












  

VI. DISCUSSION 

A simple form of the original loss function is used in this 
work for faster training. According to the original loss function, 
for each transition pair  (𝑠$ , 𝑎$ , 𝑟$ , 𝑠$&'), 𝑁 samples of 𝑍7" and 

𝑁B samples of 𝑍7$#  should be sampled from the IQN and target 

IQN respectively. Then, the loss is calculated  [11] as: 
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where: 

𝛿7",7$# = 𝑟$ + 𝛾𝑚𝑎𝑥,𝑍7$#(𝑠$&', 𝑎; 𝜃B) − 𝑍7"(𝑠$ , 𝑎$; 𝜃). (17) 
The loss for every transition pair in a sampled batch should 

be calculated as in (16) and then summed together. In our case, 
both 𝑁 and 𝑁B were set to 1 so there was only one summation 
over 𝑛 sampled transition pairs. A better return distribution 
estimation is expected to be achieved if more samples (𝑁 and 

𝑁B) are used during the training.  

VII. CONCLUSION 

Deep RL algorithms have proven to be powerful tools for 

solving ITS related problems. However, to implement these 

algorithms in real-world settings, the risk of large negative 

outcomes should be considered carefully as randomness and 

uncertainty are intrinsic characteristics of transportation 

systems. For applications involving risks and dangerous 

conditions, it is not enough for an algorithm to deliver good 

results on average. We adapt a risk-aware strategy based on 

IQN for managing the energy use in an EREV for delivery. 

We demonstrate the tradeoff between fuel efficiency and the 

risk of running out of battery power by changing the value of 

𝜂  in the risk measure of CVaR. This idea can be easily 

extended to other ITS related applications and would be 

especially beneficial for safety-critical problems like 

autonomous driving.  
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