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Abstract—Model-free  reinforcement  learning (RL)
algorithms are used to solve sequential decision-making
problems under uncertainty. They are data-driven methods and
do not require an explicit model of the studied system or
environment. Because of this characteristic, they are widely
utilized in Intelligent Transportation Systems (ITS), as real-
world transportation systems are highly complex and extremely
difficult to model. However, in most literature, decisions are
made according to the expected long-term return estimated by
the RL algorithm, ignoring the underlying risk. In this work, a
distributional RL algorithm called implicit quantile network is
adapted for the energy management problem of a delivery
vehicle. Instead of only estimating the expected long-term
return, the full return distribution is estimated implicitly. This is
highly beneficial for applications in ITS, as uncertainty and
randomness are intrinsic characteristics of transportation
systems. In addition, risk-aware strategies are integrated into
the algorithm with the risk measure of conditional value at risk.
In this study, we demonstrate that by changing a
hyperparameter, the trade-off between fuel efficiency and the
risk of running out of battery power during a delivery trip can
be controlled according to different application scenarios and
personal preferences.

I. INTRODUCTION

Many transportation-related  applications involve
processes of sequential decision-making, such as autonomous
driving [1][2], traffic light cycle control [3][4] or energy
management (EMS) of hybrid vehicles [5][6]. Optimal control
methods such as dynamic programming are perfect solutions
if the mathematical model of the studied system is given or the
environment can be accurately modeled [7]. However, a real-
world transportation system is highly complex to model and
has a stochastic nature due to some physical systems and
human behaviors. So, with the coming era of big data, data-
driven, model-free reinforcement learning (RL) algorithms [8]
promise to become more and more popular in the area of
Intelligent Transportation Systems (ITS) research, with
emerging technologies like Vehicle-to-Vehicle (V2V),
Vehicle-to-Cloud (V2C) and Vehicle-to-Infrastructure (V2I)
communications.

The core idea of standard RL algorithms is the expected
long-term return [8]. For value-based methods, decisions at
each timestep are made according to the estimated expected
long-term return for each action. For policy-based methods, a
gradient ascent step is performed on the parametrized policy
according to the expected value. Although researchers have
achieved some notable success using standard RL algorithms
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in video gaming and robotics control, these algorithms are not
suitable for safety-critical applications. This is because
expected value loses important information about the future
return, such as the spread [9][10]. For example, if the return
distribution is multi-modal or has a high variance, only
considering the expected value may lead to bad decisions in a
real-world scenario. This is because what the agent will
receive during one task is just one sample from the
distribution. In Fig. 1, it can be observed that although the
expected values of action 2 in both cases are higher than action
1, action 2 may lead to much worse results.
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Fig. 1. Multi-modality (left) and high variance (right) return distributions.

This work adapts a distributional RL algorithm called
implicit quantile network (IQN) [11] into an energy
management problem of extended range electric vehicles
(EREVs) used for package delivery. A risk-aware strategy is
integrated into this algorithm based on an implicitly estimated
return distribution and a risk measure called conditional value
at risk (CVaR) [12]. We show that the trade-off between fuel
economy and the risk of running out of battery during a
delivery task can be controlled by a hyperparameter in CVaR.
The proposed framework is illustrated in Fig. 2.
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Fig. 2. [llustration of the proposed framework. 7 is the hyperparameter
related to CVaR with a range of (0,1].
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II. RELATED WORK

There are two kinds of uncertainty in an RL framework:
model uncertainty and risk. [13][14]. Model uncertainty (also
called epistemic uncertainty) can be explained away with
enough data, and it is usually handled under a Bayesian
framework [15]. It can be beneficial to RL applications in at
least two aspects. First, it helps with exploration during the
training process. In [16], a Bayesian ensemble of neural
networks (NNs) was used to quantify the predictive
uncertainty and facilitate the exploration strategy of
Thompson sampling. Second, model uncertainty can help
identify novel/out-of-distribution data during testing,
providing a safer algorithm. In [1], an autonomous driving
system was able to identify novel obstacles during testing and
perform safer and more conservative actions. Although model
uncertainty is an important topic, it should be distinguished
clearly from risk, which is the topic of this work.

