RELATIONS BETWEEN THE 2 x 2 MINORS OF A GENERIC MATRIX
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ABSTRACT. We prove the case ¢t = 2 of a conjecture of Bruns—Conca—Varbaro, describing the minimal relations
between the t X ¢t minors of a generic matrix. Interpreting these relations as polynomial functors, and applying
transpose duality as in the work of Sam—Snowden, this problem is equivalent to understanding the relations
satisfied by ¢ x t generalized permanents. Our proof follows by combining Koszul homology calculations on the
minors side, with a study of subspace varieties on the permanents side, and with the Kempf-~Weyman technique
(on both sides).

1. INTRODUCTION

For positive integers m, n, consider the rational map

2 2 2
As : P(Hom(C™,C")) --» P <Hom (/\ Cm,/\C”>> , 0 — /\(;5 (1.1)

We denote the (closure of its) image by X, ,, and consider the problem of understanding the defining equations
of X, . Identifying Hom(C™, C") with the space of m xn complex matrices, the map simply assigns to a
matrix the tuple consisting of all its 2 x 2 minors, so finding the equations of X, ;, amounts to understanding
the algebraic relations that these minors satisfy. When m = 2, we can identify X, with Grp(C"), the
Grassmannian of 2-dimensional subspaces of C™, whose equations are well-understood: they are all quadratic,
known as the Pliicker relations. For general m,n however, the Pliicker relations are not sufficient, as shown by
Bruns, Conca and Varbaro in [BCV13|. In fact, [BCV13| identifies new minimal equations between the ¢ x ¢
minors for an arbitrary ¢, of degree 2 and 3. They are described in representation theoretic terms, and obtained
through a careful analysis of highest weight vectors and combinatorics of bi-tableaux. It is conjectured in
[BCV13, Conjecture 2.12] that these quadratic and cubic equations generate all the relations between the
minors. The goal of our paper is to confirm the conjecture in the case when ¢ = 2. This boils down to a
vanishing result for Tor groups, which we prove by combining a number of techniques from representation
theory and algebraic geometry.

To state the results, as well as for most proofs, it is convenient to use a coordinate independent approach,
and to make the usual identification between matrices and 2-tensors. To that end, we consider complex
vector spaces Vi, Vs, with dim(V;) = m, dim(V2) = n. We let S = Sym(V; ® V2), which we think of as
the homogeneous coordinate ring of the source of Ao, and we consider the natural action of the group GL =
GL(V1) x GL(V2) on S. If we identify S ~ C[z; ;] then the 2 x 2 minors of the generic matrix of indeterminates
(xi,;) span a GL-invariant subspace of S isomorphic to AN Vio A Va. Welet W = A? Vi@ A? Va, and consider
the polynomial ring R = Sym(W), which we think of as the homogeneous coordinate ring of the target of
the map As. The inclusion of W into S gives rise to an algebra homomorphism ¥ : R — S, whose image we
denote by A. We have that A = C[X,, ;] is the homogeneous coordinate ring of Xy, ,, and I(X,, ) = ker(V).
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Noting that the minimal generators of I(X,,,) are encoded by Torf(A, C), we prove the following (here, for
a partition A = (A > Ay > ---), we write Sy for the corresponding Schur functor, see Section .

Theorem 1.1. We have Tor{z(A,C)j =0 for j # 2,3, and we have an isomorphism of GL-representations

Torf(A,C)2 = S1,1,11V1 ® S22V @ Sa2V1 @ S1.1,1,1V%,

IR ]

Torf'(A,C)3 = S31,11Vi ® S2.22Va @ Sp.22V1 ® S3.1,1,1 V5.

For our proof of Theorem we will consider in parallel the closely related problem of understanding
relations between permanents. More precisely, we consider the map (which is defined everywhere)

Yy : P(Hom(C™,C")) — P (Hom (Sym2 C™, Sym? (C”)) . ¢ — Sym?¢, (1.2)

and denote its image by X,,,. When m = 1, X1, can be identified with the degree two Veronese variety,
whose defining equations are again known to be quadratic. As we will see, X, , also admits cubic minimal
relations in general. A generalized 2 x 2 submatrix is one of the form

|:mi17j1 xi17j2:|
)
Lig, g1 Lia,jo
where we do not require that i1 # is, or that j; # jo. The corresponding generalized permanent is given

by Zi, ji - ®igjo + Tiyjo - Tin,j,- The (generalized) 2 x 2 permanents span a GL-invariant subspace inside S,
isomorphic to W = Sym? V; ® Sym? Vs, and complementary to the space of minors within the quadrics in S:

Sy =Sym* (Vi @ Vo) =W aW
We define R= Syin(W), and let A be the image of the natural map ¥ : R — S induced by the inclusion
W C S. The ring A is the algebra generated by the 2 x 2 permanents, and is also the homogeneous coordinate

ring of the image of ¥9. Moreover, we have that ker(¥) = I(X,,,). We will prove the following, which in
fact turns out to be equivalent to Theorem

Theorem 1.2. We have Torlﬁ(z, C); =0 for j # 2,3, and we have an isomorphism of GL-representations

Torf(4, C)y = S4Vi ® Sa.2Va ® Sz9Vi ® SV,

Torlﬁ(za C)3 =S411V1 ®S33V2 @ S33V1 ® Sy41,1 V5.

The relationship between Theorems [I.1] and comes from interpreting all the constructions described so
far as polynomial functors, and using transpose duality as explained in Section For now, we note that it
can be visualized by drawing the Young diagrams of the partitions associated with the relevant Schur functors.
For instance, we have that the exterior and symmetric powers correspond to transposed diagrams:

2
/\ — H and Sym? «+—[ | ]
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More generally, the same is true if we compare the Tor groups for minors and permanents:

Torf(4,C) Torf (4, C)

2 E@ + o2y

L U o 1]
3| H X + &® X + &

LT+ el L]

[TIT1]

I
1]

The rings A and A are known as the special fiber rings associated with the maps and , and they
are natural quotients of the Rees algebras of the ideals Iy = (W) of 2 x 2 minors, and Iy = (W) of 2 x 2
permanents. The Rees algebras give the bi-graded homogeneous coordinate rings of the graphs of the maps
and , and it is an open problem to compute their presentation. We explain a reduction procedure
in Section [7, from which we derive the presentation of the Rees algebra of I5 in the case of m x 3 matrices.

We end the introduction with a summary of the proof strategy for Theorem

Step 1. Using the results of [BCV13| and the equivalence between minors and permanents, we obtain the
description of Torl*(4,C) j for j < 4. This step is based on a general duality for polynomial functors, which
is explained in Section The main part of the argument is then concerned with proving the vanishing
Torl*(4,C) j = 0 for j > 4, and is covered by the following steps.

