2020 IEEE Intelligent Vehicles Symposium (IV)
October 20-23, 2020. Las Vegas, USA

Uncertainty-aware Energy Management of Extended Range Electric
Delivery Vehicles with Bayesian Ensemble

Pengyue Wang, Yan Li, Shashi Shekhar, Fellow, IEEE, William F. Northrop*

Abstract—In recent years, deep reinforcement learning
(DRL) algorithms have been widely studied and utilized in the
area of Intelligent Transportation Systems (ITS). DRL agents
are mostly trained with transition pairs and interaction
trajectories generated from simulation, and they can achieve
satisfying or near optimal performances under familiar input
states. However, for relative rare visited or even unvisited
regions in the state space, there is no guarantee that the agent
could perform well. Unfortunately, novel conditions are
inevitable in real-world problems and there is always a gap
between the real data and simulated data. Therefore, to
implement DRL algorithms in real-world transportation
systems, we should not only train the agent learn a policy that
maps states to actions, but also the model uncertainty associated
with each action. In this study, we adapt the method of Bayesian
ensemble to train a group of agents with imposed diversity for
an energy management system of a delivery vehicle. The agents
in the ensemble agree well on familiar states but show diverse
results on unfamiliar or novel states. This uncertainty estimation
facilitates the implementation of interpretable postprocessing
modules which can ensure robust and safe operations under high
uncertainty conditions.

I. INTRODUCTION

In recent years, data-driven deep reinforcement learning
(DRL) algorithms are more and more popular in the area of
Intelligent Transportation Systems (ITS), they are utilized in
applications like autonomous driving [1][2], traffic light cycle
control [3][4] or energy management strategies (EMS) of
hybrid vehicles [5][6]. The agents are mostly trained on
transition pairs and interaction trajectories generated from
simulation environments, since it is time-consuming,
expensive and even dangerous to train the agents on real
transportation systems. The well-trained agents can achieve
satisfying or near optimal performances when the input states
are very familiar, i.e., the frequently visited region in the state
space during training. However, there is no guarantee for the

relative less frequent or even unvisited region in the state space.

Agents could choose arbitrarily bad actions under these
conditions. Unfortunately, it is inevitable to encounter
unfamiliar or novel conditions/states in a real-world
transportation system, since it is impossible to build a
simulator that can cover all possible regions in the underlying
state space. Further, there are always gaps between the
trajectories generated in the simulator and the real systems.
Consequently, to implement DRL algorithms in real-world
transportation systems, it is crucial to build uncertainty-aware
agents, which not only have the ability to solve sequential

*Corresponding author

The information, data, or work presented herein was funded in part by the
Advanced Research Projects Agency-Energy (ARPA-E) U.S. Department of
Energy, under Award Number DE-AR0000795.

978-1-7281-6673-5/20/$31.00 ©2020 IEEE

decision-making problems, but also have some measure of
model uncertainty associated with each action during the task.

A simple but inspiring regression problem is shown in Fig.
1. There is a nonlinear mapping from x to y and the eight red
dots represent the available data points. An ensemble of neural
networks (NNs) with imposed diversity are trained to capture
the nonlinear mapping by learning from the available data [7].
It can be observed that, in the region where exists data,
different NNs agree well while in the region there is no data,
NNs diverge which indicates high model uncertainty.

3 3

2 2

Fig. 1. Ten NN are trained. The prediction of each individual NN is shown
on the left figure. The mean prediction is shown on the right figure with one
and two standard deviation represented by the shaded region.

This work adapts the Bayesian ensemble method [7] to
train a group of DRL agents for the energy management
system (EMS) of an extended range electric vehicle (EREV)
for package delivery with two-way Vehicle-to-Cloud (V2C)
connectivity. Uncertainty estimation is performed for each
action during the task and it facilitates the implementation of
interpretable postprocessing modules for unfamiliar or novel
conditions in real-world tasks, which provides a more robust
and safer system. The general framework is shown in Fig. 2.

—_— .

action
Action preference with,
uncertainty estimation

High
Uncertainty ?

Predefined Rules for
High Uncertainty s,

Real-time
Information

Updated Parameter

AN

Fig. 2. Illustration of the proposed framework.