Risk, also called aleatoric uncertainty [13], is an intrinsic
property of a system. For example, no matter how many times
we flip a coin, the results are still stochastic. In a standard RL
algorithm, the decisions are made based on the expected long-
term return, which means if we have many chances to choose
an action at a certain state, it will lead to the highest possible
return on average. However, for real-world transportation
applications, it is not enough to deliver an algorithm that
works well on average, especially for safety-critical
applications. Therefore, it is very important to be able to
estimate the full return distribution, not just one expected
return value. C51 [19], the first distributional RL algorithm
integrated into the popular DQN algorithm [17] achieved
state-of-the-art performance on video games. It calculates the
probabilities for a set of predefined returns. Another approach
used quantile regression (QR) to calculate a fixed number of
quantiles of a return distribution with fixed probabilities [10].
This method achieved better theoretical guarantee in
convergence compared with C51. Implicit quantile network
(IQN) [11], the method used in this paper, removes the
limitation of a fixed number of quantiles.

Energy management problems of hybrid vehicles has been
a popular research area for a long time. A detailed survey can
be found in [18]. RL-based algorithms have also been applied
in this area with different degrees of success [19][20].
However, there is little work that considers the issue of risk in
these methods. One of the main reasons risk has been ignored
is that for most hybrid electric vehicles, the worst-case result
is simply bad energy efficiency, which does not lead to more
serious problems. However, for our EREVs, a bad decision
can lead to the condition of running out of battery power,
which will delay the delivery tasks and can be very dangerous,
for example, if it happens on a highway. In our previous work
[21], the high variance and multi-modal return distributions
were shown using the algorithm of C51. This means decisions
only based on expected values may lead to much worse results
on individual tasks. In this work, we build a risk-aware
strategy based on IQN that selects actions according to a risk
measure called CVaR which includes the expected value as a
special case.
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III. REINFORCEMENT LEARNING PROBLEM FORMULATION

A. Vehicle Configuration and EMS Problem

The powertrain configuration of the studied EREV is
shown in Fig. 3. The driving force is provided by an electric
motor which uses the energy from a high-capacity battery (56
kWh). The internal combustion engine serves as a range-
extender used to charge the battery according to the EMS.
There is no mechanical connection between the engine output
shaft and the wheels so that they are completely decoupled.
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Fig. 3. Powertrain configuration of the EREV.
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The in-use EMS is a rule-based method. Under this
strategy, the engine only operates at one predefined high-
efficiency speed and load condition to provide reliable, safe
and low-noise operation (11kW). To achieve high fuel
efficiencies, ideally, no fuel should be used for short trips that
do not exceed the all-electric range (AER) of the EREV. For
longer trips, the goal is to reach a target end state of charge
(SOC) at the end of the trip with the help of the range-
extender. The engine control logic is based on the measured
real-time SOC during the trip: if it falls lower than a
calculated SOC reference value, the engine should turn on.
The reference value is calculated as:

S0C,.r = 100% X% (1 - 0.9

d
<), (1)
set

where d; is the distance the EREV has traveled on a given trip,
and L, is the energy-compensated expected trip distance.
The value of 0.9 comes from the setting that the target end
SOC in this work is 10%. In addition, if the calculated
SOC, . is higher than 60%, it is set to 60% to prevent fuel use
on short trips.

The SOC,.. represents how much energy is expected to
be left when the EREV has traveled for d; given a value of
Lget. The Lg,, is the parameter that needs to be optimized, i.e.,
the value of Ly, should change so that the fuel use is
minimized and the value of SOC is always higher than 10%
during the delivery trip. The main challenge of this problem
is that even for one vehicle running in a certain delivery area,
the trip distance and energy intensity for different parts of the
trip vary day-to-day due to factors like delivery demand,
weather and traffic conditions. The distribution of distance
and energy intensity for the EREV in this work is shown in
Fig. 4. In current practice, to prevent a vehicle from running
out of battery with high confidence, the value of L, is
always set to high in the fleet’s vehicles, which leads to
excessive fuel use for most trips.

In Fig. 5., a comparison of SOC and fuel use under two
L, settings is shown. It can be observed that for the lower
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L, setting, less fuel is used and the SOC reaches the value
of 10% at the end of trip. However, this outcome cannot be
achieved for future trips as no detailed information is
available about the conditions that made this outcome
possible. Consequently, an RL algorithm is used to update the
value of L, during the delivery trip, using the real-time
information and a strategy learned from historical trips.
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Fig. 4. Distribution of distance and energy intensity for the used EREV.
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Fig. 5. Comparison of SOC,.f and real-time SOC (upper) and fuel use
(lower) with different L, settings for one measured delivery trip.

