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ABSTRACT

Given a collection of multi-attribute trajectories, an event definition,
and a spatial network, the Significant Lagrangian Linear Hotspot
Discovery (SLLHD) problem finds the paths where records in the
trajectories tend to be events in the Lagrangian perspective. The
SLLHD problem is of significant societal importance because of its
applications in transportation planning, vehicle design, and envi-
ronmental protection. Its main challenges include the potentially
large number of candidate hotspots caused by the tremendous vol-
ume of trajectories as well as the non-monotonicity of the statistic
measuring event concentration. The related work on the linear
hotspot discovery problem is designed in the Eulerian perspective
and focuses on point datasets, which ignores the dependence of
event occurrence on trajectories and the paths where trajectories
are. To solve this problem, we introduce an algorithm in the La-
grangian perspective, as well as five refinements that improve its
computational scalability. Two case studies on real-world datasets
and experiments on synthetic data show that the proposed approach
finds hotspots which are not detectable by existing techniques. Cost
analysis and experimental results on synthetic data show that the
proposed approach yields substantial computational savings.
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1 INTRODUCTION

Given a collection of multi-attribute trajectories, an event defi-
nition, and a spatial network, the Significant Lagrangian Linear
Hotspot Discovery (SLLHD) problem aims to identify the paths
where the records in the trajectories tend to be events in the La-
grangian perspective. A multi-attribute trajectory is a sequence
of time-stamped records, each of which contains a location and a
set of attributes. An event definition is a function mapping from
record attributes to a Boolean value. Examples of events include
high energy consumption rate and high exhaust emissions value. In
the Eulerian perspective, event occurrence depends on the location
of records, while in the Lagrangian perspective, trajectories and
the paths where trajectories are also affect the probability of event
occurring.

The SLLHD problem is critical for applications such as trans-
portation planning, vehicle design, and environmental protection,
since moving objects are affected by the paths where they travel.
For example, in the Volkswagen emissions scandal, the amount of
nitrogen oxides emission from a 2011 Volkswagen Jetta was found
to be 37 times over the U.S. limit on up and downhill paths [5]. In
the Air France 447 crash, the aircraft’s pitot tubes were obstructed
by ice crystals, which often happens after an aircraft flies through
clouds with small drops [2]. Detecting paths where certain unde-
sirable events in trajectories concentrate can potentially uncover
spatial-related causes of the events, which in turn motivates re-
search on ways to prevent (or in the case of desirable events to
encourage) the events.

Limitations of related work: SLLHD is a variant of the linear
hotspot discovery problem. The most relevant work to SLLHD is
the shortest-path (SP) [19] and the all-simple-path (ASP) [22] linear
hotspot discovery problems. Both problems, like all traditional
hotspot discovery problems (e.g., [11, 15, 24]), focus on hotspots in
the Eulerian perspective for individual spatial points and ignore
the dependence of event occurrence on trajectories. By contrast,
SLLHD detects hotspots of events in trajectories in the Lagrangian
perspective.
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(frequent braking hotspot), transportation planning (low speed
hotspot), etc.

The rest of the paper is organized as follows: Section 2 introduces
basic concepts and the formal definition of the problem. In Section
3, we propose our approaches for solving the problem. Two groups
of controlled experiments are presented in Section 4 to show the
advantages of the proposed method over the related work and
validate the algorithmic improvements. Two case studies to compare
the proposed method and the related work are given in Section 5.
In Section 6, we discuss the broad background of the study. Section
7 concludes the paper and presents our future work.

2 PROBLEM FORMULATION

This section introduces basic concepts in the Significant Lagrangian
Linear Hotspot Discovery (SLLHD) problem and gives the formal
definition of the problem.

2.1 Basic concepts

A spatial network 𝐺 = (𝑁, 𝐸) consists of a node set 𝑁 and an
edge set 𝐸, where each element in 𝑁 is a geo-referenced point,
and each element in 𝐸 is a polyline linking two nodes. For exam-
ple, in the spatial network shown in Figure 2, there are six nodes
(𝑁1, ..., 𝑁6) and five edges (e.g., [𝑁1, 𝑁2]).

To resolve hotspots to the sub-edge level (i.e., paths between
events), dynamic segmentation [19] is conducted, which modifies
the input spatial network by forming new nodes at the locations
of events, splitting the old edges at the events, and connecting the
new nodes through the split edges. We refer to the nodes and edges
in the original spatial network as static nodes and edges, and the
nodes and edges formed by dynamic segmentation as dynamic

nodes and edges. For simplicity, dynamic nodes are labeled using
the events determining their locations. For example, in Figure 2, 𝑁1

is a static node, and [𝑁1, 𝑁2] is a static edge, and the node formed
at 𝑅1 is a dynamic node.