Step 2. We assume that m > n. We let S denote the second Veronese subring of S, which is a finitely
generated R-module (it is infinitely generated over R). We compute the zeroth and first Koszul homology of
S relative to W and restrict to even degrees to find a presentation of S over R. This presentation has the
property that the generators are in degree up to |n/2], and the relations in degree up to |n/2| + 1, which
implies that

Torfi(S®?),C); = 0 for j > [n/2] + 1. (1.3)
We note that the calculation of Koszul homology is performed on the minors side (relative to W), and then
carried over by functoriality to the permanents side (this is a recurring theme in our argument). Since the
Koszul homology modules relative to W are equivariant modules supported on the cone over a Segre variety,
their structure can be understood using a bivariate version of the Sam—Snowden theory of GL-equivariant
modules over polynomial rings in infinitely many variables. We explain the necessary aspects of the theory in
Sections and and perform the Koszul homology calculation in Section

Step 3. The details for this step are discussed in Section [4. We show the existence of a finite filtration
A=MoC M CMyC---C M., =5®

by R-modules, such that M,/M,_; is generated in degree r, has degree (r + 1) first syzygies, and degree
(r + 2) second syzygies. As in Step 2, we obtain this by translating the description of the beginning of the
minimal resolution of M, /M,_;, where

A:Mongg---gS@)

is a corresponding (infinite!) filtration by R-modules. The shape of the resolution of M, /M,_; is described
using the Kempf—~Weyman geometric technique and Bott’s theorem.
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It turns out that A and S agree in high degree, so S () gives a good approximation of A for which we
can estimate Tor; using (1.3)). We can then think of A as being obtained from S by removing finitely many
layers, while controlling how Tor; changes at each step. We conclude that

Torf(4,C); = 0 for j > |n/2] +2,
and in particular if n < 5 then the vanishing sought in Step 1 holds.

Step 4. We assume from now on that n > 6, and prove by induction on the pair (m,n) that Theorem [1.2
holds. A useful tool in the study of spaces of tensors, particularly well-suited for inductive proofs, is the
subspace variety. After analyzing the equations of a subspace variety Y on the permanents side in Section
we use induction to conclude that for j > 4, the only non-zero groups Tor{%(z, C); may occur when j > n.
Since n > |n/2]| + 2, all such groups vanish by Step 3.

To motivate some of our choices for working on either the minors or permanents side, we note that the
passage between the two settings is purely a representation theoretic construction, which behaves poorly
relative to the geometry: W defines a base-point free linear series, while W has a large base locus, given by a
Segre variety; S is the normalization of A, but it is an infinite A-module; the Koszul homology relative to W
has finite length, while the one with respect to W is built from geometrically interesting modules supported
on a Segre cone; the modules M, /M,_; have finite length, while each M, /M, _; arises as a push-forward from
a geometric vector bundle. Most of the non-trivial calculations that we make occur on the most geometrically
significant side, and are then translated via representation theory to the other side. One exception is the
study of the subspace variety, which is equally significant on both sides. The choice we made there was based
on the fact that the subspace variety on the permanents side has minimal equations of degree twice as large
as that on the minors side, which is crucial in the inductive argument from Step 4.

Organization. In Section [2] we recall some basic facts about polynomial functors, and give the functorial
interpretation of Theorems and explaining how they are equivalent. In Section [3| we compute the first
Koszul homology group of the polynomial ring S with respect to the space of 2 x 2 minors, and derive the
corresponding result for permanents. In Section [l we explain a filtration argument that gives an upper bound
for the degrees of the minimal generators of I(X,,,). In Section |5 we find the equations of the subspace
variety Y. The inductive step in the proof of Theorem is explained in Section [f] We conclude with a
discussion of the defining ideal of the Rees algebra in Section [7}

2. PRELIMINARIES

The goal of this section is to establish some basic notation concerning partitions and representations of the
general linear group, as well as to discuss polynomial functors in the uni- and bivariate setting. We recall the
transpose duality for polynomial functors following [SS12], and explain how the functorial approach gives an
equivalence between Theorems [1.1| and

2.1. Partitions. We write P for the set of all partitions A = (A\; > A\ > -+ > 0), and write P, for the subset
consisting of those A € P that have at most n parts (that is, Ap,+1 = 0). We write |A\| = A1 + A2 + -+ for the
size of )\, and write )\ for the conjugate partition, obtained by transposing the corresponding Young diagram.
For partitions with repeating parts, we use the abbreviation (b*) for the sequence (b, b, -- ,b) of length a; for
instance (3,3,3,3,1,1) may be written as (3%,12). For A\, u € P, we write u > X if yu; > A; for all i. We say
that p/A is a horizontal strip if p; > A; > p;41 for all ¢, and write p/\ € HS.
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2.2. Polynomial functors. We write Vec for the category of complex vector spaces. For d > 0 we consider
the tensor power functors T¢ : Vec — Vec, defined by T4(V) = V®?¢. A polynomial functor P : Vec — Vec
is a subquotient of a direct sum of tensor power functors. Polynomial functors form a semi-simple abelian
category V, and we refer the reader to [SS12, Section 6] for its properties. The simple objects are indexed by
partitions A, they are denoted Sy, and called Schur functors. When A = (d), Sy = Sym¢ is the symmetric power
functor, while for A = (1%), S\ = /\k is the exterior power functor. There is an exact involution 7:V — V),
with the property that
7(Sy) = Sy for every partition A € P.

In particular, 7 interchanges Sym? and /\d. We will be interested in the subcategory V,; of graded-finite
polynomial functors, which are those that decompose as direct sums of Schur functors

P = @S?mx, m)y € ZZO' (21)
AeP

Note that 7 preserves V,r. We write Py = S?mA and refer to it as the A-isotypic component of P, and write
P, for the degree d part of P, namely
Py= P sim™.

I\=d
A natural pair of elements in V¢, which are interchanged by 7, is:

Sym:@Symd and /\:@/d\.

d>0 d>0

We let GL(V) ~ GL,(C) denote the group of invertible linear transformations of a vector space V' of
dimension n. For every P € V we have that P(V') is a GL(V)-representation. For Schur functors, we have
that S\V = 0 when A} > n, that is, when A has more than n parts. If A\ € P, then S,V is an irreducible
GL-representation, and moreover, we have that for A, € P, there exists an isomorphism S\V ~ §,V as
GL(V)-representations if and only if A = p. It follows that for a fixed A € P we can detect the multiplicity my
in by decomposing P(V') into a direct sum of irreducible GL(V')-representations, for any vector space V
with dim(V') > \|. This fact will be used repeatedly throughout this article.

2.3. Bi-variate polynomial functors. The category of bivariate polynomial functors P : Vec x Vec — Vec
is V®2, with simple objects indexed by pairs (A, ) € P x P and denoted Sy X S,: we have
(SAXS,)(Vi, Vo) = S\Vi @ S, Vs for every Vi, Vo € Vec.

We use the notation X to contrast with the univariate functor given by (Sy ® S,)(V) = S\V ® S, V. The
subcategory Vfﬁ consists of objects

pP= @ (S)\ X SH)EBm)\’u y o My € ZZOa
A pEP

and we define the (A, p)-isotypic component Py, and the bi-graded component P;. in analogy with the
univariate case. The involution 7 induces (commuting) involutions 71, 7 on V®2, which act on the simples by

T1(SAXS,) =Sy KS, T(SAKS,) =S\ XS,
One of the key players in this work is the algebra functor & defined by letting
S(V1, V2) = Sym(V1 ® Va).
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When V) ~ C™, V5 ~ C", we have that &(V3,V2) = S is the coordinate ring of the space of m X n matrices.
By Cauchy’s formula, we have that

G = @SA&S)\, (2.2)
AeP
and in particular
16 = 6.

