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ABSTRACT: Winter Arctic sea ice loss has been simulated with varying degrees of abruptness across global climate

models (GCMs) run in phase 5 of the CoupledModel Intercomparison Project (CMIP5) under the high-emissions extended

RCP8.5 scenario. Previous studies have proposed variousmechanisms to explainmodeled abrupt winter sea ice loss, such as

the existence of a wintertime convective cloud feedback or the role of the freezing point as a natural threshold, but none

have sought to explain the variability of the abruptness of winter sea ice loss across GCMs. Here we propose a year-to-year

local positive feedback cycle in which warm, open oceans at the start of winter allow for the moistening and warming of the

lower atmosphere, which in turn increases the downward clear-sky longwave radiation at the surface and suppresses ocean

freezing. This situation leads to delayed and diminishedwinter sea ice growth and allows for increased shortwave absorption

from lowered surface albedo during springtime. Last, the ocean stores this additional heat throughout the summer and

autumn seasons, setting up evenwarmer ocean conditions that lead to further sea ice reduction.We show that the strength of

this feedback, as measured by the partial temperature contributions of the different surface heat fluxes, correlates strongly

with the abruptness of winter sea ice loss across models. Thus, we suggest that this feedback mechanism may explain

intermodel spread in the abruptness of winter sea ice loss. In models in which the feedback mechanism is strong, this may

indicate the possibility of hysteresis and thus irreversibility of sea ice loss.
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1. Introduction

Arctic sea ice loss is both an early response to and a potential

amplifier of global climate change, and as such, understanding

its causes, mechanisms, and predictability is of great impor-

tance. Both the timing and magnitude of sea ice loss have im-

plications for local communities and Arctic ecosystems. These

concerns have motivated a significant body of research on

Arctic sea ice loss. Much of this work has been focused on

understanding present-day observations ofArctic sea ice, or on

the predicted behavior of summer Arctic sea ice in near-future

global warming scenarios. The focus of this work, however, is

long-term projections of winter Arctic sea ice. Specifically, we

are interested in exploring mechanisms that may lead to an

abrupt disappearance of winter sea ice.

There has been much speculation about whether abrupt sea

ice loss—both in summer and winter—can occur, and if such

loss is potentially irreversible, indicating a hysteresis and

bistability of the system (Ridley et al. 2012; Winton 2006). The

debate on whether the loss of summer sea ice is expected to

happen gradually or abruptly (Holland et al. 2006; Eisenman

2007, 2012; Wagner and Eisenman 2015; Ridley et al. 2012;

Notz 2009) generally suggests that a gradual transition is more

likely. Results from toymodels suggest that the transition to an

ice-free Arctic summer could happen discontinuously on ac-

count of the ice-albedo feedback. However, results from in-

cluding additional feedbacks in simple models (Eisenman and

Wettlaufer 2009; Eisenman 2012) and from more realistic

models that include latitudinal and seasonal variations as well

as fully coupled global climatemodels (GCMs) all indicate that

this transition will happen gradually (Wagner and Eisenman

2015; Notz 2009; Armour et al. 2011).

Abrupt sea ice loss in winter is a more robust feature than

abrupt summer sea ice loss for both toy models (Abbot et al.

2011; Abbot and Tziperman 2008b) and GCMs (Hezel et al.

2014; Drijfhout et al. 2015; Bathiany et al. 2016), and there are

several mechanisms that have been suggested regarding its

drivers and reversibility. Abbot and Tziperman (2008b) and

Abbot et al. (2011) used a column model to show that abrupt

sea ice loss in winter can result from a convective cloud feed-

back represented by a saddle node bifurcation. Armour et al.

(2011) present an alternate view by showing that winter sea ice

loss is reversible in one GCM (CCSM3), and thus not part of a

bifurcation and hysteresis in that model. Other work still (D.-S.

R. Park et al. 2015; H.-S. Park et al. 2015; Leibowicz et al. 2012;

Gong et al. 2017) has focused on the historical and present-day

loss of winter sea ice, which of course has not yet displayed any

threshold behavior, but is shown to be greatly affected by

winter longwave radiation, which we examine closely in

this study.

Overall, we identify a need for further understanding of the

effect of positive feedbacks on long-termwinter sea ice loss and

its implications for sea ice predictability in a future Arctic.

Analysis of GCMs run under the extended RCP8.5 scenario in
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phase 5 of theCoupledModel Intercomparison Project (CMIP5;

Taylor et al. 2012) shows winter sea ice to disappear at different

speeds in different models (Hezel et al. 2014; Drijfhout et al.

2015). Figure 1a shows the time series of yearlymaximum sea ice

area for six such models, with somemodels notably revealing an

apparent abrupt melting (‘‘tipping point’’–like behavior) in

winter Arctic sea ice even when summer sea ice melting occurs

gradually. Figure 1b demonstrates how abrupt this winter sea ice

loss is for one model, MPI-ESM-LR. As mentioned above, this

apparent tipping point could be indicative of the occurrence of a

bifurcation due to the crossing of a CO2 forcing threshold. If so,

one may expect hysteresis, in which complete winter sea ice loss

is irreversible beyond a certain forcing value, which would have

profound implications for the climate system as a whole.

Such a bifurcation and hysteresis of winter sea ice were

proposed to be a possible result of a ‘‘convective cloud feed-

back’’ mechanism in the context of both future (Abbot and

Tziperman 2008b) and past (Abbot and Tziperman 2008a)

warm climates, and this feedback was studied using analytic

models (Abbot and Tziperman 2009), GCMs (Abbot et al.

2009), and a superparameterized coupled GCM (Arnold et al.

2014). The convective cloud feedback relies on the onset of

wintertime convection over open ocean to drive convection

and deep convective clouds, the longwave (LW) radiative ef-

fect of which suppresses sea ice growth. Interestingly, we find

here that downward LW radiation plays a significant role in

affecting the abruptness of winter sea ice loss, but that while

wintertime Arctic atmospheric convection indeed occurs in all

models examined at high enough CO2, the LW cloud radiative

effect does not seem to be a major player.