A path is an ordered sequence of nodes that are connected by
edges, where the origin and the destination are the first and last
nodes. For example, in Figure 2 [𝑁1, 𝑁2, 𝑅9] is a path whose origin
and destination are 𝑁1 and 𝑅9 respectively. A shortest path is a
path that is the shortest according to a measure (typically length)
among all the paths that link its origin and destination. A simple

path is a path that does not repeat nodes.
A multi-attribute trajectory is a sequence of time-stamped

records. Each record contains a geographic location and a set of
attributes. For example, a mobile device trajectory logs the locations
where the device was as well as its status (e.g., signal strength,
battery state of charge) at certain time points. In Figure 2 a trajectory
is represented as a sequence of rectangles linked by arrows (e.g.,
𝑡1), and each rectangle is a record (e.g., 𝑅1). Events are records that
fulfill certain criteria (e.g., low state of charge). In Figure 2 solid
rectangles are the events (e.g., 𝑅7, 𝑅8). A trajectory is on a path if
the path links a subset of the records of the trajectory in order. For
example, 𝑡1 is on path [𝑅1, 𝑁5, 𝑁2], but not on path [𝑁1, 𝑁2, 𝑁3].

A visited path of a collection of trajectories is a path where
there is at least one trajectory. For example, path [𝑅1, 𝑁5, 𝑁2] in
Figure 2 is a visited path.

To avoid false positive results, a statistical significance test is
introduced [14]. The null hypothesis (𝐻0) of the test states that
in every trajectory the event concentration is the same throughout
the spatial network, while the alternative hypothesis (𝐻1) states
that there exist trajectories in which the event concentration inside
a hotspot is higher than that outside the hotspot. A significant

hotspot is defined as a hotspot whose statistical significance 𝑝-
value is less than or equal to a desired level so that the alternative
hypothesis cannot be rejected.

2.2 Problem definition

We formally define the SLLHD problem as follows:
Input:

• A spatial network.
• A collection of multi-attribute trajectories.
• A threshold for the event concentration of a hotspot 𝜃 .
• A statistical significance threshold 𝜙 .

Output: Paths that have event concentration ≥ 𝜃 and 𝑝-value ≤ 𝜙 .
Objective:

• Computational efficiency
• Correctness and completeness of results

Constraints:

• A hotspot starts and ends at two dynamic nodes.
• A hotspot is a visited path.
• A hotspot is not a sub-path of any other hotspots.

We assume that only visited paths can be hotspots, since only the
trajectories on a path can directly illustrate the difference between
the status of objects moving on and off the path in the network.

3 APPROACH

In order to solve the significant Lagrangian linear hotspot discov-
ery (SLLHD) problem, we first introduce the statistic for measur-
ing event concentration. Then we propose an algorithm to detect
hotspots, based on which we introduce improvements on its scala-
bility. Last, we describe the method for the statistical significance
test using Monte Carlo simulation.

3.1 Statistic for event concentration

We adjust the log-likelihood ratio, which was introduced in SatScan
[11], to measure event concentration on a path in the Lagrangian
perspective.

We use the Bernoulli model to represent the process of event
occurrence in trajectories. Given a trajectory 𝑡𝑖 and a path 𝜙 , let
𝑝𝜙 (𝑡𝑖 ) and 𝑞𝜙 (𝑡𝑖 ) be the probability of a record in 𝑡𝑖 being an event
on path 𝜙 and not on path 𝜙 in the spatial network respectively.
Assume that the occurrence of events at each record is independent.
The likelihood of path 𝜙 being a hotspot (𝑝𝜙 (𝑡𝑖 ) > 𝑞𝜙 (𝑡𝑖 )) is

𝐿(𝑝𝜙 (𝑡𝑖 ),𝑞𝜙 (𝑡𝑖 )) = 𝑝𝜙 (𝑡𝑖 )
𝑛𝜙 (𝑡𝑖 ) (1 − 𝑝𝜙 (𝑡𝑖 ))

𝜇𝜙 (𝑡𝑖 )−𝑛𝜙 (𝑡𝑖 )

× 𝑞𝜙 (𝑡𝑖 )
𝑛𝐺 (𝑡𝑖 )−𝑛𝜙 (𝑡𝑖 )

× (1 − 𝑞𝜙 (𝑡𝑖 ))
(𝜇𝐺 (𝑡𝑖 )−𝜇𝜙 (𝑡𝑖 ))−(𝑛𝐺 (𝑡𝑖 )−𝑛𝜙 (𝑡𝑖 )) ,

where 𝑛𝐺 (𝑡𝑖 ) and 𝜇𝐺 (𝑡𝑖 ) are the number of events and records in
𝑡𝑖 respectively, while 𝑛𝜙 (𝑡𝑖 ) and 𝜇𝜙 (𝑡𝑖 ) are the number of events
and records in 𝑡𝑖 on path 𝜙 respectively. If 𝑡𝑖 is on 𝜙 , i.e., 𝜇𝜙 (𝑡𝑖 ) > 0,
conditioned on path 𝜙 , the maximum likelihood estimate of path 𝜙
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being a hotspot (𝑀𝐿𝐸𝜙 (𝑡𝑖 )) is reached when





