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SUMMARY

Feedback control has enabled the success of automated technologies by mitigating the effects of variability,
unknown disturbances, and noise. While it is known that biological feedback loops reduce the impact of
noise and help shape kinetic responses, many questions remain about how to designmolecular integral con-
trollers. Here, we propose a modular strategy to build molecular quasi-integral feedback controllers, which
involves following two design principles. The first principle is to utilize an ultrasensitive response, which de-
termines the gain of the controller and influences the steady-state error. The second is to use a tunable
threshold of the ultrasensitive response, which determines the equilibrium point of the system. We describe
a reaction network, named brink controller, that satisfies these conditions by combining molecular seques-
tration and an activation/deactivation cycle. With computational models, we examine potential biological im-
plementations of brink controllers, and we illustrate different example applications.

INTRODUCTION

Feedback control enables the operation of most automated sys-
tems, from laptops to self-driving cars. Feedback works with the
use of a rationally designed controller to reduce the discrepancy
between the actual and desired behavior (reference or set point)
of the process to be automated (Figure 1A). For example, a car
cruise control system measures the speed of the vehicle, com-
pares it to the reference speed, and modulates the fuel injection
to reduce the error (fuel injection is increased if the speed is lower
than the reference, or decreased if the speed is higher). This ar-
chitecture provides two key advantages: (1) robustness: the pro-
cess can maintain its reference in the presence of disturbances
(for example, changes in the slope of the road) or uncertainty in
the process parameters (for example, the number of passengers
may not be known); (2) response design: the steady state and the
response time of the automated system can be tuned (both the
car speed and acceleration can be changed). Robustness and
response design are obtained exclusively by updating the
controller, without having to modify the process itself (Figure 1B)
(Doyle et al., 1992; Åström and Murray, 2010). Feedback control
of gene expression has been successfully implemented to
achieve both classes of behaviors (robustness and response
design), in applications that range from regulation of cell density
to biofuel production (You et al., 2004; Kemmer et al., 2010; Siu
et al., 2018). Most of these artificial feedback control systems are
built using transcription factors, and they can be tuned to design
the steady state or the kinetics of the closed-loop system (for

instance, by varying promoter strength, ribosome-binding sites,
or half-life of the repressor). However, their performance deteri-
orates in the presence of disturbances or if the parameters of the
process are uncertain, such as with proportional controllers in
engineering applications (Figure 1B) (Briat et al., 2016a).
In contrast, many complex natural pathways such as chemo-

taxis, the osmotic response, and evenmany electrophysiological
processes have the capacity to maintain a set point in the pres-
ence of uncertainty and disturbances, thanks to the presence of
an integrator in the system (Yi et al., 2000; Muzzey et al., 2009;
De Palo et al., 2013). Similarly, industrial systems use integral
controllers (the control input is proportional to the integral of
the error) to guarantee that the system’s output matches the
desired reference (zero steady-state error) and that disturbances
are rejected, a performance that cannot be achieved with pro-
portional controllers (Figure 1B) (Åström and Murray, 2010).
These observations have spurred the development of synthetic
molecular controllers that operate as integrators, with particular
focus on the use of molecular sequestration as a mechanism for
reference setting (Briat et al., 2016a, 2016b; Olsman et al., 2019;
Agrawal et al., 2018; Qian and Del Vecchio, 2018).
Sequestration-based controllers have been demonstrated

experimentally, using sigma and anti-sigma factors and RNA
molecules in E. coli or cell-free extracts (Huang et al., 2018;
Aoki et al., 2019; Agrawal et al., 2019; Shannon et al., 2020).
These results build on ample evidence that sequestration is
suited to building robust feedback systems, with implementa-
tions that include nucleic acid networks in vitro (Franco et al.,
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2014), protein networks (Nevozhay et al., 2009; Hsiao et al.,
2015; Annunziata et al., 2017; Shopera et al., 2017), and RNA
regulators (Bloom et al., 2015; Kelly et al., 2018; Lillacci et al.,
2018). Because a key feature of molecular sequestration is that
it can yield a tunable ultrasensitive response (Buchler and Louis,
2008), the question arose as whether ultrasensitivity per se is a
key property in building an integral molecular controller. Ultra-
sensitivity is common in biology, and it is an appealing design
specification because it can naturally occur through the inter-
connection of distinct modules that do not need laborious tuning
(Zhang et al., 2013).
Here, we examine ultrasensitive molecular components as

candidate controllers to track a reference with zero or nearly
zero error and achieve integral or quasi-integral action.We argue
that this is possible as long as the ultrasensitive input-output
map of the controller has a tunable threshold, which determines
the reference to be tracked, and a tunable gain, which deter-
mines the steady-state error. This clear distinction in the roles
of threshold and gain of the controller facilitates its design in
isolation. Ultrasensitivity should be robust with respect to varia-
tions of the parameters and to the presence of downstreamcom-
ponents, so that the performance of the controller is not compro-
mised by uncertain operation conditions. We introduce a
reaction network, named brink controller (BC), that exhibits all
these properties: the motif combines molecular sequestration
with an activation/deactivation cycle and presents a response
akin to zero-order ultrasensitivity without operating in a satu-
rated regime (Ferrell and Ha, 2014). Sequestration makes it
possible to set the response threshold, and its combination
with both an activation and a deactivation cycles improves ultra-
sensitivity. We show that under realistic parameter conditions
the BC operates as a quasi-integral controller, as long as its
response is ultrasensitive.We provide computational application
examples where diverse implementations of the BC are used to
regulate an in vitro network and a gene expression process.

RESULTS

Throughout the manuscript, we indicate chemical species with
capital letters (e.g., A) and their concentration with the corre-
sponding lowercase letters (e.g., a).

Design principles for quasi-integral molecular feedback
control
The general architecture of a closed-loop biomolecular feed-
back system is shown in Figure 2A. Two subsystems, a biomol-
ecular controller (C) and a biomolecular process (P), are inter-
connected via species U and Y , forming a negative feedback
loop. In the presence of an integral controller, the concentration
of the output of the biomolecular process Y should be identical
to the concentration of the reference species R. To achieve
quasi-integral performance at steady state, we propose the
strategy illustrated in Figure 2B. First, the input-output
steady-state maps of the controller (orange line kuðy; q; rÞ,
where q represents the controller parameters) and of the pro-
cess (black line kyðu; pÞ, where p represents the process pa-
rameters) are required to intersect at a single point, which is
the only admissible steady state of the closed-loop system.
Second, the controller input-output map should be ultrasensi-
tive, i.e., the controller steady-state output concentration
should increase steeply when its input is larger than a certain
threshold. If the controller output response is ultrasensitive
and its threshold is set by the reference species concentration
r, then the steady state of the closed-loop system must fall in a
neighborhood of r: the more ultrasensitive the controller
response, the closer the steady-state y is to the reference r.
Even if the process input-output map is uncertain or affected
by perturbations (gray area), the closed-loop equilibrium is
guaranteed to be close to the desired reference, as long as
the controller is not operating in the saturated regime (u # r
or u[r). This simple architecture should yield a robust
closed-loop system that (1) tracks changes in the reference
input r (which determines the controller threshold) and (2) han-
dles uncertainty and rejects perturbations on the process pa-
rameters. Ideally, the controller input-output map should also
be robust with respect to parameter variations and to the pres-
ence of unmodeled or undesired reactions. Ultrasensitivity
guarantees that the closed-loop equilibrium approaches the
reference in the presence of perturbations: by increasing the
steepness of the controller transition (yellow shaded area,
Dmaxðu; qÞ) we can decrease the steady-state error. In the
ultrasensitive region, the steepness of the controller may be
empirically approximated with a linear gain (blue line). Zero

A B

Figure 1. Feedback control enables reference tracking, adaptation, and design of the kinetic response
(A) Block diagram of a car cruise control system, in which the actual velocity (output y) is compared with the reference velocity and their difference is minimized as

the controller computes the control variable u.

(B) Example simulations of a car cruise control system. A high gain proportional controller, which computes the control variable u as a linear function of the error,

operates well, but cannot match an integral controller when it comes to reference tracking and disturbance rejection (MATLAB Simulink model from Åström and

Murray, 2010).
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steady-state error could be achieved in the limit if the controller
map is a step function. At the same time, because a steep ul-
trasensitive response may generate instability or oscillations
within a negative feedback loop (Kholodenko, 2000), one
must check that the steady state of the system’s output y con-
verges to r and returns to r in the presence of temporal pertur-
bations (disturbances). The STAR methods provides additional
details on our approach.

Manymolecular networks, artificial and native, exhibit an ultra-
sensitive response (overview in Box 1). However, the threshold
and the steepness of the steady-state map of most of these net-
works are difficult to tune. Because in our approach the
threshold of the ultrasensitive controller must be determined
by the reference for the process, any implementation should
make it possible to vary the threshold over time as a function
of an input signal or concentration. We next describe a network
motif that satisfies this requirement by combining molecular
sequestration with an activation/deactivation cycle.

