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Topological phase transitions driven by non-Hermiticity in quantum spin Hall insulators
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The interplay between non-Hermiticity and topology opens an exciting avenue for engineering novel topo-
logical matter with unprecedented properties. While previous studies have mainly focused on one-dimensional
systems or Chern insulators, here we investigate topological phase transitions to and from quantum spin Hall
(QSH) insulators driven by non-Hermiticity. We show that a trivial to QSH insulator phase transition can be
induced by solely varying non-Hermitian terms, and there exists exceptional edge arcs in QSH phases. We
establish two topological invariants for characterizing the non-Hermitian phase transitions: (i) with time-reversal
symmetry, the biorthogonal Z2 invariant based on non-Hermitian Wilson loops, and (ii) without time-reversal
symmetry, a biorthogonal spin Chern number through biorthogonal decompositions of the Bloch bundle of the
occupied bands. These topological invariants can be applied to a wide class of non-Hermitian topological phases
beyond Chern classes, and provides a powerful tool for exploring novel non-Hermitian topological matter and
their device applications.
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I. INTRODUCTION

Quantum spin Hall (QSH) insulator, a topological phase
of matter possessing quantized spin but vanishing charge Hall
conductance, has important applications in spintronics [1–3]
and was widely studied in the past decade. It was pioneered by
the celebrated Kane-Mele model [4] in graphene as a spinful
enrichment of the well-known Haldane model [5] and later
generalized to other two-dimensional (2D) materials (e.g.,
Bernevig-Hughes-Zhang (BHZ) model [6]). The QSH insu-
lator is topologically distinct from a trivial insulator by its
helical edge states, where different spins propagate along op-
posite directions on the edge. In the presence of time-reversal
(TR) symmetry, such edge states correspond to a bulk topolog-
ical invariant characterized by a Z2 index [7]. Though being
protected by TR symmetry, the QSH effect survives under
proper TR-broken term like exchange field with the topologi-
cal properties characterized by a Z spin Chern number [8].

The emergence of non-Hermitian physics provides an ex-
citing platform for engineering topological phases of matter
with unprecedented properties that are generally lacking in
Hermitian systems. Many novel effects, such as anomalous
edge states, non-Bloch waves, biorthogonal bulk-edge cor-
respondence, and so on [9–18] have been revealed recently.
On the experimental side, photonic lattices [19–25], electronic
circuits [26,27], and ultracold atoms [28], offer versatile plat-
forms for realizing non-Hermitian topological phases due to
their high tunability and controllability.

Previous studies on non-Hermitian topological matter
mainly focused on two-dimensional (2D) Chern insulators or
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one-dimensional (1D) systems such as the Su-Schrieffer—
Heeger (SSH) model or Kitaev chain [18]. Recently, the
Kane-Mele model with non-Hermitian Rashba spin-orbit in-
teraction [29,30] and the BHZ model with non-Hermitian
coupling terms [16,31] have been investigated. However, the
non-Hermiticity in these works cannot drive any transition
from trivial to topological phases (usually from topological
to a gapless or trivial insulator phase) and the corresponding
Z2 invariant does not depend on the non-Hermitian terms,
leading to a plain Z2 index that is the same as that in Hermitian
systems [16]. Therefore a natural question is whether non-
Hermiticity can drive nontrivial topological phase transitions,
e.g., from a trivial to a non-Hermitian QSH insulator. If so,
how can non-Hermiticity-driven topological phase transitions
be characterized? Does the Z2 index still apply and how do
we characterize the bulk topological invariants and bulk-edge
correspondence?

In this paper, we address these important questions by
considering a non-Hermitian generalization of Kane-Mele
model with or without TR symmetry for the realization of
non-Hermiticity-driven QSH insulators. Our main results are
as follows.

(i) We show that a topological phase transition from a
trivial to a QSH insulator with the emergence of purely
real helical edge states can be realized by solely tuning a
TR-symmetric non-Hermitian term, which originates from
asymmetric Rashba spin-orbit interaction.

(ii) A transition from a QSH to trivial insulator can be
driven by another TR-symmetric non-Hermitian term, which
splits the crossing of the helical edges in the QSH phase into
a pair of exceptional points that are connected by exceptional
edge arcs.

(iii) In the presence of TR symmetry, we establish a
biorthogonal Z2 index, which is defined by the parity of
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the winding of the biorthogonal Wannier center derived from
normalized non-Hermitian Wilson loops. The bulk biorthog-
onal Z2 invariant is consistent with the helical edge states
computed on a cylindrical geometry with zigzag boundary,
demonstrating a consistent bulk-edge correspondence despite
the strong non-Hermitian skin effects.

