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ABSTRACT

The study of polarized radiation transfer in the highly magnetized surface locales of neutron stars is of great interest to the
understanding of accreting X-ray pulsars, rotation-powered pulsars, and magnetars. This paper explores scattering transport
in the classical magnetic Thomson domain that is of broad applicability to these neutron star classes. The development of a
Monte Carlo simulation for the polarized radiative transfer is detailed: it employs an electric field vector formalism to enable a
breadth of utility in relating linear, circular, and elliptical polarizations. The simulation can be applied to any neutron star surface
locale, and is adaptable to accretion column and magnetospheric problems. Validation of the code for both intensity and Stokes
parameter determination is illustrated in a variety of ways. Representative results for emergent polarization signals from surface
layers are presented for both polar and equatorial magnetic locales, exhibiting contrasting signatures between the two regions.
There is also a strong dependence of these characteristics on the ratio of the frequency @ of a photon to the cyclotron frequency
wp = eB/mc . Polarization signatures for high-opacity domains are presented, highlighting compact analytical approximations
for the Stokes parameters and anisotropy relative to the local field direction for an extended range of frequencies. These are very
useful in defining injection conditions deep in the simulation slab geometries, expediting the generation of emission signals from
highly opaque stellar atmospheres. The results are interpreted throughout using the polarization characteristics of the magnetic

Thomson differential cross-section.
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1 INTRODUCTION

Observations of thermal emission from both isolated and accreting
neutron stars have provided a richesse of information about their
surfaces and interiors. Radii of isolated neutron stars can be estimated
or constrained by applying the Stefan—Boltzmann law to their quasi-
thermal spectra (Potekhin 2014). Soft X-ray pulse profiles of younger
and middle-aged neutron stars have been used to estimate geometric
parameters like the sizes and locales of hotspots and observer viewing
angles to the spin axes: see Gotthelf, Perna & Halpern (2010) for
an example of central compact object, and Younes et al. (2020)
for a magnetar. For much older neutron stars, recycled pulsars
(PSRs), pulse profiles of atmospheric X-rays from millisecond PSR
J0030+4-0451 by the Neutron Star Interior Composition Explorer
(NICER) have enabled precise mass and radius measurements (Miller
et al. 2019; Riley et al. 2019). Spectral features such as absorption
lines help to estimate the gravitational redshifts (Hambaryan et al.
2011) and thereby also inform mass-to-radius ratios. Comparisons
between surface temperatures from cooling neutron stars and the-
oretical cooling curves yield insights into the thermal heating and
neutrino transport in neutron star interiors, deriving constraints on
the equation of state (Yakovlev & Pethick 2004). All these probes can
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leverage a sophisticated understanding of neutron star atmospheres,
which serves as the principal objective of this paper.

Of great interest is the persistent soft X-ray emission of magnetars,
neutron stars that possess superstrong magnetic fields. Magnetars’
surface fields (B, ~ 10" — 10'5 G) and relative young ages are
inferred directly from their long spin periods (P ~2 — 12 s) and
large spin-down rates (P ~ 10~'* — 10~'%s s~!), presuming that
their rotational spin-down is due to magnetic dipole torques (see e.g.
Kouveliotou et al. 1998). Magnetars have historically been divided
into two observational groups: soft-gamma repeaters (SGRs) and
anomalous X-ray pulsars (AXPs). However, the observed quiescent
emission from SGRs and the discovery of SGR-like bursts in several
AXPs diluted the difference between the two groups, suggesting a
‘unification paradigm’ where SGRs and AXPs belong to a single
class. On the theoretical side, Duncan & Thompson (1992) and
Thompson & Duncan (1996) postulated the fireball scenario where
the flare emission is triggered by subsurface magnetic activity. This
focuses on magnetic stresses in the crust and structural rearrange-
ments and partial decay of the subsurface fields (Thompson &
Duncan 1995, 2001).

The persistent soft X-ray signals from magnetars are very bright,
with typical luminosities of Lx ~ 10¥erg s~!, often exceeding their
rotational energy loss rates. The spectra of this emission can be
approximately fit using blackbodies of temperature ~0.3 — 0.6 keV,
connected to a soft power-law tail with photon index <2 — 4 (e.g.
Mereghetti 2008; Vigano et al. 2013). These temperatures are higher
than those of typical isolated neutron stars — see Becker (2009) for
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a review of X-ray pulsar emission. The thermal component likely
comes from the stellar surface, providing information about the
physical properties of its atmosphere, like chemical composition,
ionization equilibrium, and the state of matter. Pulse profiles of
magnetars constrain the locale of the emission region, and thereby
help improve the understanding of subsurface thermal heat transport,
and informing paradigms of particle bombardment of the surface
(Beloborodov & Li2016). For some magnetars, the best fit is obtained
using a two-blackbody model, which is possibly a signature of
temperature gradients across the stellar surface (Gotthelf & Halpern
2005).

Models for magnetic neutron star surface emissions have been
constructed by Shibanov et al. (1992), Pavlov et al. (1994), Zavlin,
Pavlov & Shibanov (1996), and Zane, Turolla & Treves (2000),
considering fully ionized hydrogen or helium atmospheres with
moderate magnetic fields ~10'3 G. Partially ionized atmosphere
models have been explored by Ho et al. (2003), Potekhin et al. (2004),
Ho, Potekhin & Chabrier (2008), and Suleimanov, Potekhin &
Werner (2009), using sophisticated opacity information and updated
equations of state. Atmosphere models addressing the magnetar field
domain were treated by Ho & Lai (2001, 2003), Ozel (2001, 2003),
Adelsberg & Lai (2006), and Taverna et al. (2020). Since the fields of
magnetars generally exceeds the critical field B, = 4.414 x 103 G,
detailed consideration of the polarization of the magnetized quantum
vacuum is necessary (Lai & Ho 2003). In addition, thermal emission
from condensed surfaces at relatively low temperatures was studied
by Turolla et al. (2004) and Medin & Lai (2007). For magnetic fields
< 10" G, this magnetic condensation is expected to be minimal, and
the atmospheres are likely fully ionized (Medin & Lai 2006, 2007).

A common feature of these previous studies is that they use scatter-
ing and free—free opacity to mediate the photon transport in terms of
two orthogonal polarization modes. These opacities help to support
the atmosphere hydrostatically and shape the calculated spectra,
which deviate substantially from a pure Planck form. Furthermore,
X-ray emission from the surfaces of magnetars is expected to be
polarized, because the strong magnetic fields introduce anisotropy to
the plasma medium, the quantum vacuum, and the scattering process,
as is highlighted here. These interesting physics elements can be
probed using polarimetric measurements of magnetars in the soft X-
ray band, which are expected to be provided by future missions like
IXPE! (Weisskopf et al. 2016) and eXTP (Zhang et al. 2016). Such
polarimetry introduces an extra dimension to diagnostics of source
physical properties that complement spectroscopy, and should permit
the detection of the Quantum Electrodynamics (QED) vacuum effect
from magnetar atmospheres (see Taverna et al. 2020).

In this paper, we detail the construction of a new Monte Carlo
simulation of the magnetic Thomson scattering of polarized X-rays
in neutron star surface layers. In contrast to previous studies, we
simulate the transport via a tracking of wave electric field vectors.
This encapsulates full polarization information, linear and circular
and their interplay throughout. The code does not presently treat
self-consistent hydrostatic atmospheric structure and the free—free
opacity that dominates (Ho & Lai 2001) at photon energies below
around 1-2 keV and deep in the atmosphere. Thus, the simulation
is readily applied to outer atmospheres and is adaptable to the more
tenuous environments of magnetar magnetospheres. The simulation
is developed in the special case of zero dispersion in order to enable
its validation and a detailed understanding of emergent polarization
signatures; it is routinely extendable to treat elliptical eigenmodes of
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propagation in dispersive media. Our Monte Carlo code generates
angular distributions of intensity and Stokes parameters for arbitrary
field orientations and a representative range of photon frequencies.
The code is validated by direct comparison of results with those from
prior investigations.

Although our present focus is on surface layers of magnetars and
neutron stars of lesser magnetizations, the Monte Carlo technique can
be easily extended to treat Comptonization in hot plasmas, which
is important in the context of other phenomena like accreting X-
ray pulsars and magnetar bursts and giant flares. The atmosphere
results presented here can serve as a general guide to the expectations
for photospheric outer envelopes of optically thick magnetospheric
bursts in magnetars (Taverna & Turolla 2017). Detailed simulations
of the radiation transport in the photospheres of both magnetar
fireballs and accretion column of X-ray pulsars are of interest of
future hard X-ray polarimeters, and will be the subject of future
extensions of the code.

The paper begins with a review of elements of the classical
electrodynamical formulation of magnetic Thomson scattering and
the description of polarization in Section 2. In Section 3, we describe
the Monte Carlo technique underpinning the MAGTHOMSCATT code,
including sampling and binning. Intensity and polarization results
for slab surface volumes are detailed in Section 4 for two special
locales on a neutron star surface, the magnetic pole and the equator.
Comparisons with previous works are forged therein as a means
of code validation. Polarization results at high opacity are given in
Section 5, together with empirical functions for anisotropic photon
distribution and Stokes parameters. The resultant understanding of
this polarization information in such high-opacity domains facilitates
the accurate modelling of complete atmospheres with simulations
possessing modest computational demands. Some contextual dis-
cussions for neutron star applications are offered in Section 6.

2 POLARIZED RADIATION TRANSFER IN
STRONG MAGNETIC FIELDS

The technical approach adopted in the simulation we detail in this
paper models photon transport and magnetic scattering using an
electric field vector formalism. This distinguishes it from previous
studies that have tracked Stokes parameter information (Whitney
1991a, b) or linearly polarized states in the resonant cyclotron
approximation (Ferndndez & Thompson 2007; Nobili, Turolla &
Zane 2008; Fernandez & Davis 2011). This electric vector approach
is more fundamental, more general, and is elegant in how it isolates
key characteristics of the scattering transport, identifying the critical
interplay between linear and circular polarizations that is missing in
most works. Employment of the tracking of electric (polarization)
vectors also affords greater versatility for future extensions, like
adding up emission from extended regions on the stellar surface
or perhaps from magnetospheric locales, general relativistic polar-
ization transport, and dispersive propagation out to an observer at
infinity. Such versatility is not permitted by pure Stokes parameter
transport approaches such as in Whitney (1991a, b).

The structure of the radiative transfer simulation described in
Section 3 is to inject polarized light waves at the base of an
upper atmosphere where free—free opacity is low, propagate them
as discrete photons, scattering them as classical electromagnetic
waves in the magnetic Thomson domain, and eventually allow
them to escape at the top of the atmospheric slab. The simulation
will assume an effectively cold plasma, which well approximates
the outer surface layers of a neutron star. Given the focus on the
simulation development and validation, dispersive influences due to
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warm plasma and the quantum magnetic vacuum will be neglected,
their treatment being deferred to future stages of our program.

The intensity and polarization of a classical, transverse electro-
magnetic wave can be described with a complex electric field 3-vector
E that is orthogonal to the direction of propagation k :

E=E, exp{i k-r— ot — ¢(z)]} — E(r, 1)e . (1

The magnetic field component B = k x E of this wave is then
automatically captured and trivially determined. The polarization
vector £(r, t) incorporates the spatial dependence, which usually
factors out of measures when time averages of the field are taken; we
will ignore it hereafter.

2.1 Magnetic Thomson scattering

The classical electromagnetic theory of electron scattering in the
absence of external fields is detailed in texts such as Jackson
(1975), Landau & Lifshitz (1975), and Rybicki & Lightman (1979).
Such Thomson scattering formalism is routinely adapted to treat
the case of gyrational motion of electrons in a magnetic field,
and a seminal formulation was presented in Canuto, Lodenquai &
Ruderman (1971) in the context of plasma dispersion. The classical
formulation is distilled here to identify elements germane to the
simulation algorithms of Section 3, and the presentation of results in
Sections 4 and 5.

The incident electromagnetic wave has a direction of propagation
given by the unit vector k; , and an electric field E(t) = Ee'" |
with &; -k; = 0. The oscillating wave field drives the acceleration
of an electron subject to the influence of a magnetic field B = BB,
motion described by the Newton—Lorentz equation:

du(r)
S
Since E(t) oc e, it is readily seen that the time dependence of
the acceleration contains the same exponential factor: a = dv/dr
e~ with velocity v = a/(—iw) o e also. By factoring out the
time dependence, the induced acceleration then satisfies

= —¢E(1) — Sv(t) x B. @)

e ol&]l

aei(ut - , 3
me w? — wp ©)

where

o =wé —ivos & x B—wiE; - BB, 4)

and wp = eB/mcc is the electron cyclotron frequency. In general,
k: x B #0 so that &£ - B # 0. We have introduced the scaled
incident polarization vector & =¢ /IE;| to simplify ensuing ex-
pressions for the differential and total cross-section. The motion
is clearly oscillatory at the driving frequency w, generally with
different amplitudes in each of the three dimensions, leading to
elliptical polarization for the scattered photon. The &; x B term
is the driver for circular polarization, and its influence is maximized
near the cyclotron frequency.