The brink controller achieves a tunable, ultrasensitive
input-output static map
Brink controller model
We describe an ultrasensitive synthetic molecular network that
we named ‘‘brink’’ controller (BC) because of its steep, tunable
steady-state response map (Figure 3A). The motif has two in-
puts, an activator species, A, and an inhibitor species, I, which
respectively control the activation and deactivation of down-
stream speciesU, the output of the motif. We begin by assuming
that the total concentration of outputU remains constant, while it
can either be in active (U) or inactive state (U$). This simplification
is acceptable if fluctuations of the total output concentrations are
negligible or occur slowly relative to the other species in the sys-
tem; the scenario with non-conserved output mass is examined
later. The inhibitor I produces species RI, which binds to and in-
hibits U by forming the inactive complex U$. The activator A pro-
duces species RA, which reactivates U$ by removing RI from the
complex U$, thereby convertingU$ back toU. Species RA and RI

bind to each other (molecular sequestration) to produce a waste
complex that does not interfere with the rest of the circuit. In
addition, RA and RI degrade at a first order rate. The list of reac-
tions is:

A.
kc
A+RA; I.

qc
I+RI Production

RA +RI.
gc

RA,RI Sequestration

RA.
fc

0; RI.
fc

0 Degradation and dilution

RA +U$.
ac

U+RA,RI Activation

RI +U.
bc

U$ Deactivation

Using the law of mass action, from these reactions we obtain
an ordinary differential equation (ODE) model for the BC:

_rA = kca% acrAu
$ % gcrArI % fcrA; (Equation 1)

_rI = qci % bcrIu% gcrArI % fcrI; (Equation 2)

_u = acrAu
$ % bcrIu; (Equation 3)

where i and a are inputs, and u and u$ = utot % u are outputs. The
model of the BC is amonotone system (Angeli and Sontag, 2003)
and is unconditionally stable (see also STAR methods). These
properties are shown to hold in Propositions 2–4 in the Sec-
tion S3.
Within the BC two subsystems can be identified: a seques-

tration reaction and a switch (Figure 3A). The molecular
sequestration (or titration) reaction operates like a comparator
and ensures that only the most abundant species between I
and A has a prevalent regulatory effect on U (Figure 3B,
left). The switch reactions shift the balance between U and
U$, depending on the outputs of the comparator subsystem
(Figure 3B) and increases ultrasensitivity (See also ‘‘Seques-
tration enables error computation in the brink controller, and
activation/deactivation increase the gain,’’ where we also
briefly discuss the operation of the motif in a stochastic
regime). To track a constant reference, the input operating
as a reference (I or A) remains constant, whereas the other
is allowed to vary over time. Note that the reference may
also vary in time, as long as it varies more slowly than the
timescale of convergence of the controller. When the BC is
used within a feedback loop, the species maintaining constant
or slowly varying concentration operates as the reference
signal, while the time-varying species is the output of the pro-
cess to be controlled.

A B Figure 2. An ultrasensitive controller ensures
robust closed-loop performance
(A) General architecture of a closed-loop molecular

system including the target system to be controlled

and the controller module.

(B) The output equilibrium of the closed-loop system

is determined by the intersection of the steady-state

maps of the controller (orange) kuðy;q;rÞ, and of the

process (dark gray), kyðu;pÞ; q and p represent pa-

rameters characterizing, respectively, the controller

and process. Ultrasensitivity of the controller gua-

rantees that the equilibrium falls in a neighborhood

of the threshold or reference (r). The error between

the equilibrium and the reference can be characterized by the transition region Dmaxðu;qÞ (yellow shaded area) that depends on the controller parameters q; the

width of the transition region is related to the steepness of the map, which can be locally described by a linear approximation or gain (blue line). A high controller

gain makes it possible for the equilibrium to remain near the reference even when the process steady-state map is uncertain or subject to perturbations in the

parameter vector p (gray-shaded area).
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Box 1. Ultrasensitivity: its implementations and implications

Ultrasensitivity occurs when the steady-state output of a molecular pathway increases rapidly once the input exceeds a certain
threshold. This behavior canbeachievedwith four classes ofmechanisms: (1) cooperativity, (2)molecular sequestration, (3) zero-order
reactions (covalentmodification cycles), and (4) on-off switching.We report a scalarODEmodel for eachmechanism,andwecompute
themaximum output static gain G, i.e., themaximum achievable slope of the steady-state input/output response (Zhang et al., 2013).
(1) Cooperativity is the result of binding-dissociation reactions of multiple molecules at equilibrium, and it is quantified by the co-
operativity (Hill) coefficient n (Zhang et al., 2013; Ferrell, 2009). In a process regulated cooperatively by its input (see equations
above), the output static gain G is proportional to the output production rate parameter k and the input cooperativity coefficient
n, and it is inversely proportional to the degradation rate parameter f and the apparent dissociation constant Kd. The gain G could
be increased by cascading cooperative modules which yield a higher Hill coefficient n. However, this increases the system
complexity and worsens noise propagation (Hooshangi et al., 2005). The response threshold of cooperative modules Kd is also
difficult to tune because molecular association-dissociation rates are not easily modified.
(2) Molecular sequestration can generate an ultrasensitive response via stoichiometric interactions (Buchler and Louis, 2008; Cuba
Samaniego et al., 2016; Cuba Samaniego and Franco, 2017b). In the example above, the gain G is proportional to the production
rate constant k and inversely proportional to the degradation/dilution parameterf of the components (Section S2.2). The input con-
centration w determines the threshold of ultrasensitivity, which is therefore easily tuned. In the absence of degradation (f=0) the
system will produce an infinite gain G, yielding perfect integral action, as proposed in the molecular sequestration controller
(MSC) (Briat et al., 2016a;Qian andDel Vecchio, 2018). Timescale separation argumentsmake it possible to overcome the influence
off (Qian andDel Vecchio, 2018). However, experimental characterization ofmolecular sequestration processes in vivo and in vitro
suggest that it is difficult to achieve a high static gain on a non-logarithmic scale (Buchler and Cross, 2009; Ricci et al., 2011).
(3) Zero-order ultrasensitivity occurs when enzymes operate in a regime of saturation. This creates a higher gain than molecular
sequestration, and it requires saturation of enzymes. The static gain of this example module has been computed (Goldbeter
and Koshland, 1981; Del Vecchio and Murray, 2015). The input w can be used to easily tune the output response threshold. A
push-pull motif of a covalent modification cycle was reported to achieve zero-order ultrasensitivity in vitro (Kajita et al., 2017),
although this behavior is hard to find in nature (Goldbeter and Koshland, 1981). This mechanism satisfies the requirements dis-
cussed here for quasi-integral action (ultrasensitivity and tunable threshold). However, ultrasensitivity is compromised when the
circuit is connected to a downstream process (Del Vecchio and Murray, 2015).
(4) Systems with a nearly digital on-off behavior achieve a nearly infinite static gain, as there is a sharp transition between two
steady states. This behavior can be achieved with bistable switches; however, the switching threshold usually depends on a com-
bination of the network parameters and may be difficult to tune (Zhang et al., 2013). A recombinase protein switch was used to
obtain a sharp output transition with nearly infinite gain (Siuti et al., 2013; Bonnet et al., 2012; Folliard et al., 2017). In this system,
however, the threshold is difficult to tune as it depends on the dissociation constant of protein-DNA interaction. In addition to being
difficult to tune, thresholds may also be asymmetric and depend on the switching direction (hysteresis).

ll
Article

Cell Systems 12, 272–288, March 17, 2021 275



Ultrasensitivity conditions at steady state
Here, we derive expressions for the input-output static map of
the BC, and we obtain analytical conditions which guarantee ul-
trasensitivity of the map.

First, we consider the case in which I is kept constant and
acts as a reference input to the module, while A can
vary. We derive equilibrium conditions by setting Equations
1, 2, 3 equal to zero. Finding the controller output u as a
function of a and i is a long and tedious procedure, how-
ever, a can be expressed more easily as a function of i and
u in closed form (Section S3.3). Subtraction of Equations 1
and 2 (with Equation 3 at equilibrium) yields the steady-
state a:

a =
qc

kc
i +

fc

kc

!
rA % rI

"
: (Equation 4)

By substituting the equilibrium expressions for rA and rI as a
function of the input i and u (Section S3.3) we can rewrite Equa-
tion 4 as:

aðu; iÞ = kaðiÞ+Dðu; iÞ; (Equation 5)

with kaðiÞ=
qc

kc
i being the normalized reference and Dðu; iÞ =

fc

kc

!
1 % acu

$

bcu

"
rAðu;iÞ. Expression (Equation 5) is useful because

it allows for breaking down aðu; iÞ as the sum of a threshold kaðiÞ
depending on input i, and of an additional term Dðu; iÞ (compare
with Figure 2B). The presence of basal production (leak) of spe-
cies RA and RI affects expression (Equation 5) by introducing a
bias that shifts the threshold (Section S3.7).
Are there parametric conditions that make the input-output

static map (u versus a) ultrasensitive? This question can

Figure 3. The brink controller (BC) combines sequestration with an activation/deactivation cycle to achieve a tunable ultrasensitive input-
output map
(A) Summary of the reactions defining the BC. The inputs of the controller are species A (activator) and species I (inhibitor). The output of the controller is

species U.