B. Formulating the EMS Problem as a RL Problem

The goal of RL is to maximize a cumulated reward that an
agent receives during its interaction with an environment
through a sequential decision-making process enabled by a
policy. The RL problem is solved if a good policy is obtained.

During one timestep of interaction, the agent receives the
current state information s, from the environment and
executes an action a; according to the policy m:s; = a;. The
environment then responds with the next state s,,, and a
reward 7;. This process continues until a terminal state s is
achieved:

S0, Q0,70 S1, A1, 71,52, A2, 13 - ST- (2)
The cumulated reward at each timestep t is defined as:
Ge =Tt + Yleqr Y Teg oo+ Y iy, (3)
where y is the discount factor.

To formulate our EMS problem as an RL problem, we need
to specify a state space, an action space, a transition probability
p(Spy1lSear), a reward function r(ry|se,q, S, a;) and a
discount factor y . y is set to 0.99 in this work.

1) State space

The state space is a 7-dimensional space consisting of the
available real-time information from the EREV during the
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delivery trip, including traveled time, distance, current SOC,
fuel use, GPS position and current L, setting:

St = [ttravelvd' SOC,f,x,y, Lset]- 4)

2) Action space
The action space is a set of predefined actions:

a, € [-15,-10,-5,0,+5,+10,+15], (5)
where the values represent the L, change.

3) Transition probability

Transition probability p(s,.1lse, a;) refers to the
unknown underlying system that generates the velocity
profiles for each delivery trip. It is approximated using a
simplified vehicle model and 52 historical delivery trips of the
vehicle.

The simplified vehicle model is used to simulate the SOC
and fuel consumption for a recorded trip under different L,
settings. Given an action at time a, and current condition s;,
the model can calculate the next state s;,; . A detailed
introduction to the model can be found in [5].

For each completed delivery trip, the required parameters
such as velocity, GPS coordinates and SOC were recorded
with timestamps when the vehicle was running. The distance
and energy intensity of the trips ranged from 38 to 57 miles
and 1.03 to 1.20 kWh/miles, respectively.

4) Reward function

The reward function is designed as:
e =Ttr e + Tsoctsoce + Vot + 1 (6)

The first term penalizes fuel use, and its magnitude is
proportional to the engine running time with a coefficient of
—0.001. The second term penalizes the condition of SOC
lower than 10%, and its magnitude is proportional to the time
in that condition with a coefficient of —0.060. The third term
encourages the algorithm to find a policy that changes the L,
as less frequently as possible. It can be expressed as 7, =
—0.0201 4,0, where I, equals 1 if a; # 0. The last term is
used to compensate for the negative reward caused by the
necessary fuel use. It is only given at the end of the trip, since
it is only at that time that the minimum amount of fuel to keep
the SOC always higher than 10% can be calculated.

IV. RISK-AWARE RLL ALGORITHM

A. Implicit Quantile Network

The key to a standard value-based RL algorithm is the
action-value function [8]:

Qn(s,a) = E[G¢|s; = s,a, = a], (7

which represents the expected long-term return G, that can be
achieved if action a is taken at state s and following policy
thereafter. The optimal action-value function for a given
problem is:

Q*(s,a) = max;Q(s, a), (8)

which represents the highest action-value that can be achieved
for all possible state-action pairs under all possible policies.
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The optimal control policy can be derived easily from the
optimal action-value function by acting greedily with respect
to it:

w*(s) = argmax,Q*(s, a).

©)

The main purpose of a standard value-based deep RL
algorithms is to estimate the Q*(s, a) with a NN parametrized
by 1, which is also called a Q-network, Q (s, a; V).

