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ABSTRACT

Given a collection of N geo-located point samples of k types, we aim
to detect spatial mixture patterns of interest, which are sub-regions
of the study area that have significantly high or low mixture of
points of different types. Spatial mixture patterns have important
applications in many societal domains, including resilience of smart
cities and communities, biodiversity, equity, business intelligence,
etc. The problem is challenging because ranking and selection of
candidate patterns can be highly susceptible to the effect of natural
randomness, and real-world data often consists of various mixture
patterns. In related work, the multi-nomial scan statistic does not
support identification of high or low mixture due to its "direction-
less" nature and high sensitivity to the composition of mixture
patterns in data. While species richness indices in biodiversity
research allow specification of directions, the measures are very
sensitive to spatial randomness effects. To bridge the gap, we first
propose a spatial mixture index to provide robust ranking among
candidate patterns. Then, we present a dual-level Monte-Carlo
estimation method with a baseline algorithm for spatial mixture
pattern detection. Finally, we propose both an exact algorithm and a
distribution-inspired sequence-reduction heuristic to accelerate the
baseline approach. Experiment results with both synthetic and real-
world data show that the proposed approaches can detect mixture
patterns with high accuracy, and the acceleration methods can
greatly reduce computational cost while maintaining high solution
quality.
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« Information systems — Data mining; Spatial-temporal sys-
tems.
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1 INTRODUCTION

Given a collection of N geo-located point samples of k types or
classes (e.g., genera or species, service types) in a study area, we aim
to detect spatial mixture patterns of interest, that is, sub-regions
of the study area that have a significantly high or low mixture of
different types of points.

Patterns of spatial mixtures are important in many application
domains, such as smart cities, biodiversity, agriculture, equity, busi-
ness intelligence, etc. In smart cities, for example, identifying re-
gions with low-mixtures of tree genera (i.e., regions with a treescape
dominated by very few types of trees) has become a critical and
urgent task for ensuring the resilience and security of green in-
frastructure [15, 17]. In the last few decades, trees diseases (e.g., by
insects or fungus infestation) have ravaged treescapes in many US
states and caused tree deaths in the tens of millions [2, 3, 15, 17].
The damage has especially impacted urban settings that are domi-
nated by few tree genera. As an example, after elm trees were wiped
out by Dutch elm disease in Midwest regions, ash trees were chosen
as a common replacement. However, the recent spread of Emerald
ash borer is now threatening to wipe out the ash tree population
estimated to cost over $10 billion to remedy. These waves of distur-
bance exposed the weakness of the low-mixture system and pushed
policy makers to re-evaluate the resilience of the composition of
tree types as well as other natural resources to reduce the impact
of the next threat. Identification of city zones with a low mixture
of tree types has become a critical need for decision making. The
ability to detect spatial mixture patterns can also provide valu-
able information to related biodiversity applications (e.g., protect
high-mixture regions and make timely interventions to vulnerable
low-mixture zones). These are just a few of many examples.

The problem has three major challenges. First, detection of spa-
tial mixture patterns requires ranking among a large number of
candidate regions, but such ranking can be easily disturbed by ef-
fects of natural randomness exhibited in the process (detailed in
Sec. 3.1). Second, real-world data often consists of many different
spatial mixture patterns, especially when the cardinality of types is
large (e.g., a typical zone in a city often has tens of tree genera and
hundreds of tree species). This challenges traditional point-process
based measures, which assume very few varieties. Third, the enu-
meration space of candidate sub-regions is often very large, leading
to high computational cost especially with significance testing.

In the literature, there are two lines of work related to the topic
of spatial mixture patterns. The most relevant is from the family of
spatial scan statistics [12] — the multi-nomial scan statistic (MNSS)
[1, 10, 11]. The goal of MNSS is to identify a sub-region of the
study area that has a "different” mixture of different types of points
compared to the outside of the sub-region (i.e., different proportions
of different types). As explicitly noted by the authors of MNSS, the
method is "direction-less", meaning it can only tell the mixture
is different; it cannot indicate any property of a mixture or put a
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preference on any mixture. Thus, the method is not suitable when
outputs need to be directional (e.g., high or low mixture). A similar
formulation of MNSS, the ordinal scan statistic [10], is designed for
the case when there is an order among point types or classes (e.g.,
graduate > undergraduate > high school). It also cannot be used to
find high or low mixture patterns. In addition, these methods focus
on finding a sub-region that is different from its outside. Thus, the
score of a candidate is measured by comparing its mixture to its
outside mixture. This only works when the data consists of very
few mixture patterns (e.g., one for inside-the-pattern and one for
outside), and is not suitable when data contains many different
mixture patterns (i.e., every sub-region can be potentially different
from every other). Another line of work, from biodiversity studies,
mainly focuses on evaluating the biodiversity of a study area and
its change across time. Its relevance to spatial mixture pattern
detection is that the species richness indices [5, 7, 9] used in these
studies can be potentially useful as a score function for ranking
candidate regions during detection. However, while the species
richness indices (e.g., Simpson’s index, entropy) are "directional"
and can be used to favor high- or low-mixtures, they are very
sensitive to natural randomness in the process and often lead to
non-interesting outputs (concrete examples in Sec. 3.1). In addition,
some measures rely only on the cardinality of distinct species [8]
and cannot tell whether the distribution is balanced or biased.

To bridge the gaps, we first formulate a new Spatial Mixture
Index (SMI) to rank and select candidate regions. SMI is directional
and can be used with various traditional indices. Then, we present a
dual-level Monte-Carlo estimation with a baseline algorithm to com-
pute SMI and identify spatial mixture patterns of interest. Finally,
we propose both an exact algorithm and a distribution-inspired
sequence reduction heuristic to improve computational efficiency.

Experiment results using both synthetic and real-world data
show that the proposed approach with SMI can identify spatial
mixture patterns with high accuracy, and that the proposed accel-
eration techniques can greatly improve computational efficiency
while maintaining high solution quality.

2 PROBLEM DEFINITION
2.1 Key Concepts

Distribution of point samples: The input data with geo-located
points, each point having one type or class (e.g., species) from a set
of size k.