(B) Example simulation of the steady-state input-output map of the sequestration and switch reactions in isolation (left and central panel) and when they are

interconnected (right panel). Here, the concentration of input I is fixed, while the concentration of input A varies. The equilibrium concentration of A, a, is

normalized with respect to the threshold constant kaðiÞ, and the equilibrium concentration of U, u, is normalized with respect to its total concentration utot.

(C) Computational analysis of the steady-state input-output map of the motif: in each subplot a single parameter is varied, while all other parameters remain

constant (nominal values in Table 1).

(D) If the controller output u binds to a downstream load g, there is a reduction of the available free output at equilibrium u (left), according to expression

(Equation 8). Here, we consider the worst-case scenario in with dissociation constant kM =0 (irreversible binding and consumption of u). Ultrasensitivity of the BC

is however robust to the presence of a load, which is evident if we normalize uwith respect to the total output range (right). Figure S3 shows the effects of a load up

to 80% of utot.

(E) Schematic of a variant of the BC in which only the activation cycle is regulated, while deactivation is controlled by an additional input species, W; here we

assumew = 0:025 mM, i = 0:4 mM. On the right, we compute the normalized steady-state response of this ‘‘single-rail’’ BC as individual parameters are changed

relative to their nominal values. The loss of one branch of regulation of the switch results in a reduced ultrasensitivity. All input-output maps shown here are

derived in Section S3.

(F) Simulation of the input-output map in the presence of production and degradation of the output species. Ultrasensitivity is reduced significantly, unless the

production and degradation rate constants are sufficiently small. We assumed nominal dc = fc, rc = 0:5dc, and i = 0:4 mM. At lower values of dc, the reduction of

ultrasensitivity is moderate (plots in Figure S3). Unless otherwise noted, the nominal reaction parameters used in all these simulations are listed in Table 1.
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be answered by noting that if the motif is ultrasensitive,
small changes in a must correspond to large changes in u
when azkaðiÞ. Therefore, we focus on term Dðu; iÞ, which is
reduced when:

bc

gc

u [4
qc

ac

i

u$: (Equation 6)

This condition (derived in Section S3.3) could be satisfied by
multiple combinations of parameters. For example, a large
sequestration constant gc goes hand in hand with large switch-
ing parameters ac and bc. Additionally, the termDðu; iÞ is propor-
tional to the ratio of degradation and production rate constants
of rA, fc=kc, with a small degradation rate constant fc promoting
ultrasensitive behavior. In Section S3.8 we derive similar ultra-
sensitivity conditions, in which the production rates of RA and
RI are nonlinear Hill-type rates that exhibit saturation, which
may be more realistic in practice.
In summary, ultrasensitivity improves when the sequestration

and activation/deactivation parameters are large. Additionally,
the threshold of the ultrasensitive response, ka = qc

kc
i, can be

tuned linearly with the input i. A slow degradation parameter fc

also promotes utrasensitivity.
These derivations are supported by computations of

expression (Equation 4) in Figure 3C (parameters are in
Table 1). The x axis of this plot uses a threshold-normalized

input an =
a ðu; iÞ
ka

. The nominal sequestration parameter gc

and switching parameters ac and bc are chosen to be in a real-
istic range for nucleic acid and protein interactions and are on
the same order of magnitude. Ultrasensitivity is not drastically
affected if we change gc within one order of magnitude of the
nominal value. However, variations of ac and bc in the same
range make the transition less sharp. As predicted by the
analytical approximation, a small degradation rate constant,
fc, improves ultrasensitivity. Changes in qc and kc primarily
affect the threshold ka, however, because our plot uses a
threshold-normalized input these effects are not visible. In
Section S3.3, we follow similar steps to find the input-output

mapping when the inhibitor i is varied, while the activator a
is constant and determines the threshold for the input-output
map and obtain ultrasensitivity conditions consistent with
those reported above.
The maximum slope of the input-output map, or gain, of the

BC can be estimated as:

Gmax;BCz
1

4

ðutotÞ2!
1+

ac

bc

" ac

fckaðiÞ
; (Equation 7)

with kaðiÞ = qc
kc
i. This expression holds when the motif is acti-

vated by input a, while species i is held constant; a similar
expression can be derived when i is constant and a varies
(Section S3.5). The input-output steady-state map of the BC
model can be approximated using a Hill Function that has
the same threshold and maximum gain (Box 1 and Sec-
tion S3.5).

The brink controller preserves ultrasensitivity in the
presence of a downstream load
If the BC is used as a controller in a closed-loop system, its
output, U, must operate as the input to other pathways.
Thus, a fraction of U may be depleted as it participates in other
reactions, which can be considered as a ‘‘load’’ that deterio-
rates performance through a phenomenon called retroactivity
(Del Vecchio et al., 2008). Because the ability of the BC to
achieve quasi-integral performance is determined exclusively
by the ultrasensitivity of its steady-state input-output map, tran-
sient loading effects are not expected to matter. However, a
load can change the input-output equilibrium conditions of
the system (Franco et al., 2011). We illustrate this case with a
model example (Section S3.6) in which the concentration of U
is depleted by binding to a downstream promoter, g. In this
case, the concentration balance of u becomes:

u$ = utot % u% l; l=
u

u+ kM
gtot; kM =

koff + kcat

kon
: (Equation 8)

Table 1. Nominal simulation parameters used for the BC and the protein expression process

Rate Description Value Other studies

qc (/s) production 5,10%4 ½10%4;1' (Milo and Phillips, 2015; Qian and Del Vecchio, 2018; Chen et al., 2015)

kc (/s) 5,10%4 ½10%4;1'
gc (/M/s) sequestration 3,104 ½104; 106' (Kim et al., 2006; Zhang et al., 2007; Qian and Del Vecchio, 2018)

fc (/s) degradation 3:85,10%4 ½10%4;10%3' (Kim et al., 2014; Qian and Del Vecchio, 2018)

ac (/M/s) activation 1:2,105 ½104; 106' (Lloyd et al., 2018)

bc (/M/s) deactivation 1:2,105 ½104;106'
dc = fc (/s) degradation – –

rc = 0:5dc
(M/s)

production – –

ks (nM) dissociation 200 –

as (= s) production 1,10%3 ½10%4;1' (Milo and Phillips, 2015; Chen et al., 2015)

js (/s) 9:6,10%4 ½10%4;1'
fs = fc (/s) degradation – –

ds = fc (/s) – – –

ns cooperativity 2 ½1; 5'
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Term l captures the loading effects at steady state, has a
maximum value l = gtot, and decreases when the dissociation
constant kM is large relative to utot.

At steady state the load depletes molecules of U, thereby
reducing the free u as shown by the simulations in Figure 3D,
left (kM = 0) and limiting the capacity of the controller to direct
downstream processes. Similar effects occur if the load reaction
is irreversible (koff = 0). However, upon normalizing relative to the
maximum level of available u, ultrasensitivity of themap is robust
with respect to the presence of load (Figures 3D, right, and S3). In
other words, the controller is likely to perform well in terms
of tracking and disturbance rejection, but there are limitations
on the amount of load it can handle. If the concentration of
the load is low, the loading effect is negligible, even in the
presence of a strong binding site for U. For example, if U is a
transcription factor and g is a binding site on the genome or on
a low-copy plasmid, loading effects are unlikely to affect
performance.

If U participates in a downstream catalytic process, then it
may have a low average ‘‘occupancy’’ with negligible loading
effects. For example, U may be, itself, a promoter site to which
RNA polymerase binds to initiate mRNA transcription, or an
mRNA species that binds to ribosomes and is translated into
a protein. Because RNA polymerase and ribosomes only tran-
siently occupy their binding sites, their loading contribution
should be similar to Equation 8 with a very large kM. Most
importantly, promoters and ribosome-binding sites can be de-
signed to not overlap with regulatory domains, thus decoupling
the ability of U to take part in the reactions of activation and
deactivation from its ability to take part in downstream ‘‘actua-
tion’’ reactions.
Direct regulation of both activation and deactivation
improves ultrasensitivity
A salient feature of the BC is that the products of input species
not only mutually sequester but also individually control activa-
tion and deactivation of the controller output. To clarify what
the benefit of regulating both activation and deactivation is, in
Section S3.9 we examined a model in which activation is
controlled by RA, while deactivation is controlled by an addi-
tional (constant) input. Because only one reaction of the cycle
is influenced by the input, we refer to this case as a ‘‘single-
rail’’ BC (Figure 3E). (The same analysis could be done for
the case in which deactivation is regulated by RI, while activa-
tion is regulated by W.) Using parameters consistent with those
adopted for the BC (Table 1), we compute the single-rail BC
equilibrium map in Figure 3E, where we examine the influence
of changes in individual parameters. In this case ultrasensitivity
is more difficult to achieve, it is more sensitive to parameter
changes, and, unlike the BC, it depends also on the reference
concentration i; this indicates that direct control of both activa-
tion and deactivation is key to support robust ultrasensitivity of
the BC.
Production and degradation of the output species
reduce ultrasensitivity
Most molecules in the cellular environment are dynamically
produced and degraded, although their average level may
be tightly regulated. Thus, the effects of production
and degradation reactions of the output species U on the
behavior of the BC are prime for examination. We consider,

without loss of generality, the motif when the inhibitor input I
is held constant. In this case, we assume that u$ (inactive
output) is produced at a rate constant rc and degraded with
a rate constant dc, while the dynamics of rA and rI are
unchanged:

