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ABSTRACT

Given a collection of𝑁 geo-located point samples of𝑘 types, we aim

to detect spatial mixture patterns of interest, which are sub-regions

of the study area that have significantly high or low mixture of

points of different types. Spatial mixture patterns have important

applications in many societal domains, including resilience of smart

cities and communities, biodiversity, equity, business intelligence,

etc. The problem is challenging because ranking and selection of

candidate patterns can be highly susceptible to the effect of natural

randomness, and real-world data often consists of various mixture

patterns. In related work, the multi-nomial scan statistic does not

support identification of high or low mixture due to its "direction-

less" nature and high sensitivity to the composition of mixture

patterns in data. While species richness indices in biodiversity

research allow specification of directions, the measures are very

sensitive to spatial randomness effects. To bridge the gap, we first

propose a spatial mixture index to provide robust ranking among

candidate patterns. Then, we present a dual-level Monte-Carlo

estimation method with a baseline algorithm for spatial mixture

pattern detection. Finally, we propose both an exact algorithm and a

distribution-inspired sequence-reduction heuristic to accelerate the

baseline approach. Experiment results with both synthetic and real-

world data show that the proposed approaches can detect mixture

patterns with high accuracy, and the acceleration methods can

greatly reduce computational cost while maintaining high solution

quality.

CCS CONCEPTS

• Information systems→Datamining; Spatial-temporal sys-

tems.

KEYWORDS

Spatial mixture pattern, spatial mixture index, statistical robustness

ACM Reference Format:

Yiqun Xie, Han Bao, Yan Li, and Shashi Shekhar. 2020. Discovering Spatial

Mixture Patterns of Interest. In 28th International Conference on Advances

in Geographic Information Systems (SIGSPATIAL ’20), November 3–6, 2020,

Seattle, WA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3397536.3422217

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGSPATIAL ’20, November 3–6, 2020, Seattle, WA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8019-5/20/11. . . $15.00
https://doi.org/10.1145/3397536.3422217

1 INTRODUCTION

Given a collection of 𝑁 geo-located point samples of 𝑘 types or

classes (e.g., genera or species, service types) in a study area, we aim

to detect spatial mixture patterns of interest, that is, sub-regions

of the study area that have a significantly high or low mixture of

different types of points.

Patterns of spatial mixtures are important in many application

domains, such as smart cities, biodiversity, agriculture, equity, busi-

ness intelligence, etc. In smart cities, for example, identifying re-

gions with low-mixtures of tree genera (i.e., regions with a treescape

dominated by very few types of trees) has become a critical and

urgent task for ensuring the resilience and security of green in-

frastructure [15, 17]. In the last few decades, trees diseases (e.g., by

insects or fungus infestation) have ravaged treescapes in many US

states and caused tree deaths in the tens of millions [2, 3, 15, 17].

The damage has especially impacted urban settings that are domi-

nated by few tree genera. As an example, after elm trees were wiped

out by Dutch elm disease in Midwest regions, ash trees were chosen

as a common replacement. However, the recent spread of Emerald

ash borer is now threatening to wipe out the ash tree population

estimated to cost over $10 billion to remedy. These waves of distur-

bance exposed the weakness of the low-mixture system and pushed

policy makers to re-evaluate the resilience of the composition of

tree types as well as other natural resources to reduce the impact

of the next threat. Identification of city zones with a low mixture

of tree types has become a critical need for decision making. The

ability to detect spatial mixture patterns can also provide valu-

able information to related biodiversity applications (e.g., protect

high-mixture regions and make timely interventions to vulnerable

low-mixture zones). These are just a few of many examples.

The problem has three major challenges. First, detection of spa-

tial mixture patterns requires ranking among a large number of

candidate regions, but such ranking can be easily disturbed by ef-

fects of natural randomness exhibited in the process (detailed in

Sec. 3.1). Second, real-world data often consists of many different

spatial mixture patterns, especially when the cardinality of types is

large (e.g., a typical zone in a city often has tens of tree genera and

hundreds of tree species). This challenges traditional point-process

based measures, which assume very few varieties. Third, the enu-

meration space of candidate sub-regions is often very large, leading

to high computational cost especially with significance testing.