Bathiany et al. (2016) looked closely at the apparent win-

tertime sea ice tipping point in one of the GCMs analyzed here

(MPI-ESM) and found that the tipping point persists even

when the ice-albedo feedback and the convective cloud feed-

back are disabled; subsequently, they suggested that the

freezing point provides a natural threshold that could explain

FIG. 1. (a) Yearly maximum sea ice area evolution in the extended RCP8.5 scenario for the

six models considered in this study. Models CSIRO Mk3.6, HadGEM2-ES, and MPI-ESM-

LR all exhibit a period of accelerated winter sea ice loss, potentially indicative of a threshold

or ‘‘tipping point’’ behavior. (b) Example of the abrupt winter sea ice loss for one of the

models, MPI-ESM-LR. Shown is the yearly maximum sea ice fraction before and after the

abrupt change, only 9 years apart.

4436 JOURNAL OF CL IMATE VOLUME 34

Brought to you by Harvard Library Information and Technical Services | Unauthenticated | Downloaded 04/29/21 06:51 PM UTC



the abrupt sea ice loss without any positive feedbacks. While

the threshold behavior of the freezing point is certainly im-

portant, it alone without the inclusion of positive feedbacks

cannot explain the variability in the abruptness of sea ice loss

across models, nor the seemingly homogenous and monotonic

nature of the sea ice loss in some models.

Thus, the goal of this work is to examine the role of positive

feedbacks in affecting the abruptness of winter Arctic sea ice

melting across GCMs run in CMIP5. Noting the extensive lit-

erature that outlines the importance of air–sea exchanges for

feedback mechanisms in the Arctic (Taylor et al. 2018; Smith

et al. 2017), we focus on local coupled sea ice–ocean–atmo-

spheric mechanisms. Previous work (Burt et al. 2016; Krikken

and Hazeleger 2015) suggested that both ocean and atmo-

spheric heat transport contribute minimally to the heat budget

of the Arctic, and more importantly tend to decrease over the

course of global warming GCM simulations. While we do not

rule out the potential contribution of remote feedbacks driven

by ocean or atmospheric heat transport, we do not analyze

these here.

Other studies have examined and quantified the role of

positive feedbacks in driving Arctic amplification (Taylor et al.

2013; Bintanja et al. 2011; Pithan and Mauritsen 2014; Block

and Mauritsen 2013; Goosse et al. 2018; Boeke and Taylor

2018; Feldl et al. 2020; Stuecker et al. 2018) but none have

addressed the relationship between these positive feedbacks

and abrupt wintertime sea ice loss. Bintanja et al. (2011) and

Pithan and Mauritsen (2014) showed that a positive lapse-rate

feedback is active in the Arctic due to the reduced efficiency of

thermal emission that accompanies the strong surface tem-

perature inversion, and that this feedback is one of the main

contributors to Arctic amplification. Feldl et al. (2020) ex-

tended this work to show that a strong lapse-rate feedback is

correlated to a strong surface albedo feedback, suggesting that

increased upward turbulent heat fluxes due to reduced ice

coverage supply the heat that drives surface-amplified warm-

ing, and thus the two aforementioned feedbacks should be

considered in conjunction. Stuecker et al. (2018) suggested that

local rather than remote feedbacks drive the amplified warm-

ing in the Arctic in coupled models, by applying regional CO2

forcings, and again found that the positive lapse-rate feedback

appears to be the most important local feedback.

We propose that what Burt et al. (2016) referred to as a

wintertime ‘‘ice-insulation feedback’’ together with a spring-

time ice-albedo feedback, linked together by seasonal heat

storage by the ocean, contribute significantly to the simulated

abrupt winter sea ice loss. Boeke and Taylor (2018) sought to

explain the variability in Arctic amplification simulated by

GCMs with a similar positive feedback mechanism, while here

we seek to explain the variability in the abruptness of winter

sea ice loss across models. Specifically, we use a quantitative

feedback analysis to show that models with a weaker feedback

mechanism have less abrupt winter sea ice loss, while models

with a stronger feedback show more abrupt sea ice loss, which

qualitatively resembles a tipping-point behavior. Several

methods for quantifying feedbacks have been proposed by

previous work, including the radiative kernel technique (Soden

et al. 2008; Block and Mauritsen 2013; Pithan and Mauritsen

2014; Goosse et al. 2018), partial temperature contributions

(Boeke and Taylor 2018), and the Climate Feedback Response

Analysis Method (CFRAM; Lu and Cai 2009a). For reasons

discussed below, we find the radiative kernel technique and the

CFRAM to be less suitable for the abrupt winter sea ice loss

problem. Instead, we use the partial temperature contributions

(PTCs) approach of Boeke and Taylor (2018).

The positive feedback we find to play a role in affecting the

abruptness of winter sea ice loss is as follows. In a seasonally

(summer) ice-free future Arctic, the warm, open ocean needs

to cool in autumn and winter before winter sea ice can begin to

regrow. As the atmosphere cools in winter faster than the

ocean, strong vertical temperature and moisture gradients are

established that lead to increases in upward latent and sensible

heat fluxes (Screen and Simmonds 2010). These turbulent

fluxes warm and moisten the lower atmosphere, which in turn

causes the atmosphere to trap and re-emit longwave radiation

back to the surface. The increase in downwelling longwave at

the surface further suppresses ocean cooling, and delays sea ice

freeze-up, which allows the turbulent heat fluxes to persist later

into winter. The delayed freeze-up causes themaximum sea ice

concentration achieved in March or April to be lower yet,

which in turn leads to increased springtime shortwave ab-

sorption due to the lower albedo. This extra heating by short-

wave (SW) radiation not only melts the seasonal sea ice more

quickly, but also warms the summer ocean. Some of this heat is

stored in the upper ocean, which sets up conditions for an even

warmer open ocean at the start of the ice-growing winter sea-

son. This completes one full feedback cycle, and subsequently

leads to even stronger winter latent and sensible heat fluxes,

thus to a warmer and moister atmosphere, more downwelling

longwave, and even more delayed sea ice freeze-up and lower

maximum sea ice area.