Direction of mixture: Specifies whether a high or low mixture
is of interest. A high mixture means the region is less dominated
by one or very few types/classes of points, and a low mixture is the
opposite.

Test statistic: A function mapping a candidate region to a scalar
score representing the degree of mixture (either high or low). The
proposed spatial mixture index is a test statistic.

Spatial mixture pattern: A sub-region of the study area that
has a significantly high or low mixture of types, measured by the
test statistic.

Hypothesis testing: Used to make sure a detected mixture pat-
tern is not formed purely by natural randomness. The null hypothe-
sis Hy states that the types of points in the input data are randomly
assigned (i.e., any high or low mixture region is created by random
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chance). Significance testing uses the test statistic as a measure but
does not contribute to its calculation.

2.2 Formal Problem Formulation

The problem is formally defined as follows:
Inputs:

- A distribution of point samples D where |D| = N;
— A direction of mixture (i.e., high or low);

— A ssignificance level a;

— Thresholds for pattern size and count: p and rpayx;

Output: Statistically significant spatial mixture patterns;
Objectives: Solution quality and computational efficiency;
Constraints:

— The number of points in any output pattern < pN;
— The maximum number of patterns returned is rmgx-

The first constraint is used to limit the size of a pattern so that
it represents an interesting sub-region rather than the majority
of data (commonly p = 1/2). This can be made flexible by user
needs. The second constraint allows users to prioritize the top rmax
patterns. If not specified, all significant patterns will be returned.

3 SPATIAL MIXTURE PATTERN DETECTION

In this section, we introduce the new and general formulation of the
spatial mixture index (SMI), and propose both exact and heuristic
algorithms to detect mixture patterns with it.

3.1 Spatial Mixture Index

The spatial mixture index is motivated by the need for the ability to
(1) explicitly specify a direction (i.e., high- or low-mixture) for the
detection, and (2) explicitly model the effect of natural randomness.
As we will show through an illustrative example in Fig. 1, the
absence of either of the two will lead to pitfalls in spatial mixture
pattern mining.

Fig. 1 shows a distribution of N = 120 points of three types,
whose cardinalities are [|red|, [blue], |yellow|] = [78,21,21], respec-
tively. For illustrative purposes, five candidate regions C1 to C5 are
shown as circles inside the study area, and the cardinality of points
inside each candidate is: C1 = [6,5,5], C2 = [1,1,1], C3 =[1,0,15],C4 =
[0,0,16] and C5 = [30,0,0]. In this illustrative example, the goal is to
find the region with high-mixture. By comparing the candidates,
we can see that C1 and C2 have high mixtures and C3 to C5 have
low mixtures (i.e., dominated by a single type). C2 is a sub-region
of C1. Although it also has a high mixture, the fact that it only has
three points makes it statistically less interesting. In other words
it is something that can be commonly observed in pure random
point distributions. So ideally a measure or test statistic should give
the highest score to candidate C1, then C2, and then the rest of the
low-mixture candidates.

3.1.1  Pitfalls of Existing Measures.

Multi-nomial scan statistic (MNSS) [11]: As we introduced
earlier in Sec. 1, MNSS uses a likelihood ratio to measure the inter-
estingness of a mixture as shown in Eq. (1).

e ey g™
15, (p))m - (g))Ni—m

log LR = log (1)
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where n; is the number of points of type i inside the candidate region

where the score is computed and N; is the total number of points

of type i in the study area; p; = 5 = — is the fraction of points of
o Ni—n;

Tit (Ni-ni)

points of type i outside the candidate; and p] = q; =

type i inside the candidate, and ¢; = is the fraction of

N; .
7 is the
iz Ni

fraction of points of type i in the entire study area.

This function is direction-less and its goal is to find a sub-region
that has a different mixture compared to its outside. By definition
it is based on likelihoods that cannot be used to favor a specific
direction of the mixture, and it only cares if there is a difference
between inside and outside of a candidate. Also, as we can see
through the definition of g;, the likelihood ratio assumes that the
outside of the candidate is generated by a single point process (this
assumption is common for scan statistic methods). As a result, it is
not suitable for mixture pattern detection in which the data often
consists of many different point processes (i.e., a statistical process
defining probabilities of a point having type i in a region).

These issues can be seen through the illustrative example in Fig.
1. First, because the measure is direction-less and focuses on the
"difference” in the fractions of types between inside and outside, it
cannot be used to favor the high-mixture candidates C1 and C2. We
can also see that the score of C3 (29.2) is in between C4 (35.6) and
C5 (7.5), which further illustrates its direction-less nature because
both C4 and C5 are completely homogeneous with only one type
of point (i.e., minimal mixture) while C3 has at least two types of
points. The fact that C4 and C5 are very different in scores is due
to the function’s focus on "inside" vs. "outside" instead of degree of
mixture, which is the goal of this paper.

Directional mixture measures: In contrast to MNSS, mea-
sures popularly used in biodiversity evaluations (e.g., Simpson’s
index in Eq. (2), Shannon’s entropy in Eq. (3)) allow explicit specifi-
cation of the direction. However, they do not consider the natural
randomness commonly exhibited by spatial point distributions,
leading to undesired favors (i.e., higher scores) towards statistically
non-interesting patterns. To make our discussion concrete, here we
will use Simpson’s index and Shannon’s entropy to illustrate this
issue.

We start with Simpson’s index (SI) shown in Eq. (2):

k
SI=1- ) pli-p2 @)
i=1
— P | it S +
where p1; o and p2; m (e (S D where €" is a

very small positive number for numerical stability; and n; is the
number of points of type i in the candidate region.

The term p1; - p2; is the probability that two random draws of
a point (without replacement) in the candidate are both of type
i. Thus, Simpson’s index here is the probability that two random
draws from the candidate are of two different types. ! The higher
the value, the more likely the candidate has a high mixture (i.e.,
less likely to be dominated by one or very few types).