The accelerating, non-relativistic charge radiates a scattered wave.
The dipole radiation formula can be employed for an accelerating
electron to obtain the electric field after scattering (Landau & Lifshitz
1975):

ro

. e . n
Efrin= o & = e kr % (kf x a), )

where k s is the direction of propagation of the scattered wave. The
frequency of the outgoing wave is just that of the incoming one,
the signature of Thomson scattering. Here, R is the distance from
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the oscillating/radiating dipole to a point of observation, and ry =
e?/mec? is the classical electron radius. Inserting the acceleration
from equation (3),

g, kyx(k
I f><2(f>2<°‘). (6)

|81| w* — wy

£

Thus the transversality condition £ -k, = 0 follows. The dipole
radiation formalism then delivers the differential cross-section for
magnetic Thomson scattering via the ratio R” |E f|2 /|E;|* of final
to initial wave Poynting fluxes:

do ar _ o (kyxa) - (kp xar)

28 & _
@_rogf-gf—ro > (7)

(0? — w)?

This distillation has employed equations (4) and (6). Using a
polarization tensor, equation (7) can be modified to treat dispersive
cases, for example, in accounting for the dielectric response of a
plasma (Canuto et al. 1971; Ventura 1979).

Employing a standard vector identity for the numerator of equa-
tion (7), it is routinely integrated over solid angles d2; to yield the
total scattering cross-section:

8 o-of
o= e o 8)
(0? — o)
Details of the derivation are posited in Appendix A. Further,
expanding « - ™ using equation (4) then quickly gives

ot 4 2 (2 N
o= ——"5|® +wB(wB—2w)‘€i~B‘
(0? — w})
A ~ |2 ~ N Ak
rotaRfe x B +ziw3wBB.(s,-xs,.)], ©)

where or = 87r2/3 is the familiar Thomson cross-section in the
absence of an external field. The term proportional to iw’wg is
actually real: this character can be established by adding &; x & j
to its complex conjugate to demonstrate that this vector is always
purely imaginary. Observe that because of transversality, & x é:k is
parallel to k; , aresult that is quickly established using the expansion
of the vector triple product ]:T,- x (& x & ?) = (. Equation (9) can be
evaluated for any polarization configuration for the incident photon,
as is done in Appendix B. These vector forms for the differential
and the total cross-sections appear not to have been derived before,
and complement other expositions in the literature (e.g. Hamada &
Kanno 1974; Borner & Meszaros 1979).

Total cross-sections for the linearly polarized states L and || are
presented in Fig. B1 in Appendix B, illustrating the prominence of
the resonance at the cyclotron frequency, w = wg . In the classical
picture, radiation reaction consumes some of the kinetic energy of the
driven electron, leading to an extra term in the dynamical equation
in equation (2) (e.g. Landau & Lifshitz 1975). This yields damped
waves with solutions approximated by w — w + iI'/2 for cyclotron
radiative width I", so that a Lorentz profile proportional to 1/[(w —
wp)? + I'? /4] replaces the divergent factor 1/(w — wg)? . The same
type of Breit—Wigner modification arises in a quantum description
(e.g. Harding & Daugherty 1991), where the width is now due to the
finite cyclotron decay lifetime of the intermediate virtual electron
state. Accordingly, the divergence is truncated, yielding finite values
for the cross-section that are of the order of (wg/I")’or when the
magnetic field is highly subcritical, B < B, ; details can be found
in the papers by Baring, Wadiasingh & Gonthier (2011) and Gonthier
et al. (2014).

MNRAS 500, 5369-5392 (2021)
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2.2 Parametrizing polarization

The electric field vector approach to handling transport and scattering
of individual photons is elegant and powerful. Yet, for the purposes of
polarization accounting for large numbers of photons emergent from
the simulation geometry, and for comparison with other studies, it is
expedient to also adopt the convenient parametrization identified by
Stokes (1851) encapsulated in the Stokes vector S = (I, Q, U, V).
The Stokes I parameter describes the intensity of the radiation. The
Stokes Q and U parameters are related to the degree and angle of
linear polarization. The Stokes parameter V captures information
concerning circular polarization. In this paper, we will use the
convention that the right-hand rule applies to increasing phases to
specify the sense of &€ rotation for a circularly polarized wave. With
this convention, V /I = 1(—1) corresponds to fully right- (left-)
handed circularly polarized radiation.

A principal measure featuring in the simulation output and
graphical illustrations of Sections 4 and 5 is the degree of polarization
IT:

0=(Q/D+WU/IP+(V/I?, 0<T<L. (10)

One can similarly define the linear polarization degree IT;, =
I(V — 0) by setting V = 0 in equation (10). In the Monte Carlo
radiation transfer simulation that is described in Section 3, each light
wave is a monochromatic photon with 100 percent polarization,
ie. IT = 1, regardless of whether the light is linearly, circularly, or
elliptically polarized. Accordingly, the construction can comfortably
accommodate the elliptical eigenmodes that arise in dispersive
propagation in plasma or the magnetized quantum vacuum.

The Stokes parameters for a photon can naturally be expressed in
terms of its electric field vector information for general propagation
directions using spherical polar coordinates rather than employing a
Cartesian basis. The propagation direction k is the radial direction,
and the spherical polar angles give

£= 840+ £ = |E| (&0 + E40) (an

for the polarization vector, with & =&/I1E| and 54, =& /IE]|.
Using the ¢ = 0 plane for reference, with a correspond convention
that U = 0, the Stokes parameter definition in this basis is

(&85 + (E4E5)
EoEy) — (E4E5
_|@En - | "
(€0€g) +(&5€0)
i (&€ —E3Ey)

<= @ © ~

The brackets (...) signify time averages of the products of wave
field components. This coordinate choice is naturally suited to a
fixed observer direction, with (6, ¢) constituting zenith polar angles
relative to the atmospheric slab, to be described in Section 3.
One can also a form a reduced Stokes parameter 3-vector § =
0,0, V)= (Q/I1, U/I, V/I), using ratios of the polarization
quantities of interest. These will be employed at the recording stage
when waves/photons exit the atmospheric slabs.

The total cross-section in equation (9) can be expressed using the
Stokes parameters. This is best done using the normalized forms f; =
1, Q; and V; for the incident photon, noting that in our coordinate
description, U; =0 can be chosen without loss of generality. If
0; = arccos u; is the angle of the initial photon to the magnetic field
direction B, then using the polar coordinate forms for the Stokes
parameters in equation (12), and the electric field vector form in

MNRAS 500, 5369-5392 (2021)
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Figure 1. Simulation geometry for transfer of photons through an atmo-
spheric slab of height 4 with a normal direction along the z-axis (zenith)
and magnetic field in the x — z plane, at an angle 6p to the local zenith.
The red trajectory (projected on the x — z plane) corresponds to a photon
that scatters 10 times before exiting the top of the slab, reaching the observer.
The blue and green trajectories are for photons that scatter and eventually
exit the bottom of the slab and are therefore unobservable; they represent a
sizable majority of photons (see Section 4) that are not included in the Stokes
parameter data throughout.

equation (11), one quickly derives the result

o 1 ~ ~
o= UT{EB(U)) I; + 3 [1 - EB((‘)):| (Il + 0:) (1—ui)

+ Ap(w) Vi ui}, (13)

where the frequency dependence is encapsulated in two simple func-
tions Xg(w) and Ag(w) defined in Appendix B in equations (B5)
and (B16), respectively. This clearly identifies the contributions of
linear and circular polarizations to the scattering, to be elaborated
upon in due course. Equation (13) concurs with equation (4) of
Whitney (1991a) and equation (2.26) of Barchas (2017), both of
which were derived from the polarization phase matrix analysis of
Chou (1986).

3 MONTE CARLO SIMULATION

This section outlines the structure of the Monte Carlo simulation
that has been developed to treat scattering transfer of polarized elec-
tromagnetic waves/photons in neutron star atmospheres. This paper
will focus on magnetic Thomson transport, though the technique can
easily capture electron—photon energy exchange in the full Compton
process. We will also restrict considerations here to locally uniform
thin slabs. The familiar Thomson optical depth 7y serves as the key
parameter controlling emergent intensities, anisotropies, and Stokes
polarization parameters. Note that the results presented in Section 4
are applicable also to stratified atmospheric slabs with the same
values of tr, as long as the influence of temperature gradients on
e — y energy exchange can be neglected. A schematic diagram of the
slab geometry and representative photon transfer is given in Fig. 1.
The injection of photons in the simulation can be anywhere within
the slab, though for our results in Section 4, it will occur at the base
of the slab, i.e. at z = 0 in the diagram in Fig. 1 and closest to the
centre of the star.

120z Atenuep /| uo Jesn Ausiaaiun 991y Aq 6291 86S/69€S/7/00S/10E/seIuW/Woo dnoolwepese//:sdiy Woll papeojumod



The Monte Carlo technique is computationally efficient: for inten-
sive simulations in high-opacity domains, the C++ code described
herein normally takes several hours or less to run on a desktop
computer with a multicore CPU. As the algorithm operates on a
photon-by-photon basis, the code is parallelized. The Monte Carlo
method has been applied by Whitney (1989, 1991a, b) in the context
of white dwarf atmospheres, for magnetar atmospheres by Bulik &
Miller (1997) and Niemiec & Bulik (2006), and for magnetar coronae
by Ferndndez & Thompson (2007), Nobili et al. (2008), Zane et al.
(2011), and Taverna & Turolla (2017). It serves as a complementary
approach to integro-differential equation radiation transfer methods
(Chandrasekhar 1960) that are common in the magnetar literature
(e.g. Ho & Lai 2001; Ozel 2001). Flat space—time is presumed when
tracking polarization (&) and propagation (k) vectors, since the
general relativistic influences can be captured with single redshift
and field distortion parameters that apply uniformly throughout the
thin slabs at particular surface locales.

3.1 Photon injection and scattering

The initial injection of photons at the bottom of an atmospheric layer
will often (but not always) be distributed isotropically in intensity,
i.e. I =(const.). Assuming flux isotropy, the differential number of
photons in an interval (0, 6 + df) in polar angle and (¢, ¢ + d¢)
in azimuthal angle can be expressed as

dN N;
—— = f(0,¢) = — cosfsinb. 14
d0dg 1. 9) - (14)
Here, the total number of photons N; passing through the surface
where the injection occurs is obtained via an integration over all
angles:

/2 2
/ 10, ¢)dodg = N;. 15)
0 0

The integration over 6 spans the interval [0, /2] because we
consider only the radiation emerging from the hemisphere below
the injection surface.

To generate the initial propagation direction ko of photons at
the base of the slab, the assumption of flux-weighted isotropy in
equation (14) will be imposed in most of the illustrative results of
Section 4. Thus, for a particular choice of polar coordinates specified
relative to the z -axis,

I}o = (sin By cos ¢y, sin by sin ¢g, cos 90) . (16)

For this restrictive case of isotropy, the functional f(0, ¢) applies,
which is azimuthal symmetric. Therefore, it is analytically invertible
in both polar and azimuthal angles, yielding familiar forms expressed
as functions of the two pertinent random variates, & and &, :
Oy = %arccos(ZSg —1), ¢o=2m&,. (17)
This defines a uniform distribution weighted by the factor cos 6, that
constitutes the angle-dependent flux of photons through the base of
the slab. The factor of 1/2 in the 6, formula is introduced to render
it appropriate for injection in the upward hemisphere only. Therefore,
two random number choices are required to specify the direction of
the injected photon. In some of our high-opacity simulation runs
addressed in Section 5, the assumption of isotropy is relaxed via a
routine adaptation of the injection algorithm.

The choice of polarizations for injected photons is not unique, and
as will become apparent, the emergent polarization signatures for
moderate opacity slabs will be dependent on the injection choice.
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In such circumstances, the scattering simulation will not yet have
reached a truly Markovian domain. The only true zero polarization
injection is to randomly select all components &, = 0 expligs)
and é'd, = ¢expfi ¢4} both in vector direction (6, ¢) and in com-
plex phase (¢s, ¢4 ), simultaneously isotropizing ko. This then
statistically generates zero for all the averages defining the Stokes
parameters in equation (12), resulting in polarization isotropy on the
Poincaré sphere.

The distance s , a photon propagates between scatterings or before
its first collision is determined probabilistically using the total cross-
section o, which is a function of polarization & and propagation
vector k; : see equation (9). If the photon was initially at position r; ,
then the position at which it scattersis ry = r; + sk; .Fora uniform
electron number density 7., the propagation distance is sampled
according to Poisson statistics:

log &

neo

& =exp(—neos) & s = (18)
Accordingly, & is the random variate on the interval [0, 1] that
depends directly on the optical depth t = n.os, yielding a mean
free path A = 1/(n.o) for scattering. This form was actually used
to compute the trajectories illustrated in Fig. 1. For non-uniform
electron densities, this algorithm is easily adapted by working in
optical depth space so that n.s is replaced by an integral of n. over
path-length.

Once a scattering is determined to occur, the differential cross-
section must also be sampled probabilistically in order to determine
the new propagation direction k; and polarization £ after scat-
tering. This is accomplished by applying the accept—reject method
to the suitably normalized polarization-dependent differential cross-
section:

87 do  or - &}

30 dQ; o |E

p(&oss &or)

SRR

Here, £, is calculated using equation (6), or equivalently, o is
formed using equation (4). Observe that both o and do/d2 are
dependent on the initial polarization state and propagation direction.
The form on the second line of equation (19) is obtained simply
from the ratio of equations (7) and (8), and so expressing its
numerator using the Binet-Cauchy identity from vector analysis,
it is quickly established that 0 < p (&, &) <1 for all possible
k r - Accordingly, p(&; IR f) is well posed for the accept-reject
method on the unit cube, and it represents a scaled two-dimensional
probability distribution in the variables 6; and ¢, . We therefore
employ two uniform and independent random variates &, and
&y . identified with the values of (1 —cos6;)/2 and ¢;/2m,
respectively:

07 = arccos (2895 — 1), ¢y =2m&y;. (20)

The normalization condition for p can be written

1 1 2
/ d&af/ désr p(&ors Esr) = 3 2n
0 0

since d&y;dé,; = d2;/4m, and this gives an indication of good
numerical efficiency of this protocol, given that the normalization is
not much inferior to unity. The accept-reject method then selects an
additional random variate &, to represent the probability function
p . Thus the three random numbers &;r, &y, &, identify a point
P within a rectangular prism volume that is bifurcated by the
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P&y, Er) surface. If P lies below the surface, then the values of
& and &5 are accepted, and both k; and £ are then determined.
If, however, the point P lies above the surface, then the selection is
rejected, and the Monte Carlo decision process is initiated anew. In
this way, on average, the differential cross-section for scattering is
sampled representatively by the volume beneath the surface.