P. Wang, Y. Li, S. Shekhar and W. F. Northrop are with University of
Minnesota, Minneapolis, MN 55455. (email: wang6609@umn.edu;
lixx4266(@umn.edu; shekhar@umn.edu; wnorthro@umn.edu)

1556

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

There are two kinds of uncertainties that can be modeled
in RL problems: risk and model uncertainty [8][9]. Risk is
also called Aleatoric uncertainty [8], which represents the
intrinsic stochastic property of the studied system or
environment. It cannot be eliminated no matter how much
data we collect or how long we run the simulation. This can
be handled with distributional RL algorithms, which model
the full return distribution instead of the expected value. We
recommend the reader to refer [10][11] for the algorithms and
[2][12][13] for transportation-related applications. Although
it is an important topic, it should be distinguished from model
uncertainty clearly, which is the focus of this work.

Model uncertainty is also called epistemic uncertainty,
and it can be explained away with enough data. If trajectories
generated during training process can populate the whole state
space that is possible to be encountered in the real-world
condition, there is no need to consider the model uncertainty.
However, that is usually difficult to achieve as the amount of
data needs to fill a space grows exponentially with the
dimensionality of the input space [14], and as the transition
probability of the real-world system cannot be fully captured
by the data generated from simulation.

Model uncertainty can be handled elegantly with the
Bayesian framework, if applicable, and Bayesian NNs
provide a systematic way to model uncertainties in NNs
[9][14]. It keeps posterior distributions for the parameters
calculated from the predefined prior distributions and training
data. However, there are mainly two challenges that prevent
it from being widely used in real-world problems [7][9][15].
First, exact Bayesian inference is only feasible on small-scale
problems, and its approximations are also computationally
expensive. Second, to implement Bayesian NNs, significant
modifications in model building and training procedure are
needed compared with standard NNs, which are very easy to
use with popular deep learning libraries like Pytorch and
Tensorflow. Therefore, researchers have investigated non-
Bayesian methods to model the uncertainty, aiming at
developing practical and scalable frameworks.

A simple and scalable method to estimate the predictive
uncertainty is developed in [15]. An ensemble of NNs is
trained, and for each individual NN, the conditional Gaussian
distribution given the input is modeled. The predictive
uncertainty is obtained by treating the output as a mixture of
Gaussian distributions. In [16], ensemble sampling is
developed to approximate the posterior distribution. First, M
NNs are drawn from a prior distribution. Then, at each
timestep during training, only one model in the ensemble will
be sampled to generate data. After the data is generated, all
the models in the ensemble will be updated. To bridge the gap
between Bayesian NNs and the practical ensemble methods,
Bayesian ensemble [7] is developed, which regularizes the
parameters in the standard NNs to values drawn from a
predefined distribution as the prior information for the NN,
which can produce Bayesian behaviors while keeping the
algorithm practical.

Energy management problems of hybrid vehicles have
been a research focus for a long time. A detailed survey can
be found in [18], and for RL-based EMS, a comprehensive
discussion can be found in [19]. However, there is little work
about the model uncertainty in EMS problems. One of the
main reasons is, for most hybrid vehicles, the worst condition
is unsatisfying energy efficiencies, which does not lead to
serious problems. However, for our EREV for delivery, bad
EMS can lead to the condition of running out of battery during
the delivery trip, which may cause delays of delivery tasks
and can be very dangerous if it happens during highway
driving. Consequently, our goal is to build an uncertainty-
aware agent that can facilitate a postprocessing module to
execute predefined rules when the uncertainty exceeds a
predefined threshold. The Bayesian ensemble method is used
due to its simplicity in implementation and better theoretical
support compared with other ensemble-based nonparametric
methods.

III. REINFORCEMENT LEARNING PROBLEM FORMULATION

A. Vehicle Configuration and EMS Problem Introduction

The powertrain configuration of the studied EREV is
shown in Fig. 3. The vehicle is primarily running as an EV
using the energy from the high-capacity battery. The engine
serves as a range-extender which is used to charge the battery
through a generator according to the EMS. There is no
mechanical connection between the engine output shaft and
the wheels so that the engine is completely decoupled from the
vehicle movement. Ideally, for short trips that does not exceed
the all-electric range (AER) of the vehicle, the engine should
not be used during the trip. For longer trips that the battery is
not enough, the goal is to gradually deplete the battery energy
during the trip and reach a target end battery state of charge
(SOC) when the trip is finished with the help of the engine.
This guarantees the vehicle always have enough electric
energy and minimizes the use of fuel, which is widely used in
the area of EMS [17][18][22].

