HODGE IDEALS FOR THE DETERMINANT HYPERSURFACE

MICHAEL PERLMAN AND CLAUDIU RAICU

ABSTRACT. We determine explicitly the Hodge ideals for the determinant hypersurface as an intersection of
symbolic powers of determinantal ideals. We prove our results by studying the Hodge and weight filtrations on
the mixed Hodge module O g (+Z) of regular functions on the space 2~ of n x n matrices, with poles along the
divisor & of singular matrices. The composition factors for the weight filtration on O g (x%) are pure Hodge
modules with underlying D-modules given by the simple GL-equivariant D-modules on 2", where GL is the
natural group of symmetries, acting by row and column operations on the matrix entries. By taking advantage
of the GL-equivariance and the Cohen—Macaulay property of their associated graded, we describe explicitly the
possible Hodge filtrations on a simple GL-equivariant D-module, which are unique up to a shift determined by
the corresponding weights. For non-square matrices, Qg (%) is replaced by the local cohomology modules
H% (%2, 04 ), which turn out to be pure Hodge modules. By working out explicitly the Decomposition Theorem
for some natural resolutions of singularities of determinantal varieties, and using the results on square matrices,
we determine the weights and the Hodge filtration for these local cohomology modules.

1. INTRODUCTION

To any smooth complex variety X and reduced divisor Z C X one can associate the D-module

Ox(x2) = | ] Ox(k2), (1.1)
k>0

consisting of regular functions on X with poles along Z. When X is affine with coordinate ring S, and Z is
defined by the equation f = 0, the module Ox(xZ) is the localization Sy. The module Ox(xZ) is equipped
with the Hodge filtration Fo(Ox(xZ)) [Sai90, MP19], satisfying

Fr(Ox(+2)) € Ox((k+1)Z) for k > 0, (1.2)

with equality when Z itself is smooth. In general however, the Hodge filtration is a subtle invariant measuring
the singularities of Z. Following [MP19], we note that the data of the Hodge filtration is equivalent to the
sequence of Hodge ideals of Z, determined by the equality

Fi(Ox(x2)) = It(Z) ® Ox((k + 1)Z) for k > 0. (1.3)

The goal of this paper is to describe explicitly the Hodge ideals of the determinant hypersurface. We let
A =C"" let S = C[z; ;] denote the coordinate ring of 2, let det = det(z; ;) denote the determinant of the
generic n X n matrix, and let 2 denote the determinant hypersurface consisting of matrices with vanishing
determinant. For 1 < p < n we let J, denote the ideal generated by the p x p minors of (z; ), corresponding

to the variety 2,1 C Z of matrices of rank < p. We write Jéd) for the d-th symbolic power of J,,, consisting

of regular functions that vanish to order d along Z,_1, with the convention that J,§d) =S when d < 0.
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Theorem 1.1. The Hodge ideals of & are given by

ﬂ ((=pre=D=("")) 450 1 > 0 (1.4)

'B

It follows from (1.4) that I4(2) = I1(Z) = S and 12(Z) = J,—1, which was established at the set-
theoretic level in [MP19, Example 20.14]. Since 2 has multiplicity m =n —p + 1 along Z,—1 = V(J,), and

Z,—1 has codimension r = (n —p + 1) in 27, it follows from [MP19, Theorem E] that (2 C Jlgq) for
g=min{n—p,(n—p+1)-(k—n+p)}, whereas implies that when k is large, the optimal value of ¢ is
given by (n —p) - (k—1) — (";7).