4 ILLUSTRATIVE RESULTS AND CODE
VALIDATION FOR MODERATE OPACITIES

This section outlines some basic results from the polarized radi-
ation transport simulation, and provides a level of validation via
comparison with prior numerical analyses of the magnetic Thomson
problem. Throughout, the magnetic field will be assumed uniform,
though of different orientations with respect to the slab normal: see
Fig. 1. The photons are monochromatic at select frequencies, and
their injection is both isotropic and an unpolarized mix of linear
polarization states. The zenith angle 6, of the observer direction
is a suitable choice for the polar angle of the anisotropic emergent
radiation. The thickness of the slab will be specified via an optical
depth parameter. Photons can exit either through the top of the slab at
z > h,escaping to an observer at infinity with their Stokes parameter
information being recorded, or through the bottom of the slab at
z < 0, to be absorbed deep in the atmosphere. The loss of photons
via absorption at z < O turns out to be quite significant at high-
optical depths, thereby limiting the computational efficiency of the
simulation.

Results will be presented for two magnetic field orientations, along
the local zenith and parallel to the slab surface. These cases bracket
the range of possibilities on the neutron star surface, and one antic-
ipates that as a neutron star rotates, the emergent polarization and
intensity signals will be a pulsing mix of results from these examples
and those pertaining to interstitial field orientations. The coordinate
reference system will be chosen so that the Stokes U parameter is
effectively zero, to within photon count statistics, with Stokes Q
and V parameters being the depicted polarization measures. This
simplification can be maintained for arbitrary magnetic colatitudes by
orienting one Cartesian coordinate axis to coincide with a particular
magnetic longitudinal plane. However, when extending to summing
over different longitudes, U is no longer zero in general.

It is of interest to explore how the emergent Stokes measures vary
with thickness/depth of the slab, and to assess at what thickness
the scattering/diffusion is saturated, for which dependence on the
photon injection angular and polarization distributions is minimal.
There is no unique optical depth measure, since the scattering cross-
section depends on the photon energy. Here, we will be guided by
the choice of Whitney (1991a), centred on two preferred directions,
namely parallel || and perpendicular L to the slab’s field direction.
Note that these labels are below applied to optical depths and
must be distinguished from the linear photon polarization state
labels. For unpolarized (up) radiation, the scattering cross-section
in equation (B4) in Appendix B yields optical depths parallel to and

orthogonal to the field B of
R @*(w? + 0})
T = neh aup(e,- =0 ) = ‘CTWs

(22)

2 2 2
T = neh oyy(6; = 90°) = %T {1 + M}

(@ — wp)?
These can be applied to any field orientation. Since the cross-section

is strongly frequency dependent, fixing the value of 7, or 7,
provides a useful path to comparing results for different frequencies.
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Accordingly, this parameter appears in the ensuing plots of this
section, as opposed to the familiar Thomson value ©r = n.hor.
Furthermore, it enables direct comparison with results from the
Monte Carlo simulation of magnetic Thomson transport in Whitney
(1991a, b).

While the framing of the discussion is centred on neutron star
atmospheres, the results are also potentially applicable to dynamic
hard X-ray bursts in magnetar magnetospheres, where the slabs
can be considered to be localized portions of the outer layers of
a Compton-thick cloud contained in closed field line regions. A
caveat to this extension is that there are locales in the magnetosphere
where the photon energy and the cyclotron energy exceed 20 keV
and the magnetic Thomson restriction must be relaxed in favour of
a full QED treatment. A second caveat is that the cold electron gas
approximation must also be relinquished in order to accurately model
magnetar bursts, thereby defining an extension that will be explored
in future work.

4.1 The polar case

Fig. 2 displays the angular profiles of the emergent intensity dis-
tribution at the magnetic pole, where 6, = 0° is along the field,
and the horizon direction 6, = 90° is perpendicular to B. The
distributions (linear scale) are integrated over azimuthal angles about
the zenith, and assigned to bins of width 1° in 6, . The normalization
is determined by dividing by the total number of photons injected,
which was A; = 10, and the escape probability from the slab is
addressed in Fig. 4. Profiles are displayed for different slab thickness
h using the optical depth parameter 7; as a proxy. The angle-
integrated intensity generally declines monotonically with increasing
7) as the ability of photons to escape out of the top of the slab drops,
and more photons cross the slab base into the stellar interior.

The distributions in Fig. 2 were generated using a flux-weighted
isotropic injection of photons at the slab base, with equal numbers of
linear polarizations L and || chosen. The emergent distributions are
sensitive to the injection choice. For example, the thesis results in fig.
4.2 of Barchas (2017) illustrate how even with isotropic injection,
the angular profiles depend on the specification of an unpolarized
injection at the base, with isotropy of photon electric field vectors
on the Poincaré sphere yielding different intensity (and polarization)
distributions from the L / || mode parity choice adopted here, and
also a plasma eigenmode parity. The differences are substantial for
thin slabs with 7y = 1,2, 3. Yet, the tjy 2 7 examples correspond
to circumstances where the radiative transfer has generally saturated
in generating angular and polarization distributions. The shapes
of the intensity profiles are then approximately independent of
7y and are only slightly sensitive to the injection choice; the
exception to this is at low frequencies w/wp < 0.1 and around the
resonant frequency. We will expand upon this injection nuance in
Section 5.

The six panels of Fig. 2 sample a representative array of photon
frequencies/energies straddling the cyclotron frequency, thereby
identifying a diversity of character for the angular profiles. In this se-
quence, the Thomson optical depth spans a wide range of values, with
the @ = 0.99 wp example representing the resonant cyclotron case.
While not depicted here, in all cases, the full angular distributions
exhibited no dependence on the longitudinal angle (azimuth) within
statistical precision. For @w/wg >> 1, when the character approaches
that of an unmagnetized plasma, the distributions possess a modest
anisotropy in polar angle. In this domain, equation (22) indicates
7| ~ T, ~ T, yet the differential cross-section contains anisotropy
that permeates into the angular profiles realized in the radiative
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Figure 2. Angular distributions of intensity, as functions of the observer’s zenith angle 6., for the case of B being in the zenith direction along the slab
normal, appropriate to the magnetic pole. Each panel depicts results for one of six photon frequencies w, specified in terms of the electron cyclotron frequency
wB = eB/mcc. The coloured histograms are for different optical depth parameters 7|, as defined in equation (22), ranging from 7y =1 (red) to 7 = 10
(black), in unit increments; larger ) incurring higher loss rates below the atmospheric slab into the stellar interior. The injection at the base of the slab was
isotropic, with a net polarization of zero as a superposition of the L and || linear polarization states with their particular Stokes parameters. The distributions are
integrated over azimuthal angles about the zenith, so that they represent intensities captured in entire conical sectors of angular width A6, = 1° . Simulation runs
were for an injection of A; = 10° photons in all cases, except for w/wp = 0.1, where N = 10%. Aqua squares for the w/wp = 0.25,0.5,2, 10 examples
represent data from simulations of Whitney (1991a); see text. The black squares for w/wp = 10 are results adapted from Sunyaev & Titarchuk (1985) for

non-magnetic Thomson transport, discussed in connection with Fig. 5 below.

transfer. Remembering that these are intensity representations, they
include a 1/ cos @, flux weighting factor. Accordingly, the true light
density anisotropy n,(6;, ¢.) at the slab surface is proportional
to Icos®, and thus is skewed more markedly towards the field
direction.

Below the cyclotron frequency, the anisotropy is more profound,
evincing a strong collimation aligned with the magnetic field; note
that the reduction in solid angle about B imposes a modest decline
very near 6, = (0. This collimation is the essence of the ‘pencil
beam’ distributions familiar in historic studies of accreting X-ray
pulsars (e.g. Gnedin & Sunyaev 1974; Mészdros & Bonazzola 1981;
Burnard, Arons & Klein 1991). For these 7; < 10 examples, the
origin of this collimation is mostly due to a high percentage of ||
photons injected almost along B emerging unscattered because of a
markedly reduced cross-section for these directions. This simulation
bias is eliminated when the code is run in much higher opacity
domains, and the beaming becomes much more muted, as will
become apparent in Section 5. For the low frequency, modest opacity
cases, the angle 6, of the peak of the profile appears to correlate
with frequency as 6, ~ w/wg, a correlation that persists to lower
frequencies than are exhibited here in supplemental runs performed
for 0.025 = w/wg = 0.01 . This coupling is naturally expected from
the interplay between the incident photon angle and frequency
present in the cross-section for the || polarization (ordinary) mode,
an interplay illustrated in Fig. B1.

The intensity profile right in the cyclotron resonance is in striking
contrast to those at other frequencies. Equation (B9) shows that
relatively proximate to the cyclotron resonance, spanning 0.25 <
w/wpg < 4, scatterings into || modes preferentially occur in the
direction of B. The L mode does not have this bias. Combined,
they enhance the emergent intensity closer to the field direction i.e.
for smaller zenith angles. The exception is right in the resonance,
where the non-resonant contribution to ||— || scatterings is generally
negligible. The scatterings are then azimuthally symmetric, with
a modest bias (o) > (o)) in the angle-averaged cross-sections;
see equation (B4) or Fig. B1. This makes for a generally broad
distribution of photon zenith angles in density that maps over to an
intensity profile /(0,) that is moderately peaked near the horizon,
0. = 90° due to the flux weighting factor. This peaking is diminished
by non-resonant ||— || conversions that help drive the escape of light
close to the field direction at other frequencies.

As a validation of the code, we can compare some of our angular
distributions with those obtained in Whitney (1991a), who employed
a different prescription for the magnetic Thomson cross-section
from the electric field vector formalism adopted here. Nevertheless,
our code should reproduce Whitney’s anisotropies, and it does.
Only limited direct comparison is possible, specifically exhibited
here for frequencies w/wp = 0.25,0.5,2, 10 and 7 = 7. Data are
actually taken from figures in Whitney’s thesis (Whitney 1989), being
binned rather broadly ( A6, ~ 10°), limited by the computational
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statistics available at the time. Whitney’s intensity distributions for
the magnetic pole are normalized in a particular fashion, and so are
adjusted to approximately match the normalization generated here.
Therefore, angular profile shapes are the available diagnostic, and the
comparisons in Fig. 2 indicate strong agreement. Simulation results
were also compared for other select w/wp ratios adopted by Whitney
(1989, 1991a), with comparable agreement, yet are not illustrated
here. Whitney (1989) also produced an array of results for low-
optical depths 7; = 0.1 that more directly capture the information
imprinted by the scattering cross-section. Angular profiles including
polar plot diagrams were generated for 7y = 0.1 cases using our
code, and replicated results in Whitney (1989, 1991a) with good
precision and without exception; again, these are not depicted here.

The polarization properties corresponding to five of these in-
tensity panels are exhibited in Fig. 3, namely for w/wp =
0.25,0.5,0.99,2, 10, again with impressive statistics because the
injection was for ; = 10° photons. These signatures are principally
the Stokes Q (linear polarization) and V (circular polarization)
parameters, both normalized to the emergent intensity / , as functions
of observer zenith angle 6, . At the right is the corresponding degree
of polarization IT as defined in equation (10), and this trio displays a
wealth of observational signatures. Statistically, U is essentially zero
in the simulations for all 6, bins other than the noisy 0° and 180°
bins, which are subject to small number statistics. Accordingly, only
two of the three polarization quantities are independent. Approximate
convergence of the polarization measures to fixed angular profiles
is generally only realized for 7y = 7 in the examples shown. We
note again that runs at w/wg < 0.2 do not saturate at 7 = 10
due to the large disparity in cross-sections between the two linear
polarization states. This occurs only for much larger values of 7,
for which run times increase dramatically. Note also that the results
do not saturate for w/wg = 0.99 at high zenith angles, in this
case due to the complicated interplay of the circular polarization
characteristics.

The coordinate choice combined with a viewing perspective in
the general direction of B dictate generally positive values for
V /I . This follows from the general preponderance of circular
polarization mode conversions — — -+ near to the field direction,
inferred from equation (B17), combined with V > 0 for + he-
licity in these directions, deducible from the circular polarization
eigenvectors in equation (B12). A prominent feature of the plots is
that substantial circular polarization emerges for w/wg 2 0.5 when
7 = 10, except when the viewing angle is orthogonal to the field
(horizon). In particular, |V /I| is maximized when looking along
the field. This is expected since circular polarization states are the
eigenmodes of propagation along the field in a magnetized plasma
(e.g. Canutoetal. 1971). An accompanying signature is that the linear
polarization Iy, ~ |Q/I| is zero along B in general, and strong
perpendicular to the field when either w/wg 2 0.5 or w/wp < 0.25.
These properties are direct consequences of the scattering cross-
sections, which evince strong circular polarization and small linear
polarization along B, with this bias reversed transverse to the field:
see equations (B4) and (B15) in Appendix B.