G S Power
enerator =

. Transmission
Electronics

Motor R

2

Fig. 3. Powertrain configuration of the studied EREV.

Engine Battery

The EMS is based on the measured real-time SOC and a
calculated reference value. If the real-time SOC is lower than
the reference value, the engine will be turned on to charge the
battery at a predefined high-efficiency speed and load
condition. The reference value is calculated as:

d
SOCep = 100% X (1 ~097 :) (1)
set

where d; is the distance the EREV has traveled on a given
trip, and Lg,. is the energy-compensated expected trip

1557

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

distance. The value of 0.9 comes from the setting that the
target end SOC is 10% in this work. In addition, if the
calculated SOC,. is higher than 60%, it is set to be 60% to
prevent fuel use in short trips.

SOC, ¢ represents how much energy is expected to be left
when the vehicle has traveled for d; given L,;. So, to achieve
high fuel efficiencies, the value of L,; should be optimized
so that the EREV can approximate the ideal performance
described above.

Due to factors like delivery demand, weather and traffic
conditions, even for a vehicle that running in a certain area,
the distance and energy intensity vary day-to-day.
Consequently, the value of L., should be updated during the
delivery trip according to the real-time information. This is a
sequential decision-making problem without an available
model of the system, i.e., the detailed trip information cannot
be used before it is observed. This fits into the framework of
RL well [20]. The formulation of the RL problem will be first
introduced. Then, in the next section, the uncertainty-aware
RL algorithm that used to solve it is shown.

B. Formulating the EMS Problem as a RL Problem

In a RL problem setting, an agent interacts with an
environment through state s, action a and reward r [20]. At
the beginning of the task, the agent observes the initial state s,
provided by the environment and takes action a, according to
its policy : s = a. Then, the environment outputs the reward
1, and next state s; according to the transition probability
P(S¢411Ss a;) and reward function r(7;|S44, S¢, A;). A series
of interactions will give rise to a sequence like:

S0, Qg» 1) S1, A1, 11, S2, Az, Ty .. S, (2)
where s, represents the terminal states.

The goal of the agent is to maximize its discounted
cumulated reward at each timestep which is defined as:
Ge =1+ Y ¥ + o+ Y T g (3)
y is the discount factor which uses the value of 0.99. The EMS
problem is formulated as a RL problem as follows.
1) State space

The state space is a 7-dimensional space consisting of the
real-time information that is available during the delivery trip,
including travelled time, distance, battery SOC, fuel use, GPS
coordinates and current L., setting. It can be represented as
a vector at each timestep t:

St = [teraver, &, SOC, f,%, Y, Lset]- 4)
2) Action space

The action space is a set of predefined actions where the
magnitude represents the change of L, at timestep t:

a, € [-20,-10,0,+10, +20]. (5)

3) Transition probability

The transition probability p(s;41|S;, a;) of the underlying
system that generates the real-world data is unknown, and
only can be approximated by existing data with a vehicle

model that calculates the SOC curve and fuel use with
different L, settings. Consequently, the explore of the state
space is constrained within the recorded data, especially for
the dimension of distance d and GPS coordinates x and y. In
this work, 22 recorded delivery trips were used for training
and 30 trips were used for testing. The distance and energy
intensity distributions are shown in Fig. 4. It can be observed
that, as data cumulates, the range of the possible trip distance
gets larger as well as the overall energy intensity.

12 12 = Training+Testing
10 10 E Training
+— 8 8
5
(@] 6 6
) 4 4
. | —‘Q_Ij_l_\ =
0 0

40 45 50 55 1.05 1.10 1.15 1.20

Distance(mile) Energy Intensity(kWh/mile)

Fig. 4. Distance and energy intensity distribution of training trips and
training-testing trips combined.

Furthermore, even for two delivery trips with similar
distance, GPS trajectories of a future trip can be significantly
different, which will also lead to unfamiliar states. For
example, the GPS trajectories of two delivery trips are shown
in Fig. 5. It can be observed that, although the delivery region
is the same, there are differences in the area covered due to
factors like delivery demand.

34.26 Trip 1
Trip 2
34.25
g N
S 34.24
=
g
§ 34.23
A
34.22 \
34.21 2\
-7792 -7790 -77.88 -77.86 -77.84 -77.82
Latitude

Fig. 5. Comparison of two GPS trajectories with 43.1 and 44.3 miles.

