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ABSTRACT

Given a collection of multi-attribute trajectories, an event definition,
and a spatial network, the Significant Lagrangian Linear Hotspot
Discovery (SLLHD) problem finds the paths where records in the
trajectories tend to be events in the Lagrangian perspective. The
SLLHD problem is of significant societal importance because of its
applications in transportation planning, vehicle design, and envi-
ronmental protection. Its main challenges include the potentially
large number of candidate hotspots caused by the tremendous vol-
ume of trajectories as well as the non-monotonicity of the statistic
measuring event concentration. The related work on the linear
hotspot discovery problem is designed in the Eulerian perspective
and focuses on point datasets, which ignores the dependence of
event occurrence on trajectories and the paths where trajectories
are. To solve this problem, we introduce an algorithm in the La-
grangian perspective, as well as five refinements that improve its
computational scalability. Two case studies on real-world datasets
and experiments on synthetic data show that the proposed approach
finds hotspots which are not detectable by existing techniques. Cost
analysis and experimental results on synthetic data show that the
proposed approach yields substantial computational savings.
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1 INTRODUCTION

Given a collection of multi-attribute trajectories, an event defi-
nition, and a spatial network, the Significant Lagrangian Linear
Hotspot Discovery (SLLHD) problem aims to identify the paths
where the records in the trajectories tend to be events in the La-
grangian perspective. A multi-attribute trajectory is a sequence
of time-stamped records, each of which contains a location and a
set of attributes. An event definition is a function mapping from
record attributes to a Boolean value. Examples of events include
high energy consumption rate and high exhaust emissions value. In
the Eulerian perspective, event occurrence depends on the location
of records, while in the Lagrangian perspective, trajectories and
the paths where trajectories are also affect the probability of event
occurring.

The SLLHD problem is critical for applications such as trans-
portation planning, vehicle design, and environmental protection,
since moving objects are affected by the paths where they travel.
For example, in the Volkswagen emissions scandal, the amount of
nitrogen oxides emission from a 2011 Volkswagen Jetta was found
to be 37 times over the U.S. limit on up and downhill paths [5]. In
the Air France 447 crash, the aircraft’s pitot tubes were obstructed
by ice crystals, which often happens after an aircraft flies through
clouds with small drops [2]. Detecting paths where certain unde-
sirable events in trajectories concentrate can potentially uncover
spatial-related causes of the events, which in turn motivates re-
search on ways to prevent (or in the case of desirable events to
encourage) the events.

Limitations of related work: SLLHD is a variant of the linear
hotspot discovery problem. The most relevant work to SLLHD is
the shortest-path (SP) [19] and the all-simple-path (ASP) [22] linear
hotspot discovery problems. Both problems, like all traditional
hotspot discovery problems (e.g., [11, 15, 24]), focus on hotspots in
the Eulerian perspective for individual spatial points and ignore
the dependence of event occurrence on trajectories. By contrast,
SLLHD detects hotspots of events in trajectories in the Lagrangian
perspective.
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Figure 1: An example of Eulerian and Lagrangian hotspots.

In the Eulerian perspective, hotspots are observed from a specific
location in the space [1], and trajectories are ignored. A Eulerian
linear hotspot is defined as a path where the probability of records
being events is higher than that outside the path in the spatial net-
work. It does not consider whether the records are in the trajectories
that are on a part or the entire length of the path. For example, Fig-
ure 1 shows a part of a spatial network and three trajectories. If the
path [N1, N2, N3] is a Eulerian hotspot (Figure 1(a)), the probability
of records in t1, t2, and t3 being events should be high on the path.
By contrast, the Lagrangian perspective corresponds to an observer
moving along a particular path [1]. A Lagrangian linear hotspot
is defined as a path where in the trajectories that are on the en-
tire length of the path the probability of records being events is
higher than that outside the path in the spatial network. If the path
[N1, N2, N3] is a Lagrangian hotspot (Figure 1(b)), only the event
concentration in #; needs to be high, and ¢, and 3 are ignored since
they are not on the entire length of the path.

Since in the Eulerian perspective trajectories are ignored when
measuring the probability of records being events, patterns along a
path may be overwhelmed by the trajectories that are partially on
the path. For example, Figure 2 shows four trajectories (1, t2, 13, t4)
that log vehicles’ energy consumption near an entrance ramp
([Ns, N2]) from alocal road ([ N4, N5, Ns]) to a highway (N1, N2, N3).
The vehicles traveling freely on the highway, logged by to, t3, t4,
keep almost constant speed, while the vehicle entering the highway
from the ramp, logged by 1, has to merge into the traffic through ac-
celeration. Events refer to high energy consumption. In the Eulerian
perspective, on path [R7, Na, Re], which is between the locations
of two records Ry and Ry, there are nine records (R7, Rg, Ry, Ry7,
Ri1s, Ro7, Rog, R37, R3g) among which three are events. If in a hotspot
the probability of records being events is required to be greater than
0.6, this path is not a hotspot in the Eulerian perspective. Instead,
since trajectory ¢ is the only trajectory along the entire length of
path [R7, No, Rg], and its records are all events, the path is a hotspot
in the Lagrangian perspective. Therefore, in the Eulerian perspec-
tive, the concentration of high energy consumption events along
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Figure 2: Detecting hotspots in the Eulerian perspective may
miss patterns that only exist along a path.

path [Ry7, Nu, Ro] for acceleration is overwhelmed by the trajecto-
ries partially on the path (i.e., t2, £3, t4). Adopting the Lagrangian
perspective distinguishes the experiences on different paths, and
helps to highlight the hotspots of the events affected not only by
their locations but also by trajectories’ paths.