In terms of the variation with frequency, |V/I| is generally
quite large in the window 0.5 < w/wp < 2, straddling the cyclotron
resonance. The origin of this is the comparative strength of the
gyrational motion of an electron induced by the incoming wave,
so that the curl term in equation (4) contributes significantly to the
overall value of &, i.e. the acceleration vector. A consequence of this
is a relative balance between scatterings into the | and || states, a
balance maximized at w/wg = 1/+/3 that seeds |Q/I| dropping to
values below 0.3; see Fig. B1. At high frequencies w/wg 2 10, the
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scattering is essentially non-magnetic and both the circular and linear
polarization measures are smaller, on average. At small frequencies
w/wp < 0.25, the large disparity in opacities between these two
linear polarization states yields a rapid rise in emergent |Q/I| as w
declines. This is accompanied by a drop in the circular polarization
that is retarded somewhat when viewing along B, as exemplified in
the w/wp = 0.25 illustration. Also notable is that the sign of Q/1
changes from negative to positive as the frequency drops through the
cyclotron resonance, character persisting for all lower frequencies.
This is a consequence of the frequency dependence of the balance
between scatterings of L and | states, which drives a change
in the relative apportionment of polar & and toroidal 54, field
components.

The polarization degree column of panels on the right of Fig. 3
reveals a rich behaviour with both zenith angle and frequency that
can afford significant diagnostic potential for X-ray polarimeters,
which nominally are not expected to detect circular polarization,
instead measuring Q, U, and TI1. Extremely strong IT emerges
around the cyclotron frequency, near 100 per cent for 6, < 50°, and
polarization degrees generally above 50 per cent for subcyclotronic
photon frequencies around @ ~ wg/2. In contrast, in the ‘non-
magnetic domain’ of w/wg = 10, lower values of 0.2 < T1 < 0.4
result. The strong evolution of linear and total polarization degree
in the frequency range straddling the cyclotron resonance signals
the potential for these signatures to be powerful diagnostics on the
emission environs in neutron stars of much lower magnetization than
magnetars.

The last feature of Fig. 3 to note is the comparison of Q/I,
V /I ,and I1 with the results displayed in Whitney (1989). As with
intensity, this was possible for 7y =7 and w/wg = 0.25,0.5,2, 10,
again revealing a satisfying agreement for all three polarization
quantities. As noted above, the binning of Whitney’s data is coarse
in zenith angle, dictated by statistics limited by the contempora-
neous computational capability. Given that Whitney (1989, 1991a)
modelled the magnetic Thomson transfer in a manner somewhat
different from the electric field vector protocol here, using Jones
matrix cross-section evaluations, the favourable comparison of three
Stokes quantities /, Q, V serves as an important code validation for
the magnetic polar case. We note that insightful comparison with
the Monte Carlo models of Fernandez & Thompson (2007), Nobili
et al. (2008), and Ferndndez & Davis (2011) that treat scattering
of linearly polarized photons only in the cyclotron resonance is not
possible.

4.2 Slab escape probabilities

The construction of these simulation runs guarantees a monotonic
decline with 7 of the total numbers of photons escaping through
the top of the slab. This naturally arises due to an increase in the
cumulative probability that photons will diffuse deep into the interior
of the atmosphere as net opacity increases, emerging from the bottom
of the slab where they are injected. If one divides the intensities by
the solid-angle-integrated net intensity, one arrives at the ratio of the
number of photons AN emerging from the top of the slab to the
number N; injected at its base. This serves as a measure of efficiency
of the simulation, i.e. the capturing of useful polarization data. This
ratio Ny /N; , the outwards escape probability, is plotted in Fig. 4
as a function of the scaled photon frequency w/wg , for the set of |
values presented in the magnetic polar simulations in Figs 2 and 3.
This information is also presented there for the magnetic equator
case that will be addressed in detail shortly.
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Figure 3. A companion plot for Fig. 2 generated using the same simulation runs. Angular distributions of Stokes parameters Q, V and the polarization degree
IT, as functions of the observer’s zenith angle 6, , again for the ‘polar’ case of B being in the zenith direction along the slab normal. Each row depicts results for
one of five photon frequencies w, specified in terms of the electron cyclotron frequency wp = eB/mec . The coloured histograms are for different optical depth
parameters 7|, coded as in Fig. 2. The polarization angular profiles approximately saturate at large 7 . The injection at the base of the slab was isotropic and
unpolarized as for Fig. 2. The distributions are again integrated over azimuthal angles about the zenith, applying to conical sectors of angular width Af, = 1°.
Simulation runs were for an injection of A; = 10° photons. Aqua squares represent data from simulations of Whitney (1991a); see text.
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Figure 4. Outwards escape probabilities, Nesc/N; , the ratios of the number of photons Nes. emerging at the top of the slab to the number N injected at its
base. These are formed via integration over the angular distributions in Fig. 2. On the left is the magnetic polar case where the field is normal to the slab and
in the zenith direction, and on the right is the magnetic equator case, for which B is oriented parallel to the slab boundaries (horizon); these are, respectively,
0 =0 and O = 7/2 in Fig. 1. The dots at discrete frequencies represent data for runs with A; = 10° photons, and they are joined by straight lines to guide
the eye. The expected monotonic decline of the escape probabilities with 7 and 7 is obvious. The frequency dependence for the two cases is discussed in the

text.

The dots in this figure present results for runs with A; = 10° pho-
tons. A ubiquitous monotonic decline with t; is apparent. For both
polar and equatorial cases, the escape probability N./N; varies
with photon energy/frequency just as the differential cross-section
does. For the magnetic polar case on the left, the escape ratio peaks at
the cyclotron frequency and is particularly low when w < wg . The
peaking is a consequence of the scattering cross-section for the two
linear polarization modes being similar at the cyclotron frequency,
influenced also to some extent by the actual angular dependence
of the differential cross-section do/d€2. The number of scatterings
per photon is still modest since scaling the runs by 7 essentially
moderates the enhanced opacity at the cyclotron resonance. At highly
subcyclotronic frequencies, the scattering conversions L— ||, while
comparatively rare, do actually arise in the runs since fixing 7 as
defined in equation (22) effectively guarantees them. Subsequently,
||[— 1 scatterings enhance and dominate the opacity, thereby biasing
the escape of photons towards the lower boundary of the slab and
reducing the Ny /N; ratio.

For the magnetic equatorial case on the right of Fig. 4, for which
we use 7, as defined in equation (22) to tag the optical depth, the
general dependence with frequency is quite different from that for
the polar runs. Noticeably, the escape probability/efficiency increases
in w/wg <K 1 domains. This too is a consequence of the action of
prolific ||—| scatterings subsequent to L — | mode conversions.
However, while the polar case samples escape somewhat aligned
to the field direction, the equatorial case preferentially selects
the complementary directions, those that are highly oblique to
B . Accordingly, it captures the signals contributed by diffusion
away from the field direction, and for w/wpg < 1 this constitutes
considerably larger numbers of photons that underpin the inhibition
of the Ny./N; ratio when B is along the zenith, i.e. for the polar
case at left.

We remark that the detailed values of AN./N; will depend on
the injection conditions, so that different values will be realized if
the injection at the slab base is either anisotropic or polarized. None
the less, one may anticipate that the general shape of the escape
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probability curves will be somewhat similar to those depicted in
Fig. 4.

4.3 Equatorial atmospheric zones

The emission anisotropy and polarization characteristics depend
strongly on the orientation of the magnetic field to the slab nor-
mal. To illustrate this and provide a contrast to the polar case in
Section 4.1, an ‘equatorial’ example with the field aligned parallel
to the planar slab boundaries (0 = 7/2) is depicted in Fig. 5 (note
that an intermediate 05 = /4 case is explored in Barchas 2017).
The simulations generating these distributions for 6 = /2 also
produced the escape probability results displayed on the right of
Fig. 4. Since the distributions are integrated over the azimuthal angle
¢, about the zenith direction, the circular polarization V in this
set-up is statistically equal to zero, and therefore is not displayed
in the figure; non-zero V appears when particular ¢, values are
selected. Since U is effectively zero due to the choice of coordinates,
the Stokes parameter Q (centre column) and polarization degree
IT~ |Q/I| (right) in Fig. 5 provide essentially redundant represen-
tations of the same simulation output information for each w/wg
TOW.

The intensity profiles in the left column monotonically decline
with increasing 6, for all photon frequencies w and optical depths
7, . While this replicates the general behaviour for w/wp > 1
evident in Fig. 2, it differs vastly with the magnetic polar case at
subcyclotronic frequencies w/wp < 1. The reason for this disparity
in character is simply that for this equatorial example, viewing
angles generally do not coincide with the field direction and so the
zenith azimuth ¢, integration acts to convolve information from
the differential cross-section at mostly large angles relative to the
field direction B . Geometrically, one can isolate photon directions
almost parallel to the field by selecting particular ¢, azimuths with
0. ~ 90°, and then the intensity profile does possess more variation
with @/wg , though generally the fluxes of photons emergent through
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Figure 5. Angular distributions for intensity I, Stokes parameter Q, and the polarization degree IT, as functions of the observer’s zenith angle 6., now for
the ‘equatorial’ case of B being parallel to the slab surface. Each row depicts results for one of five photon frequencies w, specified in terms of the electron
cyclotron frequency wp = eB/mecc . The coloured histograms are for different optical depth parameters 7, , as defined in equation (22). The angular profiles
approximately saturate at large 7, . The injection at the base of the slab was isotropic and unpolarized as for the polar case. The distributions are again integrated
over azimuthal angles about the zenith, applying to conical sectors of angular width A, = 1°. Simulation runs were for an injection of N; = 10° photons.
The black squares for w/wp = 10 are intensity results (suitably scaled) from Sunyaev & Titarchuk (1985) for non-magnetic Thomson transport.
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the upper surface of the slab are then low since scattering into high
0, directions is improbable, as is evident in the Figure’s intensity
panels. Thus, the intensity information in Fig. 5 can be described as
essentially ‘non-magnetic’ in character.

The top panel in Fig. 5 illustrates that the linear polarization
Q/1 is very small for zenith angles less than around 55°, and then
increases somewhat as viewing angles more or less align with B,
but nevertheless remain small: ITp, < 10 percent. This o > wg
example is approximately a non-magnetic regime. An extensive anal-
ysis of polarization signatures from slabs for classical unmagnetized
Thomson scattering was presented by Sunyaev & Titarchuk (1985),
hereafter ST8S5, for the context of accretion discs near black holes.
Fig. 4 of that paper indicates that for high-optical depths, the intensity
is maximized along the slab normal, and monotonically declines to
around 1/3 of this maximum at the horizon. This is very close to the
behaviour exhibited here in the top left panel of Fig. 5, and also that
for w/wp = 10 in Fig. 2. The black squares exhibited in both the
pertinent figure panels are data for the v = 10 curve illustrated in
fig. 4 of ST8S, scaled by a constant factor so that the zero zenith angle
values coincide with our simulation data. This excellent agreement
with our 7; = 10 results when w > wg is expected since then the
magnetic differential cross-section in equation (A9) approaches the
familiar non-magnetic one.

Turning now to the polarization comparison, fig. 5 of ST85
demonstrates that in the absence of a magnetic field, when v = 10
the linear polarization degree is zero along the slab normal, and
rises monotonically to a value of around 11-12 percent when
viewing almost along the surface. While this IT,,x maximum is
somewhat higher than the t; = 10 magnetic equatorial result at
0. =90° in Fig. 5, it is somewhat lower than the polar ITp,x
value along the horizon in Fig. 3, where V = 0 and the signal is
linearly polarized; the average of our polar and equatorial evalua-
tions is within around 9 percent of the ST85 value at 6, = 90°.
Moreover, for intermediate zenith angles, 50 < 0, < 90° the linear
polarization degrees at T = 10 from the ST85 figure consistently
lie between our polar and equatorial simulation values for |Q/I],
all exhibiting the same monotonic increase with 0, towards the slab
horizon.

A material difference between our results and the non-magnetic
ones of ST85 is that here there is significant emergent circular
polarization V /I when B is not aligned parallel to the slab surface.
A consequence of resonant circulation of the scattering electron,
this non-zero V /I bolsters the net polarization degree signal and
introduces departures from monotonic trends of IT with 6,: see
Fig. 3. Inspection of the two directional opacity measures in equa-
tion (22) indicates departures from the Thomson value tp by 1.5—
3 percentat w = 10wg , so that magnetic influences are still present.
A more precise comparison between the magnetic Comptonization
polarization results here and the non-magnetic analogue in ST85
is thus best performed at higher frequencies. Accordingly, we ran
simulations in both polar and equatorial cases for w/wg = 107,
and found excellent agreement between our angular distributions
for intensity and Iy, = |Q/I| at T, = 10 and the 7 = 10 ones
in figs 4 and 5 of ST85. We also observed that in the polar case,
|V /1| < 0.04 at this much higher frequency, a consequence of the
two circular polarization cross-sections coalescing when @ > wg :
see equation (B15) in Appendix B.