𝑝𝜙 (𝑡𝑖 ) =
𝑛𝜙 (𝑡𝑖 )

𝜇𝜙 (𝑡𝑖 )
and

𝑞𝜙 (𝑡𝑖 ) =
𝑛𝐺 (𝑡𝑖 ) − 𝑛𝜙 (𝑡𝑖 )

𝜇𝐺 (𝑡𝑖 ) − 𝜇𝜙 (𝑡𝑖 )

, if
𝑛𝜙 (𝑡𝑖 )

𝜇𝜙 (𝑡𝑖 )
>

𝑛𝐺 (𝑡𝑖 )−𝑛𝜙 (𝑡𝑖 )

𝜇𝐺 (𝑡𝑖 )−𝜇𝜙 (𝑡𝑖 )

𝑝𝜙 (𝑡𝑖 ) = 𝑞𝜙 (𝑡𝑖 ) =
𝑛𝐺 (𝑡𝑖 )
𝜇𝐺 (𝑡𝑖 )

, otherwise.

If trajectory 𝑡𝑖 is not on path 𝜙 , i.e., 𝜇𝜙 (𝑡𝑖 ) = 𝑛𝜙 (𝑡𝑖 ) = 0,𝑀𝐿𝐸𝜙 (𝑡𝑖 )

is reached when 𝑞𝜙 (𝑡𝑖 ) =
𝑛𝐺 (𝑡𝑖 )
𝜇𝐺 (𝑡𝑖 )

. By contrast, the likelihood of path

𝜙 not being a hotspot (𝑝𝜙 (𝑡𝑖 ) = 𝑞𝜙 (𝑡𝑖 )) is

𝐿0 (𝑡𝑖 ) = 𝑝𝜙 (𝑡𝑖 )
𝑛𝐺 (𝑡𝑖 ) × (1 − 𝑝𝜙 (𝑡𝑖 ))

(𝜇𝐺 (𝑡𝑖 )−𝑛𝐺 (𝑡𝑖 ) .

So, the maximum likelihood estimate of 𝜙 not being a hotspot

(𝑀𝐿𝐸0 (𝑡𝑖 )) is reached when 𝑝𝜙 (𝑡𝑖 ) =
𝑛𝐺 (𝑡𝑖 )
𝜇𝐺 (𝑡𝑖 )

, which is the same

in cases where 𝑡𝑖 is on path 𝜙 or not. Thus, only when
𝑛𝜙 (𝑡𝑖 )

𝜇𝜙 (𝑡𝑖 )
>

𝑛𝐺 (𝑡𝑖 )−𝑛𝜙 (𝑡𝑖 )

𝜇𝐺 (𝑡𝑖 )−𝜇𝜙 (𝑡𝑖 )
does the maximum likelihood estimate of 𝜙 being and

not being a hotspot differ according to trajectory 𝑡𝑖 .
Assume all trajectories are independent. Given a collection of

trajectories𝑇 , the likelihood of path𝜙 being a hotspot is 𝐿(𝑝𝜙 , 𝑞𝜙 ) =
Π𝑡𝑖 ∈𝑇 𝐿(𝑝𝜙 (𝑡𝑖 ), 𝑞𝜙 (𝑡𝑖 )), while the likelihood of it not being a hotspot
is 𝐿0 = Π𝑡𝑖 ∈𝑇 𝐿0 (𝑡𝑖 ). Therefore, we design the statistic for event
concentration (𝐿𝐿𝑅) to be the difference between the maximum
log-likelihood of path 𝜙 being and not being a hotspot, that is,

𝐿𝐿𝑅𝜙 (𝑇 ) =
∑

𝑡𝑖 ∈𝑇

log(𝑀𝐿𝐸𝜙 (𝑡𝑖 )) −
∑

𝑡𝑖 ∈𝑇

log(𝑀𝐿𝐸0 (𝑡𝑖 )) . (1)

Because when trajectory 𝑡𝑖 is not on path 𝜙 ,𝑀𝐿𝐸𝜙 (𝑡𝑖 ) = 𝑀𝐿𝐸0 (𝑡𝑖 ),
Equation 1 can be transformed as

𝐿𝐿𝑅𝜙 (𝑇 ) =
∑

𝑡𝑖 ∈𝑇𝜙

log(𝑀𝐿𝐸𝜙 (𝑡𝑖 )) −
∑

𝑡𝑖 ∈𝑇𝜙

log(𝑀𝐿𝐸0 (𝑡𝑖 )), (2)

where 𝑇𝜙 is the collection of trajectories on path 𝜙 . In other words,
the proposed statistic measures event concentration on a path in
the Lagrangian perspective, i.e. it depends only on the trajectories
on the path.