_u = acrAu
$ % bcrIu% dcu; (Equation 9)

_u$ = bcrIu% acrAu
$ + rc % dcu

$: (Equation 10)

Note that utotðtÞ = uðtÞ+ u$ðtÞ, and _utot = rc % dcutot,
whose equilibrium value is utot = rc=dc. If production and
degradation are slow, it is sensible to simply assume that
utotzrc=dc. Yet, it is useful to derive the input-output map of
the BC:

aðu; iÞ= kaðiÞ+Dðu; iÞ+ ε1$ðu+ ε0Þ; (Equation 11)

in which kaðiÞ and Dðu; iÞ are defined like the corresponding
terms in expression (Equation 5), where now u is determined
by both parameters dc and rc. The new terms are ε0 =fc=bc
and ε1 = dc=kc (complete derivations are in Section S3.3). The
motif can exhibit an ultrasensitive response when Dðu; iÞ is
small. This is achieved when gc[fc, ac[dc, and
bc
gc

u [4
qci + dcu

acu
$ , which can be satisfied if the switching

rate constants bc and ac are large. While these requirements
are similar to what was derived earlier, it should be noted
that introducing production and degradation of the output re-
sults in a new term ε1$ðu+ ε0Þ in the input-output map. While ε0
is negligible as long as bc is large, the term ε1u can only be ne-
glected if it is assumed that dc, the degradation rate constant
of u, is sufficiently small relative to kc, the production rate con-
stant of the activator. These analytical derivations do not
provide direct insights into the effects of rc, however, with
computer simulations in Figure 3F, it is shown that dc =fc

and rc = utotdc (u = 0:5 mM) are sufficient to hamper
ultrasensitivity of the controller. If the output production and
degradation parameters are smaller, their influence on
ultrasensitivity is less significant as shown in Section S3.3,
Figure S4.

The brink controller as a quasi-integral feedback
controller
We now consider the BC interconnected with a target process
in a closed-loop system. Here, we assume that the closed-
loop system is stable and that it has a monotonically
increasing input-output static map, with the latter assumption
guaranteeing uniqueness of the closed-loop equilibrium. We
focus on two criteria to evaluate performance: the capacity
of the closed-loop system to track changes in reference to
small steady-state error and to reject perturbations of the pro-
cess parameters. The BC is operated as a controller in which
the activator input is a reference R, and the inhibitor input
is interconnected to the process output Y and used as an
inhibitor for the motif. This will result in the controller having
an input-output map that is monotonically decreasing, guar-
anteeing that the feedback loop is negative. The output
of the controller is U, which becomes the input for the
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process. The dynamics of the interconnected controller and
process are:

C

8
<

:
_rr = kcr

z}|{reference

% acrru
$ % gcrr ry % fcrr ;

_ry = qcy
z}|{feedback

% bcryu% gcrrry % fcry;
_u=acrru

$ % bcryu;

(Equation 12)

P

#
_x = fðx; u;pÞ;
y = hðxÞ; (Equation 13)

with mass conservation utot = u$ + u. Like in Equation 5, the
output of the process at steady state is:

yðu; rÞ = krðrÞ+Dðu; rÞ; (Equation 14)

where krðrÞ=
kc

qc
r is the scaled reference and Dðu; rÞ =

fc

qc

!
bcu

acu
$ % 1

"
ryðu; rÞ.

The brink controller operates as a quasi-integral
controller near steady state
When the degradation rate constant fc is zero, we haveDðu;rÞ =
0, and thus:

yðrÞ = krðrÞ;

representing that the system exhibits perfect integral action.
In this case, the closed-loop steady state of the output is
equivalent to that achieved using a molecular sequestration
controller (MSC) (Briat et al., 2016a). In some in vitro systems
degradation can be eliminated or reduced, thus is reasonable
to assume fcz0. In contrast, in vivo systems always present
degradation and dilution thus fc>0 and Dðu; rÞs0. This phe-
nomenon is also known as ‘‘leak’’ in the context of MSCs
(Qian and Del Vecchio, 2018), and its effects can be mitigated
by increasing production and sequestration parameters
(Huang et al., 2018; Aoki et al., 2019) (Figure 4D). Similarly,
this limitation can be mitigated in the BC by achieving ultra-
sensitivity: if the BC is ultrasensitive, then Dðu; rÞz 0, and
therefore, it operates as a quasi-integral controller in a closed
loop (Figure 4E). In Section S3.4, it is demonstrated that if the
parameters of the BC satisfy the ultrasensitivity condition
(Equation 6), then the input-output transfer function of the line-
arized system (near equilibrium) includes a pole at the origin in
the Laplace domain. In turn, this means that the correspond-
ing closed-loop system includes a zero at the origin and is
therefore insensitive to step inputs. In other words, by per-
forming quasi-integral action the BC confers to the closed-
loop system the capacity to track a reference and to reject
disturbances.
At the same time, loss of ultrasensitivity of the BC means

a larger steady-state error. We have previously noted that
ultrasensitivity is reduced if a single-rail architecture is adop-
ted, or if the output is produced and degraded; in the latter
case, the closed-loop Equation 14 is modified similarly to
Equation 11, showing that a larger steady-state error is to
be expected, and the quasi-integral performance is lost (see
also Figure 4F).

The steady-state error of the closed-loop system is
bounded
An approximation of the steady-state error can be derived from
Equation 14:

e = Dðu; rÞ=fc

qc

!
bcu

acu
$ % 1

"
ryðu; rÞ=

fc

qc

!
1%acu

$

bcu

"
rrðu; yÞ

(Equation 15)

Assuming ac = bc, from expression (Equation 15) we find a
bound for the error when the equilibrium u is in the interval

from 0:1utot to 0:9utot. Recalling that ryz
kc
bc

r

u
(Section S3),

we find:

jej<80
9

fc

bcutot
krðrÞ;

where krðrÞ =
kc
qc

r. With the nominal parameters in Table 1, the

error normalized to the scaled reference is jej=krðrÞ<3%. The
above error bound can be related to the maximum gain expres-
sion (Equation 7):

jej<
K

Gmax;BC
; (Equation 16)

where K depends on the considered input interval and on the to-
tal output utot. This expression confirms that a high gain reduces
the steady-state error.
Comparing the brink controller with a leaky molecular
sequestration controller
Recent work has shown that sequestration alone can provide in-
tegral action, through what is known as MSC or antithetic
controller (Briat et al., 2016a; Huang et al., 2018; Aoki et al.,
2019). A well-known challenge for ‘‘exact’’ integral action is the
presence of degradation and dilution of the sequestering spe-
cies, which yield a ‘‘leaky’’ MSC (LMSC), shown in Figure 4A
(Briat et al., 2016a; Qian and Del Vecchio, 2018; Aoki et al.,
2019). This challenge can be illustrated referring to the seques-
tration reaction described in Box 1: if the leak parameter f is
large, the slope of the steady-state map (gain) decreases, and
in the context of a stable closed-loop system this results in larger
deviation from the reference (see schematic in Figure 2). In
contrast, if f is small, then the slope of the steady-state map be-
comes steep, yielding an infinite gain in the limit f/0, which has
the effect of locking the closed-loop equilibrium at the reference
value (for any value of production and sequestration constants).
In the presence of leak, the gain of the LMSC can be improved by
increasing the production rate parameters (Figure 4D); integral
performance can also be recovered by tuning ‘‘both’’ production
and sequestration parameters to operate the controller on a
much faster timescale than the process (Huang et al., 2018).
Here, we discuss how, as an alternative route, the adoption of
a BC canmitigate requirements on production and sequestration
parameters while still achieving quasi-integral feedback; we also
highlight when this route fails.
We use computations to compare the LMSC (Figure 4A, left)

and the BC (Figure 4A, middle) using consistent parameters.
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Figure 4. Closed-loop performance of the BC in comparison with a LMSC
(A) Schematics summarizing the reactions occurring in the LMSC, in the BC, and in the gene expression process.

(B) Left: comparison of reference tracking performance in a closed loop. Here, ri is the scaled reference ri = krðriÞ from Equation 14. This definition of

rescaled reference is consistent with previous work on MSC controllers (Briat et al., 2016a; Qian and Del Vecchio, 2018). Right: equilibrium conditions of

(legend continued on next page)
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Throughout Figure 4, orange/red traces refer to the BC, while
cyan/blue traces refer to the LMSC. As an example model pro-
cess, we consider expression of a target protein y (Fig-
ure 4A, right):

_x = as
knss

knss + uns
% fsx ðprocess dynamicsÞ;

_y =jsx % dsy ðprocess outputÞ:
(Equation 17)

The ODEs of each controller are reported in Section S3.9, and
the nominal simulation parameters are listed in Table 1. A
sequestration rate constant that is realistic for nucleic acids
and proteins was selected, and the production and degradation
rate parameters considered were comparable with those used in
recent computational studies of the LMSC (Qian and Del Vec-
chio, 2018; Briat et al., 2016b) (see also Table S6).
First, with illustrative simulations in Figure 4B we show that in

the presence of leak (half-life of about 30 min), the BC can track
the reference very closely, while the LMSC produces a large
steady-state error. The solutions to the ODEs (left) are shown
as well as the equilibrium conditions (right), which highlight
how shifting the reference results in a shift of the BC ultrasensi-
tivity threshold. In Figure 4C, we compare the ability of these
controllers to reject disturbances in the process parameters.
We vary the transcription rate, as, which results in a change of
the process equilibrium conditions (right, gray line). The BC
maintains the desired reference, rejecting this disturbance, while
the LMSC results in a steady-state offset. This difference in per-
formance can be explained by comparing the gain of the LMSC,
GLMSC = kc=fc, derived in Equation 21, with the maximum gain

for the BC when ac = bc, Gmax;BCz
1

8

ðutotÞ2bc
fckrðrÞ

, from Equation 7.