We prove our results by taking advantage of the rich symmetry coming from the action of the group GL =
GL,(C)xGL,(C) on 2 (viarow and column operations), which preserves %, along with all the determinantal
varieties Zp_1, p < n. It follows that the Hodge ideals I;;(2") and the filtered pieces Fj(Og (xZ)) are GL-
subrepresentations of O 4 (x%). Every such subrepresentation M can be described in terms of its irreducible
decomposition, which in turn is completely determined by a subset 20(M) of the set of dominant weights Z"

dom
(see Sections and for more details). We prove the following.
Theorem 1.2. For k € Z we let
—p+1
Ul = {)\Ezgom:)\pr—nZ)\pH, )\p+1+'-'+>\n2—<n 129 > —k‘}, for 0 <p<n.
The generation level for the Hodge filtration on O g (%) is (g) Moreover, we have
W(FL(Og (xZ)) |_| Ur. (1.5)

It is interesting to compare the assertion about the generation level (see Section in Theorem with
[MP20, Theorem A], which for n > 2 gives the upper bound dim(Z’) — a4 for the generation level, where
Qg is the minimal exponent of the singular divisor Z. Since the reduced Bernstein—Sato polynomial of 2 is
(s+2)---(s+mn), we have that & = 2 and therefore dim(2Z’) — a» = n? — 3. For n = 2 this agrees with the
level (g) that we determine, which is also a consequence of [Sai09, Theorem 0.7] since Z is a homogeneous
isolated singularity (the affine cone over P* x P1). For n > 3 however, there is a strict inequality n? —3 > (g)

The equivalence between and is established in Section To prove Theorem we analyze
the structure of O 4 (x%) as a mixed Hodge module. For each p =0,--- ,n we let D, = L(Z,, Z") denote the
intersection homology module associated to %, and let 1 C’% denote the Hodge module on 2" corresponding
to the trivial variation of Hodge structure on the orbit O, (see Section . Up to a Tate twist, 1 C% is the
only Hodge module with underlying D-module D,. We write W, for the weight filtration, and grlV for the
associated graded with respect to W,, and prove the following.

Theorem 1.3. We have that gr!¥ Oy (xZ) =0 if w < n? or w > n? +n, and

—p+1
grﬂm_po%(*g)zlcgfp(_(n 129 )) forp=0.---.n

To go from Theorem E to ( ., we need to understand the Hodge filtration on each IC% >, (since Tate

twists only amount to a shift in F,). We do so in Theorem (3 u, in the more general case when % is a space
of rectangular (not necessarily square) matrices. The following is a consequence of Theorem
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Theorem 1.4. If Z" ~ C™" and F, is the Hodge filtration on the D-module D, underlying IC’{Q}II,}, then
W(F,(D,)) = Ug_(n—gﬂ) for all k € Z,

and in particular Fy,(D,) is non-zero if and only if k > (n — p)*.

We reformulate the last assertion in Theorem by saying that the Hodge filtration for [ C’gfp starts in

level (n — p)? (the codimension of 2, in 2), which is in fact also the generation level. Combining this with
Theorem we get that the Hodge filtration for gr}g tn—p Oy (xZ) starts (and is generated) in level (";p ),
which is maximized for p = 0. This explains the assertion about the generation level in Theorem The
special case p = n in Theorem is easy to understand: we have D, = S, and for k& > 0 we have that
Ul ={\ € Z}j,, : A\n > 0} is the set of all partitions with at most n parts (independently on k); this reflects

dom

the fact that S has the trivial Hodge filtration Fj,(S) = S for all k& > 0, and that 20(S) = U}’ is determined
by Cauchy’s formula .

If we consider instead non-square matrices 2" ~ C™*"™ m > n, then the variety 2 of singular matrices
is no longer a divisor. Nevertheless, the local cohomology groups H% (2 ,04) replace O g (¥2) and have
a natural structure of (mixed) Hodge modules. We know from |[Rail6, (5.1)] and [RW14, RWW14] that the
only non-zero local cohomology groups are

D, = H;(n_p)'(m_n)(%, Og)forp=0,--- ,n—1, (1.6)

where D), = L(%,, Z") as before. By Theorem the Hodge filtration is determined by the weights of the
corresponding Hodge modules, which are given as follows.

Theorem 1.5. For each p = 0,--- ,n — 1, the local cohomology group H;r(nfp)'(mfn)(%,(’)gg) is a pure
Hodge module of weight mn + (n —p)-(m —n+1).