We define the functor € = 716 = 76, which can be shown to send a pair (Vi,V2) to the exterior algebra
A(V1 ® Va) (see [Wey03, Corollary 2.3.3]), and which satisfies 7172€ = €. We also consider the (bivariate)
functors 23, 2, R, R, defined by

W(V1, Va) /\V1®/\V2, V1,V2)—Sym V1®Sym Vo, B =Symo20, R =Symo2l.

Since 20,20 are subfunctors of &, it follows that & is naturally an %- and 9R-algebra functor. The natural

transformations ¢ : @ — & (resp. ¢ : R — &) give rise to subfunctors A = Im(¢) (resp. A = Im(¢)).
With the notation in the introduction, if S = &(V1, Va) then

m(VhVZ) = R, ﬁ(‘/LVQ) :Rv Ql(‘/lv‘/?) = A, ﬁ(VvlvVQ) =A.
Moreover, using the transpose duality functors we get that
7'17'2%:@, ’7'17'29%:%, TlTQQ[Zﬁ.

This makes precise the statement that we can exchange minors for permanents in a functorial way.
We write Peyen for the subset of P consisting of partitions of even size, and consider the set of partitions

MO:{AEPeven:)\l §>\2+)\3+}
It follows from |[dCEPS80, Section 6] (see also [BCV13, (1.2)]) that
A= D =, (2.3)
AEMo

and the correspondlng formula for 2l is obtained by applying 71 7s.
We define Tor? (2, C) to be the i-th homology of the Koszul complex

i+1 1—1
—>/\w®m—>/\m®m—>/\w®m—>

and define Tor (21, C) analogously. Since 71 and 73 are exact, we have that
179 Tor? (2, C) = Tor (A, C) for all i. (2.4)

We note that the functors 9%, 21, Tor}* (A, C) etc. are all zero in bi-degree (d, ¢) unless d = e = 2; is even. We
will make an abuse of notation and write §; instead of §2;2; when § is any of these functors. The discussion
above shows that Theorem is equivalent to the assertion that Tor] (2, C); = 0 for j # 2,3 and

TorT (A, C)g = S1.1,11 BSo0 B Se2®S1 111, Tord (A, C)3 =S3111XS222 B S902XS37111. (2.5)

byl sLyty

Moreover, Theorem is equivalent to the fact that Torl (A,C); =0 for j # 2,3 and

Torlﬁ(ﬁ, (C)z =S, X 82,2 D Sz,g X Sy, Torlﬁ(ﬁ, (C)3 = 54,171 X 8373 (&) 8373 X 847171. (2.6)

Moreover, we have that (2.5) and (2.6)) are equivalent by (2.4]), showing that Theorems and are
equivalent as well.
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2.4. Highest weight vectors in S. We let GL = GL(V}) x GL(V2) and decompose S = Sym(V; ® V3) as a
GL-representation (see ([2.2)))
S = P SaVi @ SaVa. (2.7)
AEP
Whenever we need to work with explicit elements of S, we assume that Vi, Vs are equipped with fixed bases
yielding identifications Vi ~ C™, Vo ~ C", and S ~ C[z; ;| is a polynomial ring in the entries of a generic
m X n matrix. For every r > 1 we write
det, = det(z;;)1<ij<r
for the principal » X r minor coming from the upper left corner of the generic matrix, with the convention
that det, = 0 when r > min(m,n). For a partition A € P we let
A1
dety = Hdet)\{,
i=1
which is a highest weight vector for the action of GL on S. The component SyV; ® SyVz in (2.7) is then the
C-linear span of the orbit GL - dety. For instance, when V; = Vi, = C2, we have that W = Sym2 Vi ® Sym2 Vo
is 9-dimensional, spanned by

2 2 2 2
i1, T2, T31, T2, T1,171,2, T1,1%2,1, T1,222,2, £2,122,2, T1,102,2 + T1,2T2,1-

2.5. Filtrations on equivariant modules. For a vector space V we let Sym(V) be the corresponding
polynomial ring. Throughout this section, by module we mean a GL(V)-equivariant Sym(V')-module. The
category of such modules is well-understood by [SS16], and we recall here some of the basic facts that will be
used later on. By varying V', the modules we study give rise to polynomial functors, and we encourage the
reader to translate the results here in the language of the earlier sections. For A € P define the free module
F)\(V) =S\V® Sym(V)
Using Pieri’s rule [Wey03, Corollary 2.3.5], we get a multiplicity-free GL(V')-decomposition
RV)= @ s.V

u/A€HS

Moreover, it follows from [SS16, Proposition 1.3.3] that if we write (S) for the submodule generated by a
subset S of F\(V), then

SuV)= P sV (2.8)
51,6 /AEHS
We define M, (V') as the quotient

V) E3
V) (SuV : u/X € HS, p; > A; for some ¢ > 1) 9?0 Mi+dda ...V

We remark that the only submodules of My (V') have the form My, y4x,2s,..(V), and they form a chain.
Furthermore, there exists a non-zero module map M(V') — M, (V) if and only if Ay > p1 and \; = p; for all
1 > 2; in this case, the map is injective and unique up to scalar.

We equip F)(V) with a decreasing filtration {F*(F)(V))}+>0 by submodules, setting

FRWV)= @ sV (2.9)
1/ AEHS
t<patpz+-
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We denote the graded components of associated graded modules by gr!(—). Note that for A = (0,0, ...) we have
Ex\(V) = Sym(V), and FO(Sym(V)) = Sym(V), F(Sym(V)) = 0, so gr(Sym(V)) = gr’(Sym(V)) = Sym(V).
It follows that, for any A, the associated graded module gr(F)\(V)) is a module over Sym(V) (and GL(V)-
equivariant), and moreover, we have a module isomorphism

. FUEAV
pw1=2A1
t=pa+pz+---

We extend this filtration to direct sums of F)\(V)’s, and note that by every GL(V)-equivariant map
automatically respects the filtration. We note also that taking gr(-) only affects the Sym(V')-module structure,
but not the GL-structure. In other words, if ¢ : F» — F} is an equivariant map of finite free modules, then
for the associated graded map gr(yp) : gr(F2) — gr(F1) we have ¢ = gr(¢) as GL(V)-linear maps (but not
as Sym(V')-linear maps). In the special case of the (unique up to scaling) map ¢ : Fx\(V) — F,(V), where
A/~ € HS, we have that the induced map gr(y) embeds

My (V) <= Ms(V)
if there exists § with §/y € HS, 61 = v and 6; = p; for i > 2, and it sends M, (V') to zero if no such § exists.
Example 2.1. If A = (3,1) and v = (1, 1) then the non-zero components of gr(Fy(V')) and gr(F,(V)) are:

t 1 2 3 4
gr' (Fy(V)) M} M@

Let ¢ : F5\(V) — F,(V) be as above. The only non-zero part of gr(¢y) is given by the inclusion of M3 ; into
M171, and that of M3,171 into Ml,Ll'

2.6. Filtrations in the bi-graded setting. We consider now a pair of vector spaces V7, Vo, and the associ-
ated polynomial ring Sym (V1) ® Sym(Vz2) = Sym(V; @ V). We write GL = GL(V7) x GL(V2), and call module
a GL-equivariant Sym(V;) ® Sym(V2)-module. We have in particular for A, u € P the free module
F)\(‘/l) & FM(VQ)v
which is equipped with a bi-filtration by submodules, given by
FOHFA(VA) ® Fu(Va)) = F*(FA(V1)) @ FY(F,(Va)) for s,t € N,

The associated graded components are

g (F\(1) © Fu(V2)) = gr*(Fa(VA)) @ g (FA(V2)).
As before, all module maps respect this filtration (since they are assumed to be GL-equivariant).