In this work, we adapt a distributional RL algorithm called
implicit quantile network to the EMS problem and model the
full return distribution of given state-action pairs implicitly.
The IQN parametrized by 6 takes a state-action pair (s, @) and
a sample T from a uniform distribution U ([0,1]) as inputs and
outputs a sample Z,(s, a; 8)from the implicitly defined return
distribution Z(s, a; 8) . The action-value Q(s,a;8) can be
estimated by multiple samples of Z,(s, a; 8)~Z(s, a; 0) as:

K
1
Q(s,a;0) = Ery(o1plZ:(s,a;0)] = EZ Zy,(s,a;6),(10)

i=1

where index i represents the ith sample from Z(s, a; 8), and
K represents the total number of samples. Fig. 6 illustrates the
difference between a standard DRL algorithm, DQN [17], and
the IQN.
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Fig. 6. Illustration of the differences between DQN and IQN. The DQN
outputs the expected value for a given state-action pair while IQN outputs
samples from the implicitly modeled return distribution whose mean is the
output of DQN.

The return distribution is modeled implicitly by estimating
the quantile function QFy s 4y(7), also known as the inverse
cumulative distribution function (inverse CDF). Assume the
CDF of the return distribution is Fy (s 4y: Z;(s, a) — [0,1], then:

Zr(s' a) = QFZ(s,a) (T) = Fz_é,a) (T)' (11)

which indicates a mapping from 7T sampled from [0,1] to
Z.(s,a). A simple example is shown in Fig. 7. Assume
the QFz(s,q) of a return distribution Z(s, a) for a state-action
pair is given, sampling T from uniform distribution U([0,1])
and then feed them into QF, (s 4)(7) equals to sampling returns
from the underlying return distribution according to its
probability density function (blue dashed line). The sampled
returns (red dots) can be used to calculate the action-value
according to (10).
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Fig. 7. A simple example illustrating how to sample returns Z,(s, a) from the
implicitly modeled return distribution. Assume five 7 values: 0.1, 0.3...0.9
are sampled from the uniform distribution U([0,1]), five values of Z,(s, a)
are calculated by feeding the five T values into the estimated QFy (s q)(7).
With enough number of samples, the mean and other statistics of the
underlying return distribution can be estimated accurately.

The quantile function QF, s 4)(7) is estimated by IQN. It
is trained by the quantile regression (QR) loss function. In Fig.

8, a simple linear example illustrates the difference between
common mean squared loss (MSE) and QR loss.
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Fig. 8. Comparison of fitting an artificial dataset with linear regression and
quantile regression with 0.9, 0.5 and 0.1 quantiles. For each x, twenty y
values are sampled from a gamma distribution. For linear regression (LR),
the MSE is minimized, which tries to estimate the conditional mean of the
underlying assumed Gaussian distribution for each input x. For quantile
regression, there is no assumption about the underlying distribution and the
conditional quantile values are estimated.

For standard RL algorithms, the square of the temporal
difference (TD) error is minimized where the TD error is:

6, =1 +ymax,Q(ser, ;') — Qs a; ). (12)

For IQN, the QR loss of the TD error shown below is
minimized:

(13)

The detailed QR loss and MSE for the supervised

regression problem and DRL problem is summarized in Table

L. The detailed algorithm to train the IQN in the EMS problem
is shown in Algorithm 1.

8f =1 +ymax,Z,(Sey1, 4 0') — Zi (s, a1 0).

TABLEI
COMPARISON OF QR LOSS AND MSE UNDER TWO PROBLEM SETTINGS
QR loss MSE
Regression (T — lyqyrsp) [y — Wx +b)] [y — (Wx + b)]?
Deep RL (7 — Is7<0) 8¢ 62
Goal Estimate the 7th quantile Estimate the mean
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Algorithm 1 Implicit Quantile Network

Initialize IQN and target IQN with same set of random parameters 6, 6’
Initialize the replay buffer B to capacity D with no transitions
Initialize ¢ = 1.0, K = 32, D = 5e4,n =48, M = 800, N = 52
For epoch =1, M do
For trip=1, N do
. Get initial state s, from current trip data
. t=0
. Whilet <T,do
With probability &, randomly select an action a,
Otherwise select a, = argmax, Zf=1ZTi(st, a; 9)
Update current Lg,; according to a,
Run the vehicle model for 2000s with updated Ly,
Return state s;,, and 13
Store the transition (s¢, a;, 13, S¢+1) in the replay buffer B
Sample n transition pairs from B
For each transition pair (s;, a;, 7}, Sj4+1 ), do
7 if trip terminates at step j + 1
Ztargetj = {rj + ymavaT}(st, a; 9)
T

Sjj = Ztarget,j - Z‘rj (S]" aj; 9)