To explain the proof strategy for Theorem and the implicit choice of Hodge structure on local coho-
mology, we introduce some notation: given a smooth variety X we write (’)g =1 C)}(I for the trivial Hodge
module on X; for a morphism f between smooth varieties we write fi for the direct image functor on the
derived category of mixed Hodge modules (and use the same notation for the corresponding D-module direct
image functor). We let U = O,, denote the dense orbit of nonsingular matrices, and write f : U — 2 for the
inclusion map. When 2~ ~ C"*"™ we have f+(’)g = Oy (%), which gives the mixed Hodge module structure
that was implicit in our earlier discussion. When 2~ ~ C™*" m > n, we have H’( f+(/)g ) = OI{ , and

H (f+Of) = H(27,04°) for j > 0. (1.7)
To understand f+(9§ , we factor f as a composition
U-Sy " 2 (L.8)

where ¢ is an affine open immersion, 7 is projective birational, and Y is locally identified with a space of n x n
matrices over an n - (m — n)-dimensional base. More precisely, we consider the Grassmannian G = G(n;m)
with tautological rank n bundle Q, and let Y = Ag(Q®C") denote the corresponding geometric vector bundle.
Writing 2V = Y \ U we have 1, Off = Oy (+ZV), which we understand using the case of square matrices: we
have a rank stratification on Y by subvarieties QZY, and the composition factors for the weight filtration on
Oy (xZY) are given by DY = £(2,”,Y) (with the appropriate Hodge structure). The conclusion now follows
from a spectral sequence argument combined with the following explicit consequence of the Decomposition
Theorem. For a > b we consider the g-binomial coefficients

<(1> _ (1—¢%)-(1—q* 1) (1—qgv 0
),  (A=a)-(1—-¢ - (1-q
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and make the convention that (Z)q =0ifa<b.

Theorem 1.6. For each 0 < p < n, the D-module direct image of DZ is given by the formal identity

p
j j —(n—p)-(m—n m— —(m—n—p+i)-(p—1 m-n
N Wi (7 DY) - gf = g ).( p)Q'ZDi'q( pi)-(p ).( >2'
q q

n— —1
jez p =0 p

Implicit in the above formula is the fact that 7 (7T+D;/ ) is semisimple, and its decomposition as a direct
sum of copies of the modules Dy, --- , D, is obtained by equating the coefficients in the formal identity. As
a sanity check, we consider the case when p = n and m = n + 1, when we have that D},/ = Oy and 7 is a

semismall map with relevant strata O, and O,_; [dC17, Lecture 3], [dCM09]. The g-binomials (”;:?)qg are
non-zero only for i = n and i = n — 1, and the formula in Theorem [I.6] becomes

7T+OY =D,®D,_1.

Specializing further to the case n = 1, we get that 2~ = A% and Y is the blow-up of 2" at the origin, D1 = Oy
and Dy is the simple D-module supported at the origin, a familiar example of the Decomposition Theorem.

Organization. In Section [2] we recall basic notions from representation and D-module theory, and some
properties of spaces of matrices. In Section [3] we characterize the possible Hodge filtrations for a simple
equivariant D-module on m X n matrices. In Section [4 we determine the weight and Hodge filtrations on
the localization Sge; at the determinant, and deduce the description of the Hodge ideals for the determinant
hypersurface. We end with a discussion of the Hodge structure on local cohomology in Section

2. PRELIMINARIES

In this section we establish some notation and review basic facts that will be needed in the paper, regarding
spaces of matrices, affine bundles, Grassmannians and flag varieties, representations of the general linear
group, equivariant D-modules, and the Hodge filtration on an intersection cohomology D-module. We work
throughout with varieties of finite type over C. For any such variety X, we let dx denote its dimension. All
our D-modules are left D-modules. Tensor products are considered over C unless otherwise stated.