(iv) When the TR symmetry is broken, we establish the
biorthogonal spin Chern number, which is equivalent to the
biorthogonal Z2 invariant in the TR-symmetric region, to
characterize non-Hermitian QSH insulators and their phase
transitions from/to a trivial or an integer quantum Hall
insulator.

II. NON-HERMITIAN QSH INSULATORS
WITH TR-SYMMETRIC

We consider the Kane-Mele model on a 2D honeycomb
lattice [4,7]

HKM = t
∑
〈i, j〉

c†
i c j + iλSO

∑
〈〈i, j〉〉

vi jc
†
i szc j

+ iλRb

∑
〈i, j〉

c†
i (s × d i j )zc j +

∑
i

λνξic
†
i ci, (1)

where s is Pauli matrix acting on the spin degree of freedom
and t is the nearest neighbor hopping. vi j = 2√

3
(d i × d j ) =

±1 is defined through the unit vectors d i and d j along the
transverse direction d i j when particles hop from site j to i.
ξi = ±1 applies on the sublattice degree of freedom τ. The
Bloch Hamiltonian in the momentum space can be written as
HKM(k) = ∑5

a=1 da(k)�a + ∑
a<b dab(k)�ab, where the Dirac

matrices are defined as �a = (τx ⊗ s0, τz ⊗ s0, τy ⊗ sx, τy ⊗
sy, τy ⊗ sz ) with their commutators �ab = 1

2i [�
a, �b]. s0 and

τ0 are identity matrices. The nonzero coefficients da(k) and
dab(k) [7] are listed in Appendix A.

For simplicity, we consider only k-independent non-
Hermitian terms da = iλa or dab = iλab, where λa, λab ∈
R. The TR symmetry operator T = −iτ0 ⊗ syK and K
is the complex conjugation, yielding T �aT −1 = �a and
T �abT −1 = −�ab. Therefore a non-Hermitian term iλa�

a

(iλab�
ab) breaks (preserves) the TR symmetry.

We first consider the TR-symmetric non-Hermitian Kane-
Mele model H nH-KM = HKM(k) + iλ23�

23. The term iλ23�
23

mixes spins with non-Hermitian nearest-neighbor hopping,
yielding asymmetry in the Rashba spin-orbit interaction
along the bonds perpendicular to the zigzag edge. We
start with a trivial insulator with strong sublattice poten-
tial λν = 0.4. For a small λ23 = 0.1, the open-boundary
spectrum on a cylindrical geometry with zigzag edge is
plotted in Fig. 1(a) and the edge states do not cross
the band gap, showing a trivial insulator. For weak λ23,

the insulating gap scales as �I = 6
√

3λSO −
√

−λ2
23 + λ2

ν −√
−λ2

23 + λ2
ν + 9λ2

Rb (the inset) with the gap closing at λc
23 =

±
√

(4λSOλν )2 − 3(λRb − 12λSO)2/(4λSO) ≈ ±0.27 for the
given parameters. With increasing |λ23| > |λc

23|, the gap
reopens and the system enters the QSH phase with the emer-
gence of helical edge states in the open-boundary spectrum
at λ23 = 0.5 [Fig. 1(b)]. The edge states in both regimes

(a) (b)

(c) (d)

FIG. 1. Topological phase transitions driven by non-Hermiticity.
(a), (b) The non-Hermitian term iλ23�23 drives the system from
(a) trivial insulator (λ23 = 0.1) to (b) QSH insulator (λ23 = 0.5).
The panels show open-boundary spectra on a zigzag ribbon. The
parameters are t = 1, λSO = 0.06, λν = 0.4, and λRb = 0.05. (c), (d)
The non-Hermitian term iλ14�14 drives the system from (c) QSH
insulator (λ14 = 0.05) to (d) trivial insulator (λ14 = 0.4) with ex-
ceptional edge arcs. The parameters are the same as panels (a) and
(b) except λν = 0.1 and λRb = 0. The insets show the change of the
real insulating gap Re(�I ) with respect to the non-Hermitian parame-
ters. The dashed gray lines represent gap closing points, “IN” denotes
the trivial insulator phase and the light purple triangles (disks) denote
the non-Hermitian parameters for panels on the left (right).

(trivial or topological) are purely real while the bulk spec-
trums are complex (see Appendix A). Notice that the term
iλ23�

23 also leads to non-Hermitian skin effects [12] when
λ23 is strong (i.e., in the QSH phase), which is discussed in
Appendix B. Energetically, such a non-Hermitian effect me-
diates the strength of the sublattice potential, leading to the
nontrivial phase transition described above.

