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Abstract. We determine explicitly the Hodge ideals for the determinant hypersurface as an intersection of
symbolic powers of determinantal ideals. We prove our results by studying the Hodge and weight filtrations on
the mixed Hodge module OX (∗Z ) of regular functions on the space X of n×n matrices, with poles along the
divisor Z of singular matrices. The composition factors for the weight filtration on OX (∗Z ) are pure Hodge
modules with underlying D-modules given by the simple GL-equivariant D-modules on X , where GL is the
natural group of symmetries, acting by row and column operations on the matrix entries. By taking advantage
of the GL-equivariance and the Cohen–Macaulay property of their associated graded, we describe explicitly the
possible Hodge filtrations on a simple GL-equivariant D-module, which are unique up to a shift determined by
the corresponding weights. For non-square matrices, OX (∗Z ) is replaced by the local cohomology modules
H•Z (X ,OX ), which turn out to be pure Hodge modules. By working out explicitly the Decomposition Theorem
for some natural resolutions of singularities of determinantal varieties, and using the results on square matrices,
we determine the weights and the Hodge filtration for these local cohomology modules.

1. Introduction

To any smooth complex variety X and reduced divisor Z ⊂ X one can associate the D-module

OX(∗Z) =
⋃
k≥0

OX(kZ), (1.1)

consisting of regular functions on X with poles along Z. When X is affine with coordinate ring S, and Z is
defined by the equation f = 0, the module OX(∗Z) is the localization Sf . The module OX(∗Z) is equipped
with the Hodge filtration F•(OX(∗Z)) [Sai90,MP19], satisfying

Fk(OX(∗Z)) ⊆ OX((k + 1)Z) for k ≥ 0, (1.2)

with equality when Z itself is smooth. In general however, the Hodge filtration is a subtle invariant measuring
the singularities of Z. Following [MP19], we note that the data of the Hodge filtration is equivalent to the
sequence of Hodge ideals of Z, determined by the equality

Fk(OX(∗Z)) = Ik(Z)⊗OX((k + 1)Z) for k ≥ 0. (1.3)

The goal of this paper is to describe explicitly the Hodge ideals of the determinant hypersurface. We let
X = Cn×n, let S = C[xi,j ] denote the coordinate ring of X , let det = det(xi,j) denote the determinant of the
generic n × n matrix, and let Z denote the determinant hypersurface consisting of matrices with vanishing
determinant. For 1 ≤ p ≤ n we let Jp denote the ideal generated by the p× p minors of (xi,j), corresponding

to the variety Zp−1 ⊂X of matrices of rank < p. We write J
(d)
p for the d-th symbolic power of Jp, consisting

of regular functions that vanish to order d along Zp−1, with the convention that J
(d)
p = S when d ≤ 0.
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Theorem 1.1. The Hodge ideals of Z are given by

Ik(Z ) =

n−1⋂
p=1

J
((n−p)·(k−1)−(n−p2 ))
p for k ≥ 0. (1.4)

It follows from (1.4) that I0(Z ) = I1(Z ) = S and I2(Z ) = Jn−1, which was established at the set-
theoretic level in [MP19, Example 20.14]. Since Z has multiplicity m = n− p+ 1 along Zp−1 = V (Jp), and

Zp−1 has codimension r = (n − p + 1)2 in X , it follows from [MP19, Theorem E] that Ik(Z ) ⊆ J
(q)
p for

q = min{n− p, (n− p+ 1) · (k − n+ p)}, whereas (1.4) implies that when k is large, the optimal value of q is
given by (n− p) · (k − 1)−

(
n−p

2

)
.

We prove our results by taking advantage of the rich symmetry coming from the action of the group GL =
GLn(C)×GLn(C) on X (via row and column operations), which preserves Z , along with all the determinantal
varieties Zp−1, p ≤ n. It follows that the Hodge ideals Ik(Z ) and the filtered pieces Fk(OX (∗Z )) are GL-
subrepresentations of OX (∗Z ). Every such subrepresentation M can be described in terms of its irreducible
decomposition, which in turn is completely determined by a subset W(M) of the set of dominant weights Zndom
(see Sections 2.2 and 2.4 for more details). We prove the following.

Theorem 1.2. For k ∈ Z we let

Upk =

{
λ ∈ Zndom : λp ≥ p− n ≥ λp+1, λp+1 + · · ·+ λn ≥ −

(
n− p+ 1

2

)
− k
}
, for 0 ≤ p ≤ n.

The generation level for the Hodge filtration on OX (∗Z ) is
(
n
2

)
. Moreover, we have

W(Fk(OX (∗Z ))) =
n⊔
p=0

Upk . (1.5)

It is interesting to compare the assertion about the generation level (see Section 4.2) in Theorem 1.2 with
[MP20, Theorem A], which for n ≥ 2 gives the upper bound dim(Z ) − α̃Z for the generation level, where
α̃Z is the minimal exponent of the singular divisor Z . Since the reduced Bernstein–Sato polynomial of Z is
(s+ 2) · · · (s+ n), we have that α̃Z = 2 and therefore dim(Z )− α̃Z = n2− 3. For n = 2 this agrees with the
level

(
n
2

)
that we determine, which is also a consequence of [Sai09, Theorem 0.7] since Z is a homogeneous

isolated singularity (the affine cone over P1×P1). For n ≥ 3 however, there is a strict inequality n2−3 >
(
n
2

)
.

The equivalence between (1.4) and (1.5) is established in Section 4.3. To prove Theorem 1.2, we analyze
the structure of OX (∗Z ) as a mixed Hodge module. For each p = 0, · · · , n we let Dp = L(Zp,X ) denote the
intersection homology module associated to Zp, and let ICHZp denote the Hodge module on X corresponding

to the trivial variation of Hodge structure on the orbit Op (see Section 2.3). Up to a Tate twist, ICHZp is the

only Hodge module with underlying D-module Dp. We write W• for the weight filtration, and grW• for the
associated graded with respect to W•, and prove the following.

Theorem 1.3. We have that grWw OX (∗Z ) = 0 if w < n2 or w > n2 + n, and

grWn2+n−pOX (∗Z ) = ICHZp

(
−
(
n− p+ 1

2

))
for p = 0, · · · , n.

To go from Theorem 1.3 to (1.5), we need to understand the Hodge filtration on each ICHZp (since Tate

twists only amount to a shift in F•). We do so in Theorem 3.1, in the more general case when X is a space
of rectangular (not necessarily square) matrices. The following is a consequence of Theorem 3.1.
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Theorem 1.4. If X ' Cn×n and F• is the Hodge filtration on the D-module Dp underlying ICHZp, then

W(Fk(Dp)) = Up
k−(n−p+1

2 )
for all k ∈ Z,

and in particular Fk(Dp) is non-zero if and only if k ≥ (n− p)2.