It is easy to prove that 𝐿𝐿𝑅 fulfills the following prerequisites of
the statistic in the hotspot discovery problem that are listed in [15].

Theorem 1. (1) Given a fixed number of records, the statistic in-

creases monotonically with the number of events; (2) Given a fixed

number of events, the statistic decreases monotonically with the num-

ber of records; (3) Given a fixed ratio of events to records, the statistic

increases monotonically with the number of records.

3.2 Baseline algorithm

The idea of the baseline algorithm (SLLHD-Base) to detect hotspots
is to traverse through the visited paths between every event pair,
select the ones with an 𝐿𝐿𝑅 exceeding the threshold, and remove
the ones that are sub-paths of others.

The pseudo-code of the SLLHD-Base algorithm is shown in Algo-
rithm 1. First, the input spatial network is dynamically segmented
to include records in trajectories. Then, in Lines 3-9, the algorithm
enumerates the visited paths that start from every event using a
for loop. The GetVisitedPaths(𝐺 , 𝑒𝑣𝑡 , 𝑇 ) function (Line 4) yields a

collection of visited paths in 𝐺 starting at 𝑒𝑣𝑡 using a depth-first
search (DFS). The paths with 𝐿𝐿𝑅 exceeding the threshold will
be added into the output. The GetLLR(𝜙 ,𝑇 ) function (Line 5) tra-
verses through the trajectories (𝑇 ) to determine whether they are on
path 𝜙 , and calculates the 𝐿𝐿𝑅 of path 𝜙 using Equation 2. Finally,
hotspots which are sub-paths of other hotspots are removed (Line
10).

Algorithm 1 The SLLHD-Base algorithm

Require:

𝐺 : A spatial network;
𝑇 : Multi-attribute trajectories;
𝜃 : The threshold for the 𝐿𝐿𝑅 of a hotspot.

Ensure: 𝐻 : Hotspots.
1: 𝐻 ← [];
2: 𝐺 ← DynamicSegmentation(𝐺 , 𝑇 );
3: for all events 𝑒𝑣𝑡 in 𝑇 do

4: for all paths 𝜙 in GetVisitedPaths(𝐺 , 𝑒𝑣𝑡 , 𝑇 ) do
5: if 𝜙 ends at an event and GetLLR(𝜙 , 𝑇 ) ≥ 𝜃 then

6: 𝐻.add(𝜙);
7: end if

8: end for

9: end for

10: REMOVE-SUB-PATH(𝐻 );

Figure 3 shows a sample input of the problem composed of
a spatial network with six nodes and seven edges, three trajec-
tories, and a threshold of 𝐿𝐿𝑅 as 4.0. The algorithm traverses
through all events, such as 𝑅1, and enumerates the visited paths
from each of them, such as [𝑅1, 𝑅2], [𝑅1, 𝑅22], [𝑅1, 𝑅13], etc. The
𝐿𝐿𝑅 of [𝑅1, 𝑅2], [𝑅1, 𝑅22], and [𝑅1, 𝑅13] is 2.98, 4.30, and 4.09 re-
spectively, so [𝑅1, 𝑅22] and [𝑅1, 𝑅13] are hotspots while [𝑅1, 𝑅21] is
not. In the last step, [𝑅1, 𝑅22] is removed from the results, because
it is a sub-path of [𝑅1, 𝑅13].

N1 N2 N3

N4 N5 N6

R1

R3

R4

R6

R8

R9

R10

R11 R13

R20

R12 R14

t1

t2
R17

R16R15

R5

R21 R22

R23 R24

R25

R29R30

R26

t3

minimum LLR: 4.0

R7 R19

R18 R27

R28

R2

Figure 3: A sample input of the SLLHD problem.

Time complexity analysis: Let |𝑒𝑣𝑡 | be the total number of events
in the trajectories, |𝑙 | be the average number of static edges on
the path traveled by each trajectory, |𝑇 | be the number of trajec-
tories. In the worst case, all trajectories are on different paths,
and each event pair is linked by all the visited paths. Since from
each event there are at most |𝑇 | visited paths, and on each vis-
ited path the average number of static/dynamic nodes is at most
|𝑒𝑣𝑡 |/|𝑇 | + |𝑙 |, the time complexity of enumerating the visited paths
through DFS is𝑂 ( |𝑒𝑣𝑡 | |𝑇 | ( |𝑒𝑣𝑡 |/|𝑇 | + |𝑙 |)). To compute the 𝐿𝐿𝑅 of a
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visited path between two events, trajectories are enumerated. The
time complexity of determining whether a trajectory is on a path
is 𝑂 ( |𝑒𝑣𝑡 |/|𝑇 | + |𝑙 |). Since there are |𝑒𝑣𝑡 |2 event pairs, and between
each pair there are at most |𝑇 | visited paths, the time complexity
of calculating the 𝐿𝐿𝑅 of all visited paths between event pairs is
𝑂 ( |𝑒𝑣𝑡 |2 |𝑇 | ( |𝑒𝑣𝑡 |/|𝑇 | + |𝑙 |) |𝑇 |). Therefore, the time complexity of
the SLLHD-Base algorithm is 𝑂 ( |𝑒𝑣𝑡 |3 |𝑇 | + |𝑒𝑣𝑡 |2 |𝑇 |2 |𝑙 |).