All our modules are naturally bi-graded by placing each irreducible GL-representation S5V ® S,Va in
bi-degree (|0[, |v|). We have a diagonal functor A that picks up the symmetric bi-degrees in each module:

A(M) = P M.
d>0
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If we apply A to the ring itself we obtain the coordinate ring of the Segre product PV; x PVs:
A(Sym(Vi) ® Sym(V2)) = €D Sym* Vi @ Sym? Va = §/I,
d>0

where S and Iy are as defined in the Introduction. We assume that |A| = |u| and obtain S/Is-modules

F/\# = A(FA(W)®FM(I/§)) :SA‘A@SMVQ@S/IQ, (2.11)
M/\# = A(M)\(Vl) & MH(VQ)) = @S)\1+d7)\2,)\37_”‘/1 ® Su1+d,u27u3,..-v2- (2.12)
d>0

Applying the diagonal functor we obtain an induced bi-filtration on F), ,, with associated graded components
g(Fy ) = Aer(B(V) @ e (Fu(R) = P S:Vi@ Sl
(T,@)EN;:;
where
N;:Z: {(7,9) EPXP:7/\0/pelHS, s=m+m+- -, t=0+605+---, and |7| = |0|}
In other words, we have a direct sum module decomposition
gr(Fr)= P Mag,
(OC,B)EN)\,#

where

Ny = {(a,ﬁ) EPXP:a/A B/ucHS and (a1 = A or By = p1) } (2.13)

Remark 2.2. As for the case of one vector space V, the following facts hold:

(1) The only submodules of M), are of the form My a.x, As,..),(u1+d,po,ps,...)» @nd they form a chain.

(2) There exists a non-zero S/Ip-linear map My , — M, g if and only if Ay > aq, pu1 > 1, \i = a4, i = B;
for ¢ > 2; in this case, the map is injective and unique up to scalar.

(3) If ¢ : F» — F} is an equivariant map of finite free S/Is-modules, then for the associated graded map
gr(yp) : gr(F2) — gr(F1) we have ¢ = gr(y) as GL-equivariant maps (but not as maps of S/Is-modules).

(4) Specializing (3) to the case when Fy = F) ,, and F = F, g, we get that gr(¢y) includes each component
M. ¢ into a corresponding M, ; whenever possible. More precisely, we have gr(¢)(M; ) C M, s if

(1,0) € My s (7,0) € Npg, T >, 61 >61, 7=, 0; =20 fori>2,

and gr(y)(M;p) = 0 if no such v, J exist.

Explicit examples of the bi-filtrations discussed above, and the corresponding induced maps, will appear in
the proof of Theorem (3.1

3. THE FIRST KOSZUL HOMOLOGY GROUPS FOR 2 X 2 MINORS

The goal of this section is to describe the zeroth and first Koszul homology groups associated with the
space W C S spanned by the 2 x 2 minors. We write Ko(W') for the Koszul complex whose i-th term is

Ki(W) = /\W@S,

and note that
H;(Ko(W)) = Torf(S, C).
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Moreover, since Is = (W) C S then

Ho(Ko(W)) = /I, = @ Sym* Vi @ Sym? 1 (3.1)
d>0

is the homogeneous coordinate ring of the Segre product PV; x PV,. We prove the following.

Theorem 3.1. Let K = H1(Ke(W)). The graded components of K are described as GL-representations by
K;=0 ford < 3,
K3 =521V1 ®8111V2 ®81,1,1V1 @ S21 V2,
Ky =S22V1®81,1,1,1Va ®S51,1,1,1V1 ® S22V ©821,1V1 ® S2.11Ve @ S2,1,1V1 @ S31Va @ S31V1 ® Sa.11 Ve,

Ki=84211V1 ®8S3-211Va®Sq-211V1 ®Sq-1,1V2 ®Sq-1,1V1 ® Sq—2,1,1V2, ford >5.

Recall from the Introduction that W = Sym? V; ® Sym? V4 is the space spanned by the 2 x 2 permanents,
and I, = (W) C S, then it follows by transpose duality from (3.1]) that

n d d
Ho(Ko(W)) = S/I> = EB/\%@/\% EB/\%@/\VZ,
d>0 =0
where the last equality follows since /\d Vo =0 for d > n = dim(Va). Moreover, from Theorem we get:
Theorem 3.2. Let K = H1(Ko(W)). We have K4 =0 for d < 3, and
K3 =S1V1 ® S3Vo @ S3Vi ® Sp1 V5,
Ky =S22V1 ®S4Va ®S4Vi @S22Vo @ S31V1 @S31Va @ S31V1 @S211Va ®S211V1 @ S3.1 V42,
Fd = 8371@3‘/1 & 8371(173‘/2 D 8371d73V1 & 8271(172‘/2 D SQJCI—ZW & 8371(173‘/2, ford >5.
In particular, since S\Va = 0 when \ has more than n parts, it follows that K4 =0 for d > n + 3.

Proof of Theorem [3.1. We write 9; for the i-th differential in Kq¢(W), so that K = ker(9;)/Im(d2). We recall
the beginning of the Lascoux minimal free resolution of S/ (see [Wey03 Section 6.1])

WS LwlesS L wles B wes s
where
W = S111V1i®Se1Va @ S21V1 ®S1.1.1 V5,
W? = S911V1®Se11Ve @ S1111V1 ®S31Ve @ S31Vi ® S1.1,1.1V%,
W3 = S311V1®S0111Ve © S2111Vi ®S311Ve @ S202Vi ® Sp92Va.

We will also need the decomposition

2
/\ W =8211V1 ®S22Va @ S21,1V1 ®S1,1,1,1V2 ®S22V1 ®Sa11Ve @ S1,1,1,1V1 ® So1,1 V5.