In the literature, there are two lines of work related to the topic

of spatial mixture patterns. The most relevant is from the family of

spatial scan statistics [12] ś the multi-nomial scan statistic (MNSS)

[1, 10, 11]. The goal of MNSS is to identify a sub-region of the

study area that has a "different" mixture of different types of points

compared to the outside of the sub-region (i.e., different proportions

of different types). As explicitly noted by the authors of MNSS, the

method is "direction-less", meaning it can only tell the mixture

is different; it cannot indicate any property of a mixture or put a
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preference on any mixture. Thus, the method is not suitable when

outputs need to be directional (e.g., high or low mixture). A similar

formulation of MNSS, the ordinal scan statistic [10], is designed for

the case when there is an order among point types or classes (e.g.,

graduate > undergraduate > high school). It also cannot be used to

find high or low mixture patterns. In addition, these methods focus

on finding a sub-region that is different from its outside. Thus, the

score of a candidate is measured by comparing its mixture to its

outside mixture. This only works when the data consists of very

few mixture patterns (e.g., one for inside-the-pattern and one for

outside), and is not suitable when data contains many different

mixture patterns (i.e., every sub-region can be potentially different

from every other). Another line of work, from biodiversity studies,

mainly focuses on evaluating the biodiversity of a study area and

its change across time. Its relevance to spatial mixture pattern

detection is that the species richness indices [5, 7, 9] used in these

studies can be potentially useful as a score function for ranking

candidate regions during detection. However, while the species

richness indices (e.g., Simpson’s index, entropy) are "directional"

and can be used to favor high- or low-mixtures, they are very

sensitive to natural randomness in the process and often lead to

non-interesting outputs (concrete examples in Sec. 3.1). In addition,

some measures rely only on the cardinality of distinct species [8]

and cannot tell whether the distribution is balanced or biased.

To bridge the gaps, we first formulate a new Spatial Mixture

Index (SMI) to rank and select candidate regions. SMI is directional

and can be used with various traditional indices. Then, we present a

dual-level Monte-Carlo estimationwith a baseline algorithm to com-

pute SMI and identify spatial mixture patterns of interest. Finally,

we propose both an exact algorithm and a distribution-inspired

sequence reduction heuristic to improve computational efficiency.

Experiment results using both synthetic and real-world data

show that the proposed approach with SMI can identify spatial

mixture patterns with high accuracy, and that the proposed accel-

eration techniques can greatly improve computational efficiency

while maintaining high solution quality.

2 PROBLEM DEFINITION

2.1 Key Concepts

Distribution of point samples: The input data with geo-located

points, each point having one type or class (e.g., species) from a set

of size 𝑘 .

Direction of mixture: Specifies whether a high or low mixture

is of interest. A high mixture means the region is less dominated

by one or very few types/classes of points, and a low mixture is the

opposite.

Test statistic:A function mapping a candidate region to a scalar

score representing the degree of mixture (either high or low). The

proposed spatial mixture index is a test statistic.

Spatial mixture pattern: A sub-region of the study area that

has a significantly high or low mixture of types, measured by the

test statistic.

Hypothesis testing: Used to make sure a detected mixture pat-

tern is not formed purely by natural randomness. The null hypothe-

sis 𝐻0 states that the types of points in the input data are randomly

assigned (i.e., any high or low mixture region is created by random

chance). Significance testing uses the test statistic as a measure but

does not contribute to its calculation.

2.2 Formal Problem Formulation

The problem is formally defined as follows:

Inputs:

ś A distribution of point samples 𝐷 where |𝐷 | = 𝑁 ;

ś A direction of mixture (i.e., high or low);

ś A significance level 𝛼 ;

ś Thresholds for pattern size and count: 𝜌 and 𝑟𝑚𝑎𝑥 ;

Output: Statistically significant spatial mixture patterns;

Objectives: Solution quality and computational efficiency;

Constraints:

ś The number of points in any output pattern ≤ 𝜌𝑁 ;

ś The maximum number of patterns returned is 𝑟𝑚𝑎𝑥 .

The first constraint is used to limit the size of a pattern so that

it represents an interesting sub-region rather than the majority

of data (commonly 𝜌 = 1/2). This can be made flexible by user

needs. The second constraint allows users to prioritize the top 𝑟𝑚𝑎𝑥

patterns. If not specified, all significant patterns will be returned.

3 SPATIAL MIXTURE PATTERN DETECTION

In this section, we introduce the new and general formulation of the

spatial mixture index (SMI), and propose both exact and heuristic

algorithms to detect mixture patterns with it.

3.1 Spatial Mixture Index

The spatial mixture index is motivated by the need for the ability to

(1) explicitly specify a direction (i.e., high- or low-mixture) for the

detection, and (2) explicitly model the effect of natural randomness.

As we will show through an illustrative example in Fig. 1, the

absence of either of the two will lead to pitfalls in spatial mixture

pattern mining.