We reformulate the last assertion in Theorem 1.4 by saying that the Hodge filtration for ICHZp starts in

level (n− p)2 (the codimension of Zp in X ), which is in fact also the generation level. Combining this with

Theorem 1.3, we get that the Hodge filtration for grWn2+n−pOX (∗Z ) starts (and is generated) in level
(
n−p

2

)
,

which is maximized for p = 0. This explains the assertion about the generation level in Theorem 1.2. The
special case p = n in Theorem 1.4 is easy to understand: we have Dn = S, and for k ≥ 0 we have that
Unk = {λ ∈ Zndom : λn ≥ 0} is the set of all partitions with at most n parts (independently on k); this reflects
the fact that S has the trivial Hodge filtration Fk(S) = S for all k ≥ 0, and that W(S) = Unk is determined
by Cauchy’s formula (2.5).

If we consider instead non-square matrices X ' Cm×n, m > n, then the variety Z of singular matrices
is no longer a divisor. Nevertheless, the local cohomology groups H•Z (X ,OX ) replace OX (∗Z ) and have
a natural structure of (mixed) Hodge modules. We know from [Rai16, (5.1)] and [RW14, RWW14] that the
only non-zero local cohomology groups are

Dp = H
1+(n−p)·(m−n)
Z (X ,OX ) for p = 0, · · · , n− 1, (1.6)

where Dp = L(Zp,X ) as before. By Theorem 3.1, the Hodge filtration is determined by the weights of the
corresponding Hodge modules, which are given as follows.

Theorem 1.5. For each p = 0, · · · , n − 1, the local cohomology group H
1+(n−p)·(m−n)
Z (X ,OX ) is a pure

Hodge module of weight mn+ (n− p) · (m− n+ 1).

To explain the proof strategy for Theorem 1.5, and the implicit choice of Hodge structure on local coho-
mology, we introduce some notation: given a smooth variety X we write OHX = ICHX for the trivial Hodge
module on X; for a morphism f between smooth varieties we write f+ for the direct image functor on the
derived category of mixed Hodge modules (and use the same notation for the corresponding D-module direct
image functor). We let U = On denote the dense orbit of nonsingular matrices, and write f : U −→X for the
inclusion map. When X ' Cn×n we have f+OHU = OX (∗Z ), which gives the mixed Hodge module structure
that was implicit in our earlier discussion. When X ' Cm×n, m > n, we have H0(f+OHU ) = OHX , and

Hj(f+OHU ) = H1+j
Z (X ,OX ) for j > 0. (1.7)

To understand f+OHU , we factor f as a composition

U
ι−→ Y

π−→X (1.8)

where ι is an affine open immersion, π is projective birational, and Y is locally identified with a space of n×n
matrices over an n · (m − n)-dimensional base. More precisely, we consider the Grassmannian G = G(n;m)
with tautological rank n bundle Q, and let Y = AG(Q⊗Cn) denote the corresponding geometric vector bundle.
Writing Z Y = Y \U we have ι+OHU = OY (∗Z Y ), which we understand using the case of square matrices: we
have a rank stratification on Y by subvarieties Z Y

p , and the composition factors for the weight filtration on

OY (∗Z Y ) are given by DY
p = L(Z Y

p , Y ) (with the appropriate Hodge structure). The conclusion now follows
from a spectral sequence argument combined with the following explicit consequence of the Decomposition
Theorem. For a ≥ b we consider the q-binomial coefficients(

a

b

)
q

=
(1− qa) · (1− qa−1) · · · (1− qa−b+1)

(1− qb) · (1− qb−1) · · · (1− q)
,
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and make the convention that
(
a
b

)
q

= 0 if a < b.

Theorem 1.6. For each 0 ≤ p ≤ n, the D-module direct image of DY
p is given by the formal identity

∑
j∈Z
Hj(π+D

Y
p ) · qj = q−(n−p)·(m−n) ·

(
m− p
n− p

)
q2
·

p∑
i=0

Di · q−(m−n−p+i)·(p−i) ·
(
m− n
p− i

)
q2
.

Implicit in the above formula is the fact that Hj(π+D
Y
p ) is semisimple, and its decomposition as a direct

sum of copies of the modules D0, · · · , Dp is obtained by equating the coefficients in the formal identity. As
a sanity check, we consider the case when p = n and m = n + 1, when we have that DY

p = OY and π is a

semismall map with relevant strata On and On−1 [dC17, Lecture 3], [dCM09]. The q-binomials
(
m−n
p−i
)
q2

are

non-zero only for i = n and i = n− 1, and the formula in Theorem 1.6 becomes

π+OY = Dn ⊕Dn−1.

Specializing further to the case n = 1, we get that X = A2 and Y is the blow-up of X at the origin, D1 = OX

and D0 is the simple D-module supported at the origin, a familiar example of the Decomposition Theorem.

Organization. In Section 2 we recall basic notions from representation and D-module theory, and some
properties of spaces of matrices. In Section 3 we characterize the possible Hodge filtrations for a simple
equivariant D-module on m × n matrices. In Section 4 we determine the weight and Hodge filtrations on
the localization Sdet at the determinant, and deduce the description of the Hodge ideals for the determinant
hypersurface. We end with a discussion of the Hodge structure on local cohomology in Section 5.

2. Preliminaries

In this section we establish some notation and review basic facts that will be needed in the paper, regarding
spaces of matrices, affine bundles, Grassmannians and flag varieties, representations of the general linear
group, equivariant D-modules, and the Hodge filtration on an intersection cohomology D-module. We work
throughout with varieties of finite type over C. For any such variety X, we let dX denote its dimension. All
our D-modules are left D-modules. Tensor products are considered over C unless otherwise stated.