2.1. Spaces of matrices, conormal varieties. Consider positive integers m > n and complex vector spaces
Vi, Vo, dim(V}) = m, dim(V3) = n. We write S = Sym(V; ® V») for the symmetric algebra of V; ® V3, and let
Z = Spec(S) denote the corresponding affine space, whose C-points are parametrized by V}¥ ® V', where
V'V denotes the dual of a vector space V. A choice of bases for V7, V5 induces identifications S ~ Clz; ;] and
A~ C™ "™ (the space of m x n matrices). We write GL(V') for the group of invertible linear transformations
of a vector space V, and let GL = GL(V}) x GL(V2). There is a natural GL-action on 2", with orbits O,
consisting of matrices of rank p, p = 0,--- ,n. We write 2, = 5,, for the corresponding orbit closures. If we
let J, € S denote the ideal generated by the p x p minors of the matrix (z;;) (which does not depend on
the choice of bases in Vi, V3), then the defining ideal of %, is J, 1. We write dj, (resp. ¢,) for the dimension
(resp. codimension) of %, (in 2), which are computed by

dy=p-(m+n—p) and ¢, =(m—p)-(n—p). (2.1)

We let §' = Sym(V})Y ® VyY) and 27 = Spec(S’), and define O),, 2, J, in analogy to the previous
paragraph. A choice of basis for Vi, V2 determines dual bases on V}Y,V,’, and an identification S” ~ Cly; ;].
The cotangent space T* 2 is naturally identified with 2" x 2" = Spec(A), where A = S ® S’ . We write



HODGE IDEALS FOR THE DETERMINANT HYPERSURFACE 5

m, ' for the projections from T* 2 to the two factors. We write C, for the conormal variety of Z,, which is
the closure in 7% %" of the conormal bundle to O,. As a set, it consists of (see [Str82])

Cp={(x,2") e 2, x 2, _,:aa’ =0, 2’z =0}, (2.2)

where zz’ and 2’z denote matrix multiplications, or in more invariant terms, are defined by the contraction
maps from V}Y @ VY ® Vi ® V3 to V)Y @ V1 and V' ® Vi, induced by the natural pairings V¥ @ V; — C.

It follows from that 7(Cy) = 25 and 7'(Cy) = Z,,_,. Therefore, if we let I(C,) C A denote the
defining ideal of Cp, and if we think of S, S’ as subrings of A in the natural way, then

I(C) NS =Jp and I(C)NS =J0 1. (2.3)

2.2. Representations of the general linear group. For a vector space V ~ C" we have GL(V) ~ GLy(C)
and the irreducible finite dimensional GL(V')-representations are classified by the set of dominant weights

Zy = eZN A > > > Ayh

We write S)V for the irreducible representation with highest weight A € Zé\;m, and have for instance

SaV =Sym?V when A = (4,081, d >0, and S,V = /\v when A = (17,0M""), 0 <r < N.
Taking duals, we obtain isomorphisms
S)\(VV) ~ (S)\V)V ~ S)\vv, where )\V = (—)\N, —/\]\[_17 ce ,—)\1). (2.4)

When Ay > 0 we say that A is a partition, which we typically write by omitting any trailing zeros. We write
Py ={\ € Zé\gm : Ay > 0} for the set of partitions with at most N parts, and think of Py as a subset of
Pni1 by setting Ay11 = 0 for A € Py. With these conventions, we have P,, C P, for m > n, and if V1, V5 are
as in Section then by Cauchy’s formula [Wey03), Corollary 2.3.3] we get a decomposition into irreducible

GL-representations
S = Sym(V1 & VQ) = @ SaVi ® S\ Vs. (2.5)
AEP,

The component A’ V4 ® AP Va2 in (2.5) occurs for A = (17) and corresponds to the linear span of the p X p
minors of (z;;), the generators of the ideal .J,. Moreover, we have that

SaVi @ SyVa C Jp <~ )\p > 1. (2.6)

2.3. Hodge filtration on an IC module. In this section X is a smooth variety and Z C X is an irreducible
closed subvariety. We write £(Z, X) for the intersection cohomology (simple) D-module corresponding to the
trivial local system on the regular part Z,., of Z [HTTO08, Remark 7.2.10]. We write IC’? for the Hodge
module on X corresponding to the trivial variation of Hodge structure on Z,.4, so that I C’g is pure of weight
dz [HTTO8, Section 8.3.3]. When Z = X we have £(X, X) = Ox and we write O instead of IC¥. Every
Hodge module on X with underlying D-module £(Z, X) is obtained by applying a Tate twist to the trivial
variation of Hodge structure: we write ICH (k) for the resulting Hodge module, which is pure of weight
dz — 2k.