It is common that events in trajectories are affected by trajecto-
ries’ paths. For example, speed limit varies on roads. Vehicles that
just enter a highway from a local road tend to spend more energy
than other vehicles on the highway for accelerating and merging
into the traffic. In addition, drivers tend to misjudge speed when
they exit a highway after long periods of driving at highway speeds,
so they are more likely to speed than other drivers on local roads
[9]. Brightness is another important heterogeneous factor affecting
vehicle status [8]. For example, during winter morning the drivers
who just leave a long tunnel tend to brake more frequently since
the darkness in the tunnel retards drivers’ reaction to bright reflec-
tion from snow. Therefore, it is necessary to adopt the Lagrangian
perspective to identify hotspots of events in trajectories.

Challenges: SLLHD is challenging due to the potentially large
number of candidate paths that can be hotspots given a dataset with
millions of trajectories, nodes, and edges in the spatial network.
Candidate paths include all the paths between event pairs where
there is at least one trajectory. Its amount may be greater than
that of simple paths in the network, and it is still increasing every
day, since millions of GPS-equipped devices, such as cellphones
and vehicle telematics devices, keep reporting their locations. Ad-
ditionally, the statistic that measures event concentration does not
obey the monotonicity property, meaning that there is no ordering
between the statistic on a path and its sub-paths, or vice-versa. Fur-
thermore, depending on the method used to determine statistical
significance, computation times may also be impacted.

Contributions: Our contributions in this paper are as follows:
1)We formally define the problem of significant Lagrangian linear
hotspot discovery (SLLHD); 2) We propose a baseline algorithm
to solve the SLLHD problem by enumerating paths between every
event pair where there is at least one trajectory, based on which
we introduce algorithmic improvements on its scalability; 3) We
present two case studies comparing the results of the proposed
methods with those of the related work; 4) We conduct experiments
to illustrate the computational saving of the proposed algorithm,
and to evaluate the detected hotspots quantitatively. To the best of
our knowledge, this paper is the first to study hotspot discovery in
the multi-attribute trajectories in the Lagrangian perspective.

Workshop relevance: The big data analyzed in this study is
from connected vehicles. Depending on the scenarios where the
proposed approach is applied, the findings will be beneficial to
vehicle design (high energy consumption hotspot), road design
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(frequent braking hotspot), transportation planning (low speed
hotspot), etc.

The rest of the paper is organized as follows: Section 2 introduces
basic concepts and the formal definition of the problem. In Section
3, we propose our approaches for solving the problem. Two groups
of controlled experiments are presented in Section 4 to show the
advantages of the proposed method over the related work and
validate the algorithmic improvements. Two case studies to compare
the proposed method and the related work are given in Section 5.
In Section 6, we discuss the broad background of the study. Section
7 concludes the paper and presents our future work.

2 PROBLEM FORMULATION

This section introduces basic concepts in the Significant Lagrangian
Linear Hotspot Discovery (SLLHD) problem and gives the formal
definition of the problem.

2.1 Basic concepts

A spatial network G = (N, E) consists of a node set N and an
edge set E, where each element in N is a geo-referenced point,
and each element in E is a polyline linking two nodes. For exam-
ple, in the spatial network shown in Figure 2, there are six nodes
(N1, ..., Ng) and five edges (e.g., [N1, N2]).

To resolve hotspots to the sub-edge level (i.e., paths between
events), dynamic segmentation [19] is conducted, which modifies
the input spatial network by forming new nodes at the locations
of events, splitting the old edges at the events, and connecting the
new nodes through the split edges. We refer to the nodes and edges
in the original spatial network as static nodes and edges, and the
nodes and edges formed by dynamic segmentation as dynamic
nodes and edges. For simplicity, dynamic nodes are labeled using
the events determining their locations. For example, in Figure 2, N1
is a static node, and [Ny, N2] is a static edge, and the node formed
at R; is a dynamic node.

A path is an ordered sequence of nodes that are connected by
edges, where the origin and the destination are the first and last
nodes. For example, in Figure 2 [N1, N, Ro] is a path whose origin
and destination are Nj and Ry respectively. A shortest path is a
path that is the shortest according to a measure (typically length)
among all the paths that link its origin and destination. A simple
path is a path that does not repeat nodes.

A multi-attribute trajectory is a sequence of time-stamped
records. Each record contains a geographic location and a set of
attributes. For example, a mobile device trajectory logs the locations
where the device was as well as its status (e.g., signal strength,
battery state of charge) at certain time points. In Figure 2 a trajectory
is represented as a sequence of rectangles linked by arrows (e.g.,
t1), and each rectangle is a record (e.g., R;). Events are records that
fulfill certain criteria (e.g., low state of charge). In Figure 2 solid
rectangles are the events (e.g., Ry, Rg). A trajectory is on a path if
the path links a subset of the records of the trajectory in order. For
example, t1 is on path [Ry, N5, N2], but not on path [Ny, No, N3].