End For

Perform a gradient descent step on Z}lzl(rj - ]lar,-<0)6].rj
j

otherwise

Perform soft update on the target network
St = St+1
& = max (0.01,0.995 X ¢)
End For
End For

B. Risk Measure

Conditional value at risk [12] is used as the risk measure
in this work. It is defined as:

CVaRy(s,a) = Erzolrlr < Fzgo@m] (14

where 7 is a hyperparameter. If n = 1.0, the calculated
CVaR, (s, a) is the expected value of the return distribution,
which is equal to the action value Q(s,a) and leads to a
standard risk-neutral strategy. If n < 1.0, it calculates the
expected value for the worst 7 cases, which leads to risk-
averse strategies. A simple example is shown in Fig. 9.

After the IQN is trained, risk-aware strategies can simply
sample 7; from U([0,7n]) and choose actions by:

K
1
a; = argmax, EZ Z;,(s,a;0). (15)

i=1
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Fig. 9. [llustration of CVaR with n = 1.0 (left) and n = 0.5 (right). It can be
observed that although the expected value of return distribution Z(s, a,) is
higher than that of Z(s, a,) (the position of the vertical dashed line), it does
not hold true for n = 0.5 due to its high variance (annotated by arrows).

V. SIMULATION RESULTS

A feedforward NN was used to build the IQN, following
the structure of the original paper [11]. There were two hidden
layers in the main structure with 64 and 32 units. The
embedding layer for the sampled T had 64 units. The
embedding was combined with the features from the first
hidden layer in the main structure by element-wise
multiplication. The activation function for all units was ReLU
[22]. The optimizer used was Adam [23] with an initial
learning rate of 0.0005.

The trained RL algorithm was tested on 58 unseen test trips
with a distance range of 35 to 57 miles. For n = 1.0 (standard
risk-neutral strategy), it achieved an average MPGe (mile per
gallon gasoline equivalent) of 28.4. This was only 7.1% less
efficient than the ideal value of 30.6, which can only be
achieved with the full velocity profile information. Our
previous work [21] showed similar results. However, this time
our focus is the potential benefits of utilizing a risk-aware
Strategy.

Fig. 10 shows how the trained algorithm performed on a
short trip. The Lg,; change at each timestep is very similar
under the conditions of = 1.0, 7 = 0.5 and n = 0.1, which
leads to identical fuel use and SOC curves. This can be
explained by the return distribution shown in Fig. 11, which
corresponds to the state A annotated in Fig. 10. For all possible
actions, the return distributions are highly concentrated near
some value with a low variance and similar range. Therefore,
the rank of calculated CVaR for different actions under n =
0.5 and n = 0.1 are still similar to the condition of n = 1.0.
This shows that for short trips, risk-aware strategies do not
make a difference.
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Fig. 10. Performance of the trained algorithm on a test trip with a distance of
35 miles withn = 1.0,7 = 0.5 and n = 0.1. To make the figure clear, the
Lge; corresponding to n = 0.1 is not shown.
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Fig. 11. Return distributions with mean and variance for all possible actions
in state A. The smooth line is fitted with a kernel density estimator for better
visualization, and the mean and variance were still calculated with the
original data. The y-axis represents the probability density so that the value
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could be higher than 1. The red dot represents the mean value of each
distribution.

For a longer trip, as shown in Fig.12, the L,,, changes
significantly at each timestep under different n values,
resulting in different fuel use and SOC curves. This can also
be explained by observing the return distributions for some
states. Fig. 13 shows the return distributions for state B.
Compared with state A, it can be observed that the return
distributions are much less concentrated and the probability
densities for the peak are much lower than that of state A. Also,
the range of the distributions is much wider on the negative
side, indicating the possibilities of running out of battery.
Therefore, for these wide and high variance distributions, the
ranks of calculated CVaR under the condition of < 1 are
different from the standard risk-neutral condition. The lower
the value of 1, the more fuel would be used by the risk-aware
algorithm.