Since d; = 81 we have that K = Im(d)/Im(ds). Factoring 8 : A°W ® S — ker(d;) € W @ S through
52 : W' ® S — ker(81) we obtain a map ez : AW ® S — W' ® S and a linear presentation

2
(WQ@/\W>®S@>W1®S—>K—>0.
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Tensoring with S/Is over S we obtain the presentation
2 N —
ng<W2€B/\W>®S/Igm>F1:W1®S/IQ—>K—>O (3.2)

where we used that K is annihilated by I (see [Eis95, Prop. 17.14]).
In order to find the GL-decomposition of K we determine the image of ¢. We consider the filtrations
of Fi, Fy constructed in Section By Remark (3) it suffices to study the associated graded map

gr(p) : gr(F2) — gr(#1). The components of gr(F1) = gr(F(1,1,1),2,1) D F(2,1),1,1,1)) are determined by (2.13):
for the summand gr(F(; 1 1,(2,1)) we have

M1,1),21) M 11,0210 Mi11,0),2,2) M1,1,1,1),3,1)

M@o11),02,1,1) M2,1,1),2,2) M@o11,1),2,2,1) M31,1),2,2,1)
and, symmetrically, for the summand gr(F(y 1) 1,1,1)) we have

M(271),(1,1,1) M(Q,l,l),(l,l,l,l) M(Q,Q),(l,l,l,l) M(?),l),(l,l,l,l)

M@2,1,1),2,1,1) M2.2),2,1,1) Mi22.1),2,1,1,1) M@2.2.1),3,1,1)-

We are going to calculate M) , N Im(gr(y)) for each of the 16 terms M) , above. Observe that each M) ,
appears exactly once, with the exception of My 1 1) (2,1,1), therefore, by symmetry, it suffices to deal with the
first 8 cases and with the second copy M(311),(2,1,1) appearing in the last 8.

(1) M11,1),2,1) N Im(gr(ep)) = 0.
It follows from Remark (2) by inspecting the graded components of gr(Fy).
(2) M11,1),2,1,1) € Im(gr(e)).
S1,1,1,1V1®S2,1,1 V2 is part of the minimal generating set of /\2 W®S/I,. Its image is non-zero under Oy,

therefore also under the lift €z, and by degree reasons also under &. Thus My 11 1),2,1,1) € Im(gr(y))
by Remark (2).

(3) M(1,1,1,1),2,2) N Im(gr(v)) = M21.1,1),3,2)-
S1,1,1,1V1 ®S22Va does not appear in F5. On the other hand, Sg1,1,1V1 ®S32V> appears in W?2®S, and
its image in W' ® S under 3 is non-zero because S2,1,1,1V1 ® S3.2V> does not appear in W3 ®S. Note
that So1,1,1V1 ® S3 2V appears once in W' ® S, hence it avoids the kernel of Wl ® S — W' ® S/ 1.

Lyt

We deduce that the image of Sy 1,1,1V1 ®S32V2 under &3 is non-zero, and the desired conclusion follows
by Remark (2).

(4) M1,1,1),3,1) € Im(gr(p)).
S1,1,1,1V1 ® S3,1V3 is part of the minimal generating set of W2 S/I5. Its image is non-zero under Js,

1yt

and by degree reasons also under 63. Thus M1,1,0),3,1) € Im(gr(e)) by Remark (2).

(5) M3 1) 2.1.1) N Im(ex(9)) = Mz1.1) 2.1.1)-
By Remark (2) the only M, , C gr(F1) that can map to M1 1) (2,1,1) comes from the subspace
S2,1,1V1 ®S2,1,1 V> that is part of the minimal generating set of W2 S /I5. As in item we conclude
that Im(gr(e)) contains (exactly) one copy of M1 1),(2,1,1)-

(6) M2,1,1),(2,2) € Im(gr(e)) as in item @.

(7) M2,1.1,1),2,2,1) € Im(gr(¢)) as in the second part of item @)

(8) M(3,1,1),(2,2,1) € Im(gr(p)) as in the second part of item (]}

We conclude that the associated graded module of the induced filtration on K is

gr(K) = M11,1),2,1) © M2,1),01,1,1) © M2,1,1),2,1,1) ©S1,1,1,1V1 @ S22V2 © S22V1 ® 811,11 Ve.
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By (2.12)), this implies the GL-decomposition stated in the theorem. O

4. FILTRATIONS ON THE SECOND VERONESE SUBRING

We let S denote the second Veronese subring of S, with the grading given by

5P = sym?(vi Vo) = P SaVi @ SaVa.
A-2d

We can think of S® as a graded module over the (standard) graded polynomial ring R, and it follows from
Section [3] that

Torg (S®),C)g = Sym™ Vi @ Sym™ V4, (4.1)
and (see Theorem (3.1 for the description of K)
Torf(S?),C)y = Kaq.

The R-submodule of S generated by 1 is A, so it is clear that Tor{’ (A, C) = C (concentrated in degree 0).
The formula |D which describes the minimal generators of S (2) as an R-module, provides a natural
increasing filtration of S by R-submodules

A=MyC M CMyC---CS%, (4.2)

where M; is the R-submodule generated by @320 Sym?? V; ® Sym?? V.
The goal of this section is to prove the following:

Theorem 4.1. For each r > 0 and for i =0,1,2 we have that
Torf (M, /M,_1,C); =0 if j # i+
Applying transpose duality, it follows from that we have a filtration
A=MyC M, CMyC---C S, (4.3)

where M; is the R-submodule generated by @220 /\2d Vi ® /\2d V5. Unlike || the filtration 1j is finite,
and we have MLn/QJ = S 1t follows from Theorem H that for ¢ = 0,1,2 we have

TorR(M,/M,_1,C); = 0if j # i +r. (4.4)
Corollary 4.2. We have that Torlﬁ(z, C); =0 forj>|n/2] +2.

Proof. We prove by descending induction on r that TorIE(MT, C); = 0 for j > [n/2] + 2. The base case is
r = |n/2], which follows from Theorem since

Torlﬁ(S(Q),(C)j = Ky; =0 for 2j > n+ 3.
For the induction step, we have an exact sequence
++o — Tor§(M,/M,_1,C) —s Torl(M,_,,C) —s TorF(M,,C) —» ---
and the desired conclusion follows using (4.4) with ¢ = 2, and the induction hypothesis. U

We now proceed with the proof of Theorem The module M, /M,_; has space of minimal generators
given by Sym?” Vi ® Sym?” V. In higher degrees, the GL-equivariant structure is given as follows (see also
[BCV13| Remark 1.9]).
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Lemma 4.3. The GL-decomposition of M, /M,_y is given by
P ssies, (4.5)
AEMAM, 1
where My = {X € Peyen : 2A1 — || < 21}
Proof. To prove this statement, we need to check that
M, = @ S\Vi @S,V
AEM;-
The case r = 0 follows from . Since M,./M,_; is generated by Sym?" V; ® Sym?” V5, it is a quotient of
Sym?" V; @ Sym?" V, @ A.
Using Pieri’s rule, if A € Mg then
S\V ® Sym?" V = EB SuV,

I

where (1 varies over partitions in M,. It follows that M, /M,_; is a subrepresentation of . To prove the
reverse inclusion, it suffices to check that if A € M, then a highest weigh vector in Sy Vi ® Sy Vs belongs to M,
(see Section for the notation). Note that if A € M, \ M,_1 then \; —2r > Xy, 80 = (A —2r, Ao, Az, -+ )
satisfies u € My, and the corresponding highest weight vectors satisfy

dety) = x%’"l -det,, .
Since det, € A = My and x%’"l € Sym?" Vi @ Sym?" V3, it follows that dety € M,.. O