In section 2 we describe the model output used, the partial

temperature contribution method (Boeke and Taylor 2018),

and the measure used for quantifying the abruptness of winter

sea ice loss. Next in section 3 we discuss the results of the

analysis of feedback strength in different seasons and its con-

nection to the abruptness of wintertime sea ice loss, and we

conclude in section 4.

2. Methods

We use results from six global climate models (GCMs) run

under the extended RCP8.5 scenario in CMIP5 (Taylor et al.

2012). Of the models that took part in CMIP5, only nine were

run for the extended RCP scenarios (which run through 2300),

and each model only has one ensemble member for the RCP8.5

scenario.We perform our analysis of abrupt sea ice loss on six of

these nine models. Of the models that were excluded, two never

fully lost their winter sea ice by the end of the simulation (GISS-

E2-H and GISS-E2-R), and one did not have data available for

download at the time of this study (BCC_CSM1.1).

We hypothesize that the varying strength of the proposed

feedback across different models produces a range in the

abruptness of simulated winter sea ice area loss. Indeed, we see

from Fig. 1a that even within the models that qualitatively

appear to have a tipping point, some still experience more
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abrupt winter sea ice loss than others—for example, compare

CSIRO Mk3.6 with HadGEM2-ES. Thus, there is a need for

both a quantitative metric of the abruptness of sea ice loss

and a quantification of the strength of the proposed feedback.

To quantify the strength of the proposed feedback, we cal-

culate the PTCs of different mechanisms that play a role in the

year-to-year feedback cycle (such as increases in downwelling

longwave radiation or changes in surface albedo) by decom-

posing the surface energy budget, following Boeke and Taylor

(2018). This analysis can be easily done with standard CMIP5

output data and allows for comparison with Boeke and Taylor

(2018), who propose a similar year-to-year feedback cycle for

explaining Arctic amplification in the twenty-first century

alone. Although this method calculates feedback strength

based on contributions to surface temperature warming and

not to sea ice loss specifically, Arctic surface temperatures and

sea ice area are generally tightly coupled (Feldl et al. 2020) and

thus we expect the feedback mechanisms analyzed here to

play a role in driving changes in both.

Directly following Boeke and Taylor (2018), the surface

energy budget can be decomposed as

Q5 (12a)S
dn
1F

dn
2 �sT4

s 2 (S1L), (1)

where Q represents the storage and transport of heat by the

ocean, a is the surface albedo calculated as the upwelling

shortwave clear-sky radiation divided by the downwelling

shortwave clear-sky radiation at the surface, Sdn is the all-sky

downwelling shortwave radiation, Fdn is the all-sky down-

welling longwave radiation, �sT4
s is the upwelling longwave

radiation (where � is the emissivity of the surface, taken to be 1,

and Ts is the surface temperature), S is the upward sensible

heat flux, and L is the upward latent heat flux. Equation (1) is

taken to be satisfied at all grid points and at all times, and Q is

thus computed as a residual of the other variables. Considering

the change in Eq. (1) between two different times in the sim-

ulation, solving for Ts, and linearizing DT4
s yields

4sT3
s DTs

5D[(12a)S
dn
]1DF

dn
2DQ2DS2DL . (2)

In this study, the D values represent changes in the given var-

iables between the beginning and end of each model’s period of

abrupt winter sea ice loss, the identification of which is described

below. Last, by considering the cloud radiative effect following

Lu and Cai (2009b) to be DCRE5 (12a)DSdn,cld 1DFdn,cld

such that the effects of changing albedo are separated from ra-

diative effects of changing clouds, substituting into Eq. (2) yields

the final form of the PTC approach used here:

DT
s
5
2(Da)(S

dn
1DS

dn
)1DCRE1 (12a)DS

dn,clr
1DF

dn,clr
2DQ2DS2DL

4sT4
s

, (3)

where a and Sdn represent mean-state values, calculated as a

20-yr average centered around the starting year of the period of

abrupt sea ice loss. The terms on the right-hand side represent

contributions from the surface albedo feedback (SAF), cloud

radiative effect (CRE), changes in clear-sky shortwave radia-

tion, changes in clear-sky longwave radiation, changes in ocean

heat storage and transport, changes in sensible heat flux, and

changes in latent heat flux. The strength of these feedback

mechanisms during the period of abrupt winter sea ice loss

specifically measures their influence on the surface warming,

which, as explained above, we assume quantifies their contri-

bution to sea ice loss as well.

In this study we do not use the radiative kernel technique for

quantifying radiative feedbacks that was outlined by Soden

et al. (2008) and applied in subsequent studies (see section 1).

Because the radiative feedback method assumes a small linear

perturbation to the climate state for which the kernel is de-

rived, we expect it to introduce large errors when being applied

to a period of rapid and large change such as the period of

abrupt winter sea ice loss. Indeed, Block and Mauritsen (2013)

show that the MPI-ESM-LR radiative kernel is strongly state

dependent, with the surface albedo feedback kernel being re-

duced by half when considered in a 4 3 CO2 state versus a

control state. Thus, even using a radiative kernel derived from

climate state immediately prior to the abrupt winter sea ice loss

is likely to be insufficient for representing the response of TOA

radiation to feedback variables throughout the entire period of

abrupt sea ice loss. Similarly, CFRAM (Lu and Cai 2009a)

assumes a small perturbation to atmospheric energy fluxes and

requires output variables that are not consistently available in

the CMIP5 archive (such as vertical profiles of horizontal and

vertical energy transports). The more generalized feedback

quantification framework proposed by Goosse et al. (2018)

[their Eq. (1)] is useful for comparing radiative and non-

radiative feedbacks (which is not our primary concern here)

and also requires output from simulations with specific feed-

back mechanisms turned off, to which we do not have access.