Lemma 2.1. The Hodge filtration Fy for ICH (k) starts in level dx — dz + k, that is,
Fo(L(Z,X))=0forp<dx —dz+k, Fi_a,+x(L(Z,X))#0.
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Proof. Since the Tate twist (k) replaces Fy by Fo_, it suffices to consider the case k = 0. Suppose first that
Z = X. The Hodge filtration for O is given by F,(Ox) =0 for p < 0 and F,(Ox) = Ox for p > 0, so the
conclusion follows. Suppose next that Z is smooth, so that I C’g = i+(’)§ , where 7 : Z — X is the inclusion.
The conclusion now follows from the description of the filtration on the direct image in [HTT08, Section 8.3.3]
(we have Fy(Dx. ) # 0 if and only if ¢ > 0, and Fj_44,-4, (Oz) # 0 if and only if p — ¢+ dz — dx > 0).
Finally, consider the general case when Z C X is an irreducible subvariety, and let U C X be an open
subset such that U N Z = Z,.,. By the previous discussion, we have F,(L£(Z;cq,U)) # 0 if and only if
p>dy —dgz,, = dx —dz. Since Fy(L(Zrey,U)) = Fp(L(Z, X)), this implies that F,(L(Z, X)) # 0 for
p>dx —dgz. If F,(L(Z,X)) # 0 for some p < dx — dgz, then F,(L£(Z,X)) has support contained in the
proper closed subset Zsing = Z \ Zyeq of Z, and therefore the local cohomology module Hozmg(ﬁ(Z , X)) is a
proper D-submodule of the simple D-module £(Z, X), a contradiction. [l

2.4. GL-equivariant D-modules on C™*", We let 2" ~ C™*™ as in Section and consider the category
modgr,(Dy) of GL-equivariant (holonomic) coherent D-modules on 2. The simple objects in modgr,(Dy)
are the D-modules D, = £L(%,, ), p=0,--- ,n. Their GL-structure is given by [Rail6, Section 5]

Dy = P SapVi @Si%, (2.7)
AeWrp
where A(p) = (A1, -, A, (p— )™ ™", Ap1 + (m —n), -+, Ay + (m —n)), and
WP ={X€Ziom : \p >p—n, Apy1 <p—m}, forp=0,---,n. (2.8)

We note that in the special case p = n we have D, = S, W" =P, and reduces to Cauchy’s formula.

As explained in [LW19, Theorem 5.4], the category modgy,(D2-) is semisimple when m # n, and it is an
explicit quiver category for m = n. In the case when m = n, there exists a unique non-trivial extension of
D, by D,11, which is constructed as follows. We write det for any non-zero generator of the 1-dimensional
representation A" V; @ A" Vo C S. After choosing basis on Vj, V3 as before, det can be identified with the
determinant of the matrix of variables (x; ;). The localization Sqet is an element of modgr,(Dg-), and admits
a filtration (see |[Rail6, Theorem 1.1])

0CSC(det™)pC---C (det™)p = Sqet, (2.9)

with associated composition factors Dy, - -+, Dy, where D, =~ (det?"™)p/(det?"""!)p for 0 < p < n, D,, ~ S.
The non-trivial extension of D, by D, arises as the quotient (det?"™)p/(det?P"""2)p for 0 < p < n —2, and
as (detfl)p for p = n — 1. The filtration completely describes the lattice of submodules of Sqet-

We notice also that (in the case m = n) we have

Siet = P SAC"@S,C™ (2.10)
AEZLY,

dom

The sets WO,--. , W™ in form a partition of Z}_ , reflecting the fact that as a GL-representation, Sqet is
isomorphic to the direct sum Dy & - - - D,,. It follows from that every GL-subrepresentation M C Sqet
is uniquely determined by a subset of Z} , which we denote 203(M). Moreover, if M is an S-submodule of
Sqet then we have the implication

if A € W(M) and p > A then p € 20(M). (2.11)
This property is not satisfied by 20(D,,) = WP unless p = n, but it is satisfied by 2(D, & --- @ D,) ={\ €
Z% ... Ap > p—n}, since it describes the underlying GL-representation of (det’™")p.