Besides distance and GPS coordinates that can lead to
novel and unseen states, there is another reason corresponding
to the dimensionality of the state space, which is the “curse of
dimensionality” [14]. The amount of data that needs to fill the
state space grows exponentially with the dimensionality of the
state space. Consequently, for our defined 7-dimensional state
space, even for some of the visited states, data and interaction
trajectories can be sparse in that region due to relative less
frequent visitation during the training process, which is highly
dependent on the statistics of the recorded trips. Consequently,
uncertainty estimation is of great importance when dealing
with real-world problems as it is not feasible to build a model
that is well trained on all parts of the possible state space.

To make the above discussion more straightforward, a
simplified state space with two dimensions are shown in Fig.
6. For each episode of interaction, a trajectory from the initial
state to the region of possible terminal states will be made.
After recording some real-world trajectories, simulations can

1558

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

be performed to train the agent based on the recorded
trajectory. During the training process, the region that is
reachable from the recorded trajectories by choosing different
actions can be visited, and the frequency of visitation depends
on the statistics of the recorded trajectories. Region A
represents a region which is visited frequently, region B
represents a region with sparse data and region C represents
an unvisited part of the state space, which is not reachable
from changing actions from any of the recorded trajectories.
The goal of the uncertainty-aware RL algorithm is to measure
whether the encountered state is novel during testing.

12 simulated states R€gion of possible terminal states
e Recorded states
* Initial state
10
N 8
c
°
2 6
£
5 4
2
0
-2 0 2 4 6 8 10 12

dimension 1

Fig. 6. [llustration of frequently visited states, infrequently visited states and
unvisited states in a two-dimensional state space.

4) Reward function

The reward function is defined as:
(6)

The first term penalizes fuel use according to the engine
running time ty, with a coefficient ry set to —0.001. The
second term penalizes the condition of SOC lower than 10%
according to the time under that condition tsyc ., with a
coefficient 15y set to be —0.060. The third term is used to
encourage the agent learn a more efficient policy. It equals to
0 if the agent chooses the action of not changing L., and
equals to —0.020 otherwise. The last term is used to
compensate for the negative reward caused by the necessary
fuel use. It is only given at the end of the trip, as only with full
information of the trip, the minimal amount of fuel to keep the
SOC always high than 10% can be calculated.

1y =T5tr e + Tsoctsoce + Tar T 1o

IV. UNCERTAINTY-AWARE RLL ALGORITHM

The uncertainty-aware RL algorithm is based on an
ensemble of value-based DRL agents. Deep Q-network (DQN)
is used as the base learners [21]. The core concept behind it is
the action-value which is also called Q-value:

(7)

It represents the expected long-term return that can be
achieved if action a is taken at state s and then following
policy m thereafter. The optimal action-value is defined as:

Q" (s, @) = max;Q(s, a), ®)

which represents the highest action-value that can be obtained
for all possible state-action pairs under all possible policies.

Qr(s,a) = E[G|s, = s,a, = a],

Therefore, given the optimal action-value, the optimal control
policy can be derived by acting greedily with respect to it:

©)

The core idea of DQN and most value-based DRL methods is
to use NNs to approximate the optimal action-value function.
The parametrized action-value function Q(s,a;8) is also
called Q-network. 6 is a vector that contains all the parameters
in the NN. For a given problem with stationary underlying
transition probabilities, the Q*(s, a) satisfies the following
Bellman optimality equation:

Q*(s,a) = Eg[r + ymax,Q*(s',a’)|s, al.

m*(s) = argmax,Q*(s, a).

(10)

The function approximator Q(s, a; 8) is trained according to
this relation. As the probability distribution p(S;41|Ss ;) is
unknown, the right-hand side of (10) is approximated by a
sample generated by a transition pair (S, @, 7%, Sg41):

(1D

The parameters 6 are trained at each timestep by minimizing
the error:

Qtarget =1+ ymaxa’Q(St+1' a'’; 9).

2
L= (Qtarget — Q(s¢, ae; 9)) . (12)

The visited state s, is determined by the interaction
between the agent and the simulated environment. For the
frequently visited region in the state space, the action-values
for the corresponding state-action pairs are well estimated.
However, for the less visited region where the data is sparse
and unvisited region, 8 are not well determined so that the
output action-value is not reliable. Consequently, having a
measure of uncertainty can detect whether the output of Q-
network is trustworthy.