We identify the years of abrupt winter sea ice loss by fitting a

sigmoid function to the time series of maximum yearly sea ice

area of the form f(x)52L/{11 exp[2k(x2 x0)]}1 b.We then

choose the start and end of the period of abrupt sea ice loss for

each model to be x06 1.5/k (Fig. S1 in the online supplemental

material). These years are used as the period of change that is

considered in the calculation of PTCs, where D values are

calculated as the difference between the 20-yr averages cen-

tered around the start and end years.

Thus, we consider the PTCs of the different surface pro-

cesses during the year range corresponding to an abrupt winter

sea ice loss. Because the length of the period of abrupt winter

sea ice loss is different across models, we divide the PTCs by

this time length so that their units are kelvins per year, allowing

us to compare PTCs across models.We limit the regional scope

of this calculation to the areas of the ocean that had at least

10% maximum yearly sea ice concentration at the start of the

period corresponding to the abrupt winter sea ice loss. We do

so because an alternative strategy such as including the entire
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Arctic area above a certain latitude would include changes in

variables over parts of the ocean that were ice free throughout

the entire simulation. Thus, PTCs are calculated at all grid

points that satisfy this criterion, and then averaged according to

grid cell area to give a single PTC for each mechanism for the

region of sea ice loss as a whole. We tested cutoff values other

than 10% for the maximum yearly sea ice cover and found that

our results are insensitive to the value used. We note here that

studies attempting to calculate the sensitivity of a certain cli-

mate variable to sea ice change might calculate the change in

that variable normalized by a unit change in sea ice. However,

this normalized ratio would not distinguish between two

models that lost the same amount of sea ice and had the same

change in a given feedback variable, but over different periods

time, not allowing us to distinguish models with abrupt versus

gradual sea ice loss. This is why we focus the bulk of our

analysis (e.g., Figs. 2 and 3) on PTCs in terms of their contri-

bution per year, which captures the abruptness of changes in

surface heat fluxes (see Fig. S2 in the online supplemental

material for an analysis using a different normalization of the

PTC analysis).

To quantify the level of abruptness of winter sea ice loss

across models, we perform a linear regression on the time se-

ries of sea ice area within the calculated year ranges described

above and use the slope of the regression line (with units of

meters squared per year) as the metric for ranking the

abruptness of winter sea ice loss for all models. We then

compare the strength of the local mechanisms that make up the

year-to-year feedback cycle using PTCs with the abruptness of

winter sea ice loss across models to directly test our hypothesis

that the range in strength of local feedbacks can explain the

range in abruptness of winter sea ice loss.

Certainly, other metrics for quantifying the level of abrupt

sea ice loss could be used, and we address some of those pos-

sibilities here. First, one could consider defining a metric based

on sea ice volume rather than area, and in fact we find that ice

volume also shows abrupt changes in the models that show it

for ice area (not shown). While this would capture more in-

formation about sea ice thinning, sea ice area may be more

relevant for atmosphere–ocean coupling, which is our primary

interest here. Differences in sea ice thinning rates across

models may affect the surface albedo feedback among other

factors but are not fully explored in this study. In addition, one

could use the magnitude of sea ice area that is lost in a par-

ticularly abrupt phase instead of the rate of loss. We find that

using this metric does not affect our main results (not shown).

3. Results

We now examine air–sea heat fluxes that play a role in the

proposed year-to-year feedback cycle during the disappear-

ance of winter sea ice area by analyzing their PTCs (kelvins per

year, reflecting the contribution of each process to the rate of

change of surface temperature during the period abrupt sea ice

loss; see section 2). If the proposed year-to-year feedback cycle

is strong, we expect PTCs associated with key air–sea ex-

changes to be large. For example, because we hypothesize that

warmer ocean temperatures at the end of autumn lead to

increased heat and moisture fluxes to the atmosphere, we ex-

pect strong negative latent heat flux (LHFX) and sensible heat

flux (SHFX) PTCs, particularly in autumn and in winter. These

increased turbulent heat fluxes lead to increased downwelling

longwave from the atmosphere, which we expect to be re-

flected in either the longwave clear-sky (LWCS) or cloud ra-

diative effect (CRE) PTCs. In the springtime, when shortwave

radiation increases, we expect that a lower sea ice area maxi-

mum in spring leads to increased shortwave absorption by the

ocean, which suppresses sea ice growth the following year. This

would be reflected in a large surface albedo feedback (SAF)

PTC. Overall, we expect that models with a stronger net pos-

itive year-to-year feedback cycle will show larger yearly PTCs

and similarly will show more abrupt sea ice loss, and thus we

start our analysis by comparing these two quantitative metrics.

We then look further into the drivers of one of the most critical

PTCs: LWCS. Last, we examine the critical role of the ocean in

providing a memory, locally storing the extra heat absorbed

from the springtime reduced albedo, and later fueling the air–

sea temperature difference needed for the turbulent heat fluxes

that drive the wintertime warming and suppression of sea ice

regrowth.

We start by comparing themagnitude of all of the PTCs with

the abruptness of winter sea ice loss for all models, recognizing

that there could be a continuous range in both feedback

strength and winter sea ice loss abruptness. Figures 2a–f and 2h

show the yearly PTC for each mechanism represented in

Eq. (3) plotted against the abruptness metric for winter sea ice

loss (see section 2) for each model. A linear regression is fitted

to each scatterplot, and the legend shows the R2 value of this

regression. For six models and therefore 4 degrees of freedom,

R2 is significant at the 95% level forR2. 0.658 following a two-

tailed t test. The statistically significant correlations in Figs. 2a

and 2b demonstrate that the PTCs of the surface albedo

feedback and changes to longwave clear-sky radiation re-

spectively contribute more warming per year for models with

more abrupt winter sea ice loss. Similarly, Figs. 2e and 2f show

that models with more abrupt winter sea ice loss have larger

negative LHFX and SHFX PTCs, respectively. Interestingly,

Fig. 2c shows that the shortwave clear-sky (SWCS) PTC is

more negative for models with more abrupt sea ice loss, pos-

sibly due to increased shortwave absorption by water vapor in

models that lose sea ice more rapidly. Yearly PTCs of the cloud

radiative effect and ocean heat storage Q are not strongly

correlated with the abruptness of winter sea ice loss, as shown

in Figs. 2d and 2h respectively.

