








  

Therefore, the variance of the ensemble’s predictions can be 
interpreted as its uncertainty.  

Although this method does not perform exact or 
approximate Bayesian inference over NN parameters [14], it 
keeps an explicit notion of prior which does not vanish during 
training, resulting in Bayesian behavior. Also, it is built on the 
fact that adding a regularization term to a loss function returns 
maximum a posterior (MAP) estimates of parameters [23]. 
Therefore, the Bayesian ensemble method gets better 
theoretical support compared with other ensemble-based 
methods without compromising the advantage of being easy to 
implement. The training procedure is briefly summarized in 
Algorithm I. 

V. SIMULATION RESULTS 

Feedforward NNs [14] were used to build the Q-networks 
and the implementation details are summarized in Table I. An 
ensemble of five Q-networks was trained. For each Q-network 𝑄x𝑠, 𝑎; 𝜃yz , both of the model parameters 𝜃y and the anchored 

values 𝜃>,y  were sampled from the distribution of 𝑁𝑜𝑟𝑚𝑎𝑙x𝜇�'�u' , Σ�'�u'z. All the components in 𝜇�'�u'  are 0 

and Σ�'�u'  is a diagonal matrix with equal variance. The 

variance is set to be 1 and it controls the degree of diversity 
among the models in the ensemble. In other words, the initial 
value of each parameter in the Q-networks is sampled from a 
one-dimensional normal distribution with mean of 0 and 
variance of 1. It should be noted that although the initial values 
of  𝜃y and 𝜃>,y comes from the same distribution, they were not 

the same values as recommended in the original paper [7]. 

After training, for each 𝑠4 encountered during testing, the 
mean and standard deviation (SD) for the action-values for the 
state-action pairs are calculated: 

𝑄�(Ss(𝑠4, 𝑎) = 1𝑀�𝑄x𝑠4, 𝑎; 𝜃yz
�
y�B

, 

𝑄]�(𝑠4, 𝑎) = �∑ �𝑄x𝑠4, 𝑎; 𝜃yz − 𝑄�(Ss(𝑠4, 𝑎)�F�y�B 𝑀− 1 . (14) 
Then the corresponding policy is: 

𝜋(𝑠4) = 𝑎𝑟𝑔𝑚𝑎𝑥S𝑄�(Ss(𝑠4 , 𝑎). (15) 
The mean is used to select actions and the values of SD 

indicate the uncertainty corresponding to each action. Next, 
the detailed performance of the Bayesian ensemble on three 
delivery trips are shown, demonstrating the three kinds of 
conditions discussed in Fig. 6 respectively.  

   The frequently visited states where the model parameters 
are well-determined and the infrequently visited states where 
the model parameters are less well-determined are shown on 
two training trips with 43.1 and 52.9 miles from Fig. 7-Fig. 10. 
For the shorter trip, it can be observed from Fig.7 that for all 
states encountered during the trip, the SD of action-values for 
all the 5 possible actions are lower than 1, which indicates low 
model uncertainties. Taking state 𝐴 annotated in Fig.7 as an 
example, the mean and one standard deviation of action-values 
are plotted on the left part of Fig. 8 and the individual 
predictions from each agent are plotted on the right. Although 
there are imposed diversities among the agents, it is obvious 
that all the agents agree well on the action-values for each 
possible action. All the states encountered in this trip can be 
considered as locating in the frequently visited region in the 
state space. This can be partly explained by looking at Fig. 4. 
The distance of most of the 22 training trips are concentrated 
near 43 miles, and energy use is highly correlated with distance 
so that states with similar distance, SOC, fuel use as well as 
the 𝐿6(4  setting will be generated frequently when the 
simulation is run on any of these trips with similar distance, 
which leads to a frequently visited region near trajectories 
generated from these training trips in the state space, like 
region 𝐴 in Fig. 6. 