A different non-Hermitian term can also drive a phase
transition from a QSH to a trivial insulator with exceptional
properties of the helical edge states. We consider a QSH phase
with λν = 0.1 with vanishing Rashba spin-orbit interaction
and add the non-Hermitian term iλ14�

14. This term splits the
degeneracies of the helical edge states at kx = π into two
exceptional points [Fig. 1(c)], which are connected by two
degenerate exceptional edge arcs with same real but opposite
imaginary parts. This is illustrated in Figs. 2(a) and 2(b),
where only the edge states below the Fermi level are plotted.
The exceptional points are developed between two compo-
nents in the helical edge state, which have opposite spins and
chiralities (i.e., a TR-symmetric pair). Along the exceptional
edge arc, the spins are no longer polarized.

The left and right exceptional points are symmetric to
the M point due to TR symmetry. In Fig. 2(c), we plot
the position of the right exceptional point with respect to
λ14. It starts from the M point (kx = π ) and moves almost
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(a)

(c)

(b)

FIG. 2. Exceptional points and exceptional edge arcs. (a), (b)
Real and imaginary parts of the edge states below the Fermi level.
The parameters are the same as Figs. 1(c) and 1(d) except λ14 = 0.09.
The red arrows highlight the exceptional points (EPs) and edge arcs.
(c) Evolution of (right) exceptional point along kx with respect to λ14.

linearly to K point (kx = 2π/3), at which the insulating gap
closes (see Appendix C). The eigenenergies at K /K ′ points

are ±λν ±
√

27λ2
SO − λ2

14, therefore the gap closes at λc
14 =

±
√

27λ2
SO − λ2

ν . When the band gap reopens for λ14 > λc
14,

the system becomes a trivial insulator, where the real insu-
lating gap remains a constant Re(�I ) = 2λν [see inset of
Figs. 1(c) and 1(d)]. The exceptional edge arcs survive in the
trivial insulator with constant real energies while exceptional
points vanish. Such exceptional behaviors can be understood
through a low-energy effective Hamiltonian of the helical
edge states (see Appendix C). We note that while similar
edge arcs in Fig. 1(c) were observed previously [16], the
non-Hermiticity-driven topological phase transition was not
investigated.

III. NORMALIZED BIORTHOGONAL Z2 INVARIANT AND
BULK-EDGE CORRESPONDENCE WITH SKIN EFFECTS

The topological phase transition and the emergence of he-
lical edge states indicate the change of the bulk topological
invariant. In the Hermitian QSH phase with TR symmetry, the
bulk topology is characterized by a Z2 index [7], which is ob-
tained from the phase winding W = 1

2π i

∮
L dk · ∇k logP (k)

along a closed path L that encircles half of the Brillouin zone
so that ±k are not simultaneously included. Here P (k) is the
Pfaffian P (k) = Pf(〈um(k)|T |un(k)〉), where m, n enumerates
the occupied bands and |un(k)〉 is the eigenvector. Because of
the gauge-dependence of the Pfaffian, it is difficult to extend
the Pfaffian Z2 to general non-Hermitian systems for describ-
ing non-Hermiticity-induced QSH insulators.

Here we establish a biorthogonal Z2 invariant for non-
Hermitian TR-invariant QSH insulators by developing a
non-Hermitian extension of the Wilson loop method [32],
which is equivalent to Kane-Mele Pfaffian definition in Her-
mitian systems [33]. The biorthogonal Wilson line element is

defined as

[Gαβ (k)]mn = α〈um(k + �k)|un(k)〉β, α 
= β, (2)

where �k = (k f − ki )/N is a small fraction on a line con-
strained by two end points ki, f . α, β = L,R denote the left
and right eigenvectors, which are defined as H (k)|u(k)〉R =
ω(k)|u(k)〉R and H†(k)|u(k)〉L = ω∗(k)|u(k)〉L . A normaliza-
tion condition α〈um(k)|un(k)〉β = δmn, α 
= β is imposed to
form a biorthogonal system [14].

A path-ordered discrete Wilson line is defined as Wki→k f =
G(k f − �k)G(k f − 2�k) . . .G(ki + �k)G(ki ) with normal-
ized element

[G(k)]mn = 1
2 ([GLR(k)]mn + [GRL(k)]mn). (3)

A Wilson loop Wki→ki+T , i.e., a closed Wilson line, starts
from the base point ki, and returns to k f = ki + T = ki af-
ter a period T . The biorthogonal Wannier center ν j (ki ) for
each ki is defined as the phase of the eigenvalues EN

j (ki ) =
ei2πν j (ki ) of the Wilson loop through Wki→ki+T (k)|v j (ki )〉R =
EN

j (ki )|v j (ki )〉R (in this work, j = 1, 2 for two lower occu-
pied bands). The normalization process in Eq. (3) ensures the
physical interpretation of non-Hermitian Wilson loop as the
relative position of the particle to the center of one unit cell
and also retains proper symmetries like inversion symmetry
to M point as discussed in the following (see Appendix D).