3.3 Algorithmic improvements

The two building blocks in the SLLHD-Base algorithm include enu-
merating visited paths between events, and computing the 𝐿𝐿𝑅

of the paths. To improve computational efficiency, we propose a
SLLHD-Scale algorithm that offers five refinements for these build-
ing blocks: 1) an edge-based enumeration strategy, 2) an early-stop
filter, 3) a bounded-𝐿𝐿𝑅 filter, 4) a network reduction preprocessing,
and 5) a linear scan 𝐿𝐿𝑅 calculation method.

3.3.1 Edge-based enumeration strategy. The idea of edge-based
enumeration is to enumerate visited paths first at the static edge
level, and then at the sub-edge level. The strategy is based on the
following definitions.

A static path is a path linking two static nodes. Its first and last
static edges are its bounding edges, while the other static edges on
it are its bounded edges. A dynamic path is a path linking two
dynamic nodes formed at events. A dynamic path is a bounded

path of a static path if its origin and destination are on the two
bounding edges of the static path. An e-edge is a static edge with
events on it. For example, in Figure 3 [𝑁1, 𝑁2, 𝑁3, 𝑁6, 𝑁5] is a static
path. It has a bounded path [𝑅2, 𝑁2, 𝑁3, 𝑁6, 𝑅19], which is a dynamic
path. [𝑁1, 𝑁2] is an e-edge.

The edge-based enumeration strategy has two steps. The first
step enumerates all the visited static paths between e-edges through
DFS from each e-edge. The second step enumerates the bounded
paths of the static paths found in the first step. Take Figure 3 as
an example. A DFS for visited static paths between e-edges is con-
ducted from [𝑁1, 𝑁2], [𝑁5, 𝑁6], and [𝑁1, 𝑁4] sequentially. Starting
from [𝑁1, 𝑁2], the algorithm finds visited static paths [𝑁1, 𝑁2, 𝑁5,
𝑁4, 𝑁1] and [𝑁1, 𝑁2, 𝑁3, 𝑁6, 𝑁5]. To enumerate the bounded paths
of [𝑁1, 𝑁2, 𝑁5, 𝑁4, 𝑁1], the algorithm sets 𝑅11, 𝑅21, 𝑅1, 𝑅2, 𝑅22, and
𝑅13 as the origin, and 𝑅8 and 𝑅10 as the destination sequentially.
[𝑅11, 𝑁2, 𝑁5, 𝑁4, 𝑅8] is an example of a bounded path.

The completeness of the results are maintained because of the
following lemma.

Lemma 2. Every visited dynamic path is a bounded path of a

visited static path between two e-edges.

The proof of lemma 2 is straightforward, since the origin and
destination of a dynamic path are two events that must be on e-
edges according to the definition of an e-edge.

Based on this strategy, we propose two filters to reduce the
number of candidate paths that need to be enumerated andmaintain
the completeness of the results, according to Theorem 1.

3.3.2 Early-stop filter. The first step of the edge-based enumeration
strategy is traversing through the visited static paths between e-
edges through DFS. Starting from an e-edge, the algorithm explores
visited static paths by adding one static edge at a time to the end of
the current path as far as possible before backtracking. The idea of

N1 N2 N3 N4 N5 N6

After

N7

R1 R3R2 R4 R6R5 R7 R8 R9 R10 R11
N8

1st

t1

bounding boundingbounded

Figure 4: An example of the filters.

the early-stop filter is to stop the traversal if the largest possible
𝐿𝐿𝑅 of the bounded paths of the visited static paths extended from
the current path, denoted as 𝑆𝑡𝑜𝑝𝐿𝐿𝑅(𝜙,𝑇𝜙 ), is smaller than the
threshold, where 𝜙 is the current path and 𝑇𝜙 is the collection of
trajectories on the current path.