Fig. 1 shows a distribution of 𝑁 = 120 points of three types,

whose cardinalities are [|red|, |blue|, |yellow|] = [78,21,21], respec-

tively. For illustrative purposes, five candidate regions C1 to C5 are

shown as circles inside the study area, and the cardinality of points

inside each candidate is: C1 = [6,5,5], C2 = [1,1,1], C3 = [1,0,15], C4 =

[0,0,16] and C5 = [30,0,0]. In this illustrative example, the goal is to

find the region with high-mixture. By comparing the candidates,

we can see that C1 and C2 have high mixtures and C3 to C5 have

low mixtures (i.e., dominated by a single type). C2 is a sub-region

of C1. Although it also has a high mixture, the fact that it only has

three points makes it statistically less interesting. In other words

it is something that can be commonly observed in pure random

point distributions. So ideally a measure or test statistic should give

the highest score to candidate C1, then C2, and then the rest of the

low-mixture candidates.

3.1.1 Pitfalls of Existing Measures.

Multi-nomial scan statistic (MNSS) [11]: As we introduced

earlier in Sec. 1, MNSS uses a likelihood ratio to measure the inter-

estingness of a mixture as shown in Eq. (1).

log𝐿𝑅 = log

( ∏𝑘
𝑖=1 𝑝

𝑛𝑖
𝑖 · 𝑞

𝑁𝑖−𝑛𝑖
𝑖

∏𝑘
𝑖=1 (𝑝

′
𝑖 )
𝑛𝑖 · (𝑞′𝑖 )

𝑁𝑖−𝑛𝑖

)
(1)
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structure of SMI is shown in Eq. (4), and it can be used with different

mixture measures that are directional.

𝑆𝑀𝐼 =




𝑓𝑑𝑖𝑟 (𝐶)
𝑅 (𝑓𝑑𝑖𝑟 ( ·), |𝐶 |,𝛽)

, if direction = high,
𝑓𝑑𝑖𝑟 (𝐶)

𝑅 (𝑓𝑑𝑖𝑟 ( ·), |𝐶 |,1−𝛽)
, otherwise

(4)

where 𝑓𝑑𝑖𝑟 (·) is a directional measure of mixture degree (e.g., tra-

ditional measures such as SI in Eq. (2) and SE in Eq. (3)); 𝐶 is the

candidate pattern being evaluated, and |𝐶 | is the number of points

in 𝐶; and function 𝑅 returns a 𝑓𝑑𝑖𝑟 score of a candidate:

𝑅(𝑓𝑑𝑖𝑟 (·), |𝐶 |, 𝛽) = 𝑃𝑀𝐹−1
𝑓𝑑𝑖𝑟 , |𝐶 |

({𝛽}) (5)

where 𝑃𝑀𝐹𝑓𝑑𝑖𝑟 , |𝐶 | (𝑥) is a probability mass function,2 in which

the random variable 𝑥 is the 𝑓𝑑𝑖𝑟 score of a candidate of size |𝐶 |

in random data (i.e., data with the same spatial distribution of

points and overall fraction of each type as the input data, but the

type labels on points are randomly assigned); 𝑃𝑀𝐹−1
𝑓𝑑𝑖𝑟 , |𝐶 |

({𝛽}) is a

standard math notation referring to the solution 𝑥0 that achieves

𝑃𝑀𝐹𝑓𝑑𝑖𝑟 , |𝐶 | (𝑥0) = 𝛽 ; and 𝛽 ∈ (0, 1).

In plain language, 𝑅(𝑓𝑑𝑖𝑟 (·), |𝐶 |, 𝛽) is the score achieved by a

candidate of size |𝐶 | that is greater than (100𝛽)% of scores from

candidates in random data. By normalizing the score from a direc-

tional function 𝑓𝑑𝑖𝑟 (·) (e.g., SI or SE) with 𝑅(𝑓𝑑𝑖𝑟 (·), |𝐶 |, 𝛽), SMI is

able to evaluate whether the candidate is statistically interesting.

In the illustrative example (Fig. 1 and Table 1), we show the

results of two concrete realizations of SMI with 𝑓𝑑𝑖𝑟 being SI and

SE, respectively. The 𝛽 is set to 0.9. As we can see, the normalization

in SMI effectively suppresses the statistically non-interesting high-

values of candidate C2 for both SI and SE (the value "1" means that

the mixture achieved by C2 can be found in at least 10% of the same-

size candidates in random data), and is able to favor the statistically

more meaningful high-mixture candidate C1. More interestingly,

although the original ranges of SI and SE are very different as we

can see through their scores, the normalized scores by SMI-SI and

SMI-SE become much more similar.