2.1. Spaces of matrices, conormal varieties. Consider positive integers m ≥ n and complex vector spaces
V1, V2, dim(V1) = m, dim(V2) = n. We write S = Sym(V1 ⊗ V2) for the symmetric algebra of V1 ⊗ V2, and let
X = Spec(S) denote the corresponding affine space, whose C-points are parametrized by V ∨1 ⊗ V ∨2 , where
V ∨ denotes the dual of a vector space V . A choice of bases for V1, V2 induces identifications S ' C[xi,j ] and
X ' Cm×n (the space of m×n matrices). We write GL(V ) for the group of invertible linear transformations
of a vector space V , and let GL = GL(V1) × GL(V2). There is a natural GL-action on X , with orbits Op
consisting of matrices of rank p, p = 0, · · · , n. We write Zp = Op for the corresponding orbit closures. If we
let Jp ⊆ S denote the ideal generated by the p × p minors of the matrix (xi,j) (which does not depend on
the choice of bases in V1, V2), then the defining ideal of Zp is Jp+1. We write dp (resp. cp) for the dimension
(resp. codimension) of Zp (in X ), which are computed by

dp = p · (m+ n− p) and cp = (m− p) · (n− p). (2.1)

We let S′ = Sym(V ∨1 ⊗ V ∨2 ) and X ′ = Spec(S′), and define O′p, Z ′
p , J ′p in analogy to the previous

paragraph. A choice of basis for V1, V2 determines dual bases on V ∨1 , V
∨

2 , and an identification S′ ' C[yi,j ].
The cotangent space T ∗X is naturally identified with X ×X ′ = Spec(A), where A = S ⊗ S′ . We write



HODGE IDEALS FOR THE DETERMINANT HYPERSURFACE 5

π, π′ for the projections from T ∗X to the two factors. We write Cp for the conormal variety of Zp, which is
the closure in T ∗X of the conormal bundle to Op. As a set, it consists of (see [Str82])

Cp = {(x, x′) ∈ Zp ×Z ′
n−p : xx′ = 0, x′x = 0}, (2.2)

where xx′ and x′x denote matrix multiplications, or in more invariant terms, are defined by the contraction
maps from V ∨1 ⊗ V ∨2 ⊗ V1 ⊗ V2 to V ∨1 ⊗ V1 and V ∨2 ⊗ V2, induced by the natural pairings V ∨i ⊗ Vi → C.

It follows from (2.2) that π(Cp) = Zp and π′(Cp) = Z ′
n−p. Therefore, if we let I(Cp) ⊆ A denote the

defining ideal of Cp, and if we think of S, S′ as subrings of A in the natural way, then

I(Cp) ∩ S = Jp+1 and I(Cp) ∩ S′ = J ′n−p+1. (2.3)

2.2. Representations of the general linear group. For a vector space V ' CN we have GL(V ) ' GLN (C)
and the irreducible finite dimensional GL(V )-representations are classified by the set of dominant weights

ZNdom = {λ ∈ ZN : λ1 ≥ λ2 ≥ · · · ≥ λN}.

We write SλV for the irreducible representation with highest weight λ ∈ ZNdom, and have for instance

SλV = Symd V when λ = (d, 0N−1), d ≥ 0, and SλV =
r∧
V when λ = (1r, 0N−r), 0 ≤ r ≤ N.

Taking duals, we obtain isomorphisms

Sλ(V ∨) ' (SλV )∨ ' Sλ∨V, where λ∨ = (−λN ,−λN−1, · · · ,−λ1). (2.4)

When λN ≥ 0 we say that λ is a partition, which we typically write by omitting any trailing zeros. We write
PN = {λ ∈ ZNdom : λN ≥ 0} for the set of partitions with at most N parts, and think of PN as a subset of
PN+1 by setting λN+1 = 0 for λ ∈ PN . With these conventions, we have Pn ⊆ Pm for m ≥ n, and if V1, V2 are
as in Section 2.1, then by Cauchy’s formula [Wey03, Corollary 2.3.3] we get a decomposition into irreducible
GL-representations

S = Sym(V1 ⊗ V2) =
⊕
λ∈Pn

SλV1 ⊗ SλV2. (2.5)

The component
∧p V1 ⊗

∧p V2 in (2.5) occurs for λ = (1p) and corresponds to the linear span of the p × p
minors of (xi,j), the generators of the ideal Jp. Moreover, we have that

SλV1 ⊗ SλV2 ⊂ Jp ⇐⇒ λp ≥ 1. (2.6)

2.3. Hodge filtration on an IC module. In this section X is a smooth variety and Z ⊆ X is an irreducible
closed subvariety. We write L(Z,X) for the intersection cohomology (simple) D-module corresponding to the
trivial local system on the regular part Zreg of Z [HTT08, Remark 7.2.10]. We write ICHZ for the Hodge
module on X corresponding to the trivial variation of Hodge structure on Zreg, so that ICHZ is pure of weight
dZ [HTT08, Section 8.3.3]. When Z = X we have L(X,X) = OX and we write OHX instead of ICHX . Every
Hodge module on X with underlying D-module L(Z,X) is obtained by applying a Tate twist to the trivial
variation of Hodge structure: we write ICHZ (k) for the resulting Hodge module, which is pure of weight
dZ − 2k.

Lemma 2.1. The Hodge filtration F• for ICHZ (k) starts in level dX − dZ + k, that is,

Fp(L(Z,X)) = 0 for p < dX − dZ + k, FdX−dZ+k(L(Z,X)) 6= 0.
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Proof. Since the Tate twist (k) replaces F• by F•−k, it suffices to consider the case k = 0. Suppose first that
Z = X. The Hodge filtration for OHX is given by Fp(OX) = 0 for p < 0 and Fp(OX) = OX for p ≥ 0, so the
conclusion follows. Suppose next that Z is smooth, so that ICHZ = i+OHZ , where i : Z ↪→ X is the inclusion.
The conclusion now follows from the description of the filtration on the direct image in [HTT08, Section 8.3.3]
(we have Fq(DX←Z) 6= 0 if and only if q ≥ 0, and Fp−q+dZ−dX (OZ) 6= 0 if and only if p− q + dZ − dX ≥ 0).

Finally, consider the general case when Z ⊆ X is an irreducible subvariety, and let U ⊂ X be an open
subset such that U ∩ Z = Zreg. By the previous discussion, we have Fp(L(Zreg, U)) 6= 0 if and only if
p ≥ dU − dZreg = dX − dZ . Since Fp(L(Zreg, U)) = Fp(L(Z,X))|U , this implies that Fp(L(Z,X)) 6= 0 for
p ≥ dX − dZ . If Fp(L(Z,X)) 6= 0 for some p < dX − dZ , then Fp(L(Z,X)) has support contained in the
proper closed subset Zsing = Z \ Zreg of Z, and therefore the local cohomology module H0

Zsing
(L(Z,X)) is a

proper D-submodule of the simple D-module L(Z,X), a contradiction. �

2.4. GL-equivariant D-modules on Cm×n. We let X ' Cm×n as in Section 2.1, and consider the category
modGL(DX ) of GL-equivariant (holonomic) coherent D-modules on X . The simple objects in modGL(DX )
are the D-modules Dp = L(Zp,X ), p = 0, · · · , n. Their GL-structure is given by [Rai16, Section 5]