The biorthogonal Z2 invariant I = η j mod 2 is defined
by the winding η j = 1

2π

∮
C ∇kν j (ki ) · dki for each pair of

biorthogonal Wannier centers, where C is a loop for the base
point ki in the Brillouin zone. I = 1 corresponds to the topo-
logical QSH insulator with helical edge states for odd η j ,
while I = 0 corresponds to trivial insulator without any topo-
logically protected edge state for even η j . When TR symmetry
is preserved, the winding of each biorthogonal Wannier center
must come with its TR-symmetric pair (either two 0 or a pair
like ±1), therefore the biorthogonal Z2 invariant can always
be defined.

To compute the biorthogonal Wannier center ν j (ki ) on the
honeycomb lattice, we choose the Brillouin zone shown in
Fig. 3(a). The base point ki is chosen along the orange arrow
while the purple arrow defines each non-Hermitian Wilson
loop. The computed ν j (ki ) for the QSH phase is displayed in
Fig. 3(b), where the blue and red dots correspond to Figs. 1(a)
and 1(b) respectively. There are two ν j (ki ) for each color since
there are two occupied bands. The path C for the base point ki
starts from the � point, sweeps through the M point and finally
ends at another � point, with ν j (ki ) symmetric to M point.
At TR-symmetric points (� and M), ν j (ki ) are degenerate as
Kramers’ pairs. Inversion symmetry dictates that ν j (ki ) must
have opposite signs so that they vanish at �. In the topolog-
ical regime, ν j (ki ) travel along different directions and show
windings η j = ±1, yielding a biorthogonal Z2 index I = 1
(red dots). In the trivial insulator regime, ν j (ki ) never crosses
±1/2 and the winding vanishes, yielding I = 0 (blue dots).
Similarly, the topological phase transition driven by iλ14�

14

in Figs. 1(c) and 1(d) is consistent with the change of bulk
biorthogonal Z2 invariant from blue (I = 1) to red (I = 0)
dots in Fig. 3(c).

It is known that the non-Hermitian skin effects would
render breakdown of usual bulk-edge correspondence even in
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FIG. 3. Bulk biorthogonal Z2 invariant from non-Hermitian Wil-
son loops. (a) The non-Hermitian Wilson loop in the Brillouin zone
(dashed parallelogram) is defined along the purple arrow while the
base point for each Wilson loop is given by the orange arrow.
(b), (c) The biorthogonal Wannier centers plotted to varying base
points, corresponding to the cases in Figs. 1(a), 1(b), 1(c), and
1(d) respectively. The blue (red) points represent weak (strong)
non-Hermitian effects and the biorthogonal Z2 index I is labeled in
each panel.

a simple non-Hermitian SSH model [12]. With our notation
of the Z2 invariant from normalized non-Hermitian Wilson
loop in Eq. (3), a concrete bulk-edge correspondence is pre-
served, leading to the well-defined non-Hermiticity-driven
QSH phases (see Appendix B).

IV. BIORTHOGONAL SPIN CHERN NUMBER FOR
TR-BROKEN NON-HERMITIAN QSH INSULATORS

When TR symmetry is broken, the windings of Wannier
centers may not come in pairs, therefore the biorthogonal Z2

invariant cannot be defined. Moreover, without TR symmetry,
the system reduces to the symmetry class classified by a Z
topological invariant [18]. Here we consider a generalization
of the spin Chern number, which, in Hermitian systems, con-
sists of a nontrivial decomposition of a trivial Bloch bundle
[34].

We construct a biorthogonal M matrix

[M(k)]mn = L〈um(k)|τ0 ⊗ sz|un(k)〉R, (4)

whose diagonalization decomposes the mixed occupied bands
into two spin sectors (denoted by S = ±1/2) satisfying
M(k)|ψS (k)〉R = ωS|ψS (k)〉R. When the eigenspectra ωS of
two spin sector are separable, we can define the biorthog-
onal spin Chern number for each spin sector CS,αβ =

1
2π

∫
d2k · FS,αβ (k) through the Berry curvature FS,αβ (k) =

∇ × AS,αβ (k), where the non-Abelian Berry connection

AS,αβ (k) = −iα〈ψS (k) · u(k)|∂k|ψS (k) · u(k)〉β, (5)

and |ψS (k) · u(k)〉β = ∑
j ψ j (k)|u j (k)〉β . The summation of

j runs over all occupied bands and ψ j (k) denotes the jth com-
ponent of the eigenvector |ψS (k)〉β . Previous studies showed
that the Chern numbers defined through different Berry curva-
tures from left or right eigenvectors are equivalent due to their
gauge-invariant nature [14]. Similar arguments apply here,
and we denote CS = CS,αβ hereafter.