Finally, regarding the choice of 𝛽 , a higher value (e.g., 0.9, 0.99) is

recommended because the goal is to suppress high (or low) mixture

candidates that also commonly exist due to random chance, and

"commonly exist" does not mean "ubiquitous". For example, while

the three-point candidate C2 in Fig. 1 can be easily formed by

a random assignment of point types (i.e., at least 10% of same-

size candidates), this does not mean all or most of the same-size

candidates in random data will have the same mixture. In other

words, both C1 and C2 may not be the majority, but C2 can be much

more easily formed by random chance. Having a high value of 𝛽

makes it easier to show that difference through normalization. By

default, 𝛽 can be set the same as the significance level.

3.2 A Baseline Algorithm with Dual-Level
Monte-Carlo Estimation

Herewewill present a baseline algorithm to describe the key compu-

tational steps for enumerating, evaluating and selecting candidates

as well as significance testing. Due to the unique characteristic of

the denominator in SMI, we add a dual-level Monte-Carlo estima-

tion which will be introduced in Sec. 3.2.3.

2The cumulative probability that a random variable has a value ≤ 𝑥 .

3.2.1 Enumeration of candidates. For candidate enumeration, we

adopt the same strategy used in scan statistics (e.g., [1, 10ś12]),

which exhaustively enumerates sub-regions of a certain geometric

shape (e.g., circle, square, ring). Since circles are one of the most

widely used shapes in related research and applications, in this

version we also use circles as the shape of candidates during enu-

meration. Specifically, given a set 𝑆𝑇 of 𝑇 centers (e.g., uniformly

sampled from the study area), we will enumerate all circles with

a point in 𝑆𝑇 as the center and a data point on the circumference,

leading to 𝑂 (𝑇𝑁 ) combinations/candidates.

Since we need to know the composition of point types (i.e.,

number of points of each type) inside a candidate, a naive brute-

force way will require another loop through all the points to see

which ones are inside the candidate andwhat types they are, costing

𝑂 (𝑇 · 𝑁 2). This can be avoided simply by sorting all the points by

distance from each center in 𝑆𝑇 all at once, and then enumerating

candidates from the nearest to the farthest from each center [1]. This

will sequentially add a point each time to form a new candidate,

eliminating the need for an extra range query. As a result, the

number of points of each type can be updated in an incremental

manner, reducing the cost from 𝑂 (𝑇 · 𝑁 2) to 𝑂 (𝑇 · 𝑁 log𝑁 ).

3.2.2 Evaluation of candidates. Next, we need to consider the calcu-

lation of the test statistic, i.e., SMI. Basically, given the composition

of types of a candidate 𝐶 , we need to calculate both 𝑓𝑑𝑖𝑟 (𝐶) and

𝑅(𝑓𝑑𝑖𝑟 (·), |𝐶 |, 𝛽). To make our discussion concrete, 𝑓𝑑𝑖𝑟 (𝐶) will be

based on SI (Eq. 2) or SE (Eq. 3). Both SI & SE require 𝑂 (𝑘) to com-

pute, where 𝑘 is the number of types (a new point added through

the sorted sequence mentioned above will incur changes on all 𝑝𝑖 ).

For the denominator 𝑅(𝑓𝑑𝑖𝑟 (·), |𝐶 |, 𝛽), its value will stay the same

for all candidates of the same size |𝐶 |, so with pre-computation it

will be 𝑂 (1). Thus, the total calculation of SMI needs 𝑂 (𝑘).

So far the total complexity of the baseline is𝑂 (𝑘𝑇𝑁 +𝑇𝑁 log𝑁 ).

Among all the candidates, each time we will select the one with the

maximum score for significance testing. If this candidate is signifi-

cant, we will remove its associated points from the data and start

the next round of detection/testing for a secondary pattern or more.

This strategy is also used in MNSS to reduce mutual influences

among patterns in both evaluation and significance testing.

Next, we show a dual-level Monte-Carlo estimation for calculat-

ing the denominators in SMI as well as significance testing.

3.2.3 Dual-Level Monte-Carlo Estimation. Since there is still no

closed-form solution to Eq. (5) (i.e., denominator of SMI), especially

considering the additional complexities brought by the spatial distri-

bution of data points as well as the candidate enumeration scheme,

we use Monte-Carlo simulation to estimate 𝑅(𝑓𝑑𝑖𝑟 (·), |𝐶 |, 𝛽). For

the same reasons, the distribution of SMI scores also needs to be es-

timated via the Monte-Carlo method to compute the p-value during

significance testing.

While both 𝑅(𝑓𝑑𝑖𝑟 (·), |𝐶 |, 𝛽) and p-value require Monte-Carlo

simulation, there are fundamental differences in their goals and

estimation processes (Table 2).