!The original definition of Simpson’s index does not have "1-" in front. Here we are
using the modified version so a higher value corresponds to a higher mixture
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Rank by test statistics
(*Direction is high-mixture except
for direction-less MNSS)

MNSS: C4>C3>C5>C1>C2
Sl: C2>C1>C3>C4=C5
SE: C2>C1>C3>C4=C5
SMI-SI: C1>C2>C3>C4=C5

SMI-SE: C1>C2>C3>C4=C5

Figure 1: An illustrative example. Scores of candidates are
listed in Table 1. (best in color)

Table 1: Scores of candidates in Fig. 1

Candidate MNSS SI SE SMI-SI  SMI-SE
C1 2.9 0.7 1.095 1.1 1.1
C2 0.6 1 1.099 1 1
C3 29.2 0.1 0.2 0.2 0.2
C4 35.6 0 0 0 0
C5 7.5 0 0 0 0

*Direction is high-mixture except for MNSS (direction-less).
**SI: Simpson’s index; SE: Shannon’s entropy.

Shannon’s entropy (SE) has similar intentions as Simpson’s in-
dex; it measures the degree of uncertainty in the information by:

k
SE==" pilogp; (3)
i=1

where p; = kn—’n

Table 1 shows the SI and SE scores of the candidates in the ex-
ample in Fig. 1. As we can see, both measures are able to generally
favor high-mixture candidates C1 and C2 over low-mixture candi-
dates C3, C4 and C5 (C3 is also ranked higher than monotone C4
and C5).

However, regarding the two high-mixture candidates C1 and C2,
both SI and SE favor the three-point C2 over C1. In fact, for SI, any
neighboring points with different types will have the highest score
1. For SE, the score is higher for C2 because C1’s type distribution
is [6 red,5 blue,5 yellow], and the one extra red-point makes it not a
"perfect” balance. Such "imperfection” is highly typical in real-world
scenarios due to the effect of natural randomness, especially when
the number of points is high. Natural randomness also explains
why C2 is less interesting. From a statistical point of view, such
tiny candidates (e.g., two-point, three-point) with distinct classes
can be easily formed just by a purely random assignment of types
among points, so they themselves are not considered as interesting
or meaningful. Since these random effects are not considered in
Egs. (2) and (3), they put C2 over C1.

3.1.2 A New Spatial Mixture Index (SMI).

SMI has two goals: to allow explicit direction specification (i.e.,
high or low mixture), and to explicitly model the effect of natural
randomness. At a high level, SMI is designed to produce a ratio
between the mixture degrees of a candidate from input data and
a candidate with the same number of points in random data. The
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structure of SMI is shown in Eq. (4), and it can be used with different
mixture measures that are directional.
fdir (C) . : . .
M = —R(f;iir(‘):lglsﬁ>, if direction = high, @
fair (C) otherwise

R(fair (-),IC1.1-5)°

where fy;,-(+) is a directional measure of mixture degree (e.g., tra-
ditional measures such as SI in Eq. (2) and SE in Eq. (3)); C is the
candidate pattern being evaluated, and |C| is the number of points
in C; and function R returns a fy;, score of a candidate:

R(fair ().1Cl. p) = PMFp .\ () ©)

where PMFy, c|(x) is a probability mass function,? in which
the random variable x is the fy;, score of a candidate of size |C|
in random data (i.e., data with the same spatial distribution of
points and overall fraction of each type as the input data, but the
type labels on points are randomly assigned); PMFf_dlir,l cl ({p}) isa

standard math notation referring to the solution xj that achieves
PMFfdir,\C\(xO) =f;and p € (0,1).

In plain language, R(fy;»(-), |C|, B) is the score achieved by a
candidate of size |C| that is greater than (10053)% of scores from
candidates in random data. By normalizing the score from a direc-
tional function fy;, () (e.g., SI or SE) with R(fy;,(-),|C|, f), SMI is
able to evaluate whether the candidate is statistically interesting.

In the illustrative example (Fig. 1 and Table 1), we show the
results of two concrete realizations of SMI with f;, being SI and
SE, respectively. The f is set to 0.9. As we can see, the normalization
in SMI effectively suppresses the statistically non-interesting high-
values of candidate C2 for both SI and SE (the value "1" means that
the mixture achieved by C2 can be found in at least 10% of the same-
size candidates in random data), and is able to favor the statistically
more meaningful high-mixture candidate C1. More interestingly,
although the original ranges of SI and SE are very different as we
can see through their scores, the normalized scores by SMI-SI and
SMI-SE become much more similar.

Finally, regarding the choice of f, a higher value (e.g., 0.9, 0.99) is
recommended because the goal is to suppress high (or low) mixture
candidates that also commonly exist due to random chance, and
"commonly exist" does not mean "ubiquitous". For example, while
the three-point candidate C2 in Fig. 1 can be easily formed by
a random assignment of point types (i.e., at least 10% of same-
size candidates), this does not mean all or most of the same-size
candidates in random data will have the same mixture. In other
words, both C1 and C2 may not be the majority, but C2 can be much
more easily formed by random chance. Having a high value of
makes it easier to show that difference through normalization. By
default,  can be set the same as the significance level.

3.2 A Baseline Algorithm with Dual-Level
Monte-Carlo Estimation

Here we will present a baseline algorithm to describe the key compu-

tational steps for enumerating, evaluating and selecting candidates

as well as significance testing. Due to the unique characteristic of

the denominator in SMI, we add a dual-level Monte-Carlo estima-

tion which will be introduced in Sec. 3.2.3.

2The cumulative probability that a random variable has a value < x.
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3.2.1 Enumeration of candidates. For candidate enumeration, we
adopt the same strategy used in scan statistics (e.g., [1, 10-12]),
which exhaustively enumerates sub-regions of a certain geometric
shape (e.g., circle, square, ring). Since circles are one of the most
widely used shapes in related research and applications, in this
version we also use circles as the shape of candidates during enu-
meration. Specifically, given a set St of T centers (e.g., uniformly
sampled from the study area), we will enumerate all circles with
a point in St as the center and a data point on the circumference,
leading to O(TN) combinations/candidates.

Since we need to know the composition of point types (ie.,
number of points of each type) inside a candidate, a naive brute-
force way will require another loop through all the points to see
which ones are inside the candidate and what types they are, costing
O(T - N?). This can be avoided simply by sorting all the points by
distance from each center in St all at once, and then enumerating
candidates from the nearest to the farthest from each center [1]. This
will sequentially add a point each time to form a new candidate,
eliminating the need for an extra range query. As a result, the
number of points of each type can be updated in an incremental
manner, reducing the cost from O(T - N?) to O(T - Nlog N).