In our context, a nonzero biorthogonal spin Chern number
CS means there is a chiral edge state of “spin-S” with the chi-
rality determined by the sign of CS . This is not generally true

FIG. 4. Biorthogonal spin Chern number as the topological in-
variant for TR-broken non-Hermitian QSH insulator. The parameters
are the same as in Figs. 1(a) and 1(b). The blue (S = 1/2, spin
“up”) and orange (S = −1/2, spin “down”) dots are biorthogonal
spin Chern numbers CS . The red curve represents the real insulating
gap.

[34] but holds here because the underlying Haldane model is
a Chern insulator with the topological invariant quantized to
0 and ±1 [5]. In the trivial insulator phase C±1/2 = 0, while
C±1/2 = ±1 in QSH phase (see Appendix E). In the integer
quantum Hall phase, C±1/2 = 1 or −1 (see Appendix F). Be-
cause CS is developed without symmetry constraint, it can be
applied in the TR-symmetric region. In fact, the biorthogonal
spin Chern number provides an equivalent description as the
biorthogonal Z2 invariant in the TR-symmetric region (see
Appendix E).

The QSH phase survives even when TR-symmetry is bro-
ken except that there are small backscatterings on the helical
edge states, which open a small energy gap on the edge
states near the Fermi level [8]. Such a TR-broken QSH phase
can also be achieved directly from a trivial phase through
non-Hermiticity. For instance, we consider a term iλ4�

4 that
breaks TR symmetry, and start from a trivial insulator phase
as in Fig. 1(a). This term also renders asymmetric Rashba
spin-orbit interaction and the gap scales similarly as the inset
in Figs. 1(a) and 1(b). With increasing |λ4|, the gap closes and
then reopens, leading to a TR-broken QSH phase, as shown in
Fig. 4. The biorthogonal spin Chern numbers CS for both triv-
ial insulator and TR-broken QSH phases are computed, which
are consistent with the open-boundary spectra (see Appendix
G). In Hermitian systems, a topological phase transition from
a TR-broken QSH phase to an interger quantum Hall phase
can be driven by a real exchange field λμ�34. Such a phase
transition still exists in the non-Hermitian region and can be
characterized by the biorthogonal spin Chern number (see
Appendix F).

V. CONCLUSION AND DISCUSSION

In summary, we demonstrated that QSH insulators and
their phase transitions from/to trivial insulators can be driven
by non-Hermiticity and showcased the exceptional edge arcs
under topological phase transition.

Photonics provides a potential platform to play with the
non-Hermitian QSH insulators, thanks to the material gain
and loss. For example, a recent study proposes to realize
the Kane-Mele model with PT -symmetry in coupled ring
resonator array [35]. To observe topological signatures in the
experiments, we can either detect the nontrivial topological
invariants through an interferometry scheme [36] and/or ob-
serve the edge state by promoting it to a lasing mode [21].
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While our discussion focuses on non-Hermitian Kane-
Mele model, the developed topological invariants, i.e., the
biorthogonal Z2 index and spin Chern number CS , are appli-
cable to other QSH models like non-Hermitian BHZ model.
The biorthogonal Z2 index may be further generalized to char-
acterize three-dimensional (3D) non-Hermitian topological
insulators, which needs further investigation. The biorthog-
onal Z2 (and Z) topological invariants provide a powerful
tool for characterizing wide classes of non-Hermitian topo-
logical matters and pave the way for exploring their device
applications.
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APPENDIX A: NON-HERMITIAN KANE-MELE MODEL
AND COMPLEX SPECTRA

For the convenience of the reader, we list the nonzero
coefficients of the Kane-Mele model [7]

d1 = t

[
1 + 2 cos

(
1

2
kx

)
cos

(√
3

2
ky

)]
,

d2 = λν,

d3 = λRb

[
1 − cos

(
1

2
kx

)
cos

(√
3

2
ky

)]
,

d4 = −
√

3λRb sin

(
1

2
kx

)
sin

(√
3

2
ky

)
,

d12 = −2t cos

(
1

2
kx

)
sin

(√
3

2
ky

)
,

d15 = 2λSO

[
sin kx − 2 cos

(
1

2
kx

)
cos

(√
3

2
ky

)]
,

d23 = −λRb cos

(
1

2
kx

)
sin

(√
3

2
ky

)
,

d24 =
√

3λRb sin

(
1

2
kx

)
cos

(√
3

2
ky

)
,

d34 = λμ,

where the last term represents a TR-broken exchange field and
is introduced in TR-broken QSH insulators [8].