The strong correlations in Figs. 2a, 2b, 2e, and 2f are con-

sistent with the hypothesized year-to-year feedback cycle.

Notably, the surface albedo feedback and LWCS PTCs have

the largest magnitudes of all the PTCs, contributing on the

order of ;0.1K yr21 each, which indicates that they are the

most important components of the year-to-year feedback cy-

cle. The large magnitude of the LWCS PTC is consistent with

past studies (Burt et al. 2016; D.-S. R. Park et al. 2015; H.-S.

Park et al. 2015; Abbot et al. 2009) that show longwave radi-

ation to be a critical variable for suppressing sea ice growth.

When the yearly PTCs are broken down by season (not

shown), we see that the yearly LWCS PTC is largely driven by

1 JUNE 2021 HANKEL AND TZ I PERMAN 4439

Brought to you by Harvard Library Information and Technical Services | Unauthenticated | Downloaded 04/29/21 06:51 PM UTC



FIG. 2. Quantifying the strength of the different mechanisms that make up the year-to-year feedback cycle using

PTCs.All panels depict the yearly PTC, which is the PTCover the period of abrupt winter sea ice loss divided by the

number of years in the abrupt period. The PTCs depicted are from changes in (a) surface albedo feedback,

(b) longwave clear-sky radiation, (c) shortwave clear-sky radiation, (d) cloud radiative effect, (e) upward latent

heat flux, (f) upward sensible heat flux, (g) lapse rate, and (h) ocean heat storage and transport.
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changes in the autumn [September–November (SON)] and

winter [December–February (DFJ)], whereas large SAF PTC

is driven by changes in spring [March–May (MAM)] and, to a

lesser degree, summer [June–August (JJA)]. Similarly, the

LHFX and SHFX PTCs are largely driven by changes in win-

ter, consistent with the year-to-year feedback cycle. The larger

negative PTC seen for LHFX and SHFX (Figs. 2e,f) for models

withmore abrupt sea ice lossmay seem nonintuitive since these

processes represent surface cooling. However, this is consistent

with the faster summer surface warming in thesemodels, which

leads to the faster cooling response in autumn and winter re-

flected in Figs. 2e and 2f. The strong upward turbulent heat

fluxes warm and moisten the lower atmosphere, increasing

LWCS and therefore helping to drive the positive LWCS PTC

seen especially for the models with more abrupt winter sea

ice loss.

Figure 4c shows the rate of change of winter convective

precipitation during the period of abrupt sea ice loss versus the

abruptness metric. Here, convective precipitation is used as a

proxy for strength of convection. Because neither the strength

of convection nor the CRE PTC (Fig. 2d) shows strong cor-

relations with the abruptness of sea ice loss, we conclude that

a convective cloud feedback mechanism from past studies

(Abbot and Tziperman 2008b; Abbot et al. 2009) is unlikely to

play an important role in directly affecting the abruptness of

change of surface temperature or sea ice loss. However, it is

important to note that we find wintertime convection to be

active in all models (except in IPSL-CM5A-LR, which did not

show an abrupt loss), a surprising finding consistent with the

convective cloud feedback mechanism (Abbot and Tziperman

2008b; Abbot et al. 2009). This suggests that convection could

lift the extra moisture and heat supplied at the surface to

heights in the atmosphere where it would contribute to the

strong clear-sky radiative effect that we see.

Changes in LWCS at the surface can be attributed to

changes in atmospheric temperature (both due to uniform

warming and changes in the lapse rate), as well as to changes in

atmospheric humidity that increase emissivity. In Figs. 4a and

4b, we show the rate of change of winter atmospheric specific

humidity and temperature, respectively, at 850 hPa during the

years of abrupt sea ice loss, plotted against the abruptness of

winter sea ice loss for each model. We focus on the winter

average (DJF) temperature and moisture since, as noted

above, the winter component of the LWCS PTC is largely re-

sponsible for the large annual LWCS PTC. The statistically

significant correlations (R2 . 0.658) in both panels indicate

that both winter humidity and air temperature are increasing

faster in models with more abrupt sea ice loss, and thus both

could be responsible for the winter increases in LWCS.

To further differentiate between the contributions of tem-

perature and moisture changes to the increase in LWCS, we

used a line-by-line radiative transfer 1D columnmodel (see the

data availability statement for code and documentation). We

prescribed in this radiative transfer model the Arctic temper-

ature andmoisture profiles from the different GCMs, averaged

over regions that have at least 10% yearly maximum sea ice

concentration at the start of the period of abrupt winter sea ice

loss. Winter average profiles (DJF) corresponding to both

before and after the period of abrupt sea ice change are used

(Fig. S3 in the online supplemental material) to examine

changes in the calculated LWCS during the years of winter sea

ice loss. The radiative model was able to reproduce the change

in winter average LWCS for each of the GCMs to within an

error of about 10%. Increasing the specific humidity alone

(without changing the atmospheric temperature profile) can

account for a significant fraction (20%–30%) of the change in

winter LWCS across themodels. This is due to the lowering the

effective level of downward thermal emission seen by the

surface. The rest of the increase in LWCS can be explained by

the atmospheric warming. Of course, the atmospheric tem-

perature and specific moisture are coupled to each other, and

their effects cannot be fully separated. However, we can con-

clude that both the moistening and warming of the lower at-

mosphere during the period of abrupt winter sea ice loss are

key to driving the increases in LWCS at the surface.