In the simplest case where there is only one trajectory 𝑡𝑖 on the
static path 𝜙 that is currently explored through DFS, let 1𝑠𝑡 (𝜙) be
the first edge of path 𝜙 , and 𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡𝑖 ) be the path that trajectory
𝑡𝑖 is on after path 𝜙 . Let 𝑛 ( ·) (𝑡𝑖 ) and 𝜇 ( ·) (𝑡𝑖 ) be the number of
events and records of 𝑡𝑖 on specific edges. For example, in Figure 4
trajectory 𝑡1 is on path 𝜙 . 1𝑠𝑡 (𝜙) is edge [𝑁3, 𝑁4], and 𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡1)
are path [𝑁6, 𝑁7, 𝑁8]. 𝑛𝑎𝑓 𝑡𝑒𝑟 (𝜙,𝑡1) (𝑡1) = 1 and 𝜇1𝑠𝑡 (𝜙) (𝑡1) = 1. We
define that

𝑆𝑡𝑜𝑝𝐿𝐿𝑅(𝜙, 𝑡𝑖 ) = 𝐿𝐿𝑅
𝜙
, (3)

such that 𝜙 is a bounded path of the visited static path extended
from 𝜙 , and 𝑛

𝜙
(𝑡𝑖 ) = 𝑛𝜙 (𝑡𝑖 ) + 𝑛𝑎𝑓 𝑡𝑒𝑟 (𝜙,𝑡𝑖 ) (𝑡𝑖 ) and 𝜇

𝜙
= 𝜇𝜙 (𝑡𝑖 ) −

𝜇1𝑠𝑡 (𝜙) (𝑡𝑖 ) +𝑛1𝑠𝑡 (𝜙) (𝑡𝑖 ) +𝑛𝑎𝑓 𝑡𝑒𝑟 (𝜙,𝑡𝑖 ) (𝑡𝑖 ). In other words, the upper
bound is reached if there is a bounded path of the visited static paths
extended from the current path such that the events on 1𝑠𝑡 (𝜙) and
𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡𝑖 ) are on it while the records on 1𝑠𝑡 (𝜙) and 𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡𝑖 )
that are not events are not on it. For example, in Figure 4, the upper
bound is reached when the number of events and records on a
bounded path of the visited static paths extended from path 𝜙 are 3
and 8 respectively, so 𝑆𝑡𝑜𝑝𝐿𝐿𝑅(𝜙, 𝑡1) = 0.91.

We prove the correctness of 𝑆𝑡𝑜𝑝𝐿𝐿𝑅(𝜙, 𝑡𝑖 ) through contradic-

tion. Assume that there is another bounded path 𝜙 other than the 𝜙
of the visited static paths extended from 𝜙 such that 𝐿𝐿𝑅

𝜙
< 𝐿𝐿𝑅𝜙 .

Since both𝜙 and𝜙 must cover all the edges on𝜙 except the first one,

there are three cases where path 𝜙 may differ from path 𝜙 : 1) all
events on 1𝑠𝑡 (𝜙) and 𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡𝑖 ) are on path 𝜙 , while some records
on 1𝑠𝑡 (𝜙) and 𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡𝑖 ) that are not events are also on pth 𝜙 ; 2)
not all events on 1𝑠𝑡 (𝜙) and 𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡𝑖 ) are on path 𝜙 , and records
on 1𝑠𝑡 (𝜙) and 𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡𝑖 ) that are not events are are not on path
𝜙 ; 3) not all events on 1𝑠𝑡 (𝜙) and 𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡𝑖 ) are on path 𝜙 , while
some records on 1𝑠𝑡 (𝜙) and 𝑎𝑓 𝑡𝑒𝑟 (𝜙, 𝑡𝑖 ) that are not events are also
on path 𝜙 . In the first two cases, 𝐿𝐿𝑅

𝜙
> 𝐿𝐿𝑅𝜙 due to Theorem 1

(1) and (2). In the third case, if 𝜇𝜙 (𝑡𝑖 ) < 𝜇
𝜙
(𝑡𝑖 ), 𝐿𝐿𝑅𝜙 > 𝐿𝐿𝑅𝜙 due

to Theorem 1 (2) and (3); if 𝜇𝜙 (𝑡𝑖 ) ≥ 𝜇
𝜙
(𝑡𝑖 ), 𝐿𝐿𝑅𝜙 > 𝐿𝐿𝑅𝜙 due to

Theorem 1 (1) and (2), since the ratio of events to records on 𝜙 is
greater than that on 𝜙 . Thus, in all the three cases, 𝐿𝐿𝑅

𝜙
> 𝐿𝐿𝑅𝜙 ,

which is in contradiction with the assumption.
Suppose there is a collection of trajectories 𝑇𝜙 on the current

path 𝜙 . The upper bound is

𝑆𝑡𝑜𝑝𝐿𝐿𝑅(𝜙,𝑇𝜙 ) = Σ𝑡𝑖 ∈𝑇𝜙 𝑆𝑡𝑜𝑝𝐿𝐿𝑅(𝜙, 𝑡𝑖 ) . (4)

In other words, the upper bound is reached if the trajectories in 𝑇𝜙
are on the same path after 𝜙 , and on the path the 𝐿𝐿𝑅 given every
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trajectories reaches its upper bound. The proof is straightforward
since 𝑆𝑡𝑜𝑝𝐿𝐿𝑅 and 𝐿𝐿𝑅 are always positive. If 𝑆𝑡𝑜𝑝𝐿𝐿𝑅(𝜙,𝑇𝜙 ) is
smaller than the threshold, further exploration by extending 𝜙 is
not necessary.