In the main text, we examine two topological phase transi-
tions in the TR-symmetric non-Hermitian Kane-Mele model.
Only real parts of the open-boundary spectra are plotted in the
main text (see Fig. 1). The imaginary bands are plotted here
in Fig. 5.

For the topological phase transition from trivial to QSH
insulators driven by the non-Hermitian term iλ23�

23, the edge
states in both phases are (mostly) purely real while the bulk
spectrum is complex, as shown in Figs. 5(a) and 5(b). The

FIG. 5. Imaginary bands in TR-symmetric non-Hermitian Kane-
Mele model. (a)–(d) Imaginary parts of the spectra shown in
Figs. 1(a) to 1(d), respectively. The edge states are plotted with the
same color as those in Fig. 1 and we only plot the purely real edge
states in panels (a) and (b).

helical edge states are separated from the bulk bands in the
entire complex plane.

Different from asymmetric Rashba spin-orbit interaction
iλ23�

23, iλ14�
14 term represents a non-Hermitian next-

nearest-neighbor hopping that only mixes spins. It splits the
edge crossing into a pair of exceptional points, which are con-
nected by an exceptional edge arc with same real energy and
opposite imaginary energies, as shown in Fig. 5(c). Outside
the exceptional edge arc, the edge state spectrum is purely
real. In the trivial insulator phase, the entire spectrum becomes
complex [see Fig. 5(d)].

To further clarify the properties of the bulk, we also plot
the bulk spectra on complex plane, as shown in Fig. 6. In all
the four phases, the system exhibits a real line gap. Under the
existence of time-reversal symmetry, our non-Hermitian QSH
model belongs to the real AII with a real line gap and thus, it
can be characterized by a Z2 invariant [18]. This is consistent
with our topological characterizations in the main text.

APPENDIX B: NON-HERMITIAN SKIN EFFECT

In certain non-Hermitian systems, the module of bulk
modes tends to localize on the boundary, which is called
“non-Hermitian skin effect.” It has been shown that the exis-
tence of the skin effect could compromise the usual bulk-edge
correspondence even in the simple non-Hermitian SSH model
[12].

A similar non-Hermitian skin effect also presents in our
2D non-Hermitian quantum spin-Hall model and an example
is demonstrated in Fig. 7. We consider the same system on
a cylindrical geometry as Figs. 1(a) and 1(b) in the main
text. When the non-Hermitian effect is weak, the system is
in a trivial insulator phase and the modules of two bulk
modes are plotted in Fig. 7(a) (in the inset the two modes
are labeled using the same color). They show the extended
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FIG. 6. The spectra under periodic boundary conditions at differ-
ent momenta on complex plane. The parameters for each panel are
the same as in Fig. 1 in the main text.

character as usual bulk modes. With increasing λ23 and in
the quantum spin-Hall insulator phase, the same two bulk
modes become highly localized (on the boundary) and the
band becomes more flat, as results of non-Hermitian skin
effects [see Fig. 7(b)]. However, even with such predomi-
nant manifestation of skin effects under strong non-Hermitian
terms, the biorthogonal Z2 index defined through normalized
Wilson loop predicts the correct topological phase transition
and yields a consistent bulk-edge correspondence.

APPENDIX C: BULK BANDS AND LOW-ENERGY
THEORY OF EXCEPTIONAL EDGE ARCS

A nonzero �14 term couples different spins while preserves
the sublattice degree of freedom. With a real coefficient,
λ14�14 breaks the TR symmetry and opens a finite gap on the
helical edges. There is no gap closing or topological phase
transition. In contrast, the imaginary term iλ14�14 generates a
pair of exceptional points on the gapless helical edge states
that cross at TR-symmetric points. Two similar terms are

FIG. 7. Non-Hermitian skin effect induced by λ23. Panels (a) and
(b) show the bulk modes with weak [Fig. 1(a)] and strong [Fig. 1(b)]
non-Hermitian terms, respectively. We choose kx = 0 here.

FIG. 8. (a), (b) Real and imaginary bands in momentum space
across the phase transition. The parameters are λ14 = 0.2, 0.295 (gap
closing point), and 0.4. (c) Topological phase transition driven by
iλ14�14 with nonzero Rashba spin-orbit interaction. The parameters
are the same as those in Fig. 2 in the main text except λRb = 0.05.
The light-blue-coded areas correspond to the gapless phases.

iλ13�13 and iλ35�35, which can also induce topological phase
transitions through splitting the edge crossings into excep-
tional points.

In the main text, we described the properties of exceptional
edge arcs. Here we plot the change of the bulk band spec-
trum across the phase transition with the band-gap closing in
Figs. 8(a) and 8(b). The gap closing happens in the complex
plane, meaning both real and imaginary parts of the eigenval-
ues must vanish.