For the more magnetic equatorial cases with w/wg < 2, the inten-
sity profiles at 7, = 10 largely resemble those at supercyclotronic
frequencies in the polar examples of Fig. 2. This again is due to the
higher zenith (horizon) emergences requiring a last scattering very
near the slab surface, an improbable occurrence. The zenith angle
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distributions for Stokes Q for the horizon field orientation look very
different from those of the polar case. Their relative behaviour is
ascribed to the fact that the polar and equatorial cases preferentially
sample complementary perspectives relative to the field direction at
any chosen zenith angle. The Q/I values at w/wp = 2, 0.5, 0.25 in
Figs 3 and 5 are of opposite sign, and so if one sums them, relatively
small net Q/I results, albeit not exactly zero. Intuitively one
expects zero net linear polarization from an isotropic superposition
of magnetic field orientations, and the combination of the polar and
equatorial configurations is the first stage of constructing such a
superposition. The exception to this ‘cancellation’ is provided by the
resonant case @/wp = 0.99, where the scattering angle summations
conspire to give mostly negative Q/I at 6, < 80° for both polar
and equatorial field orientations, and positive Q// for near-horizon
viewing.

A nuance that needs brief attention concerns the coadding of
the polarization information from all slab exit azimuths ¢, for the
illustrations of this section. For the polar case in Fig. 3, results from
all ¢, are statistically identical due to the azimuthal symmetry, so
the addition just improves the simulation data statistics. In contrast,
for non-zenith field orientations such as for the equatorial depictions
in Fig. 5, the Stokes 1, Q,V vary with azimuth ¢, and so the
summations represent a mixing of azimuthal information. Note that
for a particular observer detecting photons from a particular point
on the stellar surface, individual values of both 6, and ¢, are
selected for a particular ray propagating in curved space—time to
infinity.

A comparison of our equatorial slab results with those from the
same field orientation in Whitney (1991b) is not as straightforward as
for the polar field case, since she presented distributions for particular
azimuths ¢, . In doing so, we focus on w/wg = 0.5, 0.25 values, for
which Whitney presented results in figs 5 and 6 of her paper, respec-
tively. Therein, she selected azimuthal angles ¢. = 0°, 90°, 180°
to present her results. It was not clear what ranges of ¢, these
constituted. Nor is it apparent what injection distribution of angles
and polarizations of photons were assumed in Whitney (1991b).
Since the results presented therein were for a low opacity, 7, =3,
the Stokes parameter signals are generally sensitive to the injection
information; this was evident in our various exploratory simulation
runs. It was also unclear what was the statistical quality of the results
presented in figs 5 and 6 of Whitney (1991b), no doubt diminished by
the subselection of particular azimuths, and muting details through
coarse 0, binning.

To best approximate her cases, we collected subsets of the
data presented for the A" = 10° runs in Fig. 5 with unpolarized
and isotropic injection, binned in azimuthal ranges of 10° that
were centred on ¢, =0° and ¢, =90°; note that ¢, = 180°
provides redundant information in relation to the ¢, = 0° case.
Comparing our w/wg = 0.5 distributions with fig. 5 of Whitney
(1991b), we find good general agreement for both ¢, = 0° and
¢. = 90° between her and our distributions of intensity, V /I and
effective linear polarization degree Ily, ~ [Q/I| throughout the
zenith angle range 0 < 6, < 90°. Note again that U/l =0 in
this field configuration. Comparing our w/wg = 0.25 distributions
with Whitney’s fig. 6, the agreement was just as good for both
V/I and Ily,, for both azimuths ¢, = 0°,90°, and also for the
intensity for ¢. = 90°. However, significant deviations at the 10—
30 percent level arose for zenith angles 50° < 6, < 80° for the
¢, = 0° intensity. In the absence of sufficient detail concerning
the photon injection and data binning in Whitney (1991b), it is
not possible to isolate possible causes for the origin of these
differences.
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5 POLARIZATION AT HIGH OPACITIES

In order to move beyond the testing and validation phase, in
preparation for the implementation of the radiation transport code
in more sophisticated models of neutron star atmospheres, it is
necessary to explore the polarization characteristics of magnetic
Thomson transport in high-opacity domains. This is suitably done
by shedding the simulations of the slab geometry and just recording
angular distributions of photon number and polarization measures
subsequent to large numbers of scatterings. Accordingly, the ensuing
results will not at first be applied specifically to any particular neutron
star locale, but will be broadly representative of characteristics deep
in atmospheric slabs. These results are just functions of the angle 6
between the ultimate photon momentum k and magnetic field B
vectors, and the scaled photon frequency w/wg ; it will emerge that
a set of quite simple empirical approximations can encapsulate the
Stokes parameter dependences on 6 and frequency. These will then
be employed to simulate high-opacity slab results for polar locales in
Section 5.4, an extension that enables modelling of thicker regions
than was possible in Whitney (1991a, b). This paves the way for
precision simulation of optically thick photospheres, whether they
belong to neutron star/magnetar surface layers, accretion columns,
or magnetar burst regions.

5.1 High-opacity radiation transfer simulations

The simulation uses an isotropic injection at a single point, but omits
a flux weighting analogous to that in equation (17). The injection is
also unpolarized, employing an equal mix of linearly polarized ||
or L photons in the choice of the complex electric field vectors;
see equation (B2). Specific angular and polarization information at
injection is irrelevant to the simulation output in this Markovian
set-up. Photon frequencies are selected from a uniform distribution
in log,o(w/wg) . To generate excellent statistics, N; = 10° photons
were distributed in the frequency, angle, and polarization variates.
Their paths were followed for exactly n = 100 magnetic Thomson
scatterings, and then their final direction and polarization information
were recorded, regardless of their final location relative to the
injection point. The choice of 100 scatterings was sufficient to
generate a Markovian scattering sequence and sample the differential
cross-section with sufficient density in polar (0 ) and azimuthal (¢ )
angles. We tested this by performing simulations with 103 and 10*
scatterings, but with fewer injected photons, and observed no material
differences within statistics (see fig. 2.6 of Barchas 2017).

At the outset, a photon is assigned to one of 160 logarithmic
frequency bins, uniformly sized in y = log,y(w/wp) . After a scat-
tering sequence is complete, the photon direction is recorded in one
of 120 angle cosine bins, uniformly sized in u = cos@ . Since the
differential cross-section is dependent only on the difference ¢; in
azimuths (see e.g. equation B9 for linear polarizations), the resultant
distributions are independent of azimuth ¢, and so are coadded.
Photon number count and Stokes O and Stokes V' thereby generate
three data arrays, along with a derivative fourth array specifying IT.
The number count generates a photon number angular distribution
A,() (a scaled intensity) that will be termed the redistribution
anisotropy as it specifies the terminal anisotropy at high opacity when
redistributing angles and polarizations through Thomson scattering;
it is normalized to one injected photon:

1
/ Ay dy = 1. 23)

1
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If one uniformly distributes a large number of injection locales
in space, the cumulative output count distribution in u would
remain statistically the same. Therefore, A,(u) oc I(p) o< n, ()
represents a scaling of the intensity /(x) in the direction of k or the
total density n, (1) contributed by the different polarizations. The
proportionality coefficient A, ()/I(1) is actually a function of .,
as will be detailed with the interpretation of A, () in Section 5.3.
Since this scaling applies to all Stokes parameters, it drops out
when forming the ratios Q = Q/I and V = V/I, a convenient
circumstance in the ensuing exposition of results.

To explore the connection between the data output and photon dif-
fusion, experiments were performed where the position (x,, y,, 2,)
of a photon after the final (n" ) scattering was recorded, and collected
to form statistical averages of the diffusion process. Here, the z-
direction is aligned with B, and (x, y) are Cartesian coordinates in
the orthogonal plane. The diffusion ‘step’ is nominally the mean free
path A = 1/[neo ()] for scattering, and is anisotropic and polariza-
tion dependent. Units of n. = 1 = or were chosen for expediency.
The total number of scatterings was increased to n = 10°, and once
n exceeded around 10, the expected correlations (x2 + y2) & n
and (z2) o« n were demonstrated to impressive statistical precision.
The ratio of these two diffusion coefficients, i.e. (x2 + y2)/(z2)
was generally between 1 and 2, marking the anisotropy of magnetic
Thomson diffusion. In general, this ratio was frequency dependent,
and for w/wp = 30 its numerical value was 2.01, signalling isotropic
diffusion in a non-magnetic domain.

The information from these high-opacity runs is presented as
[frequency-angle maps in Fig. 6, with the individual legends defining
the colour scales for anisotropy A, , Q/I, V /I and total polariza-
tion IT. With the binning described just above, the raw data that these
panels represent would appear more pixellated than is displayed. To
make for a smoother depiction, we employed the Mathematica built-
in Interpolation function with its Spline option (the default
setting of the order is 3, i.e. cubic) to obtain the photon number and
Stokes parameters as more continuous functions of p and x . The
smoothing corresponds to 360 w and 320 x bins, both spanning
the interval [—1, 1], so that the map pixellation is six times denser
than the original data. This protocol does not change the information
conveyed, and we tested this with runs employing refined binning
that were subject to poorer statistics, and found no conflicts. The
photon number density is normalized so that for each frequency the
integral of photon number over p equals unity.

A synopsis of the general character of the frequency-angle maps
is as follows. The angular distribution A,(un) is fairly isotropic
at high frequencies in the quasi-non-magnetic domain, and then
becomes peaked along and antiparallel to the field as the frequency
drops and transitions through the cyclotron frequency. This align-
ment of beaming with the field direction is driven by the general
preponderance of scatterings that generate small 6/, as is evident in
equation (B9). When w/wg ~ 1/+/3, corresponding to approximate
equality of cross-sections for the two linear polarizations, there is an
abrupt transition to a domain where the density is much greater
perpendicular to the field. Then, most of the scatterings are non-
resonant ||— || events, biasing the population to a predominance of
/4 S 0; < m/2 final angles, with occasional ||—_L conversions;
again see equation (B9). Since we used 160 frequency bins, the
number of photons for each frequency was 6.25 x 10°. Thus while
the runs that generated Fig. 6 persisted only for 100 scatterings per
photon, so that ||—_L conversions might occur with a probability
of 0.1-1 for each injected photon, there were enough conversions
in the ensemble to realize reasonable statistics in the various dis-
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Figure 6. Maps of the angular profiles for the redistribution anisotropy A, , Stokes parameters Q /I, V /I, and the rotal polarization degree IT as functions
of photon frequency (log scale on the ordinate). The angle 6 is measured relative to the magnetic field direction, indicated in the A and IT panels, with the
abscissa expressing 1 = cos6 . The Stokes parameters were recorded after exactly 100 scattering events for each photon, with the injected photons sampling
isotropic and unpolarized distributions, for a total of \; = 10° photons. The injection was uniformly distributed in x = logo(w/wp) among 160 frequency
bins. Short horizontal lines in the Q and V maps display the frequencies selected to compare with empirical approximations in Fig. 7.

tributions. Inverse conversions L — || possessed similar occurrence
probabilities; see equation (B11).

The Stokes Q/1 is generally of a small value at w/wg ~ 10, and
becomes more negative when transitioning through the resonance.
Again, an abrupt change in character arises at w/wg ~ 1/ V3 , below
which Q/I is positive. This bifurcation is a direct consequence of
the relative values of the cross-sections in equation (B11). Above
w/wg =1/ V3 , since small 6; is favoured, polarization conversions
||— L are more prevalent than L — | ones, so the L state emerges
as the dominant linear polarization, yielding Q < 0. The balance
is inverted below w/wg = 1/4/3 and then the | mode is more
prevalent and Q > 0. If one inserts the linear polarization modes in
equation (B2) into the Stokes vector definitions in equation (12) one
quickly infers that for ¢ = 0 (i.e. the observer plane), that 0, = —1
and Q; = 1. This establishes the simple interpretation that Q < 0
signals a preponderance of L polarization, while Q > 0 marks a
dominance of || modes. The angular dependence of Q/1 is generally
significant, and will be highlighted shortly.

In terms of the circular polarization, V /I is small below the
‘equipartition frequency’ w = wg/+/3 as the circularity Ag(w) in
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equation (B16) becomes small in this domain. At resonant and higher
frequencies, V/I is significant up to w/wg = 10 because of the
strong circularity imposed by the electron gyration in the scatter-
ings. By inspection of the circular polarization ‘mode-switching’
differential cross-section in equation (B17) in Appendix B, when
0 <0y < 6; in a scattering, the production of the + polarization
is favoured over the generation of the — state, leading to generally
positive V when 0 < 6 < /2, as is observed in Fig. 6. Note that
V/I is naturally odd in the angle cosine p, with the prevailing
helicity depending on the direction of propagation k relative to that
gyration, and therefore B .

The information in Fig. 6 is inherently different from that in
the slab transport displays of Figs 2, 3, and 5. It defines the
approximate asymptotic solution to the radiative transfer angular
and polarization redistribution problem for an infinite medium. It
was derived in the absence of boundaries that define angle-dependent
and polarization-dependent escape probabilities, and thereby omits
their critical influences. For example, contributions to the intensities
near the zenith in Fig. 2 sample small solid angles and therefore are
statistically improbable. At the same time, intensity contributions for
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0. ~ 90° near the slab horizon may sample large solid angles, yet
they require that the last scattering occur very near the slab surface,
again an improbable circumstance. These modify the emergent
angular distributions of intensity relative to those in Fig. 6 that
constitute regions deep down in the denser portions of an atmospheric
slab. Similar biases arise for the polarization Stokes parameters Q
and V when considering slab geometry. While the results depicted
in Fig. 6 were produced using a homogeneous medium, they apply
regardless of density stratification along B, which just acts to
generate a gradient in scattering scale lengths along the field.