Using the nominal values in Table 1, GLMSCz1:3, which is real-
istic for RNA-based LMSCs (Franco et al., 2014; Huang et al.,
2018) in E. coli, where the half-life of mRNA is estimated be-
tween 3–30 min and production of mRNA is estimated between
0:02% 0:1/min (Golding et al., 2005; Shimoni et al., 2007). These
figures yield GLMSCz0:09% 4. In comparison, with the nominal
parameters in Table 1, Gmax;BCz97:6 when r = 0:1 mM and

utot = 0:5 mM, which are realistic concentrations for signaling
molecules. Naturally, the gains of both LMSC and BC may be
tuned by changing various parameters. For example, production
parameters can be increased by improving promoter and RBS
strength, as well as plasmid copy numbers; in mammalian cells,
gains may be naturally higher due to the faster production rate
(0:96--1:92/min Darzacq et al., 2007) and longer half-life
(600 min) of mRNA.

Next, we vary individual parameters of LMSC and BC and
examine their effect on the temporal response to a step change
in reference (Figures 4D–4F). Both LMSC and BC respond faster
when the production parameters kc and qc are large (both are
varied simultaneously to preserve the scaled reference value);
the steady-state tracking is improved in the LMSC but not signif-
icantly affected in the BC (consistent with Figure 3C). The perfor-
mance of the BC is not very sensitive to changes in the degrada-
tion parameter fc; in contrast, when fc is large, the LMSC loses
quasi-integral reference tracking. Both LMSC and BC are not
very sensitive to changes of sequestration parameter gc. As dis-
cussed before, ultrasensitivity of the BC is compromised in the
presence of production and degradation of the output species
U (parameters rc and dc, both varied simultaneously to preserve
the equlibrium value u), and this causes an increase of steady-
state error comparable to that caused by large fc in the LMSC
(Figure 4F); in this case the BC error can be reduced by
increasing the production parameters kc and qc, but it is not elim-
inated by removing the leak parameter fc. The effects of chang-
ing other parameters on the equilibrium of the step response of
the BC can be inferred from the plots in Figures 3C and 3F.
These simulations highlight the fact that the BC offers robust-

ness to the presence of leak when compared with the LMSC
with the same production and sequestration parameters, at the
expense of increasing complexity by adding the activation/deac-
tivation reactions of the output U. However, this advantage in
robustness is lost when the total amount of U cannot be tightly
regulated. In this case, a more convenient approach to maintain
quasi-integral behavior is to simply increase the gain of the
LMSC as much as possible, by increasing for example qc and
kc. The influence of dc and rc on the BC steady-state error appear
to be similar to the influence of fc on the LMSC, but generally
assuming dc = rc = 0 is not sufficient to achieve perfect integration
because it does not guarantee ultrasensitivity; in contrast, taking
fc = 0 in the LMSC eliminates leak and yields a perfect integrator
(MSC). (As noted before, also, the BC is a perfect integrator when
fc = dc = rc = 0, since it includes anMSCmodule.) Finally, while
this analysis is centered around steady-state behavior, the simu-
lations in Figure 4 indicate that the BC can generate an overshoot
that is larger than the LMSC. This may be a disadvantage of the
BC, as it yields an initial output production larger than needed.
The response kinetics of the two controllers (time it takes to reach
steady state) are generally comparable.

Application examples
We model three alternative implementation routes of the BC.
We discuss how both RNA molecules and proteins may be

the controller (LMSC in cyan, BC in orange) and the process (gray); a change in reference shifts the ultrasensitive threshold of the BC, enabling reference

tracking.

(C) Left: comparison of disturbance rejection performance. Right: equilibrium conditions. The process steady-state map changes with variations in the process

parameter (as is taken as an example); however, in the presence of the BC the equilibrium point remains near the reference value.

(D and E) Temporal behavior of the output step response y as a single parameter of the LMSC (D, blue traces) or BC (E, orange traces) is varied with respect to the

nominal values. Increasing the production parameters improves reference tracking in both controllers, as their gain is increased. A small degradation parameter,

fc, yields quasi-integral behavior. The steady-state behavior of the BC (orange/red) is less sensitive to the leak parameter when compared with the LMSC.

(F) When the output of the BC is produced and degraded (see schematic in Figure 3F), we lose the ability to track the reference. Here, rc = 0:5dc, in which case

ultrasensitivity is lost as shown in Figure 3D; in this case, unlike the LMSC, the steady-state error cannot be reduced if fc is small. In general, the overshoot

observed in the BC is larger than the LMSC, which may be an undesirable transient behavior. Nominal parameters used for both controllers and process are in

Table 1 and are comparable to those adopted in recent computational studies of the LMSC (Table S6).
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harnessed to build a BC, with RNA sequestration being easier to
design because it takes advantage of well-understood Watson-
Crick base pairing. These alternate BCs are used for closed-loop
regulation of molecular processes with different complexity, an
in vitro transcriptional network and in vivo expression of a protein
of interest (transcription-translation).

RNA-based brink controllers
RNA molecules are emerging as versatile, programmable com-
ponents for control of gene expression (Chappell et al., 2015;
Kim and Franco, 2020). Complex RNA-based reaction networks
can be realized thanks to the systematic design of multiple do-
mains with distinct functions (Groves et al., 2016; Green et al.,
2017). RNA molecules enjoy other important advantages such
as a low metabolic burden (because they do not require transla-
tion), portability (synthetic RNA molecules are not host-specific),
and fast response times (production and degradation rates of
RNA are generally faster than proteins). We examine two poten-
tial BC implementations that take advantage of RNA molecules
within in vitro and in vivo examples.
Control of a synthetic transcriptional network using an
aptamer brink controller
Aptamers are RNA molecules that bind to target ligands regu-
lating their function, and they can be artificially selected via SE-
LEX (Stoltenburg et al., 2007). Here, we propose to build a BC us-
ing aptamers that bind to and deactivate viral RNA polymerases
(RNAP) (Mori et al., 2012; Ohuchi et al., 2012). Figure 5A, right,
shows that the comparator is built with two RNA species, RI

and RA, which are, respectively, an aptamer and a complemen-
tary anti-aptamer produced with synthetic templates (A, I) as
recently shown by (Lloyd et al., 2018). RNA aptamer, RI, binds
to and represses a viral RNAP, the output U of the controller.
The anti-aptamer, RA, displaces the aptamer, reactivat-
ing RNAP.

We examine the aptamer BC as a closed-loop molecular
controller for an in vitro synthetic transcriptional circuit (genelet)
(Kim et al., 2006; Franco et al., 2011; Weitz et al., 2014) shown in
Figure 5A, right. Here, Y is a linear template whose promoter is
partially incomplete and is activated by hybridization of a sin-
gle-stranded DNA activator molecule, W. The template is deac-
tivated by an RNA inhibitor molecule, Z, transcribed by U; Z dis-
placesW via toehold-mediated branchmigration and converts Y
to inactive Y$ (Kim et al., 2006). Additionally, Z directly binds toW
converting it into inactiveW$; we assume thatW$ spontaneously
reverts to its active formW. The control objective is to maintain a
constant active genelet concentration, y, despite uncertainty in
the activity of the enzymes and in the value of the reaction rate
constants. The reactions and the corresponding ODE model
(controller and process) are reported in Section S4.1, where
we also show that the closed-loop system always presents a
unique equilibrium that remains stable in a range of parameter
values.

The response of the closed-loop system to changes in individ-
ual parameters is in Figure S6. Because, in practice, all parame-
tersmay vary at the same time, in Figures 5B1–5B3we report the
behavior of the system when the nominal parameters of the pro-
cess are (all) randomly drawn in an interval of ± 20% of their
nominal value (Table S2). When comparing the steady-state
behavior versus the normalized reference value r, a reduced

sensitivity (tighter, linear trend) of the closed-loop circuit (dark
blue circles) is noted relative to the circuit operating in open-
loop (light blue circles). Simultaneous variation of both the pro-
cess and controller parameters shows a similar trend, albeit
with a broader steady-state variability in closed loop (Figure S7).
The controller handles uncertainty in the parameters more
robustly when the total concentration of controller output, utot,
is increased (panel B3), thereby increasing its range. In the in-
sets, example equilibrium maps are plotted which correspond
to parameter combinations that yield the desired reference
tracking or fail to perform. These plots confirm that the steady-
state error is small when the input-output maps intersect in the
ultrasensitive region of the controller, while it increases if the
intersection occurs in the saturation region.