A similar picture holds when Rashba spin-orbit interaction
exists or TR symmetry is broken by a small exchange field
λ34�

34. The Rashba term turns the real edge states outside
the exceptional edge arcs into complex states and the ex-
change field simply shifts the exceptional points to different
directions. The topological phase transition driven by iλ14�

14

with small Rashba spin-orbit interaction (the system is still
topological when λ14 = 0) is plotted in Fig. 8(c). The critical
points for the phase transition become gapless phases and the
biorthogonal Z2 index developed in the main text still applies.
Finally, we note that one can change the open-boundary direc-
tion and observe the same physics along ky.

To understand how a non-Hermitian term induces ex-
ceptional points on the helical edge states, we consider a
low-energy effective Hamiltonian

Hedge = kx�15 + λν�2 + iλ14�14, (C1)

which preserves the TR symmetry. The first term kx�15 de-
scribes a Dirac fermion with the four-fold degeneracy at kx =
0. The second term λν�2 lifts the degeneracy and renders
four edge crossings, two of which locate at the Fermi level
with opposite kx while the other two at kx = 0 with opposite
energies. Such a band structure resembles the edge spectrum
in a QSH insulator. The last term iλ14�14 stretches each band
crossing below and above the Fermi level into two exceptional
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points. Diagonalize the above Hamiltonian, we obtain

ω±,− = ±
√
k2
x − λ2

14 − λν,

|ψ±,−〉R =
(

0,−kx − ω±,− − λν

λ14
, 0, 1

)T

,

ω±,+ = ±
√
k2
x − λ2

14 + λν,

|ψ±,+〉R =
(

− kx + ω±,+ − λν

λ14
, 0, 1, 0

)T

, (C2)

where ω±,± denote four eigenvalues and |ψ±,±〉R are the
corresponding right eigenvectors. Both the eigenvalues and
the right eigenvectors collapse at the exceptional points kx =
±λ14 (so do the left eigenvectors). In general, exceptional
points are not protected by TR symmetry. If the TR symme-
try is broken with an exchange field λ34�34, the exceptional
points merely shift their positions to kx = ±λ14 − λ34 (for
the pair above the Fermi level) or kx = ±λ14 + λ34 (for the
pair below the Fermi level). We also note that the topological
phase transition studied in Figs. 1(c) and 1(d) still occurs in
TR-broken non-Hermitian QSH insulators.

APPENDIX D: BIORTHOGONAL WILSON LINE
IN THERMODYNAMIC LIMIT

In non-Hermitian systems, the Berry connection cannot be
solely defined through the right eigenvectors. A proper way to
define a purely real Berry connection involves both left and
right eigenvectors

A(k) = 1
2 [ALR(k) + ARL(k)], (D1)

where [Aαβ (k)]mn = −iα〈um(k)|∂kun(k)〉β , α 
= β is the
biorthogonal non-Abelian Berry connection. A(k) is real
since ALR(k) = A∗

RL(k).
To justify our definition of the non-Hermitian Wilson line

element

[G(k)]mn = 1
2 [[GLR(k)]mn + [GRL(k)]mn] (D2)

in the main text, we need show that the non-Hermitian Wilson
line gives the desired non-Hermitian Berry phase in the ther-
modynamic limits, similar to the Hermitian cases [32]. We
expand each element [Gαβ (k)]mn = α〈um(k + �k)|un(k)〉β to
the first order (assuming N is very large)

[Gαβ (k)]mn = α〈um(k)|un(k)〉β + (�k)α〈∂kum(k)|un(k)〉β.

(D3)
Due to the normalization condition α〈um(k)|un(k)〉β = δmn

[14], we have α〈∂kum(k)|un(k)〉β = −α〈um(k)|∂kun(k)〉β . The
biorthogonal Wilson line element can be rewritten as

[Gαβ (k)]mn = δmn − i(�k)[Aαβ (k)]mn, (D4)

yielding

[G(k)]mn = δmn − i(�k)[A(k)]mn. (D5)

The non-Hermitian Wilson loop from ki to k f is defined
through a path-ordered multiplication

Wki→k f =
N∏
j=1

[I0 − i(�k)A(k + j�k)], (D6)

(a)

(b)

FIG. 9. Biorthogonal spin Chern number as topological invariant
for TR-symmetric non-Hermitian QSH insulators. (a), (b) Biorthog-
onal spin Chern numbers computed for the TR-symmetric models in
Figs. 1(a), 1(b), 1(c), and 1(d), respectively.

where I0 is the identity matrix. Under the thermodynamic limit
N → ∞, it gives the exponential of the non-Hermitian Berry
phase

lim
N→∞

Wki→k f = e−i
∫ k f
ki

A(k)·dk
. (D7)

This equation demands that the non-Hermitian Wilson loop
must be unitary in the thermodynamic limit so that the
biorthogonal Wannier center can be defined.