The highest CVaR (the values corresponding to the
selected action at each state) along the two delivery trips
under the three values of 1 are shown in Fig. 14. As expected,
for each state, the CVaR decreases as the value of n decreases
from the upper figure, showing a more and more pessimistic
estimation of performance. This can be easily explained by
the definition of CVaR in (14). The reason why this seems not
true for the last state of the lower figure is because the state
information has become significantly different for the three 7
as different actions were taken during the task. For example,
the final SOC and fuel consumption values are quite different
for the three conditions. In addition, it can be observed that
the values of CVaR are very similar at the beginning of the
two trips. This can be explained by the fact that the two
trajectories are not clearly distinguishable at first, but the
discrepancy grows as they proceed. The exact value at the
initial state reflects the algorithm’s estimation of its
performance based on the properties of the training trips and
without knowing any information about the upcoming trip.
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Fig. 12. Performance of the trained algorithm on a test trip with a distance of
48 miles with n = 1.0 (upper), n = 0.5 (middle) and n = 0.1 (lower).
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Table IT summarizes the average fuel use and average final
SOC for the 58 test trips under the three 1 values. The lower
the value of 77, the more fuel was used to prevent the vehicle
from running out of battery during the delivery trip, leading
to a higher final SOC value. This is the tradeoff between fuel
efficiency and the risk of running out of battery which could
lead to delays of delivery tasks and dangerous conditions like
stopping on highways. Consequently, after the algorithm is
trained, 77 can be chosen according to different application
scenarios and preferences of the users. For example, if the
vehicle delivers in an urban area with frequent delivery stops,
the 1 can be set close to 1 as there are enough charging
opportunities and the energy intensities for this kind of
driving is relatively low. However, if the delivery area
includes long highway driving, a lower 7 might be used as the
energy intensities for highway driving are usually high, and
the charging rate of the range-extender is low compared with
the energy consumption rate.
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Fig. 13. Return distributions with mean and variance for all possible actions
in state B.
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Fig. 14. Highest CVaR among possible actions along the two test trips.

TABLEII
TRADEOFF BETWEEN FUEL USE AND RISK OF RUNNING OUT OF BATTERY

Average fuel use (L) Average final SOC (%)

n=10 0.72 18.6
n=0.5 1.11 20.0
n=0.1 1.94 23.1
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VI. DISCUSSION

A simple form of the original loss function is used in this
work for faster training. According to the original loss function,
for each transition pair (S, @y, 1¢, S¢41), N samples of Z;, and

N’ samples of Z 7 should be sampled from the IQN and target
IQN respectively. Then, the loss is calculated [11] as:

N
1 )
L(S¢, ap, 1, Ses1) = Z FZ (Ti - H(gri,f;.«)) s, (16)

NI
=1 j=1
where:
87T = T + ymavaT;(st+1, a;0") = Zy (s, a;; 0). (17)

The loss for every transition pair in a sampled batch should
be calculated as in (16) and then summed together. In our case,
both N and N’ were set to 1 so there was only one summation
over n sampled transition pairs. A better return distribution
estimation is expected to be achieved if more samples (N and
N') are used during the training.

VII. CONCLUSION

Deep RL algorithms have proven to be powerful tools for
solving ITS related problems. However, to implement these
algorithms in real-world settings, the risk of large negative
outcomes should be considered carefully as randomness and
uncertainty are intrinsic characteristics of transportation
systems. For applications involving risks and dangerous
conditions, it is not enough for an algorithm to deliver good
results on average. We adapt a risk-aware strategy based on
IQN for managing the energy use in an EREV for delivery.
We demonstrate the tradeoff between fuel efficiency and the
risk of running out of battery power by changing the value of
1 in the risk measure of CVaR. This idea can be easily
extended to other ITS related applications and would be
especially beneficial for safety-critical problems like
autonomous driving.

ACKNOWLEDGMENT

The information, data, or work presented herein was
funded in part by the Advanced Research Projects Agency-
Energy (ARPA-E) U.S. Department of Energy, under Award
Number DE-AR0000795. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

REFERENCES

[1] Létjens, Bjorn, Michael Everett, and Jonathan P. How. "Safe
reinforcement learning with model uncertainty estimates." In 2079
International Conference on Robotics and Automation (ICRA), pp.
8662-8668.

[2] K. Min, H. Kim and K. Huh, "Deep Distributional Reinforcement
Learning Based High-Level Driving Policy Determination," in /[EEE
Transactions on Intelligent Vehicles, vol. 4, no. 3, pp. 416-424, Sept.
2019.