Dp =
⊕
λ∈W p

Sλ(p)V1 ⊗ SλV2, (2.7)

where λ(p) = (λ1, · · · , λp, (p− n)m−n, λp+1 + (m− n), · · · , λn + (m− n)), and

W p = {λ ∈ Zndom : λp ≥ p− n, λp+1 ≤ p−m}, for p = 0, · · · , n. (2.8)

We note that in the special case p = n we have Dn = S, Wn = Pn, and (2.7) reduces to Cauchy’s formula.
As explained in [LW19, Theorem 5.4], the category modGL(DX ) is semisimple when m 6= n, and it is an

explicit quiver category for m = n. In the case when m = n, there exists a unique non-trivial extension of
Dp by Dp+1, which is constructed as follows. We write det for any non-zero generator of the 1-dimensional
representation

∧n V1 ⊗
∧n V2 ⊂ S. After choosing basis on V1, V2 as before, det can be identified with the

determinant of the matrix of variables (xi,j). The localization Sdet is an element of modGL(DX ), and admits
a filtration (see [Rai16, Theorem 1.1])

0 ( S ( 〈det−1〉D ( · · · ( 〈det−n〉D = Sdet, (2.9)

with associated composition factors D0, · · · , Dn, where Dp ' 〈detp−n〉D/〈detp−n+1〉D for 0 ≤ p < n, Dn ' S.

The non-trivial extension of Dp by Dp+1 arises as the quotient 〈detp−n〉D/〈detp−n+2〉D for 0 ≤ p ≤ n− 2, and

as 〈det−1〉D for p = n− 1. The filtration (2.9) completely describes the lattice of submodules of Sdet.
We notice also that (in the case m = n) we have

Sdet =
⊕

λ∈Zndom

SλCn ⊗ SλCn. (2.10)

The sets W 0, · · · ,Wn in (2.8) form a partition of Zndom, reflecting the fact that as a GL-representation, Sdet is
isomorphic to the direct sum D0⊕· · ·⊕Dn. It follows from (2.10) that every GL-subrepresentation M ⊆ Sdet

is uniquely determined by a subset of Zndom, which we denote W(M). Moreover, if M is an S-submodule of
Sdet then we have the implication

if λ ∈W(M) and µ ≥ λ then µ ∈W(M). (2.11)

This property is not satisfied by W(Dp) = W p unless p = n, but it is satisfied by W(Dn ⊕ · · · ⊕Dp) = {λ ∈
Zndom : λp ≥ p− n}, since it describes the underlying GL-representation of 〈detp−n〉D.
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2.5. Affine bundles, Grassmannians, flag varieties. For a coherent locally free sheaf E on a variety B,
we consider the geometric affine bundle associated to E to be

AB(E) = SpecOB
Sym(E), where Sym(E) = OB ⊕ E ⊕ Sym2 E ⊕ · · ·

Any surjection E � F induces a closed immersion AB(F) ↪→ AB(E). Our main example of affine bundles is

XB(E1, E2) = AB(E1 ⊗ E2), where rank(Ei) = ri,

which is locally isomorphic to a space of r1 × r2 matrices over the base B. It then has a natural rank
stratification, and we let ZB,p(E1, E2) ⊆ XB(E1, E2) denote the loci of rank ≤ p matrices. The special case
B = Spec(C) and Ei = Vi recovers our earlier definition of X from Section 2.1.

We write G(p;V ) for the Grassmannian parametrizing p-dimensional quotients of a vector space V , and
write G(p;N) for G(p;CN ). We consider the tautological exact sequence on G(p;V )

0 −→ RN−p −→ V ⊗OG(p;V ) −→ Qp −→ 0

where N = dim(V ), rank(RN−p) = N − p, rank(Qp) = p. We will also consider 2-step partial flag varieties
F(n, p;V ) for n > p, and write Qn and Qp for the corresponding tautological quotient sheaves. We note that
F(n, p;V ) can be interpreted as a relative Grassmannian in two ways: parametrizing rank p quotients of the
sheaf Qn on G(n;V ), in which case we get a G(p, n)-bundle over G(n;V ); or, as parametrizing rank (n − p)
quotients of the sheaf RN−p on G(p;V ), in which case we get a G(n − p;N − p)-bundle on G(p;V ). These
two perspectives will be important in Section 5.

3. Hodge filtrations on the simple modules Dp

The goal of this section is to characterize the possible Hodge filtrations on a Hodge module whose underlying
D-module is Dp. We recall the GL-structure of Dp given in (2.7), and single out the weight

δp = ((p− n)p, (p−m)n−p) ∈W p, (3.1)

noting that δp(p) = ((p− n)m). Given a GL-subrepresentation N ⊆ Dp, we define

W(N) = {λ ∈ Zndom : Sλ(p)V1 ⊗ SλV2 ⊆ N},
and note that W(N) completely identifies N . We also recall the (co)dimension of Zp in X from (2.1). It
follows from (2.8) that if λ ∈W p then

λp+1 + · · ·+ λn ≤ (n− p) · (p−m) = −cp.
To state the main result of this section, we consider the partitioning of W p as

W p =
⊔
d≥0

W p
d , where W p

d = {λ ∈W p : λp+1 + · · ·+ λn = −d− cp}. (3.2)

Using the natural partial order on Zn (α ≥ β if and only if αi ≥ βi for all i), we observe that W p
d contains

finitely many minimal elements with respect to this order, indexed by partitions µ ∈ Pn−p of size |µ| = d.
More precisely, these minimal elements are (using the notation in (2.4))

λp,µ = δp + µ∨ = ((p− n)p, p−m− µn−p, · · · , p−m− µ1). (3.3)

Theorem 3.1. Suppose that M is a Hodge module with underlying D-module Dp, and write F• for the Hodge
filtration on Dp, and gr• for the associated graded module with respect to F•.

(a) There exists (a unique) l0 ∈ Z such that W(grl0(Dp)) contains δp.
(b) We have Fl(Dp) = 0 for l < l0 and W(grl(Dp)) = W p

l−l0 for l ≥ l0.

(c) M is a pure Hodge module of weight mn+ cp − 2l0.
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Proof. By GL-equivariance, the filtered pieces Fl(Dp) are GL-representations. Since F• is a good filtration,
it is in particular exhaustive, and therefore M = gr•(Dp) is isomorphic to Dp as a GL-representation. Since
it is a multiplicity free representation and δp ∈ W p, it follows that there exists a unique index l0 such that
δp ∈W(grl0(Dp)), proving (a).