Since the Berry phase represents the electronic con-
tribution to the dielectric polarization in solid state, the
biorthogonal Wannier center ν j (k) can be physically inter-
preted as the relative position of the particle to the center of
one unit cell with the polarization

p = − i

2π
log det(Wki→ki+T ). (D8)

APPENDIX E: BIORTHOGONAL SPIN CHERN NUMBER
IN TR-SYMMETRIC NON-HERMITIAN QSH INSULATORS

In the main text, we claim that biorthogonal spin Chern
number also works when TR-symmetry is preserved. Here we
use the biorthogonal spin Chern number to characterize two
topological phase transitions studied in Fig. 1.

The first topological phase transition from a trivial insula-
tor to a QSH insulator is driven by the non-Hermitian term
iλ23�23. We compute the biorthogonal spin Chern number
for a wild range of λ23, as shown in Fig. 9(a). In the trivial
insulator phase, we have both C±1/2 = 0 as expected. Across
the phase transition point, the biorthogonal spin Chern num-
ber abruptly changes to C±1/2 = ±1, corresponding to the
non-Hermitian QSH phase.

The other topological phase transition is ascribed to the
non-Hermitian term iλ14�14. Since we start from the QSH
phase, we have C±1/2 = ±1 when |λ14| is relatively small, as
shown in Fig. 9(b). In the trivial insulator phase, the biorthog-
onal spin Chern numbers vanish C±1/2 = 0.

From these examples, we see that the biorthogonal spin
Chern number correctly characterizes the topological proper-
ties of the TR-symmetric non-Hermitian Kane-Mele model.
It provides an equivalent description as the biorthogonal Z2

invariant. While a rigor proof of such equivalence is hard to
formulate, a similar conclusion has been drawn in Hermitian
systems through the argument that the spin Chern numbers
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FIG. 10. Biorthogonal spin Chern number as the topological
invariant for TR-broken non-Hermitian QSH insulators. The topo-
logical phase transition is induced by a real exchange field λμ�34 and
a small non-Hermitian term i0.05�14 is included. Other parameters
are the same as those in Figs. 1(a) and 1(b).

do not contain more information than the Z2 invariant and
vice versa [34]. Similar arguments may be generalized to the
non-Hermitian cases.

APPENDIX F: IQH PHASES IN TR-BROKEN
NON-HERMITIAN QSH INSULATORS

Previous study in Hermitian systems has incorporated the
spin Chern number to characterize the phase transition from
a TR-broken QSH phase to an IQH phase [8]. Here, we
show that such a topological phase transition still exists in
non-Hermitian systems and their topological properties are
characterized by the biorthogonal spin Chern number.

We consider a non-Hermitian Kane-Mele model with a
small non-Hermitian term iλ14�14 and a real exchange field
λμ�μ. The biorthogonal spin Chern number with varying
exchange field is plotted in Fig. 10. In the TR-broken QSH
phase, the biorthogonal spin Chern number remains nontrivial
C±1/2 = ±1. With increasing exchange field, we observe a
gapless phase and finally a non-Hermitian IQH phase, where
both spin sectors have the same biorthogonal spin Chern
number depending on the sign of the exchange field C±1/2 =
sign(λμ). The spin Hall current vanishes but the charge Hall

(a) (b)

FIG. 11. TR-broken QSH phase driven by the non-Hermitian
term iλ4�

4. Open-boundary spectrum is plotted for (a) trivial insula-
tor phase (λ4 = 0.1) and (b) TR-broken QSH phase (λ4 = 0.5). Other
parameters are the same as those in Figs. 1(a) and 1(b).

conductance is quantized to 2 (not strictly due to the Rashba
spin-orbit interaction and non-Hermitian effects).

APPENDIX G: TR-BROKEN QSH PHASE DRIVEN
BY NON-HERMITICITY

In the main text, we use the biorthogonal spin Chern num-
ber to characterize a topological phase transition from a trivial
insulator phase to a TR-broken QSH phase driven by the
non-Hermitian term iλ4�

4, as shown in Fig. 4.
In Fig. 11(a), we plot the open-boundary spectrum for λ4 =

0.1, corresponding to a trivial insulator phase. The edge states
do not cross the band gap. With the increasing non-Hermitian
strength, the system enters the topological region. An example
of λ4 = 0.5 is displayed in Fig. 11(b), where a typical edge
configuration for the QSH phase in the Kane-Mele model is
found. The edge states are consistent with the prediction from
the biorthogonal spin Chern number, demonstrating the bulk-
edge correspondence.
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