A visited path of a collection of trajectories is a path where
there is at least one trajectory. For example, path [Ry, N5, N>] in
Figure 2 is a visited path.
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To avoid false positive results, a statistical significance test is
introduced [14]. The null hypothesis (Hp) of the test states that
in every trajectory the event concentration is the same throughout
the spatial network, while the alternative hypothesis (H;) states
that there exist trajectories in which the event concentration inside
a hotspot is higher than that outside the hotspot. A significant
hotspot is defined as a hotspot whose statistical significance p-
value is less than or equal to a desired level so that the alternative
hypothesis cannot be rejected.

2.2 Problem definition

We formally define the SLLHD problem as follows:
Input:

o A spatial network.

o A collection of multi-attribute trajectories.

o A threshold for the event concentration of a hotspot 6.

o A statistical significance threshold ¢.
Output: Paths that have event concentration > 6 and p-value < ¢.
Objective:

e Computational efficiency

o Correctness and completeness of results
Constraints:

o A hotspot starts and ends at two dynamic nodes.

e A hotspot is a visited path.

e A hotspot is not a sub-path of any other hotspots.
We assume that only visited paths can be hotspots, since only the
trajectories on a path can directly illustrate the difference between
the status of objects moving on and off the path in the network.

3 APPROACH

In order to solve the significant Lagrangian linear hotspot discov-
ery (SLLHD) problem, we first introduce the statistic for measur-
ing event concentration. Then we propose an algorithm to detect
hotspots, based on which we introduce improvements on its scala-
bility. Last, we describe the method for the statistical significance
test using Monte Carlo simulation.

3.1 Statistic for event concentration

We adjust the log-likelihood ratio, which was introduced in SatScan
[11], to measure event concentration on a path in the Lagrangian
perspective.

We use the Bernoulli model to represent the process of event
occurrence in trajectories. Given a trajectory t; and a path ¢, let
Py (ti) and g4 (t;) be the probability of a record in #; being an event
on path ¢ and not on path ¢ in the spatial network respectively.
Assume that the occurrence of events at each record is independent.
The likelihood of path ¢ being a hotspot (pg (t:) > g (%)) is

L(py (ti).qg (1)) = pg (1) 1) (1 = py (1) s ()70 (1)
x q¢(ti)nG(ti)_”¢(ti)
X (1- q¢(ti))(,“(3(ti)_.u¢(ti))_(nG(ti)_nq‘)(ti)),
where ng(t;) and pG(t;) are the number of events and records in
ti respectively, while ng(t;) and pg(t;) are the number of events

and records in t; on path ¢ respectively. If #; is on ¢, i.e., pi (£;) > 0,
conditioned on path ¢, the maximum likelihood estimate of path ¢



IWCTS’20, November 3, 2020, Seattle, WA, USA

being a hotspot (MLE (t;)) is reached when

ng(ti)
Pyt = = an
pg (1:) £ ma(t)  ne(t)=ng (t)
) nG(t) —ng(t)’ " He() ~ Gt =g ()
ti) = ——————
LA He (i) — pg (i)
Py (ti) = q(ti) = Zg—x;;, otherwise.

If trajectory ¢; is not on path ¢, i.e., pg(t;) = ng(t;) = 0, MLE4 (%)

is reached when g (t;) = ng’i . By contrast, the likelihood of path

¢ not being a hotspot (pg (£;) = g (t:)) is
Lo(t) = ps (1)1 x (1= py (1)) e o) 0,
So, the maximum likelihood estimate of ¢ not being a hotspot

(MLEy(t;)) is reached when pg () = Zgg';, which is the same
ng (4)

in cases where #; is on path ¢ or not. Thus, only when i (1)
ng (ti)—ng ()
HG (t:)—pg (t:)
not being a hotspot differ according to trajectory ¢;.

Assume all trajectories are independent. Given a collection of
trajectories T, the likelihood of path ¢ being a hotspot is L(py, g¢) =
Iy, erL(pg (ti), 4 (t:)), while the likelihood of it not being a hotspot
is Ly = II;,erLo(t;). Therefore, we design the statistic for event
concentration (LLR) to be the difference between the maximum
log-likelihood of path ¢ being and not being a hotspot, that is,

LLRy(T) = Z log(MLE (1)) Z log(MLEo(;)). (1)
t;eT t; €T
Because when trajectory t; is not on path ¢, MLE (t;) = MLEy(t;),
Equation 1 can be transformed as

LLR4(T) = » log(MLE4(t;) = > log(MLE(t), (2)
ti€T¢ ti€T¢

does the maximum likelihood estimate of ¢ being and

where Ty is the collection of trajectories on path ¢. In other words,
the proposed statistic measures event concentration on a path in
the Lagrangian perspective, i.e. it depends only on the trajectories
on the path.

It is easy to prove that LLR fulfills the following prerequisites of
the statistic in the hotspot discovery problem that are listed in [15].

THEOREM 1. (1) Given a fixed number of records, the statistic in-
creases monotonically with the number of events; (2) Given a fixed
number of events, the statistic decreases monotonically with the num-
ber of records; (3) Given a fixed ratio of events to records, the statistic
increases monotonically with the number of records.

3.2 Baseline algorithm

The idea of the baseline algorithm (SLLHD-Base) to detect hotspots
is to traverse through the visited paths between every event pair,
select the ones with an LLR exceeding the threshold, and remove
the ones that are sub-paths of others.