3.2.2  Evaluation of candidates. Next, we need to consider the calcu-
lation of the test statistic, i.e., SMI. Basically, given the composition
of types of a candidate C, we need to calculate both f3;,.(C) and
R(f4ir (), |C|, B). To make our discussion concrete, fy;,(C) will be
based on SI (Eq. 2) or SE (Eq. 3). Both SI & SE require O(k) to com-
pute, where k is the number of types (a new point added through
the sorted sequence mentioned above will incur changes on all p;).
For the denominator R(fy;,(+), |C|, ), its value will stay the same
for all candidates of the same size |C|, so with pre-computation it
will be O(1). Thus, the total calculation of SMI needs O(k).

So far the total complexity of the baseline is O(kTN + TN log N).
Among all the candidates, each time we will select the one with the
maximum score for significance testing. If this candidate is signifi-
cant, we will remove its associated points from the data and start
the next round of detection/testing for a secondary pattern or more.
This strategy is also used in MNSS to reduce mutual influences
among patterns in both evaluation and significance testing.

Next, we show a dual-level Monte-Carlo estimation for calculat-
ing the denominators in SMI as well as significance testing.

3.2.3  Dual-Level Monte-Carlo Estimation. Since there is still no
closed-form solution to Eq. (5) (i.e., denominator of SMI), especially
considering the additional complexities brought by the spatial distri-
bution of data points as well as the candidate enumeration scheme,
we use Monte-Carlo simulation to estimate R(fy;,(+), |C|, §). For
the same reasons, the distribution of SMI scores also needs to be es-
timated via the Monte-Carlo method to compute the p-value during
significance testing.

While both R(fy;,(+), |C|, f) and p-value require Monte-Carlo
simulation, there are fundamental differences in their goals and
estimation processes (Table 2).

Candidate-level Monte-Carlo estimation: As shown in Ta-
ble 2, at this level we are estimating the distribution of scores of
all candidates of the same size from random data. In other words,
all candidates of the same size from a single simulation trial will
be used as members of this distribution. The number of same-size
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Table 2: Two levels of Monte-Carlo estimation

real data by statistical interestingness

Usage | Goal Distribution to estimate Level of Monte-Carlo Est.
. . . . e . Candidate-level
Eq. (5) Normalize fy;, of a size-|C| candidate in | Distribution of fy;, scores of all candidates er?:lmelzr:tian)‘;ecan didates:

of the same size |C| in random data

one score per candidate

Make sure the method falsely rejects
p-value | Hy (outputs a pattern) in only aM out
of M random data (e.g., « = 0.01)

Distribution of M maximum SMI scores
(regardless of size) achieved in M random data

Data-level enumeration
of M random data: one
max-score per data

candidates from a single trial is T, which is equal to the number
of circle centers for enumeration (Sec. 3.2.1). As a result, we only
need a small number of simulation trials to get a large number of
candidate scores to compute Eq. (5) for a normalization purpose.
This, as we will show next, is different for p-value estimation.

Data-level Monte-Carlo estimation is typically used in sig-
nificance testing [4, 11-13, 16]. As shown in Table 2, the goal of this
estimation needs to make sure that only aM out of M random data
will cause the method to falsely reject Hy and returns a pattern,
where « is the significance level. Thus, to guarantee this, we have
to do this enumeration at a data-level, and only get the maximum
score achieved in each random data. Then, if the maximum score
achieved by a dataset is in the top (100ct)% of this data-level maxi-
mum distribution, we are confident to say that the probability to
falsely reject Hy for this data is a.

For candidate-level Monte-Carlo estimation, we basically enu-
merate all candidates for each size (bounded by N) in m random
datasets (m can be small, e.g., 5) to form the distribution and select
the [1005] th percentile (this needs another sorting) of the scores
for each size as the value for Eq. (5). This leads to O(m - (kTN +
TNlogN) + N - mT log(mT)) complexity. Data-level Monte-Carlo
estimation also requires a full enumeration for each random dataset,
but the number M of random data is typically large (e.g., 1,000) be-
cause only one maximum score is selected per data. This leads to
O(M-(kKTN+TN log N)+ M log M) complexity. Computation-wise,
data-level Monte-Carlo estimation dominates its candidate-level
sibling due to the big difference in m and M.

Note that candidate-level Monte-Carlo estimation has to happen
before data-level estimation because the output values are necessary
to compute the actual SMI scores. Thus, candidate-level estimations
are computed at the very beginning of the program.

Also since in data randomization we only randomly shuffle point
types but do not change the spatial distribution of points, the pre-
vious sorting done during enumeration in real data can be re-used.
This fixed distribution is also used in MNSS [1, 10, 11] for data-level
Monte-Carlo estimation (it does not need the dual-level). While
we can also re-distribute the locations, that is typically less needed
in real-world applications. For example, locations of trees, resi-
dent houses, buildings for businesses (e.g., grocery) are relatively
stationary.

3.24 Time Complexity. With sorting re-use, the complexities be-
come O(mkTN + N - mT log(mT)) and O(MkTN + M log M) for
candidate- and data-level estimation. The overall complexity is then
O(mkTN +N -mT log(mT) + MkTN + M log M+ kTN +TN log N),
where m and M are number of trials in candidate- and data-level
Monte-Carlo estimation, k is number of types, T is number of cen-
ters to enumerate and N is the number of data points. Since in the

vast majority of cases we have m << M, log N < M, log(mT) < M,
and —(m >> k), the complexity can be simplified to O(M - kTN),
revealing that the cost is dominated by data-level Monte-Carlo
estimation.

3.3 Acceleration by an Exact Algorithm for
SMI computation

To accelerate the computation for the data-level Monte-Carlo simu-
lation, we first propose an exact algorithm to minimize the com-
putational cost on SMI. As an exact algorithm, it guarantees the
solution is exactly the same as the baseline algorithm, while reduc-
ing the calculation of SMI from O(k) to O(1). In the following we
show the new calculation for both SMI-SI and SMI-SE.