Noting the extensive literature on the role of the lapse rate

feedback in driving surface warming in the Arctic (Bintanja

et al. 2011; Pithan and Mauritsen 2014; Feldl et al. 2020), we

also choose to separate the LWCS PTC into a component

driven by vertically uniform atmospheric warming and a

component from changes in the lapse rate. To do this, we use

the temperature profiles from before and after the period of

abrupt sea ice loss (described in the paragraph above) to

generate a ‘‘uniform warming’’ profile in which the vertically

averaged warming of the troposphere between the start and

end of the period is applied uniformly at all atmospheric levels

below 300 hPa. We then run the LBL radiative transfer code

with the two different temperature profiles (the actual end

temperature profile and the uniform warming profile) and

calculate the downwelling LWCS at the surface for both. We

consider the difference in downwelling LWCS calculated be-

tween these two profiles to be the effect of the change in the

FIG. 3. Yearly PTCs as averages for two groups of models: those

with a qualitatively apparent period of abrupt winter sea ice loss

(MPI-ESM-LR, CSIRO Mk3.6, and HadGEM2-ES), and those

with qualitatively gradual winter sea ice loss (IPSL-CM5A-LR,

CNRM-CM5, and CCSM4). The rightmost bars and corresponding

right y axis show the level of Arctic amplification (AA) for the two

groups of models between the start of the simulation and the end of

the simulation, calculated as the mean temperature change pole-

ward of 608N, divided by the global mean temperature change.
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lapse rate. We then convert the DLWCS due to lapse-rate

changes into a PTC by dividing by 4sT3
s . Although there is

not a strong correlation between the lapse rate feedback PTC

and the metric for abrupt sea ice loss (Fig. 2g), this analysis

revealed that the lapse rate feedback accounted for between

0% and;50% of the annual LWCS PTC across models. In the

wintertime average, the lapse rate feedback accounted for

between 15% and 45% of the winter component of LWCS

PTC. Thus, we find that the lapse rate feedback is important for

surface warming during the period of abrupt sea ice loss, al-

though less dominant than it was found to be by Bintanja et al.

(2011) and Pithan and Mauritsen (2014) in the case of twenty-

first-century warming. This is likely because surface temperature

inversions are weak or even nonexistent (both in the annual

average and in the winter average) by the time winter sea ice

starts to rapidly disappear.

With only six models and one ensemble each, theR2 in Fig. 2

should not be overinterpreted. The linear regression analysis is

still useful because it allows us to visually examine if there is a

continuous range in the strength of this feedback and in the

abruptness of the sea ice loss across models, explicitly testing

our hypothesis. The statistically significant R2 values in

Figs. 2a–c,e,f are very robust and did not drop below values

corresponding to 95% significance level even when we used

other metrics for quantifying the models’ levels of abruptness

of winter sea ice loss. Some of the metrics explored included

the fraction of initial sea ice area lost in one period without any

regrowth, and the absolute value of sea ice area lost in the year

ranges used here.

Nonetheless, we find that an analysis that does not rely on a

specific metric for quantifying the abruptness of winter sea ice

loss is also useful. The six models can be visually divided into

those with significant abrupt winter sea ice loss (CSIROMk3.6,

MPI-ESM-LR, and HadGEM2-ES) and those with gradual

winter sea ice loss (IPSL-CM5A-LR, CNRM-CM5, and

CCSM4) based on the time series in Fig. 1a. In addition, our

metric for quantifying the abruptness of winter sea ice loss

separates the models into these exact same clusters (see the x-

axis values in Fig. 2). We therefore choose to also present the

PTCs as averages for the three models with abrupt sea ice loss

and the three models with gradual sea ice loss. This analysis is

shown as a bar plot in Fig. 3. We see that the main conclusions

from Fig. 2 hold when considering the models in two discrete

groups, and that nearly all yearly PTCs are larger for models

FIG. 4. Further insight into some of the feedbacks explored in this paper. First, there are processes that contribute

to changes in LWCS radiation: (a) the rate of change of winter (a) specific humidity and (b) air temperature at

850 hPa during the period of abrupt sea ice loss. Then, there are processes that are related to cloud radiative effects:

(c) the rate of change of convective precipitation, converted to watts per meter squared by using the latent heat of

condensation. Third, there are processes that link spring and winter processes: (d) rate of change of seasonal heat

exchange by the ocean, calculated as the difference between the (positive) average net radiative heat flux into in the

spring (MAM) and summer (JJA)months and the (negative) average net heat flux into the ocean in autumn (SON)

and winter (DFJ).
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with abrupt winter sea ice loss (orange bars), consistent with

their stronger feedback cycle. Additionally, the rightmost bars

of Fig. 3 show the degree of annual Arctic amplification be-

tween the beginning and end of the simulation for both groups

of models. We note that Boeke and Taylor (2018) found that a

strong positive feedback cycle similar to the one invoked here

led to enhanced Arctic amplification by year 2100. We find,

though, that the models with a strong positive feedback during

the period of abrupt winter sea ice loss are not necessarily those

that have the most Arctic amplification over the entire ex-

tended RCP8.5 simulation until 2300. This does not necessarily

contradict the findings of Boeke and Taylor (2018) because it is

possible that themodels with a strong feedback and large PTCs

during the years of abrupt winter sea ice loss are not the same

as those that have a strong feedback over the entire simulation.

As spring albedo decreases, one might expect that down-

welling SW radiation at the surface (as opposed to absorbed

SW by the surface) also decreases due to reduced multiple

reflection between the surface and clouds, and due to increased

SW clear-sky absorption by the atmosphere. Both of these

effects counteract the warming by the surface albedo feed-

back. In particular, because we have seen that the models

with more abrupt sea ice loss have more rapidly increasing

atmospheric humidity (Fig. 4a), their additional absorption of

SWCS by water vapor acts as a negative feedback. However,

we see from Fig. 3 that the positive SAF PTC is much larger in

magnitude than the CRE and SWCS PTCs combined. The

near-zero CRE PTC for both groups of models is, in fact, due

to cancellation between a small positive LWCRE component

and a small negative SW CRE component, but the SW com-

ponent combined with the negative SWCS PTC still does not

outweigh the SAF PTC. We also see in Fig. S4 in the online

supplemental material that, while downwelling SW and up-

welling SW both decrease during the years of abrupt winter

sea ice loss, the reduction of upwelling outweighs that of

downwelling and thus leads to an increase of absorbed SW at

the surface.