We are going to realize each M, /M,_; as the global sections of a vector bundle, and compute its syzygies
using the Kempf-Weyman geometric technique. We let X = PV; x PV,, where PV; is the projective space of
one dimensional quotients of V;. We consider the tautological exact sequence on PV},

0 —Ri — Vi®Opy, — Q —0, (4.6)

where Q; is the tautological quotient line bundle on PV; (often denoted Opy;(1)). Using |Har77, Exer-
cise 11.5.16], we get exact sequences

2 2
0— ARi — A\Vi®Opy, — R ® Q; — 0. (4.7)

We write m; : X — PV for the natural projection maps, and define n = 7} (R; ® Q1) ® 75(R2 @ Qa),
L =77(9Q1) ®7m5(Q2). Pulling back to X the two sequences in (4.7) and tensoring them together, we get an
exact sequence

0—¢—We0x —n—0,
where £ is a locally free sheaf and can also be obtained as an extension
0—& —&—&E—0

where

2 2 2
a=A\ven (/\M) and & = 7} (/\731> ®m (R2® Q2).

We will need the following consequence of Bott’s theorem [Wey03|, Corollary 4.1.9].
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Lemma 4.4. Suppose that u,v € Z>q, j,7 € Z>1, and u+v < j+ 2. We have

HI (X,£2T®/\§1 ®/\§2> =0.

Proof. Using Cauchy’s formula, we have that

A& =EPSa (S1.101) ® 75 (Sar (S11R2)) /\g2 P i (S5 (S1aR1)) @3 (Spr (Ra® Q2)) -

atu Brv
Using the projection formula and Kiinneth’s formula, it suffices to check that if the following hold
e A\ I 2v is such that Sy appears in the plethysm Sg o S; 1 for some 3 - v,
e 1+ (2u+v) is such that S, appears in the tensor product (Sy 0 S11) ® Sgr for a - u, 1+ v,
® a,bec Z>qsatisfy a + b = 7,
then H(PVy, Q2" @ S\R1) = 0 or H*(PVx, QQTJ”’ ® SuR2) = 0. Suppose otherwise, so that both groups are
non-zero. It follows from Bott’s theorem that A\, — 1 >2r4+a>2+aand up —1>2r+v+b>2-+0v+>b, so

0=IN>M+F+X>a A >a(3+a), (4.8)

2u+v=p|>pr 4+ > by > b3+ b4 v). (4.9)

We divide our analysis into three cases and show that in each case we obtain a contradiction.

Case 1: b= 0. It follows that a = j, so that j +2>u+v >v > j(5 4+ 3)/2 by , which is only possible
when j = 1, which then forces 3 > v > 2. Since Sg o S; ;1 is a quotient of S(f”l’, it follows by Pieri’s rule that
A1 < v <3, but this contradicts the inequality A, —1 > 2+ a since a = j = 1.

Case 2: a = 0. It follows that b = j, so that

. ol e
20+2) >2u+v)=QRu+tv)+v > jB+j+v)+v=3i+5"+ G+ 1)v.

It follows that 4 > j + j2 + (§ + 1)v, which implies j = 1, so that u + v < 3. Since Sy 0 Sy 1 is a quotient
of S?l and Sg is a quotient of S?ﬁ’, it follows from Pieri’s rule that p; < u + v < 3, but this contradicts the
inequality pp > b(3 +b+v) > b(3 +b) since b =j = 1.

Case 3: a,b > 1. It follows that

- o

20a+b)+4=2({+2)>2v+ 2u+v)—v > aB3+a)+bB+b+v)—v=3(a+b)+a"+b"+(b—1)v,
which implies that 4 > a + b + a? + b%, forcing a = b = 1 and equality to hold everywhere. In particular,
2v = a(3 4 a) implies v = 2, and 2u + v = b(3 + b+ v) implies u = 2. Since (4.8)—(4.9) are equalities, we get
moreover that A = (4) and p = (6) are partitions with only one part. However, every A for which Sy appears
in Sg 0 S1,1 has at least two parts, so we reached once again a contradiction. ]

Proposition 4.5. If r > 0 then M, /M,_1 = H%(X, £L* ® Sym(n)), and H (X, £?" ® Sym(n)) = 0 fori > 0.
Moreover, fori=0,1,2 we have that Tor®(M, /M, _1, C);j=0ifj#i+r, so Theorem holds.

Proof. Denote N, = H°(X, £?" ® Sym(7)). Note that since Q; is a line bundle, we have that for a partition
= d one has

Su(Ri ® Q) = Q¢ ®S,R;.
By Cauchy’s formula, one gets

£2  Sym(n) = D71 (QH @ 8,R1) @ m3 (O 9 8,R).
pkd
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Using Kiinneth’s formula, we get that

H'(X, L% @ Sym®(n)) = P ( P H PV, O @ S,R1) ® H'(PVa, Q4 @ S,ﬁz)) .
pHd \utv=t

Since |u| = d and r > 0, it follows that d + 2r > u1, so Bott’s theorem implies that the sheaves Q?”T @S, R
have vanishing higher cohomology. It follows that £2" @ Sym?(7) has vanishing higher cohomology, and

HO(X, £27 @ Sym?(n)) = @) HO(BV, Q4 ©8,R.) © HO(PVa, Q4™ ©5,Ry)
pd

Bott
= @ Sd+27‘7ul»/‘t27""/’1 ® Sd+2r7l‘17#27""/v2'
pHd

Since the partitions in M, \ M, _1 are precisely the ones of the form (d+ 2r, uy, 2, - -+ ) with |u| = d for some
d > 0, we can then apply Lemma to conclude that M, /M,_1 = N, as GL-representations.
Using [Wey03|, Theorem 5.1.2] it follows that

i+J
Tor[ (N;,C)yyiyj = H (X, /\ £® EQT) for all i, j € Z. (4.10)

For i < 2, it follows from [Har77, Exercise I1.5.16] that i ¢ has a filtration with composition factors
N & @ N &, withu+v=1i+7 <j+2, so using Lemma we get that H7 (X, AN e £2T> = 0 when

4,7 > 1. In particular, from (4.10) we get TorlR(NT,C)j =0ifj#i+rfori=0,1,2.
To conclude our proof we show that M, /M,_1 = N, as R-modules. By the previous paragraph we have

Torf(N,,C) = H(X, £*) = Sym* Vi ® Sym?" V5 and Torf(N,,C) = H*(X, L ®¢€).
To compute the latter, notice that the exact sequence 0 — &1 — & — & — 0 yields an exact sequence

0— H (X, L*" ®&) — HY (X, L7 ®¢) — H° (X, LY ©&).
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Using Kiinneth’s formula, Bott’s theorem, and Pieri’s rule we calculate

2 2
H%Kﬁwﬁﬂﬂﬂ(Kﬂ%WMw?®AW®@(AR%)
2 2
=AvieH’ <X,wIQ%T ® 75 (Q%T ® /\R2>>
) 2 2
Kurgleth/\vl ® HO (val’ Q%r) ® HO (P‘/% Q%T ® /\R2>

2
Pt </\ Vi ® Sym?” V1> ® Sor1,1V2

Pieri

= (S2r,1,1 V1 ® S2r41,1V1) ® Sar,1,1 V5,

2
H%X¢”®&%4ﬂ(&ﬂQ?®ﬁQ?®ﬁ(fwh>®ﬁ0b®Qﬁ>
2
=H° (X, it (Q%T ® /\R1> 2 75(03 @ Ra ® Qz))

2
KurglethHO <]P)V1, Q%T‘ ® /\R1> ® HO (PVQ, Q§T+1 ® Rg)

Bott,
= S2r,1,1V1 ® Sop41,1Va.