5.2 Empirical approximations in x and

The symmetry with respect to the polar angle cosine p of the
maps in Fig. 6 suggests a simple mathematical dependence. This
is borne out with empirical fits to the data at a variety of frequencies
that are addressed here. The origin of this simplicity is in the
quadratic u dependence of the differential cross-sections for linear
and circular polarization scatterings presented in Appendix B, and
will be discussed in Section 5.3. For a large number of scatterings
where the configuration is not changed by the action of scattering,
one therefore anticipates that the photon redistribution anisotropy
assumes the form A,(u) o< 1 4+ A(w) u>. The evenness in s,
obvious in Fig. 6, is driven by the same property of the total cross-
section o (). Adhering to the normalization in equation (23),

31+ A(w) pu?

Al = 3 S )

emerges. Observe that this function is identically equal to 1/2 for
all frequencies when p = £1/+/3; this is just a consequence of
the Legendre 2-point quadrature evaluation of the integrals in the
radiation transport formalism.

To highlight the symmetries of the frequency-angle maps, we
formed horizontal sections of them at select frequencies identified
by the markers along the right axes of the Q// and V /I panels in
Fig. 6. The data for these frequencies were presented as the ‘curves’
with discrete points in Fig. 7, employing the same colour coding
as the markers in Fig. 6. In the case of A,(u) depicted in the
left-hand panel, the coefficient A(w) was determined numerically
by fitting the data at each of these selected frequencies plus about
another dozen more (not displayed). The result was a data ‘curve’ in
frequency space that was then fit by an empirical function of w/wg .
This was most conveniently detailed using the variables

U =16x%  x =log,(w/wg). (25)

The resulting frequency function for the anisotropy fits was deter-
mined on the range —1 < x <1 tobe

, (24

2—y/10—12¢2 /1142493 /19 1

Aw) = L v 26)
1—-5/38+1792/1840— 3 /4250 -
1+92/80 ¢ W= OB

This is an empirical form suitably compact for numerical applica-
tions. It possesses a signature value of A(w) =1 at the cyclotron
resonance, where A, () = 3(1 + ,uz)/ 8 . In the magnetar surface X-
ray domain where w/wp < 1, A(w)~ —1, and A,(n) ~ 3(1 —
u?)/4, so that photon propagation is clearly suppressed along or
antiparallel to B . Also, A(w) approaches zero when x = +1 in
the quasi-non-magnetic domain, so that then A, (u) &~ 1/2 and the
photons are almost isotropic. Outside the interval —1 < x < 1, the
x = %1 endpoint values for A can be adopted. We note that a full
phase matrix analysis of the radiative transfer would not generate this
mathematical form, instead capturing the analytics of the differential
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cross-section, yet it may in principal be more complicated; its
determination is deferred to a future investigation.

The analytical approximation for the anisotropy formed by the
combination of equations (24) and (26) is represented as the solid
curves in the left-hand panel of Fig. 7 for the selected frequencies.
The precision of its fit to the simulation data points is better than
2 per cent, instilling confidence in its utility.

The linear and circular polarization data were subjected to fitting
protocols similar to the anisotropy ones. Since linear polarization
is zero for propagation in either direction parallel to the field,
one anticipates that Q o< 1 — 2. In forming the Q/I ratio, the
quadratic dependence of the anisotropy appears in the denominator,
so that the fit should be a Padé approximant in p . Guided by this,
we arrived at a linear polarization empirical fit defined by

O _ 5y 2@ [~ 1]
PR N Y T
We have now introduced Ip ox A, anticipating the phase matrix
interpretation of this anisotropy in Section 5.3, and its Stokes
counterparts Qp and Vp . Note that the frequency dependence of the
numerator is just that for the anisotropy, as opposed to some other
function of . This is not a coincidence, and should emerge from a
full polarization phase matrix analysis of the transport; this effective
coupling between / and Q is apparent in the Stokes parameter form
of the cross-section in equation (13).
The circular polarization is necessarily odd in p due to this parity
property of the cross-section: see equation (B15). The obtained fitting
function was

@7

Vp . 2C(w)
2=y =" 28
5 = Vol = T (28)
for

1=79/25+9y2 /25—3 /59

38 , W < W,

Cr=9 e 29)

iz @ Z OB

This function, which applies to the domain —1 < y < 1, appears
because the circularity of the polarized transfer inherently differs
from its linearity, whether proximate to the cyclotron resonance or
not. Signature values are C(w) = 1 at the cyclotron resonance, x =
0,anditis very close to zerowhen x = —1.When x = +1, C(w)is
around 0.19, and does approach zero for @ > wg , albeit somewhat
slowly.

Having assembled these empirical fits to the frequency-dependent
anisotropy and Stokes parameters, numerical checks on their va-
lidity are in order. The high-opacity simulation was run again, but
with equations (24)—(29) used to provide an alternative, polarized
injection (see below). For n = 100 scatterings for each photon,
the subsequent results were indistinguishable from Fig. 6. Yet this
provides a Markovian test that is not an incisive probe. We therefore
performed such a simulation for just n =1 scattering, and the
results in Figs 6 and 7 were reproduced with excellent precision.
This demonstrated that the empirical forms do indeed constitute the
true asymptotic state of the polarized magnetic Thomson transfer
system.

A further, independent check was to actually fold the analytical
forms in equations (24), (27), and (28) through the phase ma-
trix analysis formulation of Chou (1986) numerically. The post-
scattering Stokes parameter information was obtained via numerical
integration over the phase matrix form in equation (2.24) of Barchas
(2017), adapted from Whitney (1991a), over scattering solid angles
and weighted by the pre-scattering Stokes parameters. The two
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Figure 7. Angular distributions for A,, (left), Stokes Q. (centre), and Stokes V,, (right) for high-opacity runs of radiative transfer at select photon frequencies
o identified by the parameter x = logo(w/wg), as labelled. These correspond to horizontal cuts of the respective panels in the frequency-angle maps in
Fig. 6. Again, the angle 6 is measured relative to B, as indicated in the middle panel. The squares (for x < 0) and open triangles (for x > 0) represent
data acquired for the runs with 100 scatterings for each of the A//160 = 6.25 x 10° photons per frequency bin. The curves are computed using the relatively
compact analytical forms of the empirical approximations in equations (24), (27), and (28), demonstrating the precision of these fits at around the 2 per cent

level or better.

frequency-dependent functions A(w) and C(w) were left as free
parameters, and their values for each @ were derived numerically
by demanding that the Stokes parameters were invariant under the
scattering operation. The solution for these two functions agreed
numerically with the empirical determinations in equations (26)
and (29) to excellent precision. Details of this validation protocol
will be expanded in a future paper.

Note that in hydrostatic models of magnetar atmospheres, radiation
at w/wp <K 1 is dominated by L mode photons ( Q < 0) because
they emerge from hotter regions deep in the atmosphere (e.g.
Ozel 2001; Ho et al. 2003) where they are more numerous. This
property is not evident in the Q// panels of Figs 6 and 7 since
temperature weighting and stratification are currently not included
in our simulation.

5.3 Interpreting the redistribution anisotropy

To correctly interpret the simulation results presented in Section 5.1,
it is necessary to identify the relationship between the intensity
I(w) and the redistribution anisotropy A,(u), and extend such
to all Stokes parameters. What is output from the high-opacity
simulation are the statistics of all the pertinent products of elec-
tric field components, averaged per scattering. These data are not
generated in the spatial or radiative transfer domain. As such, they
represent conditional probabilities of a redistribution mapping from
one polarization/anisotropy configuration to another, i.e. defining the
probability of a scattering into new directions and new polarization
vectors given these quantities prior to the photon scattering. The
mapping function is a 4-tensor or matrix R in polarization space, and
will be termed the redistribution tensor or phase matrix (Chou 1986)
for magnetic Thomson scattering. For an unpolarized scattering
process, i.e. one-dimensional in polarization space (intensity only;
Q = U =V =0), this must reduce to the differential cross-section
divided by the total cross-section.

Let S=(,Q,U,V) be the true Stokes vector and P =
(Ip, Qp, Up, Vp) be its corresponding quantity (putatively dimen-
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sionless) in the redistribution mapping. We expect that S ox P,
with a single coefficient of proportionality that can be dependent
on a photon’s direction. The evolution of P with scattering is
negligible in the high scattering limit, and this can be expressed
via a ‘polarization equilibrium’ redistribution equation
Pk) = /R(k,- — k) P(k;)d<;. (30)
The subscript i denotes initial quantities prior to a scattering, which
deflects a photon from direction I:’,,- to k. The right-hand side of
equation (30) describes the establishment of a new photon direction
and a new photon polarization given a pre-scattering polarization
configuration, integrating over all photon directions using the solid
angle differential d€2;. Setting this equal to the left-hand side
expresses the asymptotic condition that the system polarization does
not change on average in a single scattering, but allows the photon
direction to be altered. This precisely describes what is modelled by
the high-opacity simulations of Section 5.1.

If one were to specialize this redistribution formalism to unpo-
larized systems, such as effectively arises in the high-opacity ‘non-
magnetic domain’ w/wp 3> 1, then only the /p portion of P need
be retained. The redistribution is then in angle only, expressed using
the differential cross-section, with the structure of a conditional
probability leading to a normalizing factor incorporating the total
unpolarized cross-section. Thus, the analog of equation (30) would
then be

1 do(k; — k
Io(k) = / m"(7f’)1,>(k,-)ds2,-. 3D

dQ;
Integrating over k directions (d€2), one quickly sees that this is
properly normalized when introducing the cross-section o (k;) in the
denominator of the integrand. This analogy enables one to directly
connect R with the magnetic Thomson scattering phase matrix
in equation (21) of Chou (1986), which expresses the conditional
probability weighting via ratios of the differential and total cross-
section, yet both being dependent on the details of the polarization.
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Thus, now, o(k;) depends on the Stokes parameters, expressed in
equation (4) of Whitney (1991a), and in equation (13) here.

Since equation (30) can be scaled by any constant, we can
normalize it as suits. Furthermore, our coordinate choices have
U =0, sonoting Ip &x A,(1), one can write

P=(Ip, Qp. 0, Vp) = Ip(1, 0.0, V) (32)

for the interpretation of the simulations in Section 5.1. As the phase
matrix version of R in equation (21) of Chou (1986) possesses
simple quadratic dependence on both u; and pu (final photon
angle cosine relative to B), the observed quadratic dependence
of P on p is guaranteed by equation (30), and motivates our
protocol for seeking its solutions via our Monte Carlo experiment.
The numerical evaluations for P obtained in our simulations nicely
satisfy a numerical evaluation of equation (30) using the phase matrix
of Chou (1986), establishing the correspondence between the two
approaches.

The true Stokes vector S describes fluxes of quadratic forms
of electric field components and thus obeys a radiation transport
equation. The radiative transfer in polarized scattering systems is
expressible as an integro-differential equation (e.g. Chandrasekhar
1960), with the scattering transfer captured in integrals over the dif-
ferential cross-section. This is simplest to express in the unpolarized
case, for which only the intensity / comes into consideration. The
familiar form for an equilibrium situation with an angular distribution
that does not evolve with scatterings can quickly be written down. It
is

o (k) I(k) = / w

i I(k;)d;, (33)
aradiation transfer counterpart to equation (31). Thus, one infers that
Ip(k) o< o (k) I(k) . A partner equation for the photon number density
angular distribution 7, (1) that satisfies the equilibrium Boltzmann
equation (time domain) assumes the same form, noting that 7(u) o
n, () . Extending this to the full polarization configuration, we assert
the correspondence

P (k) oc o (k) S(k). (34)

This can be inserted into equation (30) to develop the radiative
transfer analogue of equation (33) for the full polarization configu-
ration. The desired relationship between the two polarization vectors
indicates that the coupling depends on both the direction and the
polarization of the photons.

Taking the intensity portion of equation (34) yields the result

Au(p)
o (k)

for our azimuthally symmetric system, where o (k) — o(w, i).
This is the sought-after interpretation of the redistribution anisotropy
A, () o Ip, defining a path for using it to obtain true intensity-
related anisotropies. The cross-section o (k) must be computed
using the asymptotic Stokes parameters, inserted into equation (13).
The resulting I(u) or n,(u) can be employed in formal opacity
calculations treating magnetic Thomson diffusion. It is notable that
while the scaling 1/0 (k) impacts the intensity component and those
for the other Stokes parameters, by forming ratios Q// and V /I,
this scale factor cancels out, so that (' and V are invariant under
the mapping from redistribution ( P ) space to Stokes (S) space.
This convenience was exploited in the presentations in Sections 5.1
and 5.2.

While the logic leading to the P o< o S correspondence is
intuitive and obvious, its verity is also amenable to scrutiny via

ny, () o< 1(k) o

(35)
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Figure 8. Intensity /(u) as a function of u = cos @, for our six familiar fre-
quencies w/wp = 0.1,0.25,0.5,0.99, 2, 10. These depictions, germane to
high-opacity domains, are obtained by dividing the redistribution anisotropy
A,(p) in equation (24) by the polarized cross-section in equation (13):
see equation (36). All polarization information was generated using equa-
tions (27) and (28), and the empirical approximations in equations (26)
and (29). Distributions were normalized to unity on [—1, 1] ; the w/wp = 10
curve was multiplied by 0.9 to aid visual clarity.

simulation. To this end, we performed a number of simulations
modified from those addressed in Sections 5.1 and 5.2. Instead of the
exit criterion of a fixed total number of scatterings, the simulation
termination was made when the cumulative distance travelled by
each photon exceeded a predefined and large value dp.y. This
was not a constraint on the spatial displacement from the point
of injection, but on a linear addition of the path-lengths travelled
between each scattering. Thus it incorporated information on the
mean free path A o< 1/ (k) for magnetic Thomson scatterings, and
is a true modelling of radiative transfer as opposed to just angle
and polarization redistribution probabilites. This simulation was
performed for a representative range of frequencies 0.1 < w/wp <
10. To excellent precision, the emergent polarization information
generated intensity anisotropies /(u) « A,(n)/o and the same
Q(u) and V(u) distributions produced by the fixed number of
scattering simulations of Section 5.1. Results for this comparison will
be presented in another paper. These experiments thus numerically
validate the S o< P /o relationship.