The reason that the surface albedo feedback is stronger in

some models than others is not fully explored in this study, but

we briefly offer some insight. First, we found that models with

more abrupt winter sea ice area loss experienced a larger

change in absolute surface albedo for a standardized loss of sea

ice area (loss from 75% to 25% sea ice concentration; not

shown). This highlights the fact that surface albedo depends on

several other features besides sea ice area, such as the behavior

of melt ponds, snow, and sea ice thickness. In particular, using

the SIT output variable fromCMIP5 revealed that models with

more abrupt sea ice area loss also had faster rates of thinning;

however, it should be noted that the SIT variable is an ‘‘ef-

fective’’ sea ice thickness (defined as the average thickness

over the entire ocean portion, including the ice-free fraction).

This means that the processes of sea ice thinning and area loss

are not fully separated, and further investigation is required to

understand how sea ice thinning affects the surface albedo

feedback.

If changes in LWCS and absorbed SW radiation indeed

drive the suppression of sea ice regrowth through their corre-

sponding PTCs as we have shown, we would expect them to

drive increases in the net radiation at the surface Q. However,

the adjustment time scales of the surface temperature and

therefore of the upwelling LW are shorter than the monthly

data resolution. As a result, changes in the net surface flux in

the Arctic average appear close to zero during the transition

when examining the time series ofQ (not shown). The positive

PTCs for Q (although with very small magnitude for models

with gradual sea ice loss) shown in Fig. 3 actually correspond

to a decrease inQ over the period of abrupt sea ice loss because

increasing surface temperature increases upwelling LW radi-

ation as the system equilibrates back toward a balanced

energy budget.

We see no obvious period of abrupt change in the time series

of variables associated with positive feedbacks at the same time

as the sea ice tipping point (although these variables are closely

coupled to sea ice) except for in the case of absorbed SW ra-

diation, in part due to the large ‘‘noise’’ present in these other

variables. However, we can consider the average rate of change

of key feedback variables during the period of abrupt sea ice

loss compared to their rate of change over the entire simulation

to further address this issue. Figure 5 shows the ratio of the rate

of change of the given feedback variable poleward of 708N and

during the period of abrupt sea ice loss to the rate of change of

the variable over the entire simulation. That all of the variables

represented in Fig. 5 have a value well above 1 for models with

abrupt sea ice loss (orange bars) demonstrates that they ex-

perience accelerated change in conjunction with the period of

abrupt sea ice loss. The variables shown in this figure, LWCS,

LHFX, and SWnet (which combines albedo and downward SW

changes) have been found using the PTC analysis to be im-

portant components of the feedback cycle. In particular, in-

creases in absorbed shortwave radiation are more than 4 times

as fast during period of abrupt sea ice loss compared to the

simulation as a whole. On the other hand, for models with

FIG. 5. Bars show the ratio of the rates of change of feedback

variables during the period of abrupt winter sea ice loss to the rates

of change during the entire simulation, as averages for the two

groups of models. The variable SWnet represents absorbed short-

wave radiation at the surface and does not correspond directly to a

calculated PTC because it includes both changes in surface albedo

and changes in downwelling SW radiation.
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gradual winter sea ice loss (blue bars) the rates of change of

the feedback variables shown are nearly the same during the

period of winter sea ice loss and over the whole simulation.

Thus, even though key variables such as LWCS do not

qualitatively show a period of abrupt change upon inspec-

tion of their time series, we conclude from Fig. 5 that in

models with a qualitative tipping point in winter sea ice area

they do experience faster changes during the period of

abrupt sea ice loss when compared with the entire simula-

tion, whereas in models without a qualitative tipping point

they do not.

For the feedback to get stronger from year to year without

being broken by the seasonal cycle, the ocean needs to serve as

the system’s memory and couple the spring and winter mech-

anisms. The ocean can store the extra heat gained from

having a lower surface albedo in spring and summer until the

following winter when the warmed ocean then sets the condi-

tions for greater latent heat fluxes and greater downwelling

longwave radiation. This, in turn, can suppress sea ice growth

and lead to lower albedo in spring (Boeke and Taylor 2018).

That the ocean temperature anomalies imparted by reduced

sea ice cover remain until the sea ice growing season is sup-

ported by previous studies (Blanchard-Wrigglesworth et al.

2011; Krikken and Hazeleger 2015). Figure 4d examines the

seasonal ocean memory (following Boeke and Taylor 2018) by

plotting the change in the difference between the net heat

absorbed by the ocean in the spring and summer, and that re-

leased in the autumn and winter, versus the abruptness of

winter sea ice loss. The tight correlation is consistent with

ocean serving as the memory between seasons, and doing so

more effectively in the models that have more abrupt sea ice

loss. Thus, the seasonal heat exchange by the ocean allows the

additional absorbed heat due to the reduced albedo in spring/

summer to induce the suppression of winter sea ice growth the

following year.

We now analyze the spatial distribution of the two key

mechanisms in the proposed feedback cycle—the surface al-

bedo feedback and clear-sky LW radiation—to demonstrate

the local nature of the feedback. We wish to test our implicit

assumption that the changes in Arctic-averaged variables such

as LWCS are related to local changes in sea ice area, which in

turn are related to local changes in absorbed shortwave. This is

because the mechanism relies on the local coupling of the at-

mosphere and ocean, rather than on remote coupling (Boeke

and Taylor 2018; D.-S. R. Park et al. 2015; H.-S. Park et al.