The pseudo-code of the SLLHD-Base algorithm is shown in Algo-
rithm 1. First, the input spatial network is dynamically segmented
to include records in trajectories. Then, in Lines 3-9, the algorithm
enumerates the visited paths that start from every event using a
for loop. The GetVisitedPaths(G, evt, T) function (Line 4) yields a

Li, et al.

collection of visited paths in G starting at eot using a depth-first
search (DFS). The paths with LLR exceeding the threshold will
be added into the output. The GetLLR(¢,T) function (Line 5) tra-
verses through the trajectories (T) to determine whether they are on
path ¢, and calculates the LLR of path ¢ using Equation 2. Finally,
hotspots which are sub-paths of other hotspots are removed (Line
10).

Algorithm 1 The SLLHD-Base algorithm

Require:

G: A spatial network;

T: Multi-attribute trajectories;

0: The threshold for the LLR of a hotspot.
Ensure: H: Hotspots.

: He[];

2. G « DynamicSegmentation(G, T);
3. for all events evt in T do
4 for all paths ¢ in GetVisitedPaths(é, evt, T) do
5 if ¢ ends at an event and GetLLR(¢, T) > 6 then
6: H.add(¢);
7
8
9

end if
end for
: end for
: REMOVE-SUB-PATH(H);

—
=1

Figure 3 shows a sample input of the problem composed of
a spatial network with six nodes and seven edges, three trajec-
tories, and a threshold of LLR as 4.0. The algorithm traverses
through all events, such as Ry, and enumerates the visited paths
from each of them, such as [Ry, Ry2], [R1, Ro2], [R1, Ri3], etc. The
LLR of [Ry,Rz2], [R1, Ra2], and [Ry, Ry3] is 2.98, 4.30, and 4.09 re-
spectively, so [R1, Rz2] and [Ry, Ry3] are hotspots while [Ry, Ro1] is
not. In the last step, [Ry, Ro2] is removed from the results, because
it is a sub-path of [Ry, Ri3].

minimum LLR: 4.0

Figure 3: A sample input of the SLLHD problem.

Time complexity analysis: Let |evt| be the total number of events
in the trajectories, |I| be the average number of static edges on
the path traveled by each trajectory, |T| be the number of trajec-
tories. In the worst case, all trajectories are on different paths,
and each event pair is linked by all the visited paths. Since from
each event there are at most |T| visited paths, and on each vis-
ited path the average number of static/dynamic nodes is at most
levt|/|T|+ 1|, the time complexity of enumerating the visited paths
through DFS is O(|evt||T|(|evt|/|T|+|I])). To compute the LLR of a
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visited path between two events, trajectories are enumerated. The
time complexity of determining whether a trajectory is on a path
is O(|evt|/|T| + |I]). Since there are |evt|? event pairs, and between
each pair there are at most |T| visited paths, the time complexity
of calculating the LLR of all visited paths between event pairs is
O(levt|?|T|(levt|/|T| + |I])|T]). Therefore, the time complexity of
the SLLHD-Base algorithm is O(|evt|3|T| + |evt|?|T)?|1]).

3.3 Algorithmic improvements

The two building blocks in the SLLHD-Base algorithm include enu-
merating visited paths between events, and computing the LLR
of the paths. To improve computational efficiency, we propose a
SLLHD-Scale algorithm that offers five refinements for these build-
ing blocks: 1) an edge-based enumeration strategy, 2) an early-stop
filter, 3) a bounded-LLR filter, 4) a network reduction preprocessing,
and 5) a linear scan LLR calculation method.

3.3.1 Edge-based enumeration strategy. The idea of edge-based
enumeration is to enumerate visited paths first at the static edge
level, and then at the sub-edge level. The strategy is based on the
following definitions.

A static path is a path linking two static nodes. Its first and last
static edges are its bounding edges, while the other static edges on
it are its bounded edges. A dynamic path is a path linking two
dynamic nodes formed at events. A dynamic path is a bounded
path of a static path if its origin and destination are on the two
bounding edges of the static path. An e-edge is a static edge with
events on it. For example, in Figure 3 [Ny, N2, N3, Ng, N5] is a static
path. It has a bounded path [Ry, N2, N3, Ng, R19], which is a dynamic
path. [N1, N2] is an e-edge.

The edge-based enumeration strategy has two steps. The first
step enumerates all the visited static paths between e-edges through
DFS from each e-edge. The second step enumerates the bounded
paths of the static paths found in the first step. Take Figure 3 as
an example. A DFS for visited static paths between e-edges is con-
ducted from [N, N2], [Ns, Ng], and [N1, N4] sequentially. Starting
from [N, N2], the algorithm finds visited static paths [N, N2, N5,
Ny, N1] and [Ny, N2, N3, Ng, N5]. To enumerate the bounded paths
of [N1, N2, N5, N4, N1], the algorithm sets R;1, R21, R1, R2, Ro2, and
R13 as the origin, and Rg and Ry as the destination sequentially.
[R11, N2, N5, N4, Rg] is an example of a bounded path.

The completeness of the results are maintained because of the
following lemma.

LEMMA 2. Every visited dynamic path is a bounded path of a
visited static path between two e-edges.

The proof of lemma 2 is straightforward, since the origin and
destination of a dynamic path are two events that must be on e-
edges according to the definition of an e-edge.