For (b), we let A = S ⊗ S′ ' S[yi,j ] denote the coordinate ring of the cotangent bundle T ∗X , as in
Section 2.1. It is a graded S-algebra with S placed in degree 0, and deg(yi,j) = 1. The associated graded
M = gr•(Dp) is a graded A-module, with Ml = grl(Dp) for all l ∈ Z. By [Rai16, Remark 1.5], the support
of M (which is the characteristic variety of Dp) is irreducible (equal to the conormal variety Cp). By [Sai88,
Lemme 5.1.13], M is a Cohen–Macaulay module, which implies that the set-theoretic support of any nonzero
m ∈M is precisely equal to Cp. Using (2.3), it follows that

AnnA(m) ∩ S ⊆ Jp+1 and AnnA(m) ∩ S′ ⊆ J ′n−p+1. (3.4)

Fix a non-zero element m0 ∈ Sδp(p)V1 ⊗ SδpV2 ⊆ Ml0 , consider a partition µ ∈ Pn−p with |µ| = d for
some d ≥ 0, and choose any non-zero element f ′µ ∈ SµV ∨1 ⊗ SµV ∨2 ⊆ S′ (where the inclusion comes from the
decomposition of S′ analogous to (2.5)). The analogue of (2.6) for S′ implies that f ′µ 6∈ J ′n−p+1, and using

(3.4) we get that the element mµ := f ′µ ·m0 is non-zero. Moreover, since f ′µ ∈ Ad, we have that mµ ∈Ml0+d.
Since Sδp(p)V1 is one-dimensional, we have using (2.4) that

SµV ∨1 ⊗ Sδp(p)V1 = Sδp(p)+µ∨V1 = Sλp,µ(p)V1,

and therefore mµ ∈ Sλp,µ(p)V1 ⊗ Sλp,µV2, showing that λp,µ ∈ W(Ml0+d). Writing l = l0 + d, we conclude

that all the minimal elements of W p
l−l0 belong to W(Ml) = W(grl(Dp)). Since M and Dp are isomorphic

as GL-representations, and since the sets W p
d partition W p = W(M), it suffices to verify the inclusions

W p
l−l0 ⊆ W(Ml) for all l ≥ l0 in order to conclude (b). To that end, we prove by induction on d ≥ 0 that

W p
d ⊆W(Ml0+d).
Consider first the case d = 0 and let λ ∈ W p

0 , so that λp+1 = · · · = λn = p−m. We can write λ = δp + γ,
where γ ∈ Pp. We choose any non-zero element fγ ∈ SγV1 ⊗ SγV2 ⊂ S, and note that fγ 6∈ Jp+1 by (2.6).
Using (3.4), we get that the element mγ

0 := fγ ·m0 is non-zero, and belongs to Ml0 since deg(fγ) = 0. As
before we have

SγV1 ⊗ Sδp(p)V1 = Sδp(p)+γV1 = Sλ(p)V1,

hence mγ
0 ∈ Sλ(p)V1 ⊗ SλV2, proving that λ ∈W(Ml0) and concluding the base case of the induction.

For the inductive step, suppose that d > 0 and let λ ∈W p
d . We can write λ = λp,µ + γ for some µ ∈ Pn−p,

|µ| = d, and γ ∈ Pp. We choose fγ as in the previous paragraph, and consider the element mγ
µ := fγ ·mµ 6= 0

in Ml0+d. By the Littlewood–Richardson rule, we have that

SγV2 ⊗ Sλp,µV2 = SλV2 ⊕ L,

where the representation L is a direct sum of copies of SβV2 with β ≥ λp,µ and

βp+1 + · · ·+ βn > −d− cp.

It follows that for any such β we either have β 6∈W p, or β ∈W p
d′ for some d′ < d. By induction, we know that

W p
d′ ⊆ W(Ml0+d′), forcing mγ

µ to be entirely contained in the component Sλ(p)V1 ⊗ SλV2 of M . This shows
that λ ∈W(Ml0+d), concluding the induction step.

To prove (c), we note that by the discussion in Section 2.3 we have M = ICHZp(k0) for some k0 ∈ Z.

Combining the conclusion of (b) with Lemma 2.1 we get that the Hodge filtration starts in level l0 = cp + k0.
Moreover, M is pure of weight dp − 2k0 = dp + 2cp − 2l0 = mn+ cp − 2l0, as desired. �
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4. The weight filtration and Hodge ideals for the determinant hypersurface

In this section X ' Cn×n and Z = Zn−1 ⊂X is the determinant hypersurface. We consider OX (∗Z ) '
Sdet as a mixed Hodge module, with a Hodge filtration F• and a weight filtration W•. We write grF• and grW•
for the corresponding associated graded modules. The main result of this section is the following.

Theorem 4.1. We have that grWw OX (∗Z ) = 0 if w < n2 or w > n2 + n, and

grWn2+n−pOX (∗Z ) = ICHZp

(
−
(
n− p+ 1

2

))
for p = 0, · · · , n.

Combined with Theorem 3.1, this result determines the Hodge filtration on OX (∗Z ), and with that the
Hodge ideals Ik(Z ). We explain the details in Section 4.2.

4.1. The weight filtration on OX (∗Z ). The goal of this section is to explain the proof of Theorem 1.3.
We write Sdet or Dp when we refer to D-modules, and OX (∗Z ) or ICHZp(k) when we want to keep track of

the (mixed) Hodge module structure.
Since distinct D-module composition factors of Sdet have distinct support, it follows from the decomposition

by strict support of pure Hodge modules [HTT08, Section 8.3.3(p4)] that grWw (Sdet) is a direct sum of simple
D-modules for each w ∈ Z. Since the filtration (2.9) completely characterizes the D-submodule structure of
Sdet, it follows that the only subquotients of Sdet that are direct sums of simple modules are the successive
quotients in the filtration (2.9), and hence they are simple. It follows that we can find w0 > w1 > · · · > wn
such that

grWwp(Sdet) = Dp for p = 0, · · · , n,

and grWw (Sdet) = 0 if w 6∈ {w0, · · · , wn}. At the level of Hodge modules, we have

grWwp OX (∗Z ) = ICHZp(kp) for p = 0, · · · , n,

where wp = dp−2kp by the discussion in Section 2.3. Since the restriction of OX (∗Z ) to the dense orbit is OHOn
of weight n2, we obtain wn = n2 and kn = 0. To prove Theorem 1.3, it suffices to check that wp = n2 + n− p
for p = 0, · · · , n− 1, since then it follows that

kp =
dp − wp

2
=
p · (2n− p)− n2 − n+ p

2
= −

(
n− p+ 1

2

)
, (4.1)

as desired. Moreover, since the weights wi are strictly decreasing, it is enough to check that wp − wp+1 ≤ 1
for p = 0, · · · , n− 1, which we do next.