[3] Y. Du, W. ShangGuan, D. Rong and L. Chai, "RA-TSC: Learning
Adaptive Traffic Signal Control Strategy via Deep Reinforcement
Learning," 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), Auckland, New Zealand, 2019, pp. 3275-3280.

778

[4] X. Liang, X. Du, G. Wang and Z. Han, "A Deep Reinforcement
Learning Network for Traffic Light Cycle Control," in/EEE
Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1243-1253,
Feb. 2019.

[5] P. Wang, Y. Li, S. Shekhar and W. F. Northrop, "A Deep
Reinforcement Learning Framework for Energy Management of
Extended Range Electric Delivery Vehicles," 2019 [EEE Intelligent
Vehicles Symposium (IV), Paris, France, 2019, pp. 1837-1842.

[6] P. Wang, Y. Li, S. Shekhar and W. F. Northrop, "Actor-Critic based
Deep Reinforcement Learning Framework for Energy Management of
Extended Range Electric Delivery Vehicles," 2019 [EEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM),
Hong Kong, China, 2019, pp. 1379-1384.

[7] Bertsekas, Dimitri P., and John N. Tsitsiklis. Neuro-dynamic
programming. Vol. 5. Belmont, MA: Athena Scientific, 1996.

[8] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. Cambridge MA: MIT Press, 2018.

[9] M. G. Bellemare, W. Dabney, and R. Munos, "A distributional
perspective on reinforcement learning." In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 449-
458. JIMLR. org, 2017.

[10] Dabney, Will, Mark Rowland, Marc G. Bellemare, and Rémi Munos.
"Distributional reinforcement learning with quantile regression."
In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[11] Dabney, Will, Georg Ostrovski, David Silver, and Rémi Munos.
"Implicit quantile networks for distributional reinforcement
learning." arXiv preprint arXiv:1806.06923 (2018).

[12] A. Majumdar and M. Pavone, “How should a robot assess risk?
Towards an axiomatic theory of risk in robotics,” in Proc. Int. Symp.
Robot. Res., 2017.

[13] Osband, Ian. "Risk versus uncertainty in deep learning: Bayes,
bootstrap and the dangers of dropout." In NIPS Workshop on Bayesian
Deep Learning. 2016.

[14] Gal, Yarin. "Uncertainty in deep learning." PhD diss., PhD thesis,
University of Cambridge, 2016.

[15] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and
Application. Cambridge, MA, USA: MIT Press, 2015.

[16] Pearce, Tim, Nicolas Anastassacos, Mohamed Zaki, and Andy Neely.
"Bayesian Inference with Anchored Ensembles of Neural Networks,
and Application to Exploration in Reinforcement Learning." arXiv
preprint arXiv:1805.11324 (2018).

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et
al. Human-level control through deep reinforcement learning. Nature,
518(7540):529-533, 2015.

[18] C. Martinez, X. Hu, D. Cao, E. Velenis, B. Gao and M. Wellers,
"Energy Management in Plug-in Hybrid Electric Vehicles: Recent
Progress and a Connected Vehicles Perspective", [EEE Transactions on
Vehicular Technology, vol. 66, no. 6, pp. 4534-4549, 2017.

[19] X.Qi, Y. Luo, G. Wu, K. Boriboonsomsin and M. J. Barth, "Deep
reinforcement learning-based vehicle energy efficiency autonomous
learning system," 2017 IEEE Intelligent Vehicles Symposium (1V), Los
Angeles, CA, 2017, pp. 1228-1233.

[20] Z. Chen, L. Li, X. Hu, B. Yan and C. Yang, "Temporal-Difference
Learning-Based Stochastic Energy Management for Plug-in Hybrid
Electric Buses," in /[EEE Transactions on Intelligent Transportation
Systems.

[21] P. Wang, Y. Li, S. Shekhar and W. F. Northrop, "Uncertainty
Estimation with Distributional Reinforcement Learning for
Applications in Intelligent Transportation Systems: A Case
Study," 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), Auckland, New Zealand, 2019, pp. 3822-3827.

[22] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve
restricted boltzmann machines." In Proceedings of the 27th
international conference on machine learning (ICML-10), pp. 807-814.
2010.

[23] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic
optimization." arXiv preprint arXiv:1412.6980 (2014).

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 20:08:21 UTC from IEEE Xplore. Restrictions apply.