The intuition behind ensemble-based uncertainty
estimation methods is for different function approximators, the
value will agree well on frequently visited states and diverge
on the rest of the regions, and the variance of the output values
indicates the uncertainty. The diversity of different Q-
networks mainly comes from the following aspects. First, each
of them is randomly initialized with different parameters so
that the target network that each Q-network is trained on is
different. Second, stochastic gradient descent-based
optimization provides another source of randomness. Third,
the exploration process like the € —greedy chooses actions
randomly with some probability controlled by the
hyperparameter €. In addition, for the Bayesian ensemble
method [7], the parameters in each Q-network is regularized
to some anchored values sampled from a predefined
distribution. Therefore, the loss function (12) is modified as:

2
Lanchor = (Qtarget — Q(s¢, ag; 9)) + All6 - 00”2; (13)

where A represents the regularization strength and 6, is the
anchored value randomly sampled from a distribution which
represents the prior information of the Q-network.

Assume M Q-networks Q(s, a; 9-) are trained
individually with the loss function in (13) with corresponding
anchored values 6, ;~N ormal(,upn-or, Epn-or), the M outputs
of the ensemble given an input state-action pair can be
considered as M samples from the posterior distribution [7].

1559

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

Therefore, the variance of the ensemble’s predictions can be
interpreted as its uncertainty.

Although this method does not perform exact or
approximate Bayesian inference over NN parameters [14], it
keeps an explicit notion of prior which does not vanish during
training, resulting in Bayesian behavior. Also, it is built on the
fact that adding a regularization term to a loss function returns
maximum a posterior (MAP) estimates of parameters [23].
Therefore, the Bayesian ensemble method gets better
theoretical support compared with other ensemble-based
methods without compromising the advantage of being easy to
implement. The training procedure is briefly summarized in
Algorithm I.

Algorithm 1 Bayesian Ensemble

For Q(s,a;6;),j = 1to M do
. Initialize 6; randomly
Sample 6, ;~N ormal(upmr, Zprior)
Initialize the target network as 6;" = 6;
Initialize the replay buffer B; to capacity 5 X 10* with no transitions
For epoch=1to N do
For trip=1to K do
Get initial state s, from current trip data
t=0
While t < T, do
With probability €, randomly select an action a;
Otherwise select a, = argmax,Q (s, a; 6;)
Update current L, according to a,
Run the vehicle model for 2000s with updated L,
Return state s;,, and r;
Store the transition (S, @y, 73, S¢41) in the replay buffer B;
Sample random n transitions (s;, a;, 7}, Sj+1) from B;
Perform a gradient descent step on loss shown in (12)
Perform soft update of the target network 6~

- St = Sty
End For

End For

Save Q(s, a; Hv)

End For

TABLEI
NEURAL NETWORK STRUCTURES AND HYPERPARAMETERS

Pytorch Implementation of Q-network

Hidden layer 1 Number of units 64
Activation function ReLU
Hidden layer 2 Number of units 32
Activation function ReLU
Output layer Number of units 5
Activation function Linear
Hyperparameters ~ Optimizer Adam
Initial learning rate 5x107*
Batch size 48
Number of epochs 1000
Regularization coefficient A 1x1073

V. SIMULATION RESULTS

Feedforward NNs [14] were used to build the Q-networks
and the implementation details are summarized in Table I. An
ensemble of five Q-networks was trained. For each Q-network
Q (s, a; 9-) , both of the model parameters 9j and the anchored

values 6,; were sampled from the distribution of
Normal(upﬁor,Zprior). All the components in fy,.;,, are 0
and X,,;,, is a diagonal matrix with equal variance. The
variance is set to be 1 and it controls the degree of diversity
among the models in the ensemble. In other words, the initial
value of each parameter in the Q-networks is sampled from a
one-dimensional normal distribution with mean of 0 and
variance of 1. It should be noted that although the initial values
of 6; and 6, ; comes from the same distribution, they were not
the same values as recommended in the original paper [7].

After training, for each s; encountered during testing, the
mean and standard deviation (SD) for the action-values for the
state-action pairs are calculated:

M
1
Qmean(str a) = MZ Q(Stv a; 9‘);
j=1

Oon (50,0 = jz?il[e(st. @ 6;) — Qmean(se, @)]” |

M =1 (14)
Then the corresponding policy is:
T[(St) = argmaxanean (st' a)- (15)

The mean is used to select actions and the values of SD
indicate the uncertainty corresponding to each action. Next,
the detailed performance of the Bayesian ensemble on three
delivery trips are shown, demonstrating the three kinds of
conditions discussed in Fig. 6 respectively.