Since maps in the category of mixed Hodge modules are strict with respect to the Hodge filtration, it follows
that for each r ∈ Z, the weight filtration on Sdet determines a filtration by S-submodules on Fr(Sdet), with
composition factors Fr(Dp) for p = 0, · · · , n. As GL-representations, we get a direct sum decomposition

Fr(Sdet) = Fr(D0)⊕ Fr(D1)⊕ · · · ⊕ Fr(Dn). (4.2)

We let lp be the starting level for the Hodge filtration on Dp, and note that by Theorem 3.1(c) we have

wp = n2 + (n− p)2 − 2lp (4.3)

It follows from (4.2) and Theorem 3.1 that δp = ((p − n)n) ∈ W(Flp(Dp)) ⊆ W(Flp(Sdet)). Suppose that

0 ≤ p ≤ n− 1. Using (2.11), we obtain δp + (1p+1) ∈W(Flp(Sdet)). Notice that

δp + (1p+1)
(3.3)
= λp+1,(1n−p−1)

(3.2)
∈ W p+1

n−p−1 = W(grlp+1+n−p−1(Dp+1)), (4.4)
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where the last equality follows from Theorem 3.1(b). Since δp+(1p+1) ∈W(Flp(Sdet))∩W p+1, it follows from

(4.2) that δp + (1p+1) ∈W(Flp(Dp+1)). Combining this with (4.4), we obtain the inequality

lp+1 + n− p− 1 ≤ lp,

which is equivalent via (4.3) to wp ≤ wp+1 + 1, as desired.

Remark 4.2. It was pointed to us by a referee that Theorem 1.3 can be verified using a microlocal approach
based on [Gyo97]. Indeed, if we let Λp denote the conormal variety to the orbit of rank p matrices, then
[Kas03, Example 9.27] computes the corresponding microlocal b-function for the determinant hypersurface as
bΛp(s) = (s+ 1)(s+ 2) · · · (s+ n− p). By [Rai16], Λp is the characteristic variety of Dp, and each Dp appears
with multiplicity one as a D-module composition factor of OX (∗Z ). It follows from [Gyo97, Equation 4.7(6)]
that Dp appears as a composition factor of grWn2+j OX (∗Z ) if and only bΛp(s) has exactly j integer roots,

that is, if and only if j = n − p. This shows that grWn2+n−pOX (∗Z ) agrees with ICHZp up to a Tate twist,

which is then computed as in (4.1) using Theorem 3.1.

4.2. The Hodge filtration on OX (∗Z ). In this section we explain the proof of Theorem 1.2. In light of
(4.2), in order to prove (1.5) it is enough to check that W(Fk(Dp)) = Upk , which in turn reduces to showing

that W(grFk (Dp)) = Upk \ U
p
k−1. Notice that

Upk \ U
p
k−1 =

{
λ ∈W p : λp+1 + · · ·+ λn = −

(
n− p+ 1

2

)
− k
}

=

{
∅ if k <

(
n−p

2

)
W p
d if d = k −

(
n−p

2

)
≥ 0.

(4.5)

It follows from (4.3) and the fact that wp = n2+n−p that the Hodge filtration on Dp starts in level lp =
(
n−p

2

)
.

Moreover, using Theorem 3.1(b) we have that W(grFk (Dp)) = W p
k−lp for k ≥ lp, which by (4.5) is equal to

Upk \ U
p
k−1, as desired.

We now discuss the generation level of the Hodge filtration on OX (∗Z ). Given a filtered D-module (M,F•),
we say that the filtration F• is generated in level q if

F`(D) · Fq(M) = Fq+`(M) for all ` ≥ 0,

where F•(D) denotes the order filtration on D. The generation level of (M,F•) is defined to be the minimal q
such that F• is generated in level q.

Since D0 is a quotient of Sdet, and the Hodge filtration on D0 starts in level
(
n
2

)
, it follows that the

generation level for the Hodge filtration on Sdet is at least
(
n
2

)
. To prove the equality, it suffices to check that

grF• (Sdet) is a graded A-module generated in degree ≤
(
n
2

)
. The weight filtration on Sdet induces a filtration

on grF• (Sdet) by graded A-submodules, with composition factors grF• (Dp), so it suffices to check that the latter
are generated in degree ≤

(
n
2

)
. The proof of Theorem 3.1(b) shows that grF• (Dp) is generated as an A-module

by the (1-dimensional) isotypic component SδpV1 ⊗ SδpV2 which appears in degree lp =
(
n−p

2

)
≤
(
n
2

)
.

Remark 4.3. It is not hard to deduce from the preceding arguments that grF• (Dp) is isomorphic to the
coordinate ring of the conormal variety Cp (with an appropriate degree shift, and a twist by a 1-dimensional
GL-representation).

4.3. Symbolic powers and the Hodge ideals of the determinant hypersurface. In this section we
prove Theorem 1.1, by showing that (1.5) implies (1.4). For d ≥ 0 we have by [dCEP80, Section 7] that

W(J (d)
p ) = {µ ∈ Pn : µp + · · ·+ µn ≥ d}.
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By adding the redundant term p = n in (1.4), we can reformulate the conclusion of Theorem 1.1 as

µ ∈W(Ik(Z ))⇐⇒ µp + · · ·+ µn ≥ (n− p) · (k − 1)−
(
n− p

2

)
for 1 ≤ p ≤ n.

Since OX ((k+1)Z ) is the free S-module generated by det−k−1, it follows that after letting λ = µ− ((k+1)n)
and using (1.3), we can rewrite the above equivalence, after manipulations and setting s = p− 1, as

λ ∈W(Fk(Sdet))⇐⇒ λs+1 + · · ·+ λn ≥ −
(
n− s+ 1

2

)
− k, for all 0 ≤ s ≤ n− 1. (4.6)

Since the sets W p in (2.8) partition Zndom (when m = n), it suffices to prove (4.6) under the hypothesis
that λ ∈ W p for some fixed p. We note that the left hand side is then equivalent via (1.5) to the condition
λ ∈ Upk . If p = n then λ ∈ Pn is a partition, and both sides of (4.6) are true. We may therefore assume that
0 ≤ p ≤ n− 1. The implication “⇐=” follows from the definition of the set Upk by taking s = p.