Based on this strategy, we propose two filters to reduce the
number of candidate paths that need to be enumerated and maintain
the completeness of the results, according to Theorem 1.

3.3.2  Early-stop filter. The first step of the edge-based enumeration
strategy is traversing through the visited static paths between e-
edges through DFS. Starting from an e-edge, the algorithm explores
visited static paths by adding one static edge at a time to the end of
the current path as far as possible before backtracking. The idea of
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Figure 4: An example of the filters.

the early-stop filter is to stop the traversal if the largest possible
LLR of the bounded paths of the visited static paths extended from
the current path, denoted as StopLLR(¢, T¢), is smaller than the
threshold, where ¢ is the current path and Ty is the collection of
trajectories on the current path.

In the simplest case where there is only one trajectory ¢; on the
static path ¢ that is currently explored through DFS, let 1st(¢) be
the first edge of path ¢, and after(¢, t;) be the path that trajectory
ti is on after path ¢. Let n(.y(#;) and y(.)(t;) be the number of
events and records of t; on specific edges. For example, in Figure 4
trajectory #; is on path ¢. 1st(¢) is edge [N3, Ny|, and after(¢,t1)
are path [Ng, N7, Ng]. Nafter(dt) (t1) =1 and Hist($) (t1) = 1. We
define that

StopLLR(¢,1:) = LR, ©)

such that ¢; is a bounded path of the visited static path extended
from ¢, and né(ti) = ng(ti) + nafrer(g.;) (ti) and Ky = pe (L) —
Hise(g) (8) +isp(gy (8) + g frer(p.t;) (1) In other words, the upper
bound is reached if there is a bounded path of the visited static paths
extended from the current path such that the events on 1st(¢) and
after(@,t;) are on it while the records on 1st(¢$) and after (¢, t;)
that are not events are not on it. For example, in Figure 4, the upper
bound is reached when the number of events and records on a
bounded path of the visited static paths extended from path ¢ are 3
and 8 respectively, so StopLLR(¢, t1) = 0.91.

We prove the correctness of StopLLR(¢, t;) through contradic-
tion. Assume that there is another bounded path ¢ other than the ¢;

of the visited static paths extended from ¢ such that LLR 5 < LLR 5

Since both ¢ and qg must cover all the edges on ¢ except the first one,
there are three cases where path ¢ may differ from path ¢: 1) all
events on 1st(¢) and after(¢, t;) are on path ¢, while some records
on 1st(¢) and after(¢, t;) that are not events are also on pth ¢; 2)
not all events on 1st(¢) and after(¢, t;) are on path $, and records
on 1st(¢) and after(¢, t;) that are not events are are not on path
$; 3) not all events on 1st(¢) and after(¢, t;) are on path ¢, while
some records on 1st(¢) and after (¢, t;) that are not events are also
on path ¢. In the first two cases, LLR 5> LLR 3 due to Theorem 1

(1) and (2). In the third case, if,uq;(ti) < yé(ti), LLRq; > LLng due
to Theorem 1 (2) and (3); ify(j;(ti) > ,uq;(ti), LLR¢; > LLng due to
Theorem 1 (1) and (2), since the ratio of events to records on ¢ is

greater than that on ¢. Thus, in all the three cases, LLR 5> LLR 5

which is in contradiction with the assumption.
Suppose there is a collection of trajectories Ty on the current
path ¢. The upper bound is

StopLLR($,Ty) = y,e1, StopLLR($, ;). @)

In other words, the upper bound is reached if the trajectories in Ty
are on the same path after ¢, and on the path the LLR given every
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trajectories reaches its upper bound. The proof is straightforward
since StopLLR and LLR are always positive. If StopLLR(¢$, Ty) is
smaller than the threshold, further exploration by extending ¢ is
not necessary.

3.3.3 Bounded LLR filter. The second step of the edge-based enu-
meration strategy is enumerating the bounded paths of visited
static paths. The idea of the bounded LLR filter is that if the upper
bound of the LLR, denoted as BoundedLLR(¢, T), of the bounded
paths of a visited static path ¢ is smaller than the threshold, the
enumeration can be terminated.

Again, we start from the simplest case, where there is only
one trajectory ¢; on a visited static path ¢. Let bounding(¢) and
bounded(¢) be the bounding and bounded edges of ¢ respectively.
For example, in Figure 4, ¢ is [N3, N4, N5, Ng], and bounding(¢)
includes edge [N3, N4] and edge [Ns, Ng], and bounded(¢) includes
edge [Ny, Ns]. In this case, we define that

BoundedLLR(¢,t;) = LLng, (5)
such that ¢f is a bounded path of ¢, and nqg(ti) = Npounding(¢) (ti) +

Mbounded() (1) and fi5 = Npounding(g) () + Fbounded(g) (1) In
other words, the upper bound is reached if the events on bounding(¢)
are on the bounded path while the records on bounding(¢) that are
not events are not on the path. For example, in Figure 4, the up-
per bound is reached when the number of events and records on a
bounded path of ¢ are 2 and 5 respectively, so BoundedLLR(¢,t1) =
0.58.

The proof of BoundedLLR(¢, t;) is similar to that of StopLLR(-)
according to Theorem 1.