Candidate-level Monte-Carlo estimation: As shown in Ta-

ble 2, at this level we are estimating the distribution of scores of

all candidates of the same size from random data. In other words,

all candidates of the same size from a single simulation trial will

be used as members of this distribution. The number of same-size
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Table 2: Two levels of Monte-Carlo estimation

Usage Goal Distribution to estimate Level of Monte-Carlo Est.

Eq. (5)
Normalize 𝑓𝑑𝑖𝑟 of a size-|𝐶 | candidate in

real data by statistical interestingness

Distribution of 𝑓𝑑𝑖𝑟 scores of all candidates

of the same size |𝐶 | in random data

Candidate-level

enumeration of candidates:

one score per candidate

p-value

Make sure the method falsely rejects

𝐻0 (outputs a pattern) in only 𝛼𝑀 out

of𝑀 random data (e.g., 𝛼 = 0.01)

Distribution of𝑀 maximum SMI scores

(regardless of size) achieved in𝑀 random data

Data-level enumeration

of𝑀 random data: one

max-score per data

candidates from a single trial is 𝑇 , which is equal to the number

of circle centers for enumeration (Sec. 3.2.1). As a result, we only

need a small number of simulation trials to get a large number of

candidate scores to compute Eq. (5) for a normalization purpose.

This, as we will show next, is different for p-value estimation.

Data-level Monte-Carlo estimation is typically used in sig-

nificance testing [4, 11ś13, 16]. As shown in Table 2, the goal of this

estimation needs to make sure that only 𝛼𝑀 out of𝑀 random data

will cause the method to falsely reject 𝐻0 and returns a pattern,

where 𝛼 is the significance level. Thus, to guarantee this, we have

to do this enumeration at a data-level, and only get the maximum

score achieved in each random data. Then, if the maximum score

achieved by a dataset is in the top (100𝛼)% of this data-level maxi-

mum distribution, we are confident to say that the probability to

falsely reject 𝐻0 for this data is 𝛼 .

For candidate-level Monte-Carlo estimation, we basically enu-

merate all candidates for each size (bounded by 𝑁 ) in𝑚 random

datasets (𝑚 can be small, e.g., 5) to form the distribution and select

the ⌈100𝛽⌉𝑡ℎ percentile (this needs another sorting) of the scores

for each size as the value for Eq. (5). This leads to 𝑂 (𝑚 · (𝑘𝑇𝑁 +

𝑇𝑁 log𝑁 ) + 𝑁 ·𝑚𝑇 log(𝑚𝑇 )) complexity. Data-level Monte-Carlo

estimation also requires a full enumeration for each random dataset,

but the number𝑀 of random data is typically large (e.g., 1,000) be-

cause only one maximum score is selected per data. This leads to

𝑂 (𝑀 · (𝑘𝑇𝑁 +𝑇𝑁 log𝑁 ) +𝑀 log𝑀) complexity. Computation-wise,

data-level Monte-Carlo estimation dominates its candidate-level

sibling due to the big difference in𝑚 and𝑀 .

Note that candidate-level Monte-Carlo estimation has to happen

before data-level estimation because the output values are necessary

to compute the actual SMI scores. Thus, candidate-level estimations

are computed at the very beginning of the program.

Also since in data randomization we only randomly shuffle point

types but do not change the spatial distribution of points, the pre-

vious sorting done during enumeration in real data can be re-used.

This fixed distribution is also used in MNSS [1, 10, 11] for data-level

Monte-Carlo estimation (it does not need the dual-level). While

we can also re-distribute the locations, that is typically less needed

in real-world applications. For example, locations of trees, resi-

dent houses, buildings for businesses (e.g., grocery) are relatively

stationary.

3.2.4 Time Complexity. With sorting re-use, the complexities be-

come 𝑂 (𝑚𝑘𝑇𝑁 + 𝑁 ·𝑚𝑇 log(𝑚𝑇 )) and 𝑂 (𝑀𝑘𝑇𝑁 + 𝑀 log𝑀) for

candidate- and data-level estimation. The overall complexity is then

𝑂 (𝑚𝑘𝑇𝑁 +𝑁 ·𝑚𝑇 log(𝑚𝑇 ) +𝑀𝑘𝑇𝑁 +𝑀 log𝑀 +𝑘𝑇𝑁 +𝑇𝑁 log𝑁 ),

where𝑚 and 𝑀 are number of trials in candidate- and data-level

Monte-Carlo estimation, 𝑘 is number of types, 𝑇 is number of cen-

ters to enumerate and 𝑁 is the number of data points. Since in the

vast majority of cases we have𝑚 << 𝑀 , log𝑁 < 𝑀 , log(𝑚𝑇 ) < 𝑀 ,

and ¬(𝑚 >> 𝑘), the complexity can be simplified to 𝑂 (𝑀 · 𝑘𝑇𝑁 ),

revealing that the cost is dominated by data-level Monte-Carlo

estimation.