To prove “=⇒” we consider any λ ∈ Upk and note that the inequality in (4.6) is satisfied for s = p. If s < p
then since λs+1, · · · , λp−1 ≥ λp ≥ p− n we obtain

λs+1 + · · ·+ λn ≥ (p− s) · λp + λp+1 + · · ·+ λn ≥ (p− s) · (p− n)−
(
n− p+ 1

2

)
− k ≥ −

(
n− s+ 1

2

)
− k,

so the inequality in (4.6) holds for s < p. If s > p then we obtain using p− n ≥ λp+1 ≥ · · · ≥ λs that

λs+1 + · · ·+λn = λp+1 + · · ·+λn−(λp+1 + · · ·+λs) ≥ −
(
n− p+ 1

2

)
−k−(s−p) ·(p−n) ≥ −

(
n− s+ 1

2

)
−k,

so the inequality in (4.6) also holds for s > p, concluding the proof.

5. Hodge module structure for local cohomology with support in maximal minors

We let X = A(V1 ⊗ V2), where dim(V1) = m > n = dim(V2), and use the notation in Section 2. As in the
Introduction, we write f+ for both the D-module and Hodge module direct image along some map f . The
goal of this section is to prove the following.

Theorem 5.1. Let f : U −→X denote the inclusion of the dense orbit U = On into X . We have

Hj(f+OHU ) =

{
ICHZp(k

′
p) if j = (n− p) · (m− n), k′p = −

(
n−p+1

2

)
− (n− p) · (m− n),

0 otherwise,

and H(n−p)·(m−n)(f+OHU ) is pure of weight mn+ (n− p) · (m− n+ 1) for p = 0, · · · , n.

Writing Z = Zn−1 for the complement of U in X and using the standard identification (1.7) with local
cohomology, together with (1.6), it follows that Hj(f+OHU ) is non-zero only for j = (n− p) · (m−n), in which

case its underlying D-module is Dp. It follows that H(n−p)·(m−n)(f+OHU ) is equal to ICHZp up to a Tate twist,

and the content of Theorem 5.1 is the determination of the constants k′p. This is equivalent to finding the

weights w′p of the Hodge modules ICHZp(k
′
p), because of the identity w′p = dp− 2k′p (see Section 2.3 and (2.1)).

We note that Theorem 1.5 is an immediate consequence of Theorem 5.1, in light of the identification (1.7).
As explained in the Introduction, our strategy to prove Theorem 5.1 proceeds as follows: we factor f as in

(1.8), and understand ι+OHU using the information for square matrices developed in Section 4; we then study
π+ using the Decomposition Theorem, as explained in Sections 5.1 and 5.2. Based on these preliminaries, the
completion of the proof of Theorem 5.1 is explained in Section 5.3.
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5.1. Decomposition theorem for some standard resolutions of determinantal varieties. For p ≤ n
we consider the Grassmannian Gp = G(p;V1) of p-dimensional quotients of V1 (see Section 2.5) and let

Yp = AGp(Qp ⊗ V2)
πp−→ A(V1 ⊗ V2) = X (5.1)

denote one of the standard resolutions of singularities of Zp (see for instance [Wey03, Proposition 6.1.1(a)]).
The map πp is the composition of the closed immersion AGp(Qp⊗V2) ↪→ AGp(V1⊗V2) induced by the tautolog-
ical quotient map V1⊗OGp � Qp, with the projection AGp(V1⊗V2) ' Gp×X −→X . Since πp is projective,
it follows from the Decomposition Theorem of [BBD82, dCM09] that the D-module direct image of OYp is a

complex in the derived category whose cohomology Hj(πp+OYp) is semisimple for all j. Since the map πp is
GL-equivariant, the summands will be simple GL-equivariant D-modules [BL94, Section 5.3]. The relevant
multiplicities are computed by the following (see the discussion after Theorem 1.6 for the interpretation of
the formula below).

Theorem 5.2. The D-module direct image of OYp is given by the formal identity∑
j∈Z
Hj(πp+OYp) · qj =

p∑
i=0

Di · q−(m−n−p+i)·(p−i) ·
(
m− n
p− i

)
q2
.

Proof. Using the Riemann–Hilbert correspondence, we replace the D-modules in Theorem 5.2 with the corre-
sponding perverse sheaves: OYp with IC•Yp = CYp [dYp ], and Di with IC•Zi . We write fi(q) ∈ Z[q, q−1] for the

Laurent polynomials that encode the Decomposition Theorem for IC•Yp :

Rπp∗IC
•
Yp =

p∑
i=0

IC•Zi · fi(q). (5.2)

We determine fi(q) by considering stalk cohomology in (5.2), as is done for instance in the proof of [dCMM18,
Theorem 6.1]. We consider any point xk ∈ Ok and compute the stalk cohomology on both sides of (5.2): since

the fiber π−1
p (xk) is isomorphic to the Grassmannian G(p− k;m− k), whose Poincaré polynomial is

(
m−k
p−k
)
q2

,

we get that the cohomology on the left is encoded by the Laurent polynomial

q−dYp ·
(
m− k
p− k

)
q2

= q−p·(m+n−p) ·
(
m− k
p− k

)
q2
.

The stalk cohomology of IC•Zi,xk is computed by a Kazhdan–Lusztig polynomial (see [HTT08, Theorem 12.2.5]

for the appropriate grading conventions): this is because of the identification of X with the opposite dense
Schubert cell in the Grassmannian G(n;m + n), under which the subvarieties Zp arise as intersections with
Schubert varieties indexed by certain Grassmannian permutations [LR08, Section 5.2]. The corresponding
Kazhdan–Lusztig polynomials are of parabolic type, computed by q-binomial coefficients [LS81, Lemme 10.1].
The conclusion of this discussion is summarized by the identity∑

j∈Z
hj(IC•Zi,xk) · qj = q−dZi ·

(
n− k
i− k

)
q2

for i ≥ k.

Using the fact that dYp − dZi = (p − i) · (m + n − p − i), it follows from (5.2) that for each k = 0, · · · , p we
have an identity (

m− k
p− k

)
q2

=

p∑
i=k

fi(q) · q(p−i)·(m+n−p−i) ·
(
n− k
i− k

)
q2
.
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By plugging in k = p, p− 1, · · · , 0 in this order, the polynomials fi(q) are uniquely determined by induction.

The conclusion of Theorem 5.2 amounts to showing that fi(q) = q−(m−n−p+i)·(p−i) ·
(
m−n
p−i
)
q2

, which in turn is

equivalent to verifying the q-binomial identities(
m− k
p− k

)
q2

=

p∑
i=k

q2(p−i)·(n−i) ·
(
m− n
p− i

)
q2
·
(
n− k
i− k

)
q2
, for all 0 ≤ k ≤ p.