The frequently visited states where the model parameters
are well-determined and the infrequently visited states where
the model parameters are less well-determined are shown on
two training trips with 43.1 and 52.9 miles from Fig. 7-Fig. 10.
For the shorter trip, it can be observed from Fig.7 that for all
states encountered during the trip, the SD of action-values for
all the 5 possible actions are lower than 1, which indicates low
model uncertainties. Taking state A annotated in Fig.7 as an
example, the mean and one standard deviation of action-values
are plotted on the left part of Fig. 8 and the individual
predictions from each agent are plotted on the right. Although
there are imposed diversities among the agents, it is obvious
that all the agents agree well on the action-values for each
possible action. All the states encountered in this trip can be
considered as locating in the frequently visited region in the
state space. This can be partly explained by looking at Fig. 4.
The distance of most of the 22 training trips are concentrated
near 43 miles, and energy use is highly correlated with distance
so that states with similar distance, SOC, fuel use as well as
the L, setting will be generated frequently when the
simulation is run on any of these trips with similar distance,
which leads to a frequently visited region near trajectories
generated from these training trips in the state space, like
region 4 in Fig. 6.

The simulation results for the longer trip which is also the
second longest trip in the training trips are shown in Fig 9. It
requires the highest fuel use among the 22 training trips, the
states encountered at the last part of this trip can only be
generated when the simulation is run on the longest two trips,
which leads to relative less frequent visitations, corresponding
to region B in Fig. 6. Consequently, the uncertainties for part

1560

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

of the action-values are higher than 1, indicating the
parameters in the agents are not well-determined for the
corresponding state-action pairs.

=
© O
o o

— Fuel*10

(o)}
o

A

N B
o o

SOC(%),Lset(mile),Fuel(L)

o

0 5000 10000 15000 20000 25000 35000

v
o 0 o o 0 3 F o 2 08 0 3 0 8 0

0 5000 10000 15000 20000 25000 30000
Time(s)

OFRNWwWArULON

SD of Action-values

35000

Fig. 7. Performance of the trained algorithm on a training trip with a distance
of 43.1 miles (upper) and the estimated uncertainties along the trip (lower).

0 . 0]

. ¢ ° ol ¥]
n o H
v _2ie *l 2
2 ° ° $
g -3 -3 .
g —4 4 e m
= -5 -5 * A
<o sl s a

=7 7] e ns

-8 -8

-20 -10 0 +10 +20 -20 -10 0 +10 +20
Action Action

Fig. 8. The mean action-values for each action with one standard deviation
(left) and the predictions from each agent (right) for state A.

2100{ {-=======--%
[
2 80
2 60 | — soC I
E - lset
T 40{—Fer0 eeemeemmm e e Dwe
3
2 20
U ______________________________________
S o
0 5000 10000 15000 20000 25000 30000 35000 40000
8
§ 7
= 6
25
G4
g3
<2 .
° 1{ = ;-----:_.
a
gl o 0 o 0 o 88 85 0 0 08 s b 88 E
0 5000 10000 15000 20000 25000 30000 35000 40000
Time(s)

Fig. 9. Performance of the trained algorithm on a training trip with a distance
of 52.9 miles (upper) and the estimated uncertainties along the trip (lower).

0 0
L]
-2 ° [. -2 L4 . !
n .
g -4 ° H ° -4 . ! .
32 o °
lg —6 o) -6 .
S -8 ° 81 e o A
Rel ° . ° R
E—lo -101{ ¢ P
L]
-12 -121 °® -
-14 -14
-20 -10 0 +10 +20 -20 -10 0 +10 +20
Action Action

Fig. 10. The mean action-values for each action with one standard deviation
(left) and the predictions from each agent (right) for state B.

For a test trip with a distance longer than any of the
training trips, it is obvious from Fig. 11 that the algorithm
does not perform well as the battery SOC drops below 10%
for a significant amount of time. Nevertheless, the model
outputs very high uncertainties for all the actions from
34000s, indicating the states are novel and significantly
different from the states that it experienced during the training
process. It can be observed from Fig. 12 that although the
ranking of the action-values for state C is correct, the agents
cannot agree on the long-term return after this state, i.e., the
agents are not sure whether the EMS can prevent the EREV
from running out of battery. The states that encountered at the
last part of this trip can be considered as locating in the region
that is never visited during training, just like region C in Fig.
6. Therefore, the predictions from different agents are
significant different, just like the NNs diverge on the region
there is no data in Fig. 1.