2015; Gong et al. 2017). We calculate the spatial correlation

coefficient between the spring component of the SAF PTC and

the winter component of the LWCS PTC. The color shading in

Fig. 6 shows the spring SAF PTC at each grid point and the

black contours represent the winter LWCS PTC. The spatial

correlation coefficient of the two PTCs is shown in the upper

left of each map. The strong correlations for all models, but in

particular for models that experience abrupt sea ice loss, be-

tween the two PTCs that are separated temporally by the

summer and autumn seasons again support the role of the

ocean in transferring extra heat absorbed locally in the spring

to the subsequent winter season. This highlights the

importance of the local nature of the positive feedback leading

to abrupt winter sea ice loss.

4. Conclusions

In this study, we have proposed a year-to-year positive

feedback cycle whose strength can explain the variability in the

abruptness of winter Arctic sea ice loss simulated across

CMIP5 global climate models in the extended RCP8.5 sce-

nario. The mechanism involves wintertime LWCS increases

due to a moister and warmer atmosphere, and a springtime

surface albedo feedback due to reduced sea ice growth, linkedby

ocean seasonal heat storage that serves as a year-to-year mem-

ory. We quantify the strength of this positive feedback by ex-

amining the partial temperature contributions (Boeke and

Taylor 2018) per unit time of the different surface heat fluxes

that play a role in the feedback (LWCS, changes in absorbed SW

due to reduced surface albedo, turbulent heat fluxes, etc.) during

the period of abrupt sea ice loss. We then find that the feedback

strength correlates with the abruptness of winter sea ice loss in

these models. Thus, we conclude that this feedback mechanism

plays a significant role in driving abrupt winter sea ice loss.

Bathiany et al. (2016) suggested that the freezing point of

seawater exists as a natural threshold that can lead to abrupt

disappearance of sea ice in the absence of any positive feed-

backs. In the absence of feedbacks, the freezing threshold

could, of course, lead to an abrupt winter sea ice loss if the

Arctic Ocean temperature were uniform in space. We also

agree with their conclusion that cloud feedbacks may not be

the cause of the abrupt loss, although our findings indicate the

importance of clear-sky LW radiation and moistening of the

atmosphere. However, their mechanism cannot explain the

spread in abruptness of sea ice loss between models, which we

see here by plotting winter sea ice as a function of time (Fig. 1a)

in addition to as a function of global surface temperature as

done by Bathiany et al. (2016). The fact that sea ice area as a

function of Arctic surface temperature (Fig. 7) is similar for all

models suggests that the key difference across models is how

quickly they move along the sea ice area versus surface tem-

perature curve. The nonuniform ocean temperature in the

Arctic means that the rate of ocean warming can influence the

abruptness of winter sea ice loss. The freezing-point threshold

does not explain the spread in ocean warming rates and

therefore in abruptness, while the existence and strength of

positive feedbacks can.

Abrupt changes often imply the existence of a bifurcation

and thus hysteresis. However, in the case of winter sea ice loss

the processes involved must be sufficiently nonlinear in order

for the time series of sea ice area as the CO2 is decreased to be

different from that when the CO2 is increased (i.e., hysteresis

with respect to CO2). There are some obvious nonlinearities

involved in the proposed feedback, including the LW depen-

dence on temperature via �sT4, the dependence of emissivity

� on moisture, and the ice-albedo feedback, which is known, of

course, to be a strongly nonlinear process that produces hys-

teresis (e.g., Budyko 1969; Sellers 1969). A simpler model may

be able to address whether the year-to-year positive feedback
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proposed here is sufficiently nonlinear to produce such

hysteresis.

We also note that we have not included a robust analysis of

the role of remote heat and moisture transport mecha-

nisms in driving intermodel spread of abrupt winter sea ice

loss. Both atmospheric and oceanic poleward heat trans-

port tend to decrease over global warming simulations due

to weaker temperature gradients (Hwang et al. 2011; Kay

et al. 2012; Pithan and Mauritsen 2014; Stuecker et al.

2018), with decreasing atmospheric sensible heat flux

dominating increasing latent heat flux. These fluxes are

therefore unlikely to be part of a positive feedback

mechanism, although a decreased heat transport could be

considered a negative feedback that competes with the

positive feedback analyzed here. As such, differences

across models in the weakening of poleward heat

transport could contribute to differences in abrupt winter

sea ice loss in ways we have not yet explored.

The predictability of Arctic sea ice area at present has been

analyzed using lag correlations of sea ice anomalies in other

work (Blanchard-Wrigglesworth et al. 2011; Krikken and

Hazeleger 2015). Those studies found that the signal of sea ice

area anomalies decays first according to a red-noise distribu-

tion, but then can potentially reemerge at a lag time of 2–5

months. The positive feedback proposed here may affect pre-

dictability in two ways. On the one hand, the time of transition

to an ice-free winter is difficult to predict as it may involve the

amplification by the positive feedback of any small fluctuation

in key state variables. On the other hand, once a transition

starts, the positive feedback is likely to lead to a complete

ice-free winter state, reducing uncertainty at that point.

Additionally, future studies could use a long control run to

FIG. 6. Color shading shows the yearly spring component of the surface albedo feedback

PTC at each grid point (K yr21), and black contours show the yearly winter component of the

LWCS PTC at each grid point (K yr21). The R values show the calculated spatial correlation

coefficient between these two seasonal PTCs for each model, revealing good correlation for

all models but especially those with abrupt winter sea ice loss (CSIRO, HadGEM, and MPI).
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examine the strength of the mentioned feedbacks in shorter or

more localized abrupt sea ice loss events, to see if the same

mechanisms as those proposed here are also the driving sea ice

loss at smaller spatial and temporal scales. If the effect of local

feedbacks on sea ice is robust at smaller scales, this relationship

could be used to predict the likelihood of a future large-scale

tipping-point event. Such a change in our predictive capabil-

ities would significantly affect the way we plan for a perennially

ice-free Arctic in the future.
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