To complement the A, () information presented in Fig. 7, we plot
in Fig. 8 the resultant intensity anisotropy /() o< n,(u) described
in equation (35). The curves are mostly normalized to unit area, and
also represent the intensity anisotropy. Thus, hereafter, we posit the

form
1
A, = / Aoy dp (36)
_1 o(w, p

Au(p)

I(w) = Mool 1)

Again, o(w, w) is the cross-section form in equation (13) with the
full polarization information embodied in Ip — A, (1), O and V
from the empirical approximations of Section 5.2 incorporated. This
I(n) form will be employed in Section 5.4. It is evident that the
overall anisotropy is much smaller than that evinced by A, (). Yet
anisotropy is still significant, particularly around w/wg ~ 1/+/3
where the interplay between linear and circular polarizations is
complex, and also around p = %1 at lower frequencies. The distri-
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butions are approximately isotropic at both the cyclotron resonance
and in the non-magnetic regime ® > wg .

5.4 High-opacity slab simulations

The real utility of developing the connection between redistribution
anisotropy A, (1) and the true intensity one, and the three empirical
approximations for A, (u), Q(M), and V(u) , s that they circum-
vent the need to compute atmospheric slabs with large thicknesses
and high opacities. Regions deep in the atmospheres that sample
7),. > 10 are just zones of high opacity that do not intimately
connect to the escape through the upper atmospheric boundary.
Accordingly, it is expedient to use the empirical approximations
to define suitable polarized and anisotropic injections at the base of
the slab, capturing the key information of scattering diffusion deeper
in the atmosphere. This can be done simply using an accept/reject
procedure. This is performed here for the magnetic polar case
to take advantage of its azimuthal symmetry, though in principle
the following injection protocol can be modified routinely through
rotations to address any field orientation in the slab.

First, the direction of the injected photon is specified exactly as
before via equation (17) in using two variates & and &, selected
randomly on the interval [0, 1]. These establish the angles 6, and
¢o , respectively, and the azimuthal symmetry guarantees that the
value of ¢y can always be accepted. In contrast, as the polar angle
injection distribution is not isotropic in general, we introduce a
new random variate &; on the interval [0, I,x] for the intensity
anisotropy. Here, I, is the maximum value of /(1) on the interval
—1 < o <1 (see Fig. 8). Then, if & < n, (o) for py =costy,
the polar angle is accepted, otherwise new &; and &; variates are
chosen and the process repeated until an acceptance occurs. The
injection is then further flux weighted by a factor of o as with all
prior slab runs.

The polarization injection protocol is similarly expedient, em-
ploying the electric field vector forms in equation (12). Each photon
has a scaled intensity of [y =1, and the polarization degree II
for the injection is given by the combination of information from
equations (27) and (28):

m=1/(00)" + (V) 37
for

0o = Quito), Vo = V(o). (38)

A new random variable &p is sampled on [0, 1] to determine the
polarization state of the photon. If &7 > IT, then the injection is
deemed unpolarized, and it is sufficient to randomly select linear
modes of either the | state (ég =1, ép =0) or the L one
& =0, é¢ = 1). With large photon count statistics, this generates
unpolarized information, and a +/— circular polarization choice
could also be implemented. If, on the other hand, &y < IT, the
injected photon is polarized, and one can choose &, to be real without
loss of generality, which implies that £ is purely imaginary. The
inversion of equation (12) then yields

A M+ Qo A iVo . - - Q0
= —_—, = ~ — V —— 39
& o & e, isgn(Vo) 4/ X5 (39)

These define an elliptically polarized photon. In the limits where
QO — =+I1, the circular polarization \70 is zero, and these then
constitute the L and | modes identified just above. For large
numbers of photons, this protocol establishes a polarization injection

MNRAS 500, 5369-5392 (2021)
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Figure 9. Angular distributions of intensity (red) and Stokes parameters
Q/I (tan) and V/I (green) as functions of the zenith angle 6., for
w/wp = 0.99 and the polar case where B is parallel to the slab normal.
The purple curves constitute the resultant polarization degree. The solid
histograms display the results of 7 = 10 with polarized injection at the
slab base using the empirical forms as described in the text for the high-
opacity simulations. The injection was anisotropic, effectively comprising
mixtures of linearly and circularly polarized photons so that the ensemble
satisfies equations (24), (27), and (28). The dotted histograms/curves are
from the w/wp = 0.99 panels of Figs 2 and 3, displaying the results for
isotropic injection for a slab depth of 7 = 10.

statistically commensurate with the high-opacity distributions for O
and V.

Using this polarized, anisotropic injection protocol, simulations
were performed for the magnetic polar cases that were the focus
of Figs 2 and 3, to discern how the introduction of anisotropy and
polarization to injection influenced the emergent Stokes parameters
at the top of the slab. For the most part, the various distributions
were fairly similar to the isotropic, unpolarized injection case once
the optical depth 7; exceed around 7 or so, with either modest
or small differences. This is not surprising given that numerous
scatterings obscure the injection information. The exception was for
the resonant w/wp = 0.99 example, and results for this frequency
are presented in Fig. 9. Therein, a comparison between 7 = 10
results for the updated polarized injection and the Figs 2 and 3
one is forged. Differences are small for zenith angles 6, < 45°,
but become significant or large for viewing perspectives somewhat
near the slab horizon, i.e. perpendicular to the field. The intensity
excess near the horizon observed for the isotropic injection case
is eliminated because the scattering depopulates the distribution
orthogonal to B . At the same time, circular polarization becomes
somewhat more influential in the resonant transport, and the linear
polarization signatures correspond to a preponderance of L photons
as Q/I approaches —1.

This cameo comparison illustrates the importance of developing an
understanding of the Stokes parameter distributions in high-opacity
domains germane to the deeper portions of neutron star atmospheres.
Our illustrative protocol can be applied to any field orientation,
thereby capturing any location on the neutron star surface.
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6 DISCUSSION AND CONCLUSION

The polarizations and anisotropies determined here in the high-
opacity domain directly impact the effective Eddington limiting
X-ray luminosity for a magnetized compact object, above which
radiation pressure-driven winds arise. The familiar non-magnetic
value, Lggq = 4w GMyscm,/op for a stellar mass Mys (e.g.
Rybicki & Lightman 1979), is predicated upon isotropic scattering
with the Thomson cross-section ot . This is strongly modified by
the magnetic field, particularly well below the cyclotron frequency.
Paczynski (1992) employed an angle-averaged Rosseland mean
opacity in adapting the Eddington limit to magnetar conditions;
various problems with employing such a Rosseland mean were
discussed in van Putten et al. (2013). The polarization-dependent
anisotropies and cross-sections developed here in Sections 5.1-5.3
can be used to render estimates of the effective Eddington luminosity
more precise, leveraging the combination of polarization information
embedded in the A, () and o(w, ), and capturing the important
interplay between circular and linear polarization in the vicinity of
the cyclotron resonance.

Another potential application of this atmospheric transport sim-
ulation is to millisecond pulsars (MSPs). These serve as a prime
science focus of NASA’s NICER X-ray mission on the International
Space Station, with the goal of measuring mass-to-radius ratios that
can constrain the neutron star equation of state. In particular, NICER
has been able to infer a ‘hotspot’ emission geometry for the soft X-
rays from the surface of MSP J0030+0451 (Miller et al. 2019; Riley
et al. 2019) that is far from the antipodal one commonly associated
with a pure dipolar configuration for isolated neutron stars. The
surface temperature of J00304+-0451 (spin period P = 4.87 ms) is
in the range of 7 ~ 1.5 —3 x 10% K (0.13 — 0.26 keV; Bogdanov
& Grindlay 2009) and its surface polar field is 4.5 x 108 G,
establishing a characteristic w/wp scale of 3kT /hwg ~ 150. This
corresponds to the non-magnetic domain of our study that is fairly
well modelled using the w/wp = 10 examples in the various figures.
The local surface anisotropy, an important quantity for determining
contributions to the pulse profile that serves as a principal diagnostic
for NICER, can be informed by our simulation, for example, by
7y = 10 runs like those depicted in the upper left panels of Figs 2
and 5. The anisotropy in this w/wg > 1 regime is very close to
that of ST8S, and is approximately independent of the magnetic field
orientation in the slab.

Our anisotropy results exhibit general character similar to the
non-magnetic, hydrostatic atmosphere results of Zavlin et al. (1996).
Yet there are differences between their anisotropies and those here,
dictated by the significant contributions of free—free and bound-free
opacities at low field strengths. Fig. 1 of the hydrostatic atmosphere
model of Ho & Lai (2001) demonstrates that free—free absorption
dominates scattering opacity at energies below 1-2 keV and deeper
(p =1 gem™) in a stratified, dense atmosphere of a magnetar.
Future enhancement of the MAGTHOMSCATT simulation will include
such free—free opacity, simply implemented in the Monte Carlo
technique. The radiation transfer equation solution of Ho & Lai
(2001), which is developed for magnetic fields along the slab zenith
(polar case), is extrapolated to arbitrary field orientations using a
simplistic diffusion approximation. While this is likely suitable for
MSP studies, our code’s facility in treating arbitrary field orientations
will afford a profound improvement for magnetars and accreting
X-ray pulsars, for which departures from radiation isotropy are
significant and the diffusion approximation is no longer valid.

While the simulation was constructed using magnetic Thom-
son scattering for cold electrons in atmospheres, it is routinely
generalizable to incorporate the Doppler boosting/broadening and
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aberration effects associated with warm plasma. It thus has good
potential for application to the more tenuous environs of magnetar
magnetospheres, for example, in modelling magnetar burst emission
in hard X-rays. This is a problem that has been explored by Taverna
& Turolla (2017) in the magnetic Thomson domain via solution of
the radiative transfer equation. Such an extension of our Monte Carlo
approach will require a suitable reframing of QED scattering cross-
sections for a domain where the classical formalism focused upon
here is no longer appropriate.

In conclusion, this paper presents the details of a versatile Monte
Carlo simulation that has been developed to model polarized radiative
transfer in neutron star surface layers. The code employs an electric
field vector formalism that enables a breadth of utility in terms of
the relationship between linear, circular, and elliptical polarizations.
It is therefore adaptable to address dispersive photon transport in
plasmas and the magnetized quantum vacuum. The MAGTHOMSCATT
code was validated for both intensity and Stokes parameter measures
in a variety of ways. The determination of analytical approximations
at high-optical depths for the Stokes parameters and anisotropy
relative to the field direction helps define injection conditions deep
in the simulation slab geometries, expediting simulations for full
atmospheres, and potentially applicable to other high-opacity neutron
star magnetospheric environments such as accretion columns and
magnetar burst regions.

Our frequency-dependent results identify informative polarization
signatures that will be exploited by NASA’s upcoming IXPE X-ray
polarimetry mission, presently scheduled for launch in 2021. The
next steps in our program will be to integrate results over large
surface regions and imbue the code with modules for modelling
hydrostatic structure, thereby introducing vertical stratification of
temperature, pressure, and density into the atmospheres. This will
enable exploration of the interplay between photon frequencies and
polarization-dependent, photospheric optical depths that is central to
signatures of magnetar soft X-ray emission.
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APPENDIX A: DEVELOPMENTS FOR THE CROSS-SECTION

As the vector formalism for magnetic Thomson scattering has only received very limited treatment in the literature before, we outline our
developments here at length for future reference. The starting point for the derivations pertaining to the differential and total cross-sections is
the complex polarization for the scattered photon, specified using equations (6) and (4):

kpx (kyxa)

2 s

é'f = > o= a)zé',- — iwa)B éi X 3 — wé(é’, . é)B (Al)
w? — wg

This can be inserted into the dipole scattering formula to generate the differential cross-section in equation (7). The squaring of the polarization
vector is expedited using standard vector identities:

[y x (fp x@)] - [y (ky x )| = (kp x @) - (ks x @) =a-a* = (k) - (k@) (A2)

This defines the numerator for the differential cross-section in equation (7). Expressing a in terms of its real and imaginary vector components,
a = ag + iay, one can establish the following identities expressed in terms of real and positive-definite quantities:

- o - 2 - 2
oz~oc*:|otR|2+|oq|2, a-af— (kf-ot).(kf-oc*) :|O{R|2+|d1|2— (kf-OCR) — (kf-a]) . (A3)
From the last identity herein, the following inequality then immediately follows:

0<(kyxa) (kfxa*) <a-ar, (A4)
a result that is of considerable use in posing the accept-reject protocol for choosing the direction of the scattered photon and its associated
polarization: see equation (19). By inspection of the form for « in equation (4), it is apparent that there is a domains where |ar| > |oy| if
E; is real, for which « - a* ~ |ag|> — (IAc r- (xR)2 and the differential cross-section is maximized when k ¢ is approximately orthogonal to
ag . This situation is intuitively expected given the &, oc k; x (k; x &) form.