A toehold switch brink controller for control of protein
expression
Toehold switches are engineered bacterial riboregulators that
take advantage of the paradigm of toehold-mediated strand
displacement (Green et al., 2017). We suggest a BC implemen-
tation with toehold switches where the comparator is built with
two complementary RNA species that mutually sequester each
other (Figure 5C, left). Species U$ is a constitutively inactive
toehold RNA switch, because a programed secondary structure
prevents translation by hindering access of the ribosome to the
RBS region. RNA species (RA) is designed to bind to U$ and
convert it in the active complex U, to which the ribosome can
bind and start translation. In the proposed design, RA includes
a toehold that makes it possible for RI to displace RA from U,
thereby deactivating it. We assume Hill-type induction of RA

and RI, a short half-life of RA and RI (12 min), as well as the pro-
duction and degradation of RNA species U (Section S4.2). Acti-
vation and deactivation rate constants ofU are assumed to be as
fast as RNA hybridization and toehold-mediated strand
displacement in vitro (Table S3).
We test the ability of the toehold switch BC to control a protein

expression process with output Y (17) within a negative feed-
back loop. To begin, we assume the total amount of U is con-
stant. Figure 5D1 compares the closed-loop with the open-
loop system inwhich Y is controlled with an inducer. The nominal
parameters of the process were varied by randomly perturbing
them in the interval of ± 20% their nominal value. The closed-
loop system presents a single equilibrium that was found by
computing the intersection of the input-output maps of the
controller and the process (Section S4.2); stability of the equilib-
rium was tested by checking the eigenvalues of the Jacobian
matrix. Figure 5D1 shows a linear trend relating the reference
and the steady-state output of the (closed-loop) process. Poor
performance occurs when the equilibrium falls in the saturated
region of the controller (inset plot), but the controller handles
the majority of random parameter combinations well (Fig-
ure 5D2). Parametric perturbations of both the controller and
the process, up to 50%, show similar trends, although with
broader variability (Figure S8). The effects of changing individual
parameters are shown in Figure S9, and they are generally
consistent with those shown in Figure 4. Next, we modeled the
production and degradation of U that is expected to occur for
RNA molecules. Figure 5D3 shows that the controller perfor-
mance can be compromised in the presence of the production
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of U$ (parameter rc) and degradation of both U$ and U (param-
eter dc), a result consistent Figure 4E (see also Production and
degradation of the output species reduce ultrasensitivity). This
issue is mitigated if dc is substantially slower than the controller
degradation parameter fc (degradation of YR and RR); rc =
0:5dc is used to guarantee an equilibrium value utotz 500nM.
Consistent with expression (Equation 11), it is helpful if the pro-
duction rate constants kc and qc are larger than their nomi-
nal value.
In Section S4.3 the toehold switch BC is also examined as a

closed-loop controller for biofuel production, previously consid-

ered in (Briat and Khammash, 2018) as a test case for the anti-
thetic MSC controller. The closed-loop system generally tracks
the reference; however, oscillatory instability happens in over
20% of the parameter combinations that were randomly tested.
The emergence of a limit cycle was also reported in (Briat and
Khammash, 2018), when the sequestration parameter of the
antithetic controller is too large. This confirms a trade-off be-
tween performance and stability known for MSCs (Olsman
et al., 2019). By reducing the production rate constants of RR

and RY the system becomes stable, at the expense of a slower
temporal response (Figures S10 and S11).

Figure 5. Computational analysis of different BC implementations to regulate target RNA or protein expression
The reactions of the BC could be realized with different components as long as it is possible to program a sequestration reaction followed by an activation/

deactivation cycle. Here, we illustrate different realizations and test their performance on controlling simple gene networks in vitro and in vivo (A, C, and E). In (B1),

(B2), (B3), (D1), and (F1), we illustrate the capacity of the closed-loop system to maintain reference tracking in the presence of parameter uncertainty of the

process. Steady-state plots, including 10,000 equilibrium points, each computed from a random parameter draw ( ± 20% of their nominal values). Steady states

were found analytically (open loop, cyan circles), or computationally as intersections of equilibrium conditions (closed-loop, dark blue circles). Open-loop and

closed-loop steady-state conditions are reported in Sections S4.1–S4.4; stability was checked by evaluating the eigenvalues of the Jacobian matrix. Additional

simulations with broader random parameter perturbations for both the process and the controller are in Figures S6, S10, and S13.

(A) Schematic of the reactions for an aptamer-based BC, applied to the closed-loop control of a synthetic genelet ( Kim et al., 2006).

(B1–B3) Simulations showing that the BC achieves linear reference tracking (dark blue), outperforming the open-loop system (cyan). Increasing improves the

closed-loop system performance. Insets show example equilibrium maps.

(C) Schematic of a toehold switch BC controlling a protein expression process.

(D1 and D2)We compare the ability of the output of the closed-loop (dark blue) and open-loop (light blue) systems to achieve a desired protein reference level. The

closed-loop system linearly tracks the reference, outperforming the open-loop system in the majority of parameter combinations (D2). All equilibria in this

simulation are stable.

(D3) If component U$ is produced and degraded at rates rc; dc (rc = 0:5dc), the controller performance degrades but can be recovered as long these rates are

small while the maximal rates of production of kc (XA ) and qc (XR) are large. The reference is shown in black.

(E) Protein heterodimer BC used for control of gene expression.

(F1 and F2) For random process parameter perturbations, the steady-state closed-loop system tracks the reference with a linear trend. In this simulation, 76% of

the closed-loop equilibria plotted are stable, and 23% of the equilibria are unstable.

(F3) Example stochastic simulations show that the closed-loop system operates near the desired reference (U = NA,V , whereNA is Avogadro’s number and V = 1

fL). At a lower copy number, the variance increases (Figure S13); however, bimodality is not observed.
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A protein heterodimer brink controller
Recent advances in protein engineering have made it possible to
design synthetic protein-protein and protein-DNA interactions in
a modular way, opening new routes toward the construction of
complex protein circuits and feedback loops (Chen et al.,
2020). Here, we examine a BC implementation in which proteins
are designed to interact via sequestration by forming a hetero-
dimer. They are also designed to regulate the active or inactive
state of a promoter as output of the controller, as illustrated in
Figure 5E. Because the number of DNA-binding sites are tightly
regulated in cells, this architecture should maintain a constant
total controller output, minimizing the steady-state error caused
by total output fluctuations expected with the toehold switch im-
plementations. The model of the protein heterodimer BC is
derived and analyzed in Section S4.4 and nominal parameters
are in Table S5.

Unlike the ideal BC, the output state is not directly switched
between the active and the inactive form, rather, this is possible
because of rapid changes to the dynamic equilibrium of the free
promoter. Assuming the activator and the repressor have the
same promoter dissociation constant Kc, the output of the heter-
odimer BC (active promoter uA) at steady state is:

uA =

 
x2A

K2
c + x2A + x2R

!
utot:

IfKc is small, this expression is comparable to the steady-state
output of the ideal BC in Equation 22 (the Hill coefficient n= 2 is
due to dimerization), but a large Kc can compromise the input-
output map, introducing a bias in the feedback loop. However,
ultrasensitivity of the response improves when including both
an activator, XA, and a repressor, XR, competing to control the
hybrid promoter (Figure S13). This is consistent with the analysis
of the ‘‘single rail’’ BC, and Figure 3F, which shows that regula-
tion of both activation and deactivation is essential for
ultrasensitivity.

We test the ability of the protein heterodimer BC to regulate
expression of a protein Y, so that it tracks a reference concen-
tration despite uncertainty in the process reaction rates (Fig-
ure 5C). The simplest open-loop approach to achieve a desired
reference concentration of Y is to titrate the concentration of its
inducer Y. However, this approach yields a nonlinear reference-
output map that is sensitive to perturbations in the process pa-
rameters as shown in Figure 5F1 (light blue dots), where all pro-
cess parameters are allowed to vary simultaneously by ± 20%
of their nominal value. The output variability is considerably
reduced when the heterodimer BC is included as a closed-
loop controller. Despite the process variability, the closed-
loop steady-state follows the reference with a linear trend
(blue dots) for the majority of random parameter combinations
(Figure 5F2). Under parametric perturbations for both the
controller and the process, up to 50% (Figure S16), the perfor-
mance of the closed-loop system deteriorates, but a linear
reference-output trend is still discernible for the closed-loop
system. Illustrative stochastic simulations in Figure 5F3 show
the mean and variance of an ensemble of 500 closed-loop tra-
jectories, with one example trajectory shown in white. The mean
of the trajectories is very close to the reference, consistent with
the deterministic simulations shown in Figures S14 and S15.

Section S3.11 reports simulation details, and additional sto-
chastic runs at lower copy number (Figure S17).
This synthetic heterodimer controller may be experimentally

realized in many ways. The most immediate implementation
could take advantage of the degronLOCKR system, which was
recently used to build feedback loops in (Ng et al., 2019). This
pathway could be tuned to achieve input-output ultrasensitivity
and minimize steady-state error. Additional routes would be to
use tetR heterodimers or Lux-R sequestration (Baron et al.,
1999; DeLateur, 2019). In general, a variety of heterodimers
can be engineered de novo by integrating modular protein-pro-
tein interfaces (Chen et al., 2020) and DNA-binding domains
(Schmidl et al., 2019).