SOC(%),Lset(mile),Fuel(L)

0 5000 10000 15000 20000 25000 30000 35000 40000
8
n
v 7 .
s :
25
=
o4 .]
g5 L
g 1 T T T T T Y T Y T T .--__-J-_.
gl o 0 b e e e (] 8§ 58 0 o
0 5000 10000 15000 20000 25000 30000 35000 40000

Time(s)

Fig. 11. Performance of the trained algorithm on a test trip with a distance of
57.4 miles (upper) and the estimated uncertainties along the trip (lower).

0 0
° o [] ’
_ o _
0 5 ° L] ° 5 . ! °
Q L] °
3 -10 ° (] -10 . s °
© ° ° °
z-1s -151 e ° =
L] L] L]
2 201 —201 e . o w
g . * A
-251{ e -25 o M
L] ® A
-30 -30
20 -10 0 +10 +20 20 -10 0 +10 +20
Action Action

Fig. 12. The mean action-values for each action with one standard deviation
(left) and the predictions from each agent (right) for state C.

With the uncertainty-aware RL algorithm, an interpretable
white-box postprocessing module can be integrated into the
black-box RL system to include predefined explicit rules for
unfamiliar or novel states. The threshold to define unfamiliar
or novel states can also be controlled. If the threshold is set to
be 0, then the RL-based EMS becomes the widely used
interpretable rule-based EMS. For example, for our EREV
application, if the model uncertainty is higher than the
predefined threshold value, the postprocessing module can
overwrite the L., with a high value, or it can notify the driver
to stop the EREV until the SOC is charged back to some
value. The focus of this work is to develop the uncertainty-

1561

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

aware RL algorithm that can identify the novel states so that
the design of postprocessing module is not discussed here.

VI. CONCLUSION

In this work, we demonstrated the importance of
uncertainty estimation for DRL algorithms in real-world
applications by applying it on an EMS problem. It is
inevitable to encounter novel states as it is impossible to build

a simulator that can generate all possible states during training.

Also, even for part of the visited states, due to the statistics of
the recorded trajectories and the “curse of dimensionality”,
the parameters in the agent might not be well determined due
to the sparse data. The method of Bayesian ensemble is used
to perform the uncertainty estimation, which is practical to
implement and keeps an explicit notion of prior information
compared with other ensemble-based methods. Simulation
results show that for the frequently visited states, uncertainties
are low for each action, while for states that are relatively less
frequently visited and novel states, the uncertainties are high,
indicating the model is not well-trained for these states. The
uncertainty estimation is highly beneficial for applications in
ITS, especially for the safety-critical problems. Interpretable
postprocessing modules can be built based on the estimated
uncertainty, providing a more robust and safer system.

ACKNOWLEDGMENT

The information, data, or work presented herein was
funded in part by the Advanced Research Projects Agency-
Energy (ARPA-E) U.S. Department of Energy, under Award
Number DE-AR0000795. The views and opinions of authors
expressed herein do not necessarily state or reflect those of
the United States Government or any agency thereof.

REFERENCES

[1] Létjens, Bjorn, Michael Everett, and Jonathan P. How. "Safe
reinforcement learning with model uncertainty estimates." In 2079
International Conference on Robotics and Automation (ICRA), pp.
8662-8668.

[2] K. Min, H. Kim and K. Huh, "Deep Distributional Reinforcement
Learning Based High-Level Driving Policy Determination," in /[EEE
Transactions on Intelligent Vehicles, vol. 4, no. 3, pp. 416-424, Sept.
2019.

[3] Y. Du, W. ShangGuan, D. Rong and L. Chai, "RA-TSC: Learning
Adaptive Traffic Signal Control Strategy via Deep Reinforcement
Learning," 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), Auckland, New Zealand, 2019, pp. 3275-3280.

[4] X. Liang, X. Du, G. Wang and Z. Han, "A Deep Reinforcement
Learning Network for Traffic Light Cycle Control," in/EEE
Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1243-1253,
Feb. 2019.