3.3.3 Bounded LLR filter. The second step of the edge-based enu-
meration strategy is enumerating the bounded paths of visited
static paths. The idea of the bounded 𝐿𝐿𝑅 filter is that if the upper
bound of the 𝐿𝐿𝑅, denoted as 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐿𝐿𝑅(𝜙,𝑇 ), of the bounded
paths of a visited static path 𝜙 is smaller than the threshold, the
enumeration can be terminated.

Again, we start from the simplest case, where there is only
one trajectory 𝑡𝑖 on a visited static path 𝜙 . Let 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔(𝜙) and
𝑏𝑜𝑢𝑛𝑑𝑒𝑑 (𝜙) be the bounding and bounded edges of 𝜙 respectively.
For example, in Figure 4, 𝜙 is [𝑁3, 𝑁4, 𝑁5, 𝑁6], and 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔(𝜙)

includes edge [𝑁3, 𝑁4] and edge [𝑁5, 𝑁6], and 𝑏𝑜𝑢𝑛𝑑𝑒𝑑 (𝜙) includes
edge [𝑁4, 𝑁5]. In this case, we define that

𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐿𝐿𝑅(𝜙, 𝑡𝑖 ) = 𝐿𝐿𝑅
𝜙
, (5)

such that 𝜙 is a bounded path of 𝜙 , and 𝑛
𝜙
(𝑡𝑖 ) = 𝑛𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 (𝜙) (𝑡𝑖 ) +

𝑛𝑏𝑜𝑢𝑛𝑑𝑒𝑑 (𝜙) (𝑡𝑖 ) and 𝜇
𝜙

= 𝑛𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔 (𝜙) (𝑡𝑖 ) + 𝜇𝑏𝑜𝑢𝑛𝑑𝑒𝑑 (𝜙) (𝑡𝑖 ). In

otherwords, the upper bound is reached if the events on𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔(𝜙)
are on the bounded path while the records on 𝑏𝑜𝑢𝑛𝑑𝑖𝑛𝑔(𝜙) that are
not events are not on the path. For example, in Figure 4, the up-
per bound is reached when the number of events and records on a
bounded path of 𝜙 are 2 and 5 respectively, so 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐿𝐿𝑅(𝜙, 𝑡1) =
0.58.

The proof of 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐿𝐿𝑅(𝜙, 𝑡𝑖 ) is similar to that of 𝑆𝑡𝑜𝑝𝐿𝐿𝑅(·)
according to Theorem 1.

Suppose there is a collection of trajectories 𝑇𝜙 on a visited static
path 𝜙 . The upper bound is

𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐿𝐿𝑅(𝜙,𝑇𝜙 ) = Σ𝑡𝑖 ∈𝑇𝜙𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐿𝐿𝑅(𝜙, 𝑡𝑖 ) . (6)

In other words, the upper bound is reached if on a bounded path of𝜙
the 𝐿𝐿𝑅 given every trajectory reaches its upper bound. This upper
bound is valid since 𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐿𝐿𝑅 and 𝐿𝐿𝑅 are always positive. If
𝐵𝑜𝑢𝑛𝑑𝑒𝑑𝐿𝐿𝑅(𝜙,𝑇𝜙 ) is lower than the threshold, we do not need to
traverse through the bounded paths of 𝜙 .

3.3.4 Network reduction preprocessing. Our next to last refinement
reduces the network size. In the first step of the edge-based enumer-
ation strategy described earlier, the algorithm explores the visited
static paths between e-edges through DFS by adding one static edge
at a time to the end of the path that is currently being explored.
However, in this paper we focus only on paths between events. By
pre-computing the visited paths without events on them, we can
reduce the enumeration needed to explore them repeatedly. Thus,
we propose the following network reduction preprocessing.

Given a spatial network, a collection of trajectories with events
on them, an e-edge network is a spatial network composed of: 1)
nodes, each of which represents an e-edge; and 2) edges, each of
which represents a visited path with no event on it. Two nodes in
an e-edge network are linked if the two e-edges represented by the
two nodes are connected by a visited path with no event on it in
the spatial network. For example, given the spatial network and
trajectories in Figure 3, we can get the e-edge network shown in
Figure 5. There are three e-edges, namely, edges [𝑁1, 𝑁2], [𝑁4, 𝑁1],

[N2, N5, N4]

[N1,N2]

[N4,N1]

[N6,N5][N2, N3, N6]

t1

t2

t3

Figure 5: The e-event network generated from the spatial

network and the trajectories in Figure 3.

and [𝑁6, 𝑁5]. The e-edges are connected by two visited static paths,
namely, paths [𝑁2, 𝑁5, 𝑁4] and [𝑁2, 𝑁3, 𝑁6].