3.3 Acceleration by an Exact Algorithm for
SMI computation

To accelerate the computation for the data-level Monte-Carlo simu-

lation, we first propose an exact algorithm to minimize the com-

putational cost on SMI. As an exact algorithm, it guarantees the

solution is exactly the same as the baseline algorithm, while reduc-

ing the calculation of SMI from 𝑂 (𝑘) to 𝑂 (1). In the following we

show the new calculation for both SMI-SI and SMI-SE.

3.3.1 SMI for Simpson’s Index. According to Eq. (4), SMI-SI0 for

the current candicate𝐶0 can be written as follows (for simplicity the

original directional condition is taken out by using 𝑥 to represent

either 𝛽 or (1 − 𝛽)):

1 −
∑𝑘
𝑖=1 (𝑝1𝑖 · 𝑝2𝑖 )

𝑅(𝑆𝐼,
∑𝑘
𝑖=1 𝑛𝑖 , 𝑥)

=

1 −
∑𝑘
𝑖=1

(
𝑛𝑖∑
𝑘

𝑖=1 𝑛𝑖
·

𝑛𝑖−1

max(𝜖+,(
∑

𝑘

𝑖=1 𝑛𝑖 )−1)

)

𝑅(𝑆𝐼,
∑𝑘
𝑖=1 𝑛𝑖 , 𝑥)

=

(
1 −

∑𝑘
𝑖=1 (𝑛

2
𝑖 − 𝑛𝑖 )

max(𝜖+, (
∑𝑘
𝑖=1 𝑛𝑖 )

2 −
∑𝑘
𝑖=1 𝑛𝑖 )

)
/𝑅(𝑆𝐼,

𝑘∑︁

𝑖=1

𝑛𝑖 , 𝑥)

where 𝑛𝑖 is the number of points of type 𝑖 in the current candidate

𝐶0, and 𝜖
+ is a very small positive number for numerical stability.

Now suppose we move to the next point (i.e., next candidate) in

the sorted sequence (Sec. 3.2.1), and its type ID is 𝑗 . We have the

new SMI-SI1 for candidate 𝐶1 as:

(
1−

( ∑𝑘
𝑖=1,𝑖≠𝑗 (𝑛

2
𝑖 − 𝑛𝑖 )

)
+ (𝑛 𝑗 + 1)2 − (𝑛 𝑗 + 1)

(1 +
∑𝑘
𝑖=1 𝑛𝑖 )

2 − (1 +
∑𝑘
𝑖=1 𝑛𝑖 )

)
/𝑅(𝑆𝐼,

𝑘∑︁

𝑖=1

𝑛𝑖+1, 𝑥)

where 𝑛𝑖 or 𝑛 𝑗 is the number of points of type 𝑖 or 𝑗 in candidate

𝐶0 from the previous step.

Denote Θ0 =
∑𝑘
𝑖=1 (𝑛

2
𝑖 − 𝑛𝑖 ), which is a part of SMI-SI0. We have

Θ1 = Θ0 + 2𝑛 𝑗 for the corresponding part of SMI-SI1, i.e.:

SMI-SI1 =

(
1−

Θ1

(1 +
∑𝑘
𝑖=1 𝑛𝑖 )

2 − (1 +
∑𝑘
𝑖=1 𝑛𝑖 )

)
/𝑅(𝑆𝐼, 1 +

𝑘∑︁

𝑖=1

𝑛𝑖 , 𝑥)

Since the 𝑅 function in Eq. (5) is pre-computed at the beginning

in the baseline algorithm, we can get both 𝑅(𝑆𝐼,
∑𝑘
𝑖=1 𝑛𝑖 , 𝑥) and

𝑅(𝑆𝐼, 1 +
∑𝑘
𝑖=1 𝑛𝑖 , 𝑥) in 𝑂 (1) time. In addition, the baseline also

already has the values of 𝑛𝑖 and
∑𝑘
𝑖=1 𝑛𝑖 updated in an incremental

way, so we have their values in 𝑂 (1) time. Thus, by only keeping

track of Θ and performing a constant-time update at each step (i.e.,
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Figure 5: Qualitative visual comparison of outputs.

(3) the ratio 𝑅 between number of points in the foreground (cir-

cular regions) and background (rest), and (4) an algorithm-related

parameter 𝑇 representing the total number of candidate centers.