We deduce that Torf*(N,, C) is a subrepresentation of
Sor.1,1V1 @ Sor1.1Va @ S2r11V1 @ Sop41,1V2 @ Sor+11V1 @ Sop1,1Va. (4.11)
Since both M, /M,_; and N, are generated by Sym?” V; ® Sym?” Vi, there exist R-linear surjections
onv 2 F— M, /M, _q, onN: F — N,

where F' = Sym?" V; ® Sym?” V; ® R. Let H C F be the R-submodule generated by all subspaces SyV; ®S,Va
such that either A # por A\ = pu ¢ M, \ M,_;. It follows by Lemma that H C ker(yppr). On the
other hand, by we see that ker(py) C H, since (2r,1,1) € M,_;. Hence ¢, on induce an R-linear
surjection N, — M, /M,_1, which must also be injective since N, = M, /M,_; as GL-representations. ]

5. THE SUBSPACE VARIETY

Recall that W = Sym? Vi ® Sym? V5, and R = Sym(W), so that Spec(R) = W". We consider the subspace
variety Y C w given by

Y={ye W y € Sym? H ® Sym? V4! for some codimension one subspace H C V;"}.

The goal of this section is to describe the defining equations of Y.

Theorem 5.1. The vector space of minimal generators of the ideal I(Y) C R is concentrated in degree m,
and it is isomorphic as a GL-representation to

AVi® A(Vi @ Sym® V).
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The proof techniques are similar to those used in [Wey03, Chapter 7]. We consider the projective space P

of rank (m — 1) quotients of V;, and consider the affine bundle

Y = Spec,, Sym(Sym? Q ® Sym? V3),
where Q is the tautological quotient sheaf of rank m — 1 (note that this is different from , where the rank
of Q; was one). The tautological sequence on P is

0 —R—=Vi®0p — Q—0,
where R is often denoted Op(—1). It induces an exact sequence

0—R®Vi — Sym?’V; @ Op — Sym? Q — 0,
and after tensoring with Sym? V5 it gives an exact sequence
0— (R®V1)®Sym2V2 — W ® Op — Sym? Q ® Sym? Vo — 0,

which makes ) a geometric sub-bundle of the trivial bundle W' x P. Writing q : W' xP — W' for the
natural projection map, we have that ¢())) =Y (in fact, the reader can check that q|,, is birational, so it gives
a resolution of singularities of Y'). Using Bott’s theorem and the projection formula, we have that

H'(Y,0y) = @ H' (P, Sym?(Sym* Q ® Sym® V3)) = 0 for i > 0.
d>0
It follows from [Wey03, Theorem 5.1.2] that ¢.(Oy) has a minimal free R-resolution F, where
i+j

F = @Hj <P, /\(R@ Vi ® Sym? V2)> ® R(—i — j)
j

i+j
=P HE P, R) e \ (Vi@ Sym®V2) @ R(—i — j).
J
For i 4+ j > 0, we have that H7 (P, R'™) = H/(P,Op(—i — j)) is non-zero only for i = j = 0, and j = m — 1,
i+ j > m. In particular, we get that

Fy=H"'(P,R™ ® \(Vi ® Sym® V3) @ R(—m).

Since the minimal generators of Fj are the minimal generators of I(Y), and since H™ (P, R™) = A" V1,
the conclusion of Theorem [5.1] follows.

6. THE PROOF OF THEOREM

The goal of this section is to describe the proof of Theorem We let (m,n) = (dim(V1), dim(V2)), and
note that by symmetry, the cases (m,n) and (n,m) are equivalent, so without loss of generality we may
assume that m > n. In Section we use the results of [BCV13] to prove Theorem for j < 4. Based
on Corollary we deduce that the theorem is true for n < 5 in Section [6.2] The substantial part of the
argument is explained in Section , where we argue by induction on the dimension vector (m,n).

6.1. Low degree equations. It follows from transpose duality that proving Theorem for j7 < 4 (for all
m,n) is equivalent to proving Theorem for j <4 (for all m,n). Since the minors (resp. permanents) are
linearly independent, we may assume that 7 > 2. The cases j = 2,3 and 4 are discussed in Sections 2.1, 3.3,
and 3.4 (respectively) of [BCV13].
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6.2. The case n < 5. The assumption n < 5 implies that [n/2] +2 < 4, so we conclude by Corollary

that Torf!(A4,C); = 0 for j > 4.

6.3. The inductive step. We assume that m > n > 6, and suppose by induction that Theorem [1.2]is true

for every pair (m’,n’) # (m,n), with m’ < m and n’ < n (we abbreviate this as (m’,n’) < (m,n)). If we

define the functor ¥ = Ty & T3 by letting (recall the notation and conventions in Section [2.3])

Ty =SiK Sy ®Soo NSy, Ty =S4118S33®S33KSy1,1,

then the induction hypothesis gives for every Uy, Uy with (dim(U;), dim(Uz)) < (m,n) an exact sequence
f(Ul, Ug) ® ﬁ(Ul, Uz) — ﬁ(Ul, Uz) — ﬁ(Ul, Ug) — 0.

By functoriality, we can extend T, R, 2 to bi-variate functors of locally free sheaves on any variety (or scheme)
Z over C. Since exactness is a local property, it follows that

TV, V) R0, RV, Vo) — ROV, Va) — AV, Vo) — 0 (6.1)

is exact for any pair of locally-free sheaves (V1, V) with (rank Vi, rank V,) < (m,n).