The determination of the total cross-section requires the integration of the forms in equation (A3) over all solid angles, d$2, . The polar
coordinates for such an integration can be aligned relative to any vector f . From this one deduces that

/|ﬂ|2dszf =4 |B> and /(l}f-ﬁ)zdﬂf = 4?”|,3|2, for B =ag, ar. (A5)
It follows that

A o . 8 8 .
/[(kf xa)- (ky x o) d@y = 5 {lenl + e } = S -a, (A6)

This identity establishes the form for the total cross-section in equation (8). An alternative path to its derivation is directly via the last identity
in equation (A2), using direct solid angle integration. This employs the result

/(i‘f B) (ky-y)d2, =y B /(f‘f -B)*de, + /(i‘f -B) (i‘f‘ v—(r ﬂ)lﬂ) Qs = 47” y-B. (A7)

The manipulation here is to resolve the vector y into components parallel to [ (y -B ) B1and perpendicular to 8, yielding, respectively, the
first and second integrals in the middle expression. The second integral is simply demonstrated to be zero.

It is straightforward to express the differential cross-section in terms of the incoming polarization vector &€ and B using equation (4).
‘When squaring, the last form in equation (A2) is preferred, and the first portion of this is routinely generated:

PO N ~ |2 N N A
@@’ =o'+ 0} (0f —20°) |8 B + 0?0} |8 x B +2i0'0n B (& x E)). (A8)

The only notes for deriving this identity are that the iwwj term is identically zero because of orthogonality of &€ x B and B, and the cyclic
permutation of the triple scalar product is employed to distill the iw3wg term into a convenient form. With this identity, the expanded form
for the total cross-section in equation (9) follows. The remaining term on the right of equation (A2) is routinely evaluated to generate the full
differential cross-section:
2 22
(w —wp) do w4{. _ (,;f.gi)z} tw
Iy dQ2 f

>

B

o~

(1= (b B} oo {JE < B[ —2 &, B

+ el {— ‘icf (& x B) )2 (kg B) [y EDE B+ - EDE B)]}

+iwlon (& x &) [k x (e x B)] +i oy - B)(E x &) - [B x (B xky)]. (A9)

This expression will be employed in the algorithm for radiative transfer in the atmosphere, as discussed in Section 3. Using the integral identities
in equations (A5) and (A7), it can be routinely integrated over solid angles to yield the total cross-section in equation (9), observing that the
iow;, term integrates to zero. It is technically applicable for non-dispersive light propagation where o = |k;| = |ks| and the eigenmodes
are purely transverse; this circumstance is modified when dispersion in a magnetized plasma is treated (Canuto et al. 1971). When o > wg,
the influence of the magnetic field is negligible, and only the leading term on the RHS of equation (A9) is retained, yielding the familiar

non-magnetic scattering result do/dQ; = r3{l — (icf : éi)z}-
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APPENDIX B: CROSS-SECTION - SPECIAL CASES

To aid insight into the radiative transfer simulation elements, some results pertaining to familiar polarization states are presented. Without loss

of generality, the magnetic field will be chosen to be in the z -direction so that B = (0, 0, 1). The initial (i) and final (f) electromagnetic wave
unit vectors in a scattering event will be specified by spherical polar coordinates

k; = (sin®; cos¢;, sin6; sing;, cos;) for j=i, f. (B1)
Considering first two orthogonal linear polarization states, it is customary to identify these as being parallel ( || ) to the plane defined by IAc_,«
and B (ordinary mode), with the second state (denoted _L ) being perpendicular to this plane (extraordinary mode). Thus, the unit electric
field vectors of these two orthogonal polarization modes are given by

N o ki x B , N I A
E=eYi ﬁ =e'% (sing;, —cos;, 0), & =k; x EL; =e" (cosb;cosg;, cosb;sing;, —sinb;), (B2)
x

J
observing that |k i X &, ;I =1 is automatically guaranteed for the orthogonal vector triad constituted by k I £, j»and é'” ;- Note also that
the complex phase ¢; is explicitly introduced to encompass the possibility of complex electric field vectors £; . If these forms are inserted
into equation (12), one quickly determines that V = 0 for both linear polarizations. For the initial wave prior to scattering, one can set ¢; = 0
without loss of generality. Yet, given the forms in equations (6) and (4), it is apparent that for the scattered wave, in general ¢, is non-zero. The

linear polarization states in equation (B2) simply yield EixE& L =0= é'”i x & ‘T,- , expediting the algebraic development of the differential
and total cross-sections. In addition, the normalization results

E,-B

=1 and ‘é'”[ . 3‘ = sin6;, ‘é\li X if‘ = cosb; (B3)

render the evaluation of equation (A8) simple, since it only depends on quantities for the incident photon. Thus, the total scattering cross-section

for L and || states and the resultant unpolarized (up) cross-section oy, = (0. + 07)/2 can be expressed in units of the Thomson cross-section
2

or = 8mry/3:

o, =or2g(w), oj=or sin? 0; + or Tp(w) cos’ 6, = Owp = %{sin2 0; + Zp(w) [1 + cos? 9,-] }, (B4)
with
@ (0? + 1 > ?
T(w) = ( Bz) = 7{ ~+ 2 } (B5)
(0? — w}) 2 ((@—wp)  (w+ws)

Using the second form for X(w), which isolates the helicity contributions to the scattering, it is quickly seen that the polarized forms in
equation (B4) are identical to those in equation (16) of Herold (1979), who took the non-relativistic limit of a quantum mechanical treatment.
An alternative path to the same result is to instead evaluate o in equation (4) directly:

o =a)2£li — lwwg éLi X B, o) =(1)2£.“i — iwwg COS@I‘ gli +0)ZBCiWi sin@,-l?, (B6)
observing that the second term for & is the £; x B contribution. These forms quickly yield
@ ol =0 (0 +0d), ap-af = (0 —of) sin’ 6 + 0 (0 + w}) cos’ 6, (B7)

and inserting these into equation (8) again yields equation (B4). A depiction of the linearly polarized cross-section is given in Fig. B1. The
Figure is labelled with B < B, , the domain for which its classical derivation is formally valid. Yet, at soft X-ray frequencies it can be applied
to supercritical fields such as are encountered in magnetars, since the quantum derivation (e.g. Herold 1979) reduces to the classical one as
long as hw <« mec*. Fig. B1 illustrates the identity of o, and o} when 6; = 0, i.e. for photons propagating exactly along B, evident in
equation (B4). In this special case of aligned incidence, the scaled acceleration vector « in equation (4) is always perpendicular to B and of
fixed magnitude, so the wave excites a circular motion of the target electron.

In order to obtain the differential and total cross-sections for specific incident and scattered polarization states, it is not possible to directly
work from equation (A9) as the coupling between k; and polarization state of this scattered wave needs to be isolated. For p,g =1, ||
denoting the polarization states of incident (p) and scattered (¢) waves, we write equation (7) as

. . . .
dopg _ 2 Eor - Eoy _ 2 [y x (ks > )] - gq.f’2 _ 2 ety - gqf‘z
oy g T (w0 —wp) " (0 —wf)”

(B3)

Herein, £, = (& ~ézf)éqf is the projection of the polarization vector £ on to the unit vector &€,/ . The polarization vector £,; can
be expressed in terms of k ¢ and «, through equation (6), and for these linea}r polafization consigeration§ it assumes one of the forms in
equation (B2). In prescribing the last part of equation (B8), the vector identity k x (k; x a,) = (ks - o)k ; — &, was employed, together
with the transversality condition IAcf . S: 4 = 0 appropriate for our zero dispersion presumption. Inserting equation (B2) and equation (B6)
into the final form in equation (B8), and defining ¢;; = ¢y — ¢; as the change in azimuthal angle in a scattering, one quickly obtains forms
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Figure B1. The total cross-section o | for magnetic Thomson scattering (in units of ot ) for the two standard linear polarization states L (extraordinary
mode) and || (ordinary mode), computed using equation (B4) in Appendix B. The cross-sections are functions of the frequency ratio w/wg (log scale) and
sum over final polarization states. For the || mode, four different incidence angles 6; to the field direction are depicted, with 6; = 0 being the blue dots. For
the L mode (red curve), the cross-section is independent of 6; , and coincides with the 6#; = 0° result for the || mode. Linear polarization cross-sections are
resonant at the cyclotron frequency wg when 6; < 90°, truncated using a small width T" = wp /50, and are identically equal to the Thomson value ot when
w = wp/ V3. Also depicted is the difference factor [0 — o_]/2 for 6; = 0° (brown diamonds) of the cross-sections o4 for the two circular polarization
modes, i.e. the Ap(w) circularity function expressed in equation (B16).

for the polarization-dependent differential cross-sections:

2

doy 1 _ Ty (w40052¢ + 0’? sin? ¢ )

dQ, > 2\ 2 fi B fi)s
f (a) —wB)

doi o

= 3 cos® O (a)4 sin® ¢ i + w’w} cos? ¢f,‘) ,
A2, (a)z _ w%) J ; y

dO-H*)J_ }"g

2 4.2 22 2
19 = . 5 5 COS 0; (w sin” ¢ + w”wg cos (bfj),
! (0? — @)

2

’

= rg sin® 0; sin® O + 702 [0052 0; cos’ Or (a)4 cos’ Qri + wzsz sin? ¢>f,-)
sz (0? — w})

doj

+20? (a)2 — wé) sin@; cos 0; sin @ cos Oy cos q)f,} . (B9)

All results in equation (B9) are identical to those in equation (1) of Blandford & Scharlemann (1976), which were derived from the classical
formalism in Canuto et al. (1971). Integrating these results over the phase difference ¢y; , and forming the difference between the L — || and
[|[—_L results, which captures a key portion of the mode switching information, yields

do,_, doj_ 3

i e e P D, {cos2 0 —cos’6, }. (B10)
dcos@y  dcosty 8 ’
This essentially defines the detailed balance between L and || polarizations in the radiative transfer problem, with production of L being
favoured in directions more oblique and pependicular to the field B . Integrating equation (B9) over solid angle yields the total cross-section
for the four possible linear polarization configurations in units of the Thomson cross-section o :

0] 51 = %UT Yp(w), Ol = %GT Yp(w),
0|1 = %O’T EB(CU) COS2 9,', O|—| = OT SiI'l2 9,' -+ iO‘T EB(C()) COS2 9,‘.
These trivially sum over the final polarizations to produce equation (B4).

The total cross-sections for circular polarized initial states can be derived in a similar way. The unit electric field vectors for the incident
photons of positive (subscript +) and negative (subscript —) helicity are given by

R 1 m (
V2 V2

If these definitions are inserted into the forms for the Stokes parameters in equation (12), one quickly determines that V. = £ cos6;, i.e.
when 6; = 0 and propagation is parallel to B, V =1 for the 4 polarization and V = —1 for the — polarization. From these complex field

&= (él,- :I:ié'”,-) = sing; =i cos6; cos¢;, —cos¢; £icosb;sing;, Fi sin@,-). (B12)
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vectors, one can routinely form o, = (e, £ior)/ \f2, and then employ

2] A ~1201 A %
Eii-B| = 5 sin2 0;, ‘gii X B‘ = 5(1 + COS2 6;)), B- (8ii X 8:{:1’) = Ficosb;. (B13)

as identities for the circularly polarized incident radiation, leveraging equation (A8) to yield
1 1
a0k =0t + 5“)123 (wp — 20%) sin®6; + Ea)zwé(l + cos? 6;) £ 2w wg cos b;. (B14)

. A Ak .
The w’wg term is not zero because £€; and & ., are not parallel vectors. The total cross-sections can then be expressed as

1 1 1
oy = —or sin®6; + Lz {fa)2 (a)2 + a)é) (1 + cos? 9,-) +2w’wg cosf; | = = (O-J_ + O‘H) + o1 Ag(w) cos6;. (B15)
2 (0? — @) 2 2
with the second form isolating a circularity function
20w 1 ? ?
Ap(w) = ———— = f{ S - 2} (B16)
(a)2 - a)é) 2 (@ — ws) (o + wp)

that is depicted in Fig. B1. Equation (B15) is in agreement with equation (17) of Herold (1979). The second form highlights the relationship
between the circular polarization results and the linear ones. The circularity contribution is an odd function of cos 0; , character that maps into
an antisymmetry of Stokes parameter V in the polar angle relative to B that is ubiquitous in the results presented in Section 5. The circularity
is zero when photons propagate perpendicular to the field, 6, = 7 /2. When 6; = 0, and the incoming wave eigenstates are those of circular
polarization, the circularity is at a maximum and one quickly deduces from equation (B15) that o, = or @?/(w — wg)? is resonant at the
cyclotron frequency, but that o = ot w?/(w + wg)? is not. The positive helicity state drives the scattered electron in the sense it naturally
gyrates in the field, precipitating a resonance at the cyclotron frequency. In contrast, the negative helicity state ‘opposes’ the gyration and does
not lead to resonant scatterings.

Without detailing lengthy forms for the polarization-dependent differential cross-sections, it suffices to posit a circular polarization analogue
to equation (B10) that encapsulates the mode switching information:

do__ 4 do,

3
doost, ~ deost = o Ap(®) (cos 0y — cosb;) (1 —cos By cosb;). (B17)

Thus, when 6 is small, and less than the typical ¢; involved in a scattering, the production of the + polarization is favoured over the
generation of the — state, leading to generally positive V', as is observed in the magnetic polar slab simulation results in Fig. 3, and the
0 < 0 < 7/2 values for V/I when @ > wg/+/3 in the high-opacity data displayed in Fig. 6.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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