[5] P. Wang, Y. Li, S. Shekhar and W. F. Northrop, "A Deep
Reinforcement Learning Framework for Energy Management of
Extended Range Electric Delivery Vehicles," 2019 [EEE Intelligent
Vehicles Symposium (IV), Paris, France, 2019, pp. 1837-1842.

[6] P. Wang, Y. Li, S. Shekhar and W. F. Northrop, "Actor-Critic based
Deep Reinforcement Learning Framework for Energy Management of
Extended Range Electric Delivery Vehicles," 2019 [EEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM),
Hong Kong, China, 2019, pp. 1379-1384.

[7] Pearce, Tim, Mohamed Zaki, Alexandra Brintrup, and Andy Neel.
"Uncertainty in neural networks: Bayesian ensembling." arXiv preprint
arXiv:1810.05546 (2018).

[8] Osband, Ian. "Risk versus uncertainty in deep learning: Bayes,
bootstrap and the dangers of dropout." In NIPS Workshop on Bayesian
Deep Learning. 2016.

[9] Gal, Yarin. "Uncertainty in deep learning." PhD diss., PhD thesis,
University of Cambridge, 2016.

[10] M. G. Bellemare, W. Dabney, and R. Munos, "A distributional
perspective on reinforcement learning." In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pp. 449-
458. JMLR. org, 2017.

[11] Dabney, Will, Mark Rowland, Marc G. Bellemare, and Rémi Munos.
"Distributional reinforcement learning with quantile regression."
In Thirty-Second AAAI Conference on Artificial Intelligence. 2018.

[12] P. Wang, Y. Li, S. Shekhar and W. F. Northrop, "Uncertainty
Estimation with Distributional Reinforcement Learning for
Applications in Intelligent Transportation Systems: A Case
Study," 2019 IEEE Intelligent Transportation Systems Conference
(ITSC), Auckland, New Zealand, 2019, pp. 3822-3827.

[13] J. Bernhard, S. Pollok and A. Knoll, "Addressing Inherent Uncertainty:
Risk-Sensitive Behavior Generation for Automated Driving using
Distributional Reinforcement Learning," 2019 [EEE Intelligent
Vehicles Symposium (IV), Paris, France, 2019, pp. 2148-2155.

[14] C. M. Bishop. Neural networks for pattern recognition. Oxford
university press, 1995.

[15] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell.
"Simple and scalable predictive uncertainty estimation using deep
ensembles." In Advances in Neural Information Processing Systems, pp.
6402-6413.2017.

[16] Lu, Xiuyuan, and Benjamin Van Roy. "Ensemble sampling."
In Advances in neural information processing systems, pp. 3258-3266.
2017.

[17] S. G. Wirasingha and A. Emadi, "Classification and Review of Control
Strategies for Plug-In Hybrid Electric Vehicles," in IEEE Transactions
on Vehicular Technology, vol. 60, no. 1, pp. 111-122, Jan. 2011.

[18] C. Martinez, X. Hu, D. Cao, E. Velenis, B. Gao and M. Wellers,
"Energy Management in Plug-in Hybrid Electric Vehicles: Recent
Progress and a Connected Vehicles Perspective", I[EEE Transactions on
Vehicular Technology, vol. 66, no. 6, pp. 4534-4549, 2017

[19] Hu, Xiaosong, Teng Liu, Xuewei Qi, and Matthew Barth.
"Reinforcement Learning for Hybrid and Plug-In Hybrid Electric
Vehicle Energy Management: Recent Advances and Prospects." IEEE
Industrial Electronics Magazine 13, no. 3 (2019): 16-25.

[20] R. S. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. Cambridge MA: MIT Press, 2018.

[21] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu,
Joel Veness, Marc G. Bellemare, Alex Graves et al. "Human-level
control through deep reinforcement learning." Nature 518, no. 7540
(2015): 529.

[22] Y. Li, H. He, J. Peng and H. Wang, "Deep Reinforcement Learning-
Based Energy Management for a Series Hybrid Electric Vehicle
Enabled by History Cumulative Trip Information," in/EEE
Transactions on Vehicular Technology, vol. 68, no. 8, pp. 7416-7430,
Aug.2019.

[23] MacKay, David JC, and David JC Mac Kay. Information theory,
inference and learning algorithms. Cambridge university press, 2003.

1562

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2021 at 20:15:28 UTC from IEEE Xplore. Restrictions apply.