3.3.1  SMI for Simpson’s Index. According to Eq. (4), SMI-SIj for
the current candicate Cy can be written as follows (for simplicity the
original directional condition is taken out by using x to represent

either § or (1 — f)):

1— Zk n; . n;i—1
1- 35 (p1i - p2:) EUZE e max(en,(ZE o)1)
R(SL 2K | ni.x) R(SL XK ni,x)
k 2 k
- . (n%—n;
Z’—;( ) - )/R(SI, Z ni, )
max(e*, (Zi=1 ni)z - Zizl n;) i=1

=(1-

where n; is the number of points of type i in the current candidate
Co, and €* is a very small positive number for numerical stability.

Now suppose we move to the next point (i.e., next candidate) in
the sorted sequence (Sec. 3.2.1), and its type ID is j. We have the
new SMI-SI; for candidate C; as:

k
JR(SI, Z ni+1, x)

i=1

(1_ (Zle’i;&j(n% —n)) + (nj+1)% = (nj +1) )
(1+3K n)?2-(1+3k ny)
where n; or n; is the number of points of type i or j in candidate
Co from the previous step.
Denote ©y = Z{.‘:l (nl? — n;), which is a part of SMI-SI. We have
©1 = ©g + 2n; for the corresponding part of SMI-SIy, i.e.:

01
(14, m)? = (1+ 2 )
Since the R function in Eq. (5) is pre-computed at the beginning
in the baseline algorithm, we can get both R(SI, Zle nj,x) and
R(SI,1 + Zliczl ni,x) in O(1) time. In addition, the baseline also
already has the values of n; and Z{'C:l n; updated in an incremental

way, so we have their values in O(1) time. Thus, by only keeping
track of © and performing a constant-time update at each step (i.e.,

k
SMI-SI; = (1 - )/R(SI, 1+ Z 1, X)
i=1
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© = Oprey + 2nj, where j is the type of the new point), we can
calculate SMI-SI scores in O(1) time, leading to a reduced overall
time complexity of O(MTN).

3.3.2  SMI for Shannon’s Entropy. Following the same n; and n;
definitions (i.e., from Cp), here we directly provide the update rule
and simplified version for SMI-SE;. Denote ©¢ = — Z;‘:l nilogni,
we have ©1 = Qg + nj log % —log(nj + 1). Then:

k k
01
——— +log(1+ n,-))/R(SE, 1+ ) njx)
(1+ 3, m) Zl Z‘
Note that to get the above form, it is helpful to first simplify SE
— 3, (nilogn)
2;{:1 nj

SMI-SE; =

to +log Zle nj.

3.4 Acceleration by a Distribution-Inspired
Sequence Reduction Heuristic

In this section we will be a little more aggressive and further reduce
the computation by proposing a distribution-inspired sequence
reduction heuristic. Due to its heuristic nature, this algorithm will
not guarantee that it can always find the optimal candidate (i.e.,
one with highest SMI for high-mixture or lowest for low-mixture),
but will try to reach it by searching within subspaces that are
more likely to contain it. In our experiments, we will show the
effectiveness of our heuristic strategy with empirical evaluation.

3.4.1 A Sequence Optimization View. To better illustrate the ideas
and subspaces enumerated by the heuristic algorithm, we first
introduce a sequence-optimization view of the enumeration process
on a dataset. In this view each sequence is an array of N points
sorted based on their distances to a single candidate center, and
each member in a sequence represents a candidate containing all
the points up to it in the sequence. The full enumeration space then
contains T sequences where T is the number of centers, and the
goal is to find the candidate that maximizes or minimizes the SMI
score depending on the input direction.

Since the sorting of all points to all centers only needs to be
done once at the beginning (Sec. 3.2.1) and SMI can be computed
in O(1), going through this full space in each dataset only requires
O(TN) steps. It is important to note that there exists a "smaller-
first-larger-later" (SFLL) constraint for the enumeration: the points
in each sequence must be enumerated one-by-one strictly from the
first (nearest) point to the last (farthest), because the values needed
for O(1) SMI calculation rely on those from the previous point. In
other words, candidates with smaller number of points must be
evaluated before larger ones.

3.4.2 Distribution-Inspired Sequence Reduction. Given the SFLL
constraint, the sequence reduction heuristic starts from the smallest
candidates and tries to dynamically narrow down the enumeration
space of larger candidates as the search propagates.

The heuristic criterion we use for narrowing down the search
space is inspired by the characteristics in the distribution of type-
composition (proportions of each type) in candidates of differ-
ence sizes. Specifically, we observe that the distribution of type-
composition "squeezes" as the candidate size increases.

Denote candidate setc = {Cy, Co, ...CT} as a set of T candidates
of the same size where C; is from the jth sequence; U € RT*k a5
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Size = 25

Size = 50

Figure 2: Visualizing of the "squeezing" effect.

a matrix containing type-compositions of the T candidates where

Ujp = kc’# Vj = 1..T,h = 1..k. Considering each row Uj
2ie1 Cjoni

as a k dimensional point, first we can see the T points in U are
actually always distributed in a hyperplane of dimension (k — 1) as
Zi.‘:l Uj; =1, Vj = 1..T. For example, when k = 2, the points are
on a 1D line described by X + Y = 1, and when k = 3 they are on a
2D plane described by X + Y + Z = 1.

The "squeezing" distribution we observe refers to that the range
covered by most of the points on the hyperplane has a tendency to
become narrower as the number of points in the candidate increases.
The intuition of this is that as the number of points increases, the
type-composition of a candidate tends to become more stable with
less variation (i.e., less susceptible to random effects). Many of the
sequences will start to converge to the overall type-composition of
the whole dataset (e.g., with N points, the composition is always
equivalent to the overall composition). Fig. 2 empirically visualizes
this "squeezing" effect for a 2000-point distribution with k = 3, and
number of points per type being [500, 600, 900].

As we can see, the range of the distributions starts to narrow to-
wards the overall composition as the size of the candidate increases
along the sequences.

This leads to the idea of the sequence reduction heuristic, which
starts by enumerating candidates along all sequences to cover the
wider range, and gradually reduces the number of sequences to
enumerate (i.e., a smaller search space) as the size increases.