dom
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2.5. Affine bundles, Grassmannians, flag varieties. For a coherent locally free sheaf £ on a variety B,
we consider the geometric affine bundle associated to £ to be

Ap(€) = SpecOB Sym(E), where Sym(€)=0p®E®Sym?ED ---
Any surjection & — F induces a closed immersion Ag(F) < Ap(£). Our main example of affine bundles is
Zp(&1,E) = Ap(& ® &), where rank(&;) = ry,

which is locally isomorphic to a space of r; X ro matrices over the base B. It then has a natural rank
stratification, and we let 25 ,(&1,&2) C ZB(E1,&2) denote the loci of rank < p matrices. The special case
B = Spec(C) and &; = V; recovers our earlier definition of 2~ from Section

We write G(p; V') for the Grassmannian parametrizing p-dimensional quotients of a vector space V', and
write G(p; N) for G(p; C"V). We consider the tautological exact sequence on G(p; V)

0—RN-—p —>V&Ogpyv) — < —0

where N = dim(V), rank(Ry—_p) = N — p, rank(Q,) = p. We will also consider 2-step partial flag varieties
F(n,p; V) for n > p, and write Q,, and Q, for the corresponding tautological quotient sheaves. We note that
F(n,p; V) can be interpreted as a relative Grassmannian in two ways: parametrizing rank p quotients of the
sheaf Q,, on G(n; V), in which case we get a G(p,n)-bundle over G(n;V); or, as parametrizing rank (n — p)
quotients of the sheaf Ry_, on G(p; V), in which case we get a G(n — p; N — p)-bundle on G(p; V'). These
two perspectives will be important in Section

3. HODGE FILTRATIONS ON THE SIMPLE MODULES D),

The goal of this section is to characterize the possible Hodge filtrations on a Hodge module whose underlying
D-module is D). We recall the GL-structure of D, given in (2.7]), and single out the weight

o = ((p—n),(p—m)"P) € WP, (3.1)
noting that 6”(p) = ((p — n)™). Given a GL-subrepresentation N C D,,, we define
QH(N) = {A € Z(TiLom : S)\(p)‘/l ®@SyV2 C N}7
and note that 20(NN) completely identifies N. We also recall the (co)dimension of %, in 2 from (2.1). It
follows from (2.8)) that if A\ € WP then
A1ttt <(n—p)-(p—m)=—cp.
To state the main result of this section, we consider the partitioning of W? as
WP =| | WD, where W = {A € WP: M1+ + Ay = —d — ). (3.2)
d>0
Using the natural partial order on Z" (« > ( if and only if «; > ; for all i), we observe that Wg contains
finitely many minimal elements with respect to this order, indexed by partitions p € Pp_, of size |u| = d.
More precisely, these minimal elements are (using the notation in (2.4))
AP =P 4+ 1 = ((p—n)P,p—m — pin—p,- - ,p—m — 1), (3.3)

Theorem 3.1. Suppose that M is a Hodge module with underlying D-module D), and write Fy for the Hodge
filtration on D,,, and gr, for the associated graded module with respect to F,.

(a) There exists (a unique) lo € Z such that 2 (gr;,(Dp)) contains 6P.

(b) We have Fy(Dp) =0 for 1 <lo and W(gr/(Dy)) = W, forl>ly.

(c) M is a pure Hodge module of weight mn + ¢, — 2ly.
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Proof. By GL-equivariance, the filtered pieces Fj(D,) are GL-representations. Since F, is a good filtration,
it is in particular exhaustive, and therefore M = gr,(D,) is isomorphic to D,, as a GL-representation. Since
it is a multiplicity free representation and 67 € WP, it follows that there exists a unique index [y such that
6P € W(gr, (Dyp)), proving (a).