Suppose there is a collection of trajectories Ty on a visited static
path ¢. The upper bound is

BoundedLLR($,Ty) = 24, €Ty BoundedLLR(¢, t;). 6)

In other words, the upper bound is reached if on a bounded path of ¢
the LLR given every trajectory reaches its upper bound. This upper
bound is valid since BoundedLLR and LLR are always positive. If
BoundedLLR($, Ty) is lower than the threshold, we do not need to
traverse through the bounded paths of ¢.

3.3.4 Network reduction preprocessing. Our next to last refinement
reduces the network size. In the first step of the edge-based enumer-
ation strategy described earlier, the algorithm explores the visited
static paths between e-edges through DFS by adding one static edge
at a time to the end of the path that is currently being explored.
However, in this paper we focus only on paths between events. By
pre-computing the visited paths without events on them, we can
reduce the enumeration needed to explore them repeatedly. Thus,
we propose the following network reduction preprocessing.
Given a spatial network, a collection of trajectories with events
on them, an e-edge network is a spatial network composed of: 1)
nodes, each of which represents an e-edge; and 2) edges, each of
which represents a visited path with no event on it. Two nodes in
an e-edge network are linked if the two e-edges represented by the
two nodes are connected by a visited path with no event on it in
the spatial network. For example, given the spatial network and
trajectories in Figure 3, we can get the e-edge network shown in
Figure 5. There are three e-edges, namely, edges [ N1, Na], [Ny, Ni],
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[N2, N3, Ng]
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Figure 5: The e-event network generated from the spatial
network and the trajectories in Figure 3.

and [Ng, N5]. The e-edges are connected by two visited static paths,
namely, paths [Ny, N5, N4] and [Ny, N3, Ng].

Once an e-event network is constructed, it can be used to enu-
merate all the static paths whose bounded path may be hotspots.

3.3.5 Linear scan LLR calculation. Our final refinement reduces
the computational cost of LLR calculation. The baseline algorithm
computes the LLR of every dynamic path by first determining the
trajectories on the path and then calculating LLR using Equation
2. However, there exists redundant computation because of the
following theorem.

THEOREM 3. If path @1 is a sub-path of a path ¢, that is, all the
nodes of ¢1 are connected by ¢y in order without any other nodes in
between, the trajectories on ¢, is a subset of the trajectories on ¢1.

Therefore, if we know the trajectories on a path, then querying
the trajectories on the paths extended from the current path through
DFS needs researching only the trajectories on the current path. It
is not necessary to search the entire trajectory dataset. In addition,
by keeping records of the variables needed to calculate LLR and the
upper bounds for the two filters during DFS, we can avoid counting
the number of records and events repeatedly. The variables that
have to be saved include the trajectories on the current path, the
number of records and events on the current path, the number of
records and events on the first static edge of the current path, and
the number of records and events after the current path.

3.3.6 Time complexity analysis. Let |evt| be the number of all
events in the trajectories, |I| be the average number of static edges
in the path traveled by each trajectory, and |T| be the number of
trajectories. In the worst case, all trajectories are on different paths,
and each event pair is linked by all the visited paths. When con-
structing the e-edge network, every path the trajectories are on
has to be enumerated once, so the time complexity is O(|!||T]). Let
|e_edge| be the number of all e-edges. Without the early-stop filter
and the bounded-LLR filter, the time complexity of enumerating the
visit static paths between e-edges is O(|e_edge|?|T]). Once these
paths have been enumerated, each of their bounded paths is enu-
merated once, giving a total time complexity of enumerating the
visited dynamic paths of O((|e_edge|?|T| + |evt|?)af), where a and
B are the percentage of the visit static paths remained after apply-
ing the two filters. Because of the linear scan LLR calculation, the
query of whether a trajectory is on a static edge would be conducted
le_edge| + |I| times for each trajectory. Therefore, the time com-
plexity of the SLLHD-Scale algorithm is O((|evt|? + |e_edge||T| +
[I||T|)af), which is much lower than that of the SLLHD-Base algo-
rithm, O(|evt || T| + |evt|?|T|?|1]).
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Figure 6: Result quality experiment design.

3.4 Statistical significance test

Each hotspot is evaluated for statistical significance using Monte
Carlo simulation, which is a randomization test to get the distri-
bution of LLR. We run the Monte Carlo simulation m times to get
the distribution of the greatest LLR in each iteration under the
null hypothesis. In each iteration, we use Mantel’s permutational
approach [12] to generate the simulated data. That is, the spatial
locations of the records in trajectories and the ratio of events to
records do not change, while the positions of the events are shuffled
randomly, forming a new collection of trajectories Tr. Then, we
detect the hotspot with the greatest LLR in Tg. Once we get the
distribution, the statistical significance p-value of each hotspot is
determined by the friction of the greatest LLR that is greater than
its LLR.

4 EXPERIMENTS

We conducted two sets of experiments to: 1) compare the result
quality of the hotspots detected by the proposed approach and the
related work; and 2) compare the computational performance of
the proposed SLLHD-Base and SLLHD-Scale algorithms.