Denote A as the number of steps to take in sequence reduction, N
as the length of the sequence (max number of points), and y as the
proportion of sequences to keep after the reduction in each step. At
the first step, we enumerate the first [N/A] sizes of all sequences.
In each sequence, we will additionally keep track of the best SMI so
far from it. After the enumeration, we sort the sequences by their
contained best SMIs, and only keep the sequences with a best SMI
in the top (100y)% for the next round of enumeration. We repeat
the same procedure in all the following steps as shown in Alg. 1.

3.4.3 Time Complexity. The time complexity of sequence reduc-
tion on each dataset is:

AN . A A
(Zrﬂ T y”l) + )Ty log(T - y"l))
i=1 i

i=1

(@]

1 A

A-1
_YY + Z T. }/i—l log(T . )/i_l))
i=1

oftr



Discovering Spatial Mixture Patterns of Interest

. Data ~  Methods | Metrics
é _ é é I MNSS Ié é Solution quality ;
- i : [ SL. SE I' , F1-scores ;
{ [Real-world] | | |_Exact SMI w. SLSE |»=

| [Feuristic SMI w. SLSE]

Figure 3: Overall validation framework.

Assuming log T < [N/A], the complexity can be simplified to

O( [%] -T- %) With A = 10 and y = 0.5, the number of candidates
enumerated will reduce from TN to (0.1998 - TN).

Finally, to ensure consistency between enumeration algorithms
in the detection phase and significance testing phase, the sequence
reduction heuristic is recommended to be used either for both or
for none especially if strict statistical robustness is desired.

Table 3 summarizes the time complexity of the baseline, exact,
and heuristic algorithms. As noted in Sec. 3.2.2, the algorithm only
outputs the best candidate in each round (if it is significant; other-
wise, it terminates). After that, the pattern is removed from data
before the next round of detection/testing. For clarity, the com-
plexity in Table 3 is for a single round of detection in this process.

Algorithm 1: Sequence Reduction Heuristic

Require:
o Sett: T sequences of length N
e Number of steps A
e Reduction parameter y
1: Cpegy = init()
2 SMIypqck = init(|Setr])
3: SMIopz = il’]it(|5€tT|)
4: fori=1toAdo
5. base=(i—1)-[N/A]
6: for j=(base+i) to min(base+[N/A], N) do
7 for seq in Setr do
8 [seq®, seqirack] = getOptimum(seq)
9 SMlop; (seq) = best(SMIypt (seq), seq”)

10: Cpest = best(Cpes, seq”)
11 UpdateSMITrack(SMI;4ck» S€qirack)
12: end for

13:  end for
14:  Sett = selectTopSeqsForNextStep(Sett, SMIop;, ¥)
15: end for

4 VALIDATION

We evaluate the solution quality and computational performance
of the proposed approaches via both synthetic and real-world data.
Fig. 3 shows the overall validation framework.

Table 3: Summary of time complexity

Baseline Exact Heuristic

— X
Complexity O(MKTN) O(MTN) O(M[571-T- %)
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pdr = pdr =
[1/3, 173, [0.9,0.1,
1/3] 0.0]
pdr = pdr =
[0.1,08, [0.2,086,
0.1] 0.2]
pdr = pdr =
[0.0, 0.1, [1/3, 173,
0.9] 1/3]

. .8

(a) Probility density ratios in .(b) Example data generated
each sub-region from (a)

Figure 4: Statistical process for synthetic data.

4.1 Solution Quality

4.1.1  Synthetic Data Description. Fig. 4(a) shows an example of
the statistical process that we used to generate the synthetic data
with three types of points. Within each sub-region (i.e., distinct by
color), the probability-density-ratio (pdr) vector contains the ratio
of the probability density of each type to the sum of the probability
densities of all types. The pdr in each sub-region is homogeneous.
For example, in the orange regions, the probability density ratios
of the three types are all 1/3, implying that this sub-region is a
high-mixture region (i.e., the composition is not dominated by any
type). Fig. 4(b) shows an example 2000-point distribution generated
from the process in Fig. 4(a).

The goal of the experiments with synthetic data is to see if the
methods can identify the two orange high-mixture regions.

4.1.2 A Visual Comparison. Fig. 5 shows a qualitative visual com-
parison of different methods’ outputs on the example data in Fig.
4(b). To correctly show the output of the multi-nomial scan statistic
(MNSS) we split the results into two sub-figures Fig. 5(a) and (b). As
introduced in Sec. 3.2.2, a significant pattern needs to be removed
from data before detecting the next one. Thus, Pattern 3 and 4 need
to be visualized on a separate sub-figure to show the actual points
they contain. As we can see, MNSS’s direction-less nature and its
focus on "comparing inside and outside compositions" make its
results not suitable for application scenarios where (1) a direction is
needed and (2) data consists of many different mixtures (i.e., "inside
vs. outside" type of strict bi-partition is less meaningful).

Fig. 5(c) shows that both Simpson’s index and Shannon’s entropy,
when used as the test statistic, cannot detect any significant pattern.
This is due to their lack of robustness under the effects of natural
randomness. As discussed in Sec. 3.1 (Table 1), these measures tend
to give the highest scores to small patterns with high-mixture. Since
such small patterns are likely to be formed by random chance, they
cannot pass the significant testing, leading to empty outputs.

By contrast, both SMI-SI and SMI-SE are able to identify the
two high-mixture patterns. Since the SMI-based results are nearly
identical, we only show one of them in Fig. 5.

4.1.3  Quantitative Evaluation. Here we generate hundreds of datasets
using processes based on Fig. 4(a) to compute F1-scores (harmonic
mean of precision and recall). The goal is still to detect the two
high-mixture patterns.

The parameters we vary are: (1) total number of points N, (2) the
area A of the two target high-mixture regions (i.e., orange colored),
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Figure 5: Qualitative visual comparison of outputs.

(3) the ratio R between number of points in the foreground (cir-
cular regions) and background (rest), and (4) an algorithm-related
parameter T representing the total number of candidate centers.