Writing a = m− n, b = n− k, c = p− k, j = p− i, the above identities become(
a+ b

c

)
q

=
c∑
j=0

qj·(b+c−j) ·
(
a

j

)
q

·
(

b

c− j

)
q

. (5.3)

We derive (5.3) following [GR04, Chapter 1]. We have using [GR04, Exercise 1.2(vi)] that

(z; q)n := (1− z) · (1− zq) · · · (1− zqn−1) =

n∑
j=0

(
n

j

)
q

· (−z)q · q(
k
2),

We compute the coefficient of zc on both sides of the identity (−z; q)a+b = (−zqb; q)a · (−z; q)b and deduce(
a+ b

c

)
q

· q(
c
2) =

c∑
j=0

(
a

j

)
q

· qbj · q(
j
2) ·
(

b

c− j

)
q

· q(
c−j
2 ).

Since bj +
(
j
2

)
+
(
c−j

2

)
−
(
c
2

)
= j · (b− c+ j), we obtain (5.3) after dividing by q(

c
2). �

5.2. Decomposition theorem for some D-modules of geometric origin. We take p = n in (5.1), and
write for simplicity Y = Yn, π = πn. As in Section 2.5, Y has a rank stratification with Z Y

p = ZGn(Qn, V2)

and OYp = Z Y
p \Z Y

p−1. We let DY
p = L(Z Y

p , Y ) denote the corresponding simple D-modules. The goal of this
section is to explain how Theorem 1.6 follows from Theorem 5.2.

Proof of Theorem 1.6. Let F = F(n, p;V1) the partial flag variety parametrizing 2-step flags of quotients of V1,
of ranks n and p respectively. Consider the commutative diagram

T = AF(Qp ⊗ V2)
g //

s

��

AGp(Qp ⊗ V2) = Yp

πp

��
Y = AGn(Qn ⊗ V2) π

// A(V1 ⊗ V2) = X

The map s is a small resolution of singularities of the variety Z Y
p , so by the Decomposition Theorem we have

s+OT = L(Z Y
p , Y ) = DY

p ,

a complex concentrated in degree zero. The map g is a Grassmannian bundle, with fibers isomorphic to
G(n− p;m− p). Since the Poincaré polynomial of G(n− p;m− p) is

(
m−p
n−p
)
q2

, we obtain∑
j∈Z
Hj(g+OT ) · qj = OYp · q−(n−p)·(m−n) ·

(
m− p
n− p

)
q2
.

Since g+OT =
⊕

j Hj(g+OT )[−j], it follows that

π+D
Y
p = π+(s+OT ) = πp+(g+OT ) =

⊕
j

πp+(Hj(g+OT ))[−j],
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and we conclude using Theorem 5.2, and the fact that each Hj(g+OT ) is a direct sum of copies of OYp . �

Remark 5.3. It is notable that the formulas in Theorem 1.6 are reminiscent of those for local cohomology with
determinantal support [LR20,RW14]. However, we were not able to establish a direct implication between the
two contexts. One reason for this is perhaps the fact that due to the Decomposition Theorem, the modules
involved in Theorem 1.6 are always semi-simple (and even better, the direct image complexes are formal).
By contrast, local cohomology is described by push-forwards along open immersions, which often result in
interesting extensions that are typically hard to control. One common feature in both Theorem 1.6 and
the work on local cohomology is the presence of q-binomial coefficients, which compute the Poincaré series
of Grassmann varieties. The standard desingularizations of determinantal varieties arise as vector bundles
over Grassmann varieties, and the fibers of the desingularization maps are themselves Grassmannians: this is
potentially an explanation for the ubiquity of q-binomial coefficients in the aforementioned works.

5.3. The determination of weights. The results in the previous sections have immediate analogues at
the level of Hodge modules. More precisely, it follows from [HTT08, Section 8.3.3(m8)–(m11)] that if DY

p

underlies a pure Hodge module of weight w then Hj(π+D
Y
p ) underlies a pure Hodge module of weight w+ j.

We record some basic consequences of Theorem 1.6 before proving Theorem 5.1.

Lemma 5.4. (a) If Di appears as a summand in Hj(π+D
Y
p ) then i ≤ p.

(b) For i ≤ p, the largest j for which Di appears as a summand in Hj(π+D
Y
p ) is

j = (n− p) · (m− n) + (p− i) · (m− n− p+ i).

(c) Di appears as a summand in H(n−i)·(m−n)(π+D
Y
p ) if and only if i = p.

Proof. Conclusions (a) and (b) are direct consequences of the formula in Theorem 1.6. Part (c) follows from
(a), (b), and the inequalities

(n− p) · (m− n) + (p− i) · (m− n− p+ i) < (n− i) · (m− n) for i < p,

which can be rewritten as (p− i) · (m− n− p+ i) < (p− i) · (m− n), and follow from p > i. �

Proof of Theorem 5.1. Using the exact sequence (with Z = Zn−1 = X \ U)

0 −→ H0
Z (X ,OX ) −→ OHX −→ H0(f+OHU ) −→ H1

Z (X ,OX ) −→ 0,

it follows from (1.6) that we have an isomorphism H0(f+OHU ) ' OHX = ICHZn , proving the case p = n (j = 0) of

the theorem. We assume from now on that j = (n−p)·(m−n) for 1 ≤ p ≤ n, so thatHj(f+OHU ) is a pure Hodge
module with underlying D-module Dp. Our goal is to prove that its weight is w′p = mn+ (n− p) · (m−n+ 1)

(from which it follows that Hj(f+OHU ) = ICHZp(k
′
p), as desired).

Using the identification U ' OYn ' On, with Y = Yn as in Section 5.2, we can factor f = π ◦ ι as in (1.8).
Since Y is locally identified with a space of n× n matrices over a base Gn of dimension n · (m− n), it follows
from Theorem 1.3 and the behavior of weights under pull-back that the weight filtration on ι+OHU = OY (∗Z Y

n )
satisfies grWw ι+OHU = 0 if w < mn or w > mn+ n, and

grWmn+n−s ι+OHU = ICHZ Y
s

(ks), with underlying D-module DY
s , (5.4)

where ks = −
(
n−s+1

2

)
as in (4.1). Using the spectral sequence associated to this filtration, it follows that

Hj(f+OHU ) = Hj
(
π+

(
ι+OHU

))
is a sub-quotient of

n⊕
s=0

Hj
(
π+

(
ICHZ Y

s
(ks)

))
.
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SinceHj(f+OHU ) has underlyingD-moduleDp andHj
(
π+

(
ICH

Z Y
s

(ks)
))

has underlyingD-moduleHj(π+D
Y
s ),

it follows from Lemma 5.4 that Hj(f+OHU ) is a sub-quotient of Hj
(
π+

(
ICH

Z Y
p

(kp)
))

whose weight is by (5.4)

j + (mn+ n− p) = mn+ (n− p) · (m− n+ 1),

concluding our proof. �
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