DISCUSSION

Feedback controllers in synthetic biology have the potential to
mitigate many challenges that limit the performance and scal-
ability of nonlinear molecular circuits, such as uncertainty, sensi-
tivity to disturbances, and lack of modularity (Del Vecchio et al.,
2016). This document has covered how ultrasensitive compo-
nents can serve as molecular controllers for closed-loop refer-
ence tracking and disturbance rejection and can guarantee
robust operations despite uncertainty in the process parame-
ters. Ultrasensitivity concerns the stationary input-output map
of the controller, and we showed that if the threshold can be
set by an external reference, then the unique closed-loop equi-
librium of the system is naturally forced to operate near the refer-
ence in a robust manner. The BC was described as a particular
reaction network yielding an ultrasensitive controller with a
tunable threshold that takes advantage of molecular sequestra-
tion by directing both activation and deactivation of an output
molecule. We examined its advantages, discussed its limita-
tions, and proposed different implementation routes considering
realistic simulation parameters. RNA molecules (aptamers and
toehold switches) or protein heterodimers can be engineered
to perform mutual sequestration and activation/deactivation of
the controller output. As RNA-based synthetic biology and tools
for protein engineering are rapidly expanding (Chappell et al.,
2015; Lehr et al., 2019; Chen et al., 2020), the BCmay be a useful
architecture to build homeostatic and adaptive systems.

Ultrasensitive controllers as a high-gain feedback
mechanism
Ultrasensitive components are common in nature (Zhang et al.,
2013). For example, the yeast osmoregulation system combines
ultrasensitivity of the MAPK pathway with negative feedback to
achieve perfect adaptation (Muzzey et al., 2009). Adaptation
has also been observed in ultrasensitive enzymatic networks
examined using in silico evolutionary algorithms (Feng et al.,
2016). A parallel can be drawn between ultrasensitive modules
in a biological feedback loop and high-gain feedback controllers
in engineering. High-gain negative feedback is known to improve
the reliability of systems that are uncertain: operational amplifiers
are a classical example that illustrate how the output of a high-
gain device can track the input, despite uncertainty in the gain,
as long as negative feedback is present. Furthermore, high-
gain feedback linearizes the input-output map, a feature recently
described in ultrasensitive molecular signaling pathways (Nunns
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and Goentoro, 2018) and observed in our implementation exam-
ples (Figures 5B2, 5B3, 5D1, and 5F1). Potential disadvantages
of high-gain controllers include instability, which may introduce
oscillations (Kholodenko, 2000; Briat et al., 2016a) and chatter-
ing, a phenomenon where the controller rapidly switches be-
tween its on and off states, which often occurs in sliding mode
controllers (Montefusco et al., 2016). Instability is of concern in
sequestration-based controllers, like the one described here,
and can be prevented by limiting the closed-loop gain, which
generally depends on several parameters (Briat and Khammash,
2018; Olsman et al., 2019). If the process gain is fixed, this gain
reduction will fall on the controller and possibly reduce its ultra-
sensitivity. This points to a general trade-off between stability
and performance in most control systems. The issue of chatter-
ing is not expected to occur in our setup, because ultrasensitivity
is required at steady state. Switching between the controller min-
imum andmaximum output is not observed in the computational
analysis, including stochastic simulations in Section 3.11, even
though the controller converges to steady state faster than the
process in the examples.

Performance trade-offs and tuning of molecular
controllers
An important aspect of this analysis is that it distinguishes the
roles of gain and setpoint in a molecular controller, which may
be tuned in isolation prior to closed-loop implementation. This
strategy may enable the development of ‘‘universal’’ RNA or pro-
tein controllers that may be swapped to regulate a variety of pro-
cesses with focused adjustments in threshold and gain, similar
to PID controllers in industrial settings (Lehr et al., 2019; Langan
et al., 2019). Ultrasensitive controllers could be built with a vari-
ety of strategies (Box 1), but it may be challenging to indepen-
dently tune the gain (steepness of the response) and threshold.
We showed that this is possible by combining sequestration re-
actions (comparator) (Agrawal et al., 2015; Scalise and Schul-
man, 2016) and an activation/deactivation cycle (switch) (Cuba
Samaniego and Franco, 2017a, 2017b), which constitute the
BC. The threshold is determined primarily by the concentration
of the fixed input of the comparator, which therefore operates
as a reference signal. In contrast, the slope of the ultrasensitive
response, which is considered the gain of the controller, is deter-
mined by multiple reaction rate constants and is drastically
improved by including both activation and deactivation. Overall,
the ultrasensitive gain of the BC can be increased through mul-
tiple tuning knobs and it results from the interconnection of com-
ponents that do not have to be ultrasensitive in isolation; thismay
be an advantage over simpler architectures where it may be
more challenging to increase the gainwith fewer parameters. Ac-
cording to our computational analysis, the BC is ultrasensitive
when adopting sequestration and switching rate constants that
are realistic for RNA and protein components (Figure 3; Tables
1 and S6). Yet, we have shown an important limitation of the
BC: its performance becomes worse if its output is produced
and degraded, and its total mass is not conserved. This limitation
may be mitigated in practice if the output of the BC is a DNA-
binding site or another species whose level is tightly regulated,
naturally. Ultrasensitive controllers that are radically different
from the BCmay not suffer from this limitation. We have also dis-
cussed how an output load reduces the range of ultrasensitive

operation of the BC, as the fraction of available output is
depleted, yet it does not compromise ultrasensitivity per se.

Molecular sequestration is important to achieve integral
feedback
Many molecular networks for closed-loop control rely exclu-
sively on molecular sequestration (Franco et al., 2014; Hsiao
et al., 2015; Annunziata et al., 2017; Kelly et al., 2018; Huang
et al., 2018; Aoki et al., 2019), which is sufficient to achieve ho-
meostasis under conditions such as absence of degradation or
very fast controller dynamics (Briat et al., 2016a; Huang et al.,
2018; Qian and Del Vecchio, 2018) (Table S6). Our analysis is
consistent with these results, because sequestration alone is
known to yield an ultrasensitive response with a tunable
threshold and a large gain, in particular when degradation is
negligible and sequestration is fast (Buchler and Cross, 2009;
Mukherji et al., 2011). Sequestration also provides fast kinetic re-
sponses in natural pathways (Shimoni et al., 2007). Because the
speed of a feedback controller is critical for performance, ultra-
sensitive controllers that include sequestration would take
advantage of its speed, simplicity, and tunability. Although this
research has focused on steady-state properties of the BC, we
found that its convergence is comparable with that of other
sequestration-based controllers, and that the activation/deacti-
vation cycle improves the controller gain without compromising
speed. However, it is important to note that while multi-stage
cascades may sharpen an ultrasensitive response (Huang and
Ferrell, 1996), they can also introduce delays and promote the
emergence of oscillations (Kholodenko, 2000).

Conclusions and outlook
We have discussed the idea that ultrasensitive components can
enable quasi-integral control within molecular feedback circuits.
In the context of ‘‘reverse engineering’’ biological networks, this
analysis supports the view that ultrasensitivity may be a key
property for adaptation (Muzzey et al., 2009). Yet, ultrasensitive
modules may not be immediately recognized because a sharp
response can arise from the composition of diverse processes
(Zhang et al., 2013). In the context of ‘‘forward engineering’’ bio-
logical controllers, we contribute a relatively simple design prin-
ciple to build robust feedback loops, since ultrasensitivity may
be achieved by a variety of mechanisms (Box 1) (Zhang et al.,
2013). The design of such mechanisms must takes into account
their speed of convergence and the possibility of closed-loop
instability (Olsman et al., 2019). Sequestration is a viable
approach to obtain a tunable ultrasensitive response, which is
enhanced by the combination with an activation/deactivation cy-
cle. This suggests that it may be beneficial to combine multiple
layers of regulation to obtain ultrasensitive controllers. Further-
more, multiple controllers may be combined in parallel to imple-
ment a dual rail actuator with opposite effects (activation and
repression) on the process (Cuba Samaniego and Franco,
2017b; Gupta and Khammash, 2019; Cuba Samaniego et al.,
2019). Recent advances in RNA design and protein engineering
provide many routes toward the synthesis of regulators with a
tunable threshold and gain (Lee et al., 2018; Kim et al., 2019;
Chen et al., 2020). Their application as molecular feedback con-
trollers may be guided by the mathematical models, design prin-
ciples, and trade-offs we illustrated.
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METHODS

Assessing stability of closed-loop molecular networks
Throughout this paper we consider a simplified context in which the process is modeled as a single-input, single-output system in-
terconnected to a controller within a feedback loop, like the architecture in Figure 2A:

P :