The study area has dimension 100 × 100, the default area for all

circles is 𝜋152. By varying the area of the two target high-mixture

patterns, we can evaluate how sensitive are the methods to the

relative sizes of the true patterns. The ratio 𝑅 has a different

purpose. By default 𝑅 is set to the ratio between the total area of the

five foreground circles and the area of the background blue region

(i.e., about 3500/6500), which means the density of points is roughly

homogeneous across the study area. By varying 𝑅, we can evaluate

the effect of heterogeneity in point-density on solution quality.

When we vary one parameter, the others are kept at the default

values [𝑁,𝐴, 𝑅,𝑇 ] = [5, 000, 𝜋152, 35/65, 400].

Since MNSS, SI and SE are not able achieve a reasonable solution

quality for this task as shown in Fig. 5, we skip their F1-scores which

are very low (e.g., near 0) and not as interesting. The candidates

for this evaluation then are: (1) the exact version; (2) heuristic

with number of steps 𝜆 = 10 and reduction parameter 𝛾 = 0.75;

(3) heuristic with 𝜆 = 10 and 𝛾 = 0.5; (4) heuristic with 𝜆 = 20

and 𝛾 = 0.75; and (5) heuristic with 𝜆 = 20 and 𝛾 = 0.5. Heuristic

methods in (2) to (5) reduces the enumeration space to about 37.75%,

19.98%, 19.94% and 10.00% of the original size, respectively, using

different combinations of 𝜆 and 𝛾 .

The F1 scores of the methods are shown in Tables 4 to 7. Each F1

score is computed using results from 25 datasets generated using

the statistical process with the corresponding parameters. Overall,

the trend is that the SMI-based methods consistently achieve high

F1 scores throughout most of the experiments.

SMI-SI vs. SMI-SE: According to the F1 scores, the solution

quality achieved by both methods are very similar in the vast ma-

jority of cases. The two minor differences are seen in Table 5 when

𝐴 = 102𝜋 and Table 6 when 𝑅 = 30/70. In these cases SMI-SE

outperforms SMI-SI with a small margin < 5%. Both of these cases

correspond to the scenario when the number of points in the tar-

get patterns is relatively smaller, either due to a smaller area (i.e.,

𝐴 = 102𝜋 for true patterns while the other three circles have 152𝜋 )

or lower density (i.e., point-density in circles are lower than that of

Table 4: Solution Quality by F1 Scores: Varying 𝑁

N Exact
Heuristic: (𝜆,𝛾 )

(10,0.75) (10,0.5) (20,0.75) (20,0.5)

S
M
I-
S
I 2500 0.97 0.99 0.99 0.98 0.99

5000 0.99 0.99 0.97 0.99 0.98

10000 0.93 0.94 0.95 0.95 0.95

S
M
I-
S
E 2500 1.00 1.00 1.00 1.00 1.00

5000 0.99 1.00 1.00 1.00 1.00

10000 0.96 0.94 0.96 0.95 0.95

Table 5: Solution Quality by F1 Scores: Varying 𝐴

A Exact
Heuristic: (𝜆,𝛾 )

(10,0.75) (10,0.5) (20,0.75) (20,0.5)

S
M
I-
S
I 102𝜋 0.97 0.94 0.96 0.97 0.95

152𝜋 0.99 0.99 1.00 1.00 1.00

202𝜋 0.99 0.99 0.98 0.99 0.99

S
M
I-
S
E 102𝜋 0.99 0.99 0.98 0.99 1.00

152𝜋 0.99 0.99 0.99 0.99 0.99

202𝜋 1.00 1.00 1.00 0.99 1.00

Table 6: Solution Quality by F1 Scores: Varying 𝑅

R Exact
Heuristic: (𝜆,𝛾 )

(10,0.75) (10,0.5) (20,0.75) (20,0.5)

S
M
I-
S
I 30/70 0.90 0.92 0.93 0.93 0.94

35/65 0.98 0.99 0.99 0.99 1.00

45/55 1.00 1.00 1.00 1.00 1.00

S
M
I-
S
E 30/70 0.96 0.96 0.98 0.97 0.95

35/65 1.00 0.99 1.00 0.98 0.99

45/55 1.00 1.00 1.00 0.99 1.00

Table 7: Solution Quality by F1 Scores: Varying 𝑇

T Exact
Heuristic: (𝜆,𝛾 )

(10,0.75) (10,0.5) (20,0.75) (20,0.5)

S
M
I-
S
I 100 0.95 1.00 0.97 0.96 0.96

400 0.99 0.97 0.98 0.98 1.00

2500 0.98 1.00 1.00 0.99 0.97

S
M
I-
S
E 100 0.99 0.99 1.00 0.99 1.00

400 1.00 0.99 0.99 0.99 1.00

2500 1.00 0.99 0.99 0.99 0.99

the background blue region). In such a scenario, a true pattern be-

comes harder to detect since population-wise its signal is relatively

weaker compared to other mixtures. According to the results, SMI-

SE is a little more robust than SMI-SI in this case, which motivates

future investigation of other participating functions in SMI.