Once an e-event network is constructed, it can be used to enu-
merate all the static paths whose bounded path may be hotspots.

3.3.5 Linear scan 𝐿𝐿𝑅 calculation. Our final refinement reduces
the computational cost of 𝐿𝐿𝑅 calculation. The baseline algorithm
computes the 𝐿𝐿𝑅 of every dynamic path by first determining the
trajectories on the path and then calculating 𝐿𝐿𝑅 using Equation
2. However, there exists redundant computation because of the
following theorem.

Theorem 3. If path 𝜙1 is a sub-path of a path 𝜙2, that is, all the

nodes of 𝜙1 are connected by 𝜙2 in order without any other nodes in

between, the trajectories on 𝜙2 is a subset of the trajectories on 𝜙1.

Therefore, if we know the trajectories on a path, then querying
the trajectories on the paths extended from the current path through
DFS needs researching only the trajectories on the current path. It
is not necessary to search the entire trajectory dataset. In addition,
by keeping records of the variables needed to calculate 𝐿𝐿𝑅 and the
upper bounds for the two filters during DFS, we can avoid counting
the number of records and events repeatedly. The variables that
have to be saved include the trajectories on the current path, the
number of records and events on the current path, the number of
records and events on the first static edge of the current path, and
the number of records and events after the current path.

3.3.6 Time complexity analysis. Let |𝑒𝑣𝑡 | be the number of all
events in the trajectories, |𝑙 | be the average number of static edges
in the path traveled by each trajectory, and |𝑇 | be the number of
trajectories. In the worst case, all trajectories are on different paths,
and each event pair is linked by all the visited paths. When con-
structing the e-edge network, every path the trajectories are on
has to be enumerated once, so the time complexity is 𝑂 ( |𝑙 | |𝑇 |). Let
|𝑒_𝑒𝑑𝑔𝑒 | be the number of all e-edges. Without the early-stop filter
and the bounded-𝐿𝐿𝑅 filter, the time complexity of enumerating the
visit static paths between e-edges is 𝑂 ( |𝑒_𝑒𝑑𝑔𝑒 |2 |𝑇 |). Once these
paths have been enumerated, each of their bounded paths is enu-
merated once, giving a total time complexity of enumerating the
visited dynamic paths of𝑂 (( |𝑒_𝑒𝑑𝑔𝑒 |2 |𝑇 | + |𝑒𝑣𝑡 |2)𝛼𝛽), where 𝛼 and
𝛽 are the percentage of the visit static paths remained after apply-
ing the two filters. Because of the linear scan 𝐿𝐿𝑅 calculation, the
query of whether a trajectory is on a static edge would be conducted
|𝑒_𝑒𝑑𝑔𝑒 | + |𝑙 | times for each trajectory. Therefore, the time com-
plexity of the SLLHD-Scale algorithm is 𝑂 (( |𝑒𝑣𝑡 |2 + |𝑒_𝑒𝑑𝑔𝑒 | |𝑇 | +
|𝑙 | |𝑇 |)𝛼𝛽), which is much lower than that of the SLLHD-Base algo-
rithm, 𝑂 ( |𝑒𝑣𝑡 |3 |𝑇 | + |𝑒𝑣𝑡 |2 |𝑇 |2 |𝑙 |).
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meet a certain criterion in the study area. Based on the spatial
footprint of the hotspot, the spatial scan statistics based methods
are in two groups, i.e., Euclidean-based (e.g., circles [11], rectangles
[15], ellipses [20], rings [4], density-based shapes [25]) and network-
based (e.g., linear hotspot [18, 19, 22], subgraph [3, 17, 21]). Since
these methods are designed for individual point data but ignore
trajectories, they will miss some interesting hotspots that can be
detected by our proposed method.

Also extensively studied in the last decade is pattern mining
in trajectories, such as moving together patterns (e.g., flocks, con-
voys, swarms, traveling companions, and gatherings) and trajectory
clustering [7, 26]. However, these studies focus more on the concen-
tration of trajectories, not on the concentration of particular events
in multi-attribute trajectories. Therefore, they are not applicable to
this problem.

7 CONCLUSION AND FUTUREWORK

In this paper, we studied the problem of finding paths where events
in multi-attribute trajectories concentrate in a Lagrangian perspec-
tive. After formally defining the problem, we proposed a baseline
algorithm and five refinements that improved its scalability while
maintaining correctness and completeness. We conducted two case
studies using Twin-Cities Metro Transit data and Minnesota snow-
plow data that show the proposed approach finds hotspots which
are not detectable by the state-of-the-art techniques. We also con-
ducted experiments on synthetic data to illustrate that the proposed
method was able to detect hotspots that were neglected by the
related work, and that the refinements yielded substantial compu-
tational time savings.

In the future, we plan to explore significant Lagrangian linear
hotspot discovery with continuous feature values, as well as the
influence of different sampling rates of trajectories.
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