#
_xðtÞ= fðxðtÞ;uðtÞ;pÞ;
yðtÞ= hðxðtÞÞ; C :

#
_zðtÞ=gðzðtÞ; yðtÞ;q; rÞ;
uðtÞ=wðzðtÞÞ: (Equation 18)

x and z are concentration vectors, and y and u are the concentrations of species that interconnect process and controller. The
parameters characterizing each system are denoted as vectors p and q and r is a scalar reference (external input to the controller).
It is assumed that both the process and the controller in isolation have a unique (non-negative), stable steady-state, which can be
found by solving equations fðx; u;pÞ= 0 and gðz; y;q; rÞ= 0 (for fixed values of parameters and inputs). By solving equations
fðx;u;pÞ= 0 and gðz;y;q; rÞ = 0, together with the state-to-output relations yðtÞ= hðxðtÞÞ and uðtÞ = wðzðtÞÞ, the steady-state input-
output maps ky and ku of each subsystem can be implicitly defined:

y = kyðu;pÞ;u= kuðy;q; rÞ: (Equation 19)

The steady-state values y and u of the closed-loop, interconnected system are determined by the intersections of these twomaps.
Having a unique equilibrium is beneficial in a closed-loop system (since the presence of multiple equilibria would make it more chal-
lenging to reach the desired one). A convenient route to ensure the existence of a unique equilibrium is to work with monotonic input-
outputmaps, with onemap thatmust be increasing, and the other thatmust be decreasing (Figure 2B). In other words, we require that
v

vy
kuðy;q; rÞ and

v

vu
kyðu;pÞ have opposite signs (for example,

v

vy
kuðy;q; rÞ>0 and

v

vu
kyðu;pÞ<0). This also guarantees that the over-

all feedback loop is negative. (Monotonicity is, however, not a necessary condition for a single closed-loop equilibrium.)
Given a unique equilibrium, there are many ways to identify its stability (stability of the process and controller in isolation does not

imply that the closed-loop system is stable aswell). Themost direct approach is to linearize the closed-loop system, Equation 18, and
examine the eigenvalues of its Jacobian matrix evaluated at the equilibrium point (Khalil, 1996). Because many biological models are
monotone systems in a broad range of operating conditions, this means that the stability of a controller and process may be struc-
turally evaluated by inspecting their Jacobian matrix (Angeli and Sontag, 2003). Analytical conditions for stability may be found in
models with few variables, but this approach is impractical for realistic, large systems, whose stability must be assessed
computationally.
The assumptions and the approach described here apply to all the examples we report. First, we assess stability of individual com-

ponents, we then test uniqueness of the closed-loop equilibrium, and evaluate its stability through linearization and computational
analysis. When possible, we provide bounds on relevant parameters to ensure stability. Each example is examined in detail in the
Supplemental information file.

Controller requirements for quasi-integral behavior
The equilibrium of the closed-loop system is determined by the intersection of the input-output static maps shown in Figure 2B and
defined by Equation 19. Perturbations of the process parameters (vector q) may cause a shift in the input-output map (gray area in
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Figure 2B). However, as long as the maps are monotonic, their intersection is still unique and falls near the controller threshold yz r
on the horizontal axis, while u takes any value inside the physically acceptable range of the controller. Therefore, if the controller
input-output static map is ultrasensitive like in Figure 2B, the process steady-state may be written as:

y = r +D: (Equation 20)

This expression highlights that the difference between the steady-state output y and the reference r depends on the steepness of
the off-on transition of the controller (i.e. its ultrasensitivity). This can be quantified with the ‘‘error’’ term D: in the limit of D/ 0 one
would achieve perfect integral control. If the controller is operating in the ultrasensitive region, D is bounded by the width of the tran-

sition region of the controller, D%
1

2
Dmaxðu;qÞ (shaded yellow area in Figure 2B). It is reasonable to expect that D depends largely on

the parameters of the controller q, rather than the parameters of the process, due to the shape of the ultrasensitive steady-state map
of the controller, which forces the equilibrium point to be in a neighborhood of the reference value. By computing Dmaxðu;qÞ it is

possible to find lower and upper bounds to the steady-state error, e = jr% yj%
1

2
Dmaxðu;qÞ. Dmaxðu;qÞ can be found by evaluating

y = kyðu;pÞ at some chosen saturation values uL and uH of the controller, Dmaxðu;qÞ= kyðuH;pÞ % kyðuL;pÞ (Section S3.5). The width

of the transition region is generally inversely proportional to the steepness, or gain, of the controller map.

An ultrasensitive controller operates correctly in its non-saturated regime
We just described how an ultrasensitive molecular controller can help track a reference (which determines the controller threshold)
and reject perturbations. However, correct operation is guaranteed only if the concentration of controller species, u, does not satu-
rate (Ang et al., 2010). If the processmap intersects the controller map near saturation, it is not possible for the controller to adjust u as
required to maintain the reference equilibrium. In this case, the process is not ‘‘controllable’’(this is a slight abuse of the traditional
meaning of the word ‘‘controllability’’ in control theory). If the controller input-output map kuðy;q; rÞ is known, we can formulate a cri-
terion to identify the range of process equilibria y that are controllable:

uL + ε <kuðy;q; rÞ<uH % ε;

where uL and uH are thresholds for the controller and ε is a user-defined "safety distance" from the thresholds. These thresholds
should be selected as a performance specification: if u%uL, and uRuH, the controller operates too close to saturation and the error
term D in Equation 20 is too large. Given an input-output map, kuðy;q; rÞ, in polynomial form, these inequalities can be used to find
bounds on the reaction rate constants that will satisfy the specifications, and to findwhether the specifications are realistic in practice
for the chosen implementation of the controller. The inequalities can be examined analytically usingmethods such as the Routh-Hur-
witz or Sturm’s Theorem (Siegal-Gaskins et al., 2015; Cuba Samaniego and Franco, 2018) for simple controller networks, or char-
acterized computationally for more complex controllers.

Sequestration enables error computation in the Brink Controller, and activation/deactivation increase the gain
The first stage of the BC includes a molecular sequestration reaction (Box 1). Taken in isolation, this reaction operates as a compar-
ator, and at steady-state it computes the difference between its inputs. We consider the case in which input concentration a may
vary, while input i is held constant. It should be noted that the same reasoning can be followed for a case in which i varies and a
is constant. At steady-state, given a constant inhibitor concentration i and a fast sequestration rate, the output of the comparator
can be approximated as:

rA z

8
<

:

0 a%kaðiÞ
kc

fc

ða% kaðiÞÞ kaðiÞ%a
and rIz

8
<

:

kc

fc

ðkaðiÞ % aÞ a%kaðiÞ

0 kaðiÞ%a

; (Equation 21)

with a threshold kaðiÞ =
qc

kc
i. The complete derivations are in Section S2. The threshold is proportional to the input i, and therefore

the threshold is tunable by setting the concentration of the inhibitor. The factor
kc

fc
is a steady-state gain of the reaction (cf.Box 1). For

special cases where qc = kc, the threshold is equal to the fixed input i. This input-output map is plotted in Figure 3B, left panel.
When a is larger than the threshold kaðiÞ, the steady-state output of the comparator rA is proportional to a% kaðiÞ, which can be

interpreted as the error between input a and the scaled input i with a gain
kc

fc
. When a is smaller than the threshold, the steady-state

output rA is approximately zero. In contrast, the steady-state value of rI is proportional to kaðiÞ % a when a is smaller than the
threshold, and it is almost zero when a is larger than the threshold. The role of the sequestration reaction is to process the inputs
by producing a distinct positive output in response to ‘‘positive’’ or ‘‘negative’’ error, thus behaving like a diode in electronic circuits.
The error is computed in relation to the threshold kaðiÞ and the output rI is almost zero when rA is being produced, while output rA is
almost zero when rI is being produced. This operation is comparable to ‘‘dual rail’’ logic in electronics, and an example simulation is in
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Figure 3B, left panel. By examining the system’s frequency response, we also show that the comparator works well on time-varying
inputs aðtÞ and iðtÞ, as long as they evolve on a timescale slower than the degradation rate constant fc (Section S2).
We now consider the activation/deactivation cycle in isolation. It receives inputs rA and rI, and produces the output u for the BC.

The equilibrium value u, for constant inputs rA and rI, is given by the following Michaelian function:

u =
acrA

acrA + bcrI
utot: (Equation 22)

An example simulation showing the input-output map of this module is in Figure 3B, middle panel.
Based on the expressions we just derived, we can qualitatively explain the overall behavior of the BCwhen the comparator module

and the activation/deactivation cycle are interconnected, which is illustrated in the simulation in Figure 3B, right panel. When the input
a is smaller than the threshold kaðiÞ, rA is almost zero and rI is large, thereby pushing the value of u to approach zero according to
Equation 22. In contrast, when a is larger than the threshold kaðiÞ, rA is large and rI is almost zero, therefore u approaches utot.
From expression (Equation 22), and from the gain estimatation (Equation 7), it is also apparent that if the switching rate constants
ac and bc are large, the ultrasensitive response becomes sharper.
Because genetic circuits that implement the BC reactions may be affected by stochastic noise, it is important to ask whether oper-

ating near a sharp ultrasensitive threshold may yield a bimodal behavior. Illustrative Gillespie simulations in Section S3.11 indicate
that the BC output does not exhibit a bimodal response, nor does it produce fluctuations between the on-off regime; however, the
variance of the output increases at the threshold and at low copy numbers (Hooshangi et al., 2005).
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