Consider now vector spaces Vi, Vo with (dim(V;),dim(V2)) = (m,n), and consider Z = P the projective
space of (m — 1)-dimensional quotients of V; (as in Section [f]). We take V; = Q the tautological rank (m — 1)
quotient sheaf on P, and V5 = Vo ® Op. Since (rank Vy,rank Vo) = (m —1,n) < (m,n), is exact. We let

B = H(P,R(V1,V))

and observe that (using the notation from Section [5) B = R/I(Y) is the coordinate ring of the subspace
variety Y C W' It follows from Theorem that B has an R-module presentation

4(V1,V2) ® R — R — B, where 4(V1,V2) = A\ V1 ® A\ (Vi ® Sym® V), (6.2)
so B is defined by degree m equations in R. We let

C = H(P,A(V1, V), (6.3)

and note that since the maps in (6.1) are split as maps of Oz-modules, it follows that after taking global
sections we obtain an exact sequence

H° (P,T(V1,V2) ®0, R(OV1,V2)) — B — C — 0. (6.4)
We claim moreover that the natural multiplication map
HO (P,?(Vl, VQ)) ® H° (P,%(Vl,VQ)) — H° (P,f(vl,]@) Ko, ﬁ(vl, Vz))) (6.5)

is also surjective. To see this, it suffices by |Laz04, Example 1.8.13] to check that T(V1, Vs) and R(Vy, Vs) are
(direct sums of coherent locally free) O-regular sheaves. Since V; is resolved by the complex

0— Op(-1) — V1 ®@Op|— V1 — 0],

it follows from [Laz04, Proposition 1.8.8] that V; is O-regular, and by |Laz04, Proposition 1.8.9] the same is

true about any polynomial functor applied to V;. The same reasoning applies to Vs, which is O-regular since

it is trivial. Since tensor products of O-regular locally free sheaves are O-regular, the desired claim follows.
Combining with the surjective map , and noting that by Bott’s theorem we have

H (P,T(V1,Vs)) = (W1, Va),

we obtain an exact sequence

TV,Va) ® B— B — C — 0.
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Using the presentation of B as an R-module, we obtain a presentation of C' given by
(T(V1, Vo) @ U(V1,V2)) © R — R — C, (6.6)
which shows that B
Torf(C,C) C T(V1, Vo) & U(V1, Va). (6.7)
If m > n then we have that C = A, so yields
Torlﬁ(Z, C); =0 for j # 2,3,m.
Using the fact that m > n > [n/2] + 2 and Corollary [4.2| we conclude that Torlﬁ(ﬂ, C)m = 0, and therefore
Torf(4,C); = 0 for j > 4.
Suppose now that m = n. In this case C is only a quotient of A, and we have a short exact sequence
0—J—A—C—0,
where J is an ideal whose GL-structure is given (applying Bott’s theorem to ) by

J= P s @S,

AEMo
An#0

where My = {\ : A\ € My}. Since partitions with n parts only occur in degree > n in R, it follows that J
is generated in degree > n, so its defining relations have degree > n + 1 and thus Tor{%(J, C); =0 for j < n.
We consider the long exact sequence on Tor in degree j:

.- — Torf(J,C); — Torf(4,C); — Torl(C,C); — - --

By 1D we know that if j > 4 then TorIE(C', C); may only be non-zero for j =n > [n/2] + 2, so it doesn’t
contribute to Torf (4, C); by Corollary A similar argument applies to Torf!(J, C);, which may be non-zero
only for j > n 4 1. This proves that Torf*(4, C) j = 0 for j > 4, concluding our proof.

7. DETERMINANTAL IDEALS OF FIBER TYPE

In this final section we turn our attention to the graph of the map A introduced in (|1.1f), which is also the
blowup of P(Hom(C™,C™)) along the determinantal variety defined by Is. Observe that

2 2
Graph (Ag) C P(Hom(C™,C")) x P (Hom ( AcCm /\@">>

thus Graph (Ag) is defined by bi-homogeneous polynomials in the ring S ® R. In fact, the bi-homogeneous
coordinate ring of Graph (As) is the Rees algebra of the ideal of minors Iy C S

Rees(I2) = @) I§ = S[It] C S[t]
d>0

where ¢ denotes an indeterminate. The ring Rees([2) is the image of the S-algebra map II : S ® R — S[t]
determined by Ry = W — Wt C Sot. In this section we scale the grading of R and consider it as polynomial
ring generated in degree 2. In particular, Rees(/z) is a bi-graded C-algebra generated by Rees(I2)(1,0) =
Vi®Va =51 and Rees(Ig)(Og) = Wt C Sot.

It is natural to study the defining relations of Rees(I3). From this perspective, the algebra A, investigated
in the previous sections, is the special fiber Rees(lz) ®g C of the Rees algebra. Denoting by J = ker(II) and
I(Ximn) = ker(¥) the defining ideals of Rees(/2) and A respectively, we have that J(g 24y = I(Xm,n)q for all
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d € N. On the other hand, denoting by Syz(I2) the first syzygy module of I5, we have that Jd2) = Syz(12) 4o
for all d € N. The ideal I is said to be of fiber type if J is generated by J(g24) and J(42) for d € N. In
analogy with the case of maximal minors (see [BCV15]) we ask:

Question 7.1. Let Is be the ideal of 2 x 2 minors of a generic m x n matrix X. Is I of fiber type?

The fiber type property would reduce the problem of finding the relations of Rees(I3) to the one of finding
the first syzygies of I, solved by Lascoux, and the one of finding the relations of A, settled in Theorem
Below we observe, adapting an argument of [BCV13], that Question [7.1{reduces to matrices of size (n+2) x n,
and that the answer is affirmative for m x 3 matrices. Recall our convention that m = dim V; > n = dim V5.

Proposition 7.2. Fizn € N. If Iy is of fiber type for a generic (n+ 2) X n matriz, then it is of fiber type for
any generic m X n matriz.

Proof. Denote T'= S ® R. For each bi-degree (d,e) # (0,0) we consider the surjective map
XD =Ta0) ®Tig-1,) D T02) @ Tige-2) = Tide)

defined by x(z ® a,y ® ) = za + yB. We say that a representation SyV; ® S,Va is balanced if A = p,
unbalanced otherwise. Decompose T(qe) = Bge) © Uge), where B(g,) (resp. Ug,y) is the sum of all the
balanced (resp. unbalanced) sub-representations. Furthermore, let D = E & F where

E=Tu1,0) ®B-1,) ©T(02) @ Bge—2): F=T1,0®Uqg-1, ®T(0,2) @ Uge2)-

Notice that, since Rees(I3) is a direct sum of ideals of S, it contains no unbalanced representation, and
therefore Uiy ey C J(d,e)-

Let H C J(4,) be an irreducible representation that is part of the minimal generating set of J, i.e. such
that its image modulo (T{; 9y @ T(g,2))J is non-zero. Setting H' = x(F'), we cannot have H C H', since H is
minimal. Thus H N H' = 0, and by surjectivity of y there exists an irreducible sub-representation H” C D,
disjiont from F', mapping non-trivially to H via x. It follows that H”, and hence also H, is isomorphic
to an irreducible representation occurring in F, and hence occurring in either V3 ® Vo ® SyVi ® S)Va or
/\2V1 ® /\2Vz ® S\V1 ® S\Va, for some A\ € P. We have \,11 = 0 since H # 0, and by Pieri’s rule
H =§,V1 ®S, V3 for some p, v € P with pn13 = vp43 = 0. We conclude that the relations H C J(4 ) already
appear in the case m = n + 2, and the desired statement follows. ]

It can be verified using Macaulay2 |GS] that for a generic 5 x 3 matrix, the ideal I is of fiber type. Applying
Proposition [7.2] with n = 3 we obtain the following.

Corollary 7.3. For a generic m X 3 matriz, the ideal Is is of fiber type.
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