The simulation results for the longer trip which is also the 
second longest trip in the training trips are shown in Fig 9. It 
requires the highest fuel use among the 22 training trips, the 
states encountered at the last part of this trip can only be 
generated when the simulation is run on the longest two trips, 
which leads to relative less frequent visitations, corresponding 
to region 𝐵 in Fig. 6. Consequently, the uncertainties for part 

  

Algorithm 1 Bayesian Ensemble  

For 𝑄x𝑠, 𝑎; 𝜃yz, 𝑗 = 1 to 𝑀 do 

.    Initialize 𝜃y randomly 

.    Sample 𝜃>,y~𝑁𝑜𝑟𝑚𝑎𝑙x𝜇�'�u' , Σ�'�u'z 

.    Initialize the target network as 𝜃yN = 𝜃y  

.    Initialize the replay buffer 𝐵y to capacity 5 × 10� with no transitions 

.    For epoch = 1 to 𝑁 do 

.    .    For trip = 1 to 𝐾 do 

.    .    .    Get initial state 𝑠> from current trip data 

.    .    .    𝑡 = 0 

.    .    .    While 𝑡 < 𝑇, do 

.    .    .    .    With probability 𝜀, randomly select an action 𝑎4 

.    .    .    .    Otherwise select 𝑎4 = 𝑎𝑟𝑔𝑚𝑎𝑥S𝑄(𝑠4, 𝑎; 𝜃y) 

.    .    .    .    Update current 𝐿6(4 according to 𝑎4 

.    .    .    .    Run the vehicle model for 2000s with updated 𝐿6(4  

.    .    .    .    Return state 𝑠4DB and 𝑟4 

.    .    .    .    Store the transition (𝑠4, 𝑎4, 𝑟4, 𝑠4DB ) in the replay buffer 𝐵y	 

.    .    .    .    Sample random 𝑛 transitions (𝑠y , 𝑎y , 𝑟y , 𝑠yDB )  from 𝐵y	 

.    .    .    .    Perform a gradient descent step on loss shown in (12) 

.    .    .    .    Perform soft update of the target network 𝜃N 

.    .    .    .    𝑠4 = 𝑠4DB 

.    .    End For 

.    End For 

.    Save 𝑄x𝑠, 𝑎; 𝜃yz 
     End For 

TABLE I 

NEURAL NETWORK STRUCTURES AND HYPERPARAMETERS 

                       Pytorch Implementation of Q-network 
 

Hidden layer 1 Number of units 64 

 Activation function ReLU 

Hidden layer 2 Number of units 32 

 Activation function ReLU 

Output layer Number of units 5 

 Activation function Linear 

Hyperparameters Optimizer Adam 

 Initial learning rate 5 × 10N� 

 Batch size 48 

 Number of epochs 1000 

 Regularization coefficient 𝜆 1 × 10N� 
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aware RL algorithm that can identify the novel states so that 

the design of postprocessing module is not discussed here.  

VI. CONCLUSION 

In this work, we demonstrated the importance of 

uncertainty estimation for DRL algorithms in real-world 

applications by applying it on an EMS problem. It is 

inevitable to encounter novel states as it is impossible to build 

a simulator that can generate all possible states during training. 

Also, even for part of the visited states, due to the statistics of 

the recorded trajectories and the “curse of dimensionality”, 

the parameters in the agent might not be well determined due 

to the sparse data. The method of Bayesian ensemble is used 

to perform the uncertainty estimation, which is practical to 

implement and keeps an explicit notion of prior information 

compared with other ensemble-based methods. Simulation 

results show that for the frequently visited states, uncertainties 

are low for each action, while for states that are relatively less 

frequently visited and novel states, the uncertainties are high, 

indicating the model is not well-trained for these states. The 

uncertainty estimation is highly beneficial for applications in 

ITS, especially for the safety-critical problems. Interpretable 

postprocessing modules can be built based on the estimated 

uncertainty, providing a more robust and safer system.  
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