The study area has dimension 100 X 100, the default area for all
circles is 715%. By varying the area of the two target high-mixture
patterns, we can evaluate how sensitive are the methods to the
relative sizes of the true patterns. The ratio R has a different
purpose. By default R is set to the ratio between the total area of the
five foreground circles and the area of the background blue region
(i.e., about 3500/6500), which means the density of points is roughly
homogeneous across the study area. By varying R, we can evaluate
the effect of heterogeneity in point-density on solution quality.
When we vary one parameter, the others are kept at the default
values [N, A, R, T] = [5, 000, 71:152,35/65, 400].

Since MNSS, SI and SE are not able achieve a reasonable solution
quality for this task as shown in Fig. 5, we skip their F1-scores which
are very low (e.g., near 0) and not as interesting. The candidates
for this evaluation then are: (1) the exact version; (2) heuristic
with number of steps A = 10 and reduction parameter y = 0.75;
(3) heuristic with A = 10 and y = 0.5; (4) heuristic with 1 = 20
and y = 0.75; and (5) heuristic with A = 20 and y = 0.5. Heuristic
methods in (2) to (5) reduces the enumeration space to about 37.75%,
19.98%, 19.94% and 10.00% of the original size, respectively, using
different combinations of A and y.

The F1 scores of the methods are shown in Tables 4 to 7. Each F1
score is computed using results from 25 datasets generated using
the statistical process with the corresponding parameters. Overall,
the trend is that the SMI-based methods consistently achieve high
F1 scores throughout most of the experiments.

SMI-SI vs. SMI-SE: According to the F1 scores, the solution
quality achieved by both methods are very similar in the vast ma-
jority of cases. The two minor differences are seen in Table 5 when
A = 10%7 and Table 6 when R = 30/70. In these cases SMI-SE
outperforms SMI-SI with a small margin < 5%. Both of these cases
correspond to the scenario when the number of points in the tar-
get patterns is relatively smaller, either due to a smaller area (i.e.,
A = 1027 for true patterns while the other three circles have 15%7)
or lower density (i.e., point-density in circles are lower than that of
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Table 4: Solution Quality by F1 Scores: Varying N

Heuristic: (4, y)
N | Exact =0 075 1 (10,0.5) | (20,0.75) | (20,0.5)
7| 2500 0.97 0.99 0.99 0.98 0.99
E‘ 5000 0.99 0.99 0.97 0.99 0.98
“ | 10000 0.93 0.94 0.95 0.95 0.95
= 2500 1.00 1.00 1.00 1.00 1.00
= 5000 0.99 1.00 1.00 1.00 1.00
E 10000 0.96 0.94 0.96 0.95 0.95
Table 5: Solution Quality by F1 Scores: Varying A
A Exact Heuristic: (4, y)
(10,0.75) | (10,0.5) | (20,0.75) | (20,0.5)
7 1027 0.97 0.94 0.96 0.97 0.95
El 1527 | 0.9 0.99 1.00 1.00 1.00
s [ 20%x 0.99 0.99 0.98 0.99 0.99
= 10%7 0.99 0.99 0.98 0.99 1.00
= [ 15%7 0.99 0.99 0.99 0.99 0.99
% 20% 7 1.00 1.00 1.00 0.99 1.00
Table 6: Solution Quality by F1 Scores: Varying R
R Exact Heuristic: (4, y)
(10,0.75) | (10,0.5) | (20,0.75) | (20,0.5)
7 30/70 0.90 0.92 0.93 0.93 0.94
E’ 35/65 0.98 0.99 0.99 0.99 1.00
@ | 45/55 1.00 1.00 1.00 1.00 1.00
= 30/70 0.96 0.96 0.98 0.97 0.95
= | 35/65 1.00 0.99 1.00 0.98 0.99
E 45/55 1.00 1.00 1.00 0.99 1.00
Table 7: Solution Quality by F1 Scores: Varying T
T Exact Heuristic: (4, y)
(10,0.75) | (10,0.5) | (20,0.75) | (20,0.5)
=R 100 0.95 1.00 0.97 0.96 0.96
E‘ 400 0.99 0.97 0.98 0.98 1.00
© | 2500 0.98 1.00 1.00 0.99 0.97
= 100 0.99 0.99 1.00 0.99 1.00
= | 400 1.00 0.99 0.99 0.99 1.00
E 2500 1.00 0.99 0.99 0.99 0.99

the background blue region). In such a scenario, a true pattern be-
comes harder to detect since population-wise its signal is relatively
weaker compared to other mixtures. According to the results, SMI-
SE is a little more robust than SMI-SI in this case, which motivates
future investigation of other participating functions in SML

Exact vs. heuristic: Since the sequence reduction algorithm
in Sec. 3.4 is a heuristic algorithm, it does not guarantee that the
solution is always the same as that of the exact algorithm. Thus,
to better understand its performance, we empirically compared its
solution quality with the exact algorithm. According to the results
in Tables 4 to 7, we can see that the distribution-inspired sequence
reduction heuristic consistently achieves very similar F1 scores
to the exact algorithm’s under different combinations of A and y
throughout the experiment.

Effect of parameters: The solution quality of the methods are
relatively stable in the experiments with varying parameters and
variations are mostly within 5%. The effects of changes in relative
pattern sizes caused by A and R were discussed earlier in the SMI-SI
vs. SMI-SE comparison. We can also see that the F1 scores of SMI-SI
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Figure 6: Case study on smart city tree management in St Paul, MN.

increases as T increases, which is expected since larger numbers
of centers increases the number of candidates overlapping with a
true pattern, making the detection easier. Note that the results on
T here are limited as they mainly show the effects of randomness
(true pattern centers are fixed and covered by all choices of T).

4.1.4 Case Study: Resilience of Smart Cities. We also conducted a
real-world case study using data provided by our city partner in
St Paul, Minnesota. The data is an ongoing multi-year effort, and
contains the locations of 123, 104 public trees managed by the city
along road-sides. The number of tree genera is 57, including Acer,
Fraxinus (i.e., ash), Pine, etc. The 57 genera will be used as types of
points. The goal of this case study is to use the proposed approach
to identify high-mixture and low-mixture regions within the city,
which is an important problem across many urban areas (Sec. 1).
Note that since trees along a road segment (e.g., one side of a block)
often have the same genus, city planners are more interested in rel-
atively larger zones which can reveal more meaningful information
about the mixtures. Thus, in the case study the minimum size of a
pattern is constrained to be at least 500.