Exact vs. heuristic: Since the sequence reduction algorithm

in Sec. 3.4 is a heuristic algorithm, it does not guarantee that the

solution is always the same as that of the exact algorithm. Thus,

to better understand its performance, we empirically compared its

solution quality with the exact algorithm. According to the results

in Tables 4 to 7, we can see that the distribution-inspired sequence

reduction heuristic consistently achieves very similar F1 scores

to the exact algorithm’s under different combinations of 𝜆 and 𝛾

throughout the experiment.

Effect of parameters: The solution quality of the methods are

relatively stable in the experiments with varying parameters and

variations are mostly within 5%. The effects of changes in relative

pattern sizes caused by𝐴 and 𝑅 were discussed earlier in the SMI-SI

vs. SMI-SE comparison. We can also see that the F1 scores of SMI-SI
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Figure 7: Execution time with varying 𝑁 and 𝑇 .

Figure 8: Execution time with varying 𝜆 and 𝛾 .

for SMI-SI, the speed-up by the exact algorithm is about 3.4x when

𝑁 = 2, 500 (i.e., from 30.7s to 9.0s) and 2.8x when 𝑁 = 250, 000 (i.e.,

from 4257.8s to 1502.1s). This is roughly proportional to the number

of types 𝑘 = 3 as indicated by the complexity comparison in Table

3. For the heuristic algorithm, it will reduce the enumeration space

to a constant proportion of the full space. Thus, its speed-up is also

relatively stable (e.g., an additional 3x) in the experiments. Finally,

we can see that the time cost of SMI-SE tends to be higher than

SMI-SI. This is likely caused by the longer time for computing SE as

compared to SI, which is a constant factor typically made implicit

in the asymptotic complexity. We can also see that the differences

between the execution time of SMI-SE and SMI-SE decreases after

acceleration. This is potentially due to the fact that as the time-costs

of the dominant terms in time complexity reduces, other terms (e.g.,

sorting) may start playing a relatively bigger role and dilute the

differences in dominant terms.

Effects of parameters: First, in Fig. 7(a) and (b) we can see the

execution time increases linearly as 𝑁 and 𝑇 increase, which is

consistent with the complexities in Table 3. Then, results in Fig. 8(a)

show that in general the execution time of the heuristic algorithm

decreases as the number of steps 𝜆 increases (𝛾 = 0.7). This is

because a greater 𝜆 leads to more frequent reductions, reducing

the total number of candidates being enumerated. Note that if 𝛾

is set very close to 1 (not recommended), we may see less of this

trend because the reduction may be consumed by a higher cost of

sorting. Finally, Fig. 8(b) shows that execution time increases as

the reduction parameter 𝛾 increases (i.e., less aggressive reduction),

which conforms to the complexity in Table 3.

5 CONCLUSIONS AND FUTUREWORK

We proposed a Spatial Mixture Index (SMI) to identify spatial mix-

ture patterns of interest, i.e., sub-regions with significantly high

or low mixture of different types of points. Then, we presented a

baseline algorithm with dual-level Monte-Carlo estimation to com-

pute SMI and detect patterns. We further proposed two acceleration

schemes with an exact algorithm as well as a distribution-inspired

sequence reduction heuristic to improve the computational per-

formance by reducing time complexity. Experiment results using

both synthetic and real-world data validated the solution quality

of the proposed approach and also showed that the acceleration

techniques can greatly reduce the execution time while maintain-

ing high quality of results. For reproducibility, code is available at:

https://github.com/yqthanks.

In future work, we will explore new opportunities opened by

this new pattern. A short-term plan will explore alternative partici-

pating functions 𝑓𝑑𝑖𝑟 of SMI (e.g., Alpha, Beta or Gamma diversity

measures) or other extensions for specific application needs. New

computational strategies (e.g., approximation or distributed algo-

rithms [6, 14]) will also be investigated to improve scalability. We

will also explore other formulations of candidate regions (e.g., ir-

regular shapes [4, 16]) and statistical processes (e.g., different types

of point distributions). Finally, the current work does not explic-

itly model scenarios when the mixture inside a pattern is highly

heterogeneous, and those cases need further investigation.
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