4.1 Result quality

We designed the experiments as shown in Figure 6 to compare the
result quality of the hotspots detected by the proposed approach
(SLLHD) and the related work in two settings. In the first setting,
all hotspots were Eulerian hotspots, while in the other setting, all
hotspots were Lagrangian hotspots. The related work compared
included the shortest-path (SP) method [19] and the all-simple-path
(ASP) method [22]. The evaluation metrics were precision and recall.
We set that if the maximal intersection over union (MaxIoU) of a
detected hotspot with designed hotspots exceeded 0.6, the detect
hotspot was valid. For example, in Figure 7 there is a spatial network
composed of ten nodes and 13 edges, two designed hotspots (h1
and h2), and two detected hotspots (d1 and d2). Suppose the edges
share the same length 1. The lengths of the intersections of h1 and
h2 with d1 are 3 and 0, and the lengths of the unions of h1 and h2
with d1 are 4 and 6, so the MaxIoU of d1 is 3/4. This value exceeds
the threshold, so d1 is a valid hotspot. By contrast, the lengths of
the intersections of h1 and h2 with d2 are 2 and 1, and the lengths
of the unions of h1 and h2 with d2 are 6 and 6, so the MaxIoU of d2
is 2/6 and d2 is not valid.

We conducted the experiments on synthetic data. Limited by the
computational complexity of the ASP method, the volume of the
synthetic data is not large. The spatial network was a 7 by 7 grid
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Figure 8: Two designed hotspots.

with 49 nodes and 84 edges. The edges shared the same length. We
designed hotspots with two shapes shown in Figure 8. One hotspot
(Figure 8(a)) consisted of 5 edges not along a shortest path so that
it should be ignored by the SP method, which focuses on hotspots
along shortest paths. The second hotspot (Figure 8(b)) consisted
of 2 edges so that it was within the set of candidate hotspots of
all three methods. In each run of the experiment, the designed
hotspots were randomly positioned in the spatial network, and
50 trajectories that traveled along 7 edges were generated. Five
trajectories were positioned along each of the two hotspots (Figure
8), and 40 other trajectories were partially on the two hotspots.
The number of trajectory records on an edge was set as 2. We
conducted experiments in the two settings 100 times to highlight
the advantages of the proposed method.

Setting 1: Both designed hotspots were Eulerian linear hotspots.
The probability of records being events in the hotspots was 0.8,
while that outside the hotspots was 0.2.

Setting 2: Both designed hotspots were Lagrangian linear hotspots.
In the 10 trajectories that were along the entire length of the
hotspots, the probability of records being events in the hotspots
was 0.8, while that outside the hotspots was 0.2. In the other 40 tra-
jectories, the probability of records being events was 0.2 throughout
the network.

The results of the experiments in the two settings are shown
in Table 1. In setting 1, the result quality of the ASP method and
the proposed method was much higher than that of the SP method,
since one of the designed hotspots was completely ignored by the
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Table 1: Quality results for the three methods.

Setting 1 Setting 2

Precision Recall Precision Recall

SP 0.43 0.445  0.25 0.20
ASP 0.955 0.97 0.37 0.24
SLLHD 0.945 0.96 0.95 0.94
Methods Metric !

« Number of events levi/
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Figure 9: Computational performance experiment design.

SP method. The result quality of the proposed method and the ASP
method was similar. In setting 2, the result quality of both the SP
and the ASP methods decreased dramatically. A potential cause to
the results was that the 40 trajectories that were partially located
on the designed hotspots decreased the event concentration calcu-
lated by the ASP method, since the ASP method was designed for
individual points and ignored trajectories. Therefore, the experi-
ments on result quality indicate that the proposed method is able to
detect Eulerian hotspots that can be detected by the ASP method, as
well as Lagrangian hotspots that are ignored by the state-of-the-art
related work.

4.2 Computational performance

To compare the computational performance of the proposed algo-
rithms (SLLHD-Base and SLLHD-Scale), we designed the experi-
ments as shown in Figure 9, where the controlled parameters were
the number of events in the trajectories |evt|, the number of trajec-
tories |T|, and the number of e-edges |e_edge|. For each experiment,
we executed the algorithms 10 times and compared the average
execution time of each algorithm.

The experiments were conducted on synthetic data. The spatial
network was a 50 by 50 grid with 2500 nodes and 4900 edges. The
trajectories were generated from a random origin and through the
random walk with equal transition probability between nodes. Each
trajectory traveled along 25 edges, and its records on each trajectory
were uniformly distributed. E-edges were randomly selected from
edges with trajectories on them. The ratio of events to records on an
e-edge was a random value generated from a uniform distribution
between 0 and 1.

All experiments were performed on a single server with a quad-
core Intel(R) Xeon(R) CPU E5-2623 v3 (3.00GHz) and 64GB memory.
All algorithms were implemented in Java, and the version of the
Java runtime was 11.0.3.

The experiments were designed to answer the following ques-
tions: 1) How do the proposed algorithms compare in efficiency? 2)
How are the algorithms affected by the total number of events, the
number of trajectories, and the number of e-edges?
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Figure 11: The computational performance with varying
number of trajectories.

4.2.1  Number of events. In this set of experiments, we set the num-
ber of trajectories to 100, the number of records to 10000, and the
number of e-edges to 500, and varied the number of events from
500 to 2000. In all cases SLLHD-Scale executed the fastest, which
accords with the time complexity analysis (Figure 10). Addition-
ally, its time cost increased more slowly than SLLHD-Base as the
number of events increased, which is also consistent with the time
complexity of SLLHD-Scale and SLLHD-Base.