Fig. 6 shows detections of both high-mixture and low-mixture
patterns, colored in red and blue, respectively. Each point in the
background represents an individual tree (easier to see in the zoom-
in windows). To maintain visual clarity, we show only the two
most prominent patterns (i.e., highest or lowest SMI scores) for
both high- and low-mixture. The results for SMI-SI and SMI-SE are
very similar with heavy overlaps, so, similar to Fig. 5, we will use
SMI-SI’s results to represent both.

Along each detected pattern in Fig. 6, we added a bar-chart to
visualize the type-composition of the pattern. In the bar-chart, the
X-axis is type-ID (57 in total) and Y-axis is frequency. We addition-
ally show the probability of having two draws of trees from the
pattern returning different types (i.e., Simpson’s index). All the pat-
terns are statistically significant at the level of 0.05. As we can see,
the type distributions of the two high-mixture patterns are much

more balanced (i.e., more tall bars) compared to the distributions of
the low-mixture patterns, which are dominated mostly by a single
tree genus. This can also be seen from the above-mentioned prob-
ability values, which are 0.91 and 0.89 for the two high-mixture
patterns, respectively, and 0.56 and 0.57 for the two low-mixture
patterns, respectively. Finally, we show two zoom-in windows of
Pattern-1 and Pattern-3 to help see more details. In the zoom-in
window of Pattern-1, trees of more colors (i.e., types) can be ob-
served whereas in Pattern-3, most of the trees are of the same type.
Urban regions similar to Pattern-3 are typically very vulnerable
when the dominant tree type within them is targeted by a disease
and often need prescriptive interventions.

We skip the results of MNSS as it finds two huge patterns (one
covering the west and the other covering a large part of the east of
the study area) that are neither high or low mixture patterns but
more of differences between the compositions inside and outside
of a sub-region. SI and SE did not return any significant pattern.

4.2 Computational Performance

We evaluate the computational performance of the baseline algo-
rithm as well as the proposed accelerations using the exact and
sequence reduction heuristic algorithms. The data are generated
using the process in Fig. 4(a) where the number of types is 3. The
parameters we vary are the total number of points (i.e., data size) N,
the number of candidate centers T, as well as A and y values for the
heuristic algorithm. The default values are [N, T] = [10000, 400],
and [A,y] = [10,0.7].

Fig. 7 shows the execution time for three algorithms with both
SMI-SI and SMI-SE with varying N and T, and Fig. 8 shows the
execution time of the heuristic algorithm with varying A and y.

Execution time comparison: As we can see in Fig. 7(a) and (b),
the exact and heuristic versions of acceleration provide significant
speed-ups to the baseline algorithms for both SMI-SI and SMI-SE.
The speed-ups are relatively stable for different N from 2,500 to
250,000 (both X and Y axes are shown in log-scale). For example,
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Figure 7: Execution time with varying N and T.
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Figure 8: Execution time with varying A and y.

for SMI-SI, the speed-up by the exact algorithm is about 3.4x when
N = 2,500 (i.e., from 30.7s to 9.0s) and 2.8x when N = 250, 000 (i.e.,
from 4257.8s to 1502.1s). This is roughly proportional to the number
of types k = 3 as indicated by the complexity comparison in Table
3. For the heuristic algorithm, it will reduce the enumeration space
to a constant proportion of the full space. Thus, its speed-up is also
relatively stable (e.g., an additional 3x) in the experiments. Finally,
we can see that the time cost of SMI-SE tends to be higher than
SMI-SI. This is likely caused by the longer time for computing SE as
compared to SI, which is a constant factor typically made implicit
in the asymptotic complexity. We can also see that the differences
between the execution time of SMI-SE and SMI-SE decreases after
acceleration. This is potentially due to the fact that as the time-costs
of the dominant terms in time complexity reduces, other terms (e.g.,
sorting) may start playing a relatively bigger role and dilute the
differences in dominant terms.

Effects of parameters: First, in Fig. 7(a) and (b) we can see the
execution time increases linearly as N and T increase, which is
consistent with the complexities in Table 3. Then, results in Fig. 8(a)
show that in general the execution time of the heuristic algorithm
decreases as the number of steps A increases (y = 0.7). This is
because a greater A leads to more frequent reductions, reducing
the total number of candidates being enumerated. Note that if y
is set very close to 1 (not recommended), we may see less of this
trend because the reduction may be consumed by a higher cost of
sorting. Finally, Fig. 8(b) shows that execution time increases as
the reduction parameter y increases (i.e., less aggressive reduction),
which conforms to the complexity in Table 3.

5 CONCLUSIONS AND FUTURE WORK

We proposed a Spatial Mixture Index (SMI) to identify spatial mix-
ture patterns of interest, i.e., sub-regions with significantly high
or low mixture of different types of points. Then, we presented a
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baseline algorithm with dual-level Monte-Carlo estimation to com-
pute SMI and detect patterns. We further proposed two acceleration
schemes with an exact algorithm as well as a distribution-inspired
sequence reduction heuristic to improve the computational per-
formance by reducing time complexity. Experiment results using
both synthetic and real-world data validated the solution quality
of the proposed approach and also showed that the acceleration
techniques can greatly reduce the execution time while maintain-
ing high quality of results. For reproducibility, code is available at:
https://github.com/yqthanks.

In future work, we will explore new opportunities opened by
this new pattern. A short-term plan will explore alternative partici-
pating functions fy;, of SMI (e.g., Alpha, Beta or Gamma diversity
measures) or other extensions for specific application needs. New
computational strategies (e.g., approximation or distributed algo-
rithms [6, 14]) will also be investigated to improve scalability. We
will also explore other formulations of candidate regions (e.g., ir-
regular shapes [4, 16]) and statistical processes (e.g., different types
of point distributions). Finally, the current work does not explic-
itly model scenarios when the mixture inside a pattern is highly
heterogeneous, and those cases need further investigation.
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