D) = −Ψmn

αφα +Φmn − 1

2
∇̄γ̇T+

mnγ̇ −
1

2
∇̄γ̇Ψmn

γWγγ̇ ,

R+
mn(A) = − i

2
Ψmn

αφα +
i

2
Φmn − 3i

4
∇̄γ̇T+

mnγ̇ −
3i

4
∇̄γ̇Ψmn

γWγγ̇ ,

R+
mn(S)α = −Ψmn

γWγ(S)α +Σmnα ,

R+
mn(S)α̇ =

1

8
∇̄2T+

mnα̇ +
1

8
∇̄2Ψmn

γWγγ̇ −
1

4
∇̄

φ̇
Ψmn

γ∇̄φ̇Wγγ̇ ,

R+
mn(K)αα̇ = −i∇̄α̇R

+
mn(S)α − i∇̄α̇Ψmn

βWβ(S)α ,

R+
mnp

q = −Ψmn
αWαp

q +∇+
p Ψmn

αWα
q +Φmnp

q , (A.17)

where

Φnmαβ = − i

8
∇̄2

[

∇̂(βΨnmα) + 2Ψnm(βFpα)
p − 2i ∇̂(βX[nγ)γ̇∇̂(αXm]

γ)γ̇
]

−W(α
pΦpnmβ) ,

Φnm =
i

16
∇̄2

[

∇̂γΨnmγ + 2Ψnm
γFpγ

p
]

+
1

2
WβpΦpnmβ ,

Φ[mnp]
q = −1

3
Φmnp

αWα
q − i

4
∇̄2(Ψ[mn

αFp]α
q) . (A.18)

In practice, only the antisymmetric part of Φmnp
q given in the last line is relevant. We do

not give an explicit expression for Σmnα but it can be worked out.

A.4 Fundamental Bianchi identities

Below we list the fundamental Bianchi identities that generalize (2.12):

∇+
mWαβγ =

1

16
∇̄2

[

∇̂α
γ̇∇̂βXmγγ̇ − ∇̂α(Wβ

nΨnmγ) + 4∇̂αXmβγ̇W̄ γ̇nXnγ

+ 2i ∇̂αXmβγ̇W̄ γ̇
γ

]

(αβγ)
+

i

2
W(α

nΦnmβγ) , (A.19a)

∇[mXn]
a = −X[m

BTn]B
a +

i

4
(T+

mn
a − T−

mn
a)− 1

4
(F+

mn
p + F−

mn
p)Xp

a , (A.19b)

∇+
[pΨmn]α = − i

4
∇̄β̇Ψ[mn

βT+

p]β αβ̇
+Ψ[mn|

βWβ
qΨq|p]α +

1

3
Φpmnα , (A.19c)

∇+
1 Φ3α = −1

8
∇̄2

[

iΨ2
β∇̂βΨ2α + iΨ2

βΨ2β Fmα
m −X1αγγ̇X1

βγ̇γΨ2β

]

(A.19d)

The last we have written in form notation. In addition to these, one must also specify the

inhomogeneous complex linearity condition of Σmα, see (A.13).
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A.5 Some explicit expressions for torsions and KK curvatures

For reference, we give some explicit expressions for torsion and Kaluza-Klein curvatures.

Some of the mixed torsion tensors are particularly simple in the + basis:

T+

mα,ββ̇
= 2i∇̂αXmββ̇

+ 8 ǫαβXmβ̇
, (A.20a)

T+
mα

β =
i

4
∇̄

φ̇
T+
mα,

φ̇β +Wα
nΨnm

β , (A.20b)

T+
mαβ̇ = 2i∇̂αXmβ̇ , (A.20c)

T+
mαα̇, ββ̇

=
i

2
∇̄

β̇
T+
mα,βα̇ + 2 ǫ

α̇β̇
Wα

nΨnmβ , (A.20d)

T+
mαα̇

β =
1

16
∇̄2T+

mα,α̇
β − i

2
Wα

n∇̄α̇Ψnm
β (A.20e)

The mixed Kaluza-Klein curvatures are

F+
mα

n = 2iXmαα̇W̄ α̇n , F+
mαα̇

n =
i

2
∇̄α̇F

+
mα

n − i

2
T+
mα,γα̇Wγn . (A.21a)

In a real basis written in terms of ∇m, one has

Fmα
n =

1

2
F+
mα

n , Tmα
B =

1

2
(T+

mα
B + iF+

mα
nXp

B) , (A.22a)

Fma
n = ReF+

ma
n , Tma

B = Re
(

T+
ma

B + iF+
ma

nXn
B
)

. (A.22b)

The external torsion and Kaluza-Klein curvatures found in the [∇α,∇b] commutator are

Fbα
n = (σb)αβ̇W̄ β̇n , Fb

α̇n = −(σb)
α̇βWβ

n , (A.23a)

Tbα
c = −i(σb)αβ̇W̄ β̇nXn

c Tb
α̇c = −i(σb)

α̇βWβ
nXn

c (A.23b)

Tbα
γ = (σb)αβ̇(W̄ β̇γ − iW̄ β̇nXn

γ) Tb
α̇
γ̇ = −(σb)

α̇β(Wβγ̇ + iWβ
nXnγ̇) (A.23c)

Tbαγ̇ = −i(σb)αβ̇W̄ β̇nXnγ̇ Tb
α̇γ = −i(σb)

α̇βWβ
nXn

γ . (A.23d)

Those found in the vector-vector commutator are most easily written by decomposing the

curvature operator into self-dual and anti-self-dual pieces, Rab = −(σab)
αβRαβ

⌣

− (σ̄ab)
α̇β̇R

α̇β̇
⌣

,

Fαβ
⌣

m = − i

2
∇̂(αWβ)

m , (A.24a)

Tαβ
⌣

c = iFαβ
⌣

nXn
c +

i

2
W(α

nT+
nβ)

c −W(αγ̇(σ
c)β)

γ̇ , (A.24b)

Tαβ
⌣

γ = iFαβ
⌣

nXn
γ +

i

2
W(α

nT+
nβ)

γ − i

2
δ(α

γ
(

∇̄γ̇Wβ)γ̇ + 2Zβ) −Wβ)n
n
)

+Wαβ
γ , (A.24c)

Tαβ
⌣

γ̇ = iFαβ
⌣

nXnγ̇ +
i

2
W(α

nT+
nβ)γ̇ −

i

2
∇(αWβ)γ̇ . (A.24d)

From the second equation, one can see that Tab
c does not vanish.
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[5] F. Gonzalez-Rey, M. Roček, S. Wiles, U. Lindström, and R. von Unge, “Feynman rules in N =

2 projective superspace (I). Massless hypermultiplets,” Nucl. Phys. B 516 (1998) 426.

[6] S. M. Kuzenko and G. Tartaglino-Mazzucchelli, “Five-dimensional superfield supergravity,”

Phys. Lett. B 661 (2008) 42, [arXiv:0710.3440].

[7] S. M. Kuzenko and G. Tartaglino-Mazzucchelli, “5D supergravity and projective superspace,”

JHEP 0802 (2008) 004, [arXiv:0712.3102].
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