4.2.2  Number of trajectories. Here, we set the number of records,
events and e-edges to 10000, 1000, and 500 respectively, but varied
the number of trajectories from 50 to 200. The results are shown
in Figure 11. Again, the computational time savings of SLLHD-
Scale were clear. In addition, its time cost increased more slowly
compared to the baseline algorithm.

4.2.3 Number of e-edges. In these experiments, we set the number
of trajectories, records, and events to 100, 10000, and 1000 respec-
tively, but varied the number of e-edges from 250 to 1000. As we
can see, the time costs for the SLLHD-Scale algorithm remained
much lower than that of the SLLHD-Base algorithm. In addition,
the number of event edges did not affect the baseline algorithm
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number of e-edges.

much, but it was positively correlated with the time cost of the
SLLHD-Scale algorithm.

5 CASE STUDY

We compared our approach against the shortest-path (SP) method
[19] in two case studies using real-world datasets. The all-simple-
path method introduced in [22] is too time-consuming to be applied
in these two case studies. Its time cost in a spatial network con-
taining 2000 nodes is about 28 hours [22]. In order to control the
effect of the statistic for event concentration on the results, we used
the LLR proposed in this paper in both our approach and the SP
method.

5.1 Case 1: Metro Transit - Twin Cities, MN

The first case study was conducted on a dataset from a Metro Tran-
sit bus in Minneapolis-St. Paul, MN [10]. The data contained 212
trajectories and 1 million records in total. The records with the
top 1% fuel use rate in each trajectory were labeled as high en-
ergy consumption events. The study area was the road network
in the minimum orthogonal bounding rectangle of the trajecto-
ries, containing 90285 road segments and 62103 road intersections.
The minimum LLR of a hotspot was 10, the statistical significance
threshold was 0.01, and the number of Monte Carlo simulation was
1000.

The results are shown in Figure 13, where records and events in
the trajectories are blue and red dots, and the four hotspots detected
by the proposed method are highlighted in yellow and green. The
SP method detected the three yellow hotspots, namely hotspots 2, 3,
and 4, but missed the green one (i.e., hotspot 1), since it is not along
a shortest path. There are 238 events and 1689 points in hotspot 1,
whose LLR is 390.96 and statistical significance is 0.001, making it
unlikely to be a false positive result.

5.2 Case 2: Snowplow - MN

The second case study was conducted on a dataset from a municipal
snowplow in Minnesota. The data contained 980 trajectories and 60
million records in total. The records with the top 1% fuel use rate
are labeled as high energy consumption events. The study area was
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Figure 14: Results of case study 2.

the road network in the minimum orthogonal bounding rectangle
of the trajectories, containing 18390 road segments and 12737 road
intersections. The minimum LLR of a hotspot was 10, the statistical
significance threshold was 0.01, and the number of Monte Carlo
simulation was 1000.

As shown in Figure 14, similar to the results in the first case study,
the hotspots detected by the proposed method are highlighted in
yellow and green. The yellow hotspots are also detected by the SP
method, while the green ones (i.e., hotspots 1 and 2) are not. The
LLR of the hotspots 1 and 2 is 32.00 and 25.35, and their statistical
significance is 0.001 and 0.004 respectively, so neither of the results
is likely to be a false positive. Therefore, both case studies show that
the proposed approach can detect hotspots that are not detectable
by the related work.

6 DISCUSSION

Spatial hotspot discovery has been widely studied in the last decade
because of its importance in application areas such as public health
and criminology. These research generally falls into two groups, i.e.,
methods based on spatial autocorrelation analysis and those based
on spatial scan statistics. Spatial autocorrelation analysis based
methods [6, 23] mainly apply spatial statistics such as Moran’s I
[13], Getis-Ord Gi* [16] to identify hotspots in pre-defined regions.
Instead, spatial scan statistics based methods query all regions that
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meet a certain criterion in the study area. Based on the spatial
footprint of the hotspot, the spatial scan statistics based methods
are in two groups, i.e., Euclidean-based (e.g., circles [11], rectangles
[15], ellipses [20], rings [4], density-based shapes [25]) and network-
based (e.g., linear hotspot [18, 19, 22], subgraph [3, 17, 21]). Since
these methods are designed for individual point data but ignore
trajectories, they will miss some interesting hotspots that can be
detected by our proposed method.

Also extensively studied in the last decade is pattern mining
in trajectories, such as moving together patterns (e.g., flocks, con-
voys, swarms, traveling companions, and gatherings) and trajectory
clustering [7, 26]. However, these studies focus more on the concen-
tration of trajectories, not on the concentration of particular events
in multi-attribute trajectories. Therefore, they are not applicable to
this problem.

7 CONCLUSION AND FUTURE WORK

In this paper, we studied the problem of finding paths where events
in multi-attribute trajectories concentrate in a Lagrangian perspec-
tive. After formally defining the problem, we proposed a baseline
algorithm and five refinements that improved its scalability while
maintaining correctness and completeness. We conducted two case
studies using Twin-Cities Metro Transit data and Minnesota snow-
plow data that show the proposed approach finds hotspots which
are not detectable by the state-of-the-art techniques. We also con-
ducted experiments on synthetic data to illustrate that the proposed
method was able to detect hotspots that were neglected by the
related work, and that the refinements yielded substantial compu-
tational time savings.

In the future, we plan to explore significant Lagrangian linear
hotspot discovery with continuous feature values, as well as the
influence of different sampling rates of trajectories.
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