For (b), we let A = S ® §" ~ S[y; ;] denote the coordinate ring of the cotangent bundle T*.2", as in
Section It is a graded S-algebra with S placed in degree 0, and deg(y; j) = 1. The associated graded
M = gr (D)) is a graded A-module, with M; = gr;(D,,) for all | € Z. By |Rail6, Remark 1.5], the support
of M (which is the characteristic variety of D)) is irreducible (equal to the conormal variety C,). By [Sai88,
Lemme 5.1.13], M is a Cohen—Macaulay module, which implies that the set-theoretic support of any nonzero
m € M is precisely equal to C). Using , it follows that

Amnag(m)NS CJpyr and  Anng(m)NS CJp .. (3.4)

Fix a non-zero element mg € Sz, V1 ® SspVa C M, consider a partition p € P,—p with |u| = d for
some d > 0, and choose any non-zero element f;, € S, V)Y ® S,Vp" € S’ (where the inclusion comes from the
decomposition of " analogous to (2.5))). The analogue of (2.6)) for S’ implies that f), & J,_,,;, and using
|| we get that the element my, := f, - mo is non-zero. Moreover, since f;ll, € Ag, we have that m, € M 4.
Since Sgr(p) V1 is one-dimensional, we have using (2.4)) that

Sﬂvlv ® Ssr(p) Vi = Sgr () v Vi = Sxwn(p) V1,

and therefore m;, € Sypu(p)V1 ® SypuVa, showing that AF € W(Mj,+q). Writing | = lp + d, we conclude
that all the minimal elements of Vle—lo belong to 20(M;) = 2(gr;(Dp)). Since M and D, are isomorphic
as GL-representations, and since the sets W5 partition WP = Q3(M), it suffices to verify the inclusions
W, € 2(M;) for all I > Iy in order to conclude (b). To that end, we prove by induction on d > 0 that
WCIZ g Qn(Mlo+d)'

Consider first the case d = 0 and let A € W/, so that Apt1 = - = Ay = p —m. We can write A\ = 6P 4 v,
where v € P,. We choose any non-zero element f, € S,V; ® S,Vo C S, and note that f, & Jp41 by .
Using , we get that the element m] := f, - mg is non-zero, and belongs to M, since deg(f,) = 0. As
before we have

SyV1 @ Ssr(p) V1 = Ssr(p) 1 V1 = San) V1,

hence m] € Sap) V1 ® SxVz, proving that A € 20(M;,) and concluding the base case of the induction.

For the inductive step, suppose that d > 0 and let A € W2. We can write A = A# 4~ for some p € Pp,_p,
|u| = d, and v € P,. We choose f, as in the previous paragraph, and consider the element my, := f, -m, # 0
in Mj,4+4. By the Littlewood-Richardson rule, we have that

Sv‘/g X S)\p,uVQ = S)\VQ D L,
where the representation L is a direct sum of copies of SgVs with 8 > AP# and

Bpt1 + -+ Bn > —d — ¢

It follows that for any such 3 we either have 3 € WP, or § € W}, for some d’ < d. By induction, we know that
W¥ C Q(Mjy4a), forcing mj, to be entirely contained in the component Sap) V1 ® S\Va of M. This shows
that A € 2(Mj,+4), concluding the induction step.

To prove (c), we note that by the discussion in Section we have M = [ C%(ko) for some ky € Z.
Combining the conclusion of (b) with Lemma we get that the Hodge filtration starts in level lo = ¢, + ko.
Moreover, M is pure of weight d, — 2ky = d), + 2¢, — 2lyp = mn + ¢, — 2l, as desired. O
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4. THE WEIGHT FILTRATION AND HODGE IDEALS FOR THE DETERMINANT HYPERSURFACE

In this section 2" ~ C"*™ and 2 = %,—1 C Z is the determinant hypersurface. We consider O (x2) ~
Sget as a mixed Hodge module, with a Hodge filtration F, and a weight filtration W,. We write grl” and grlV
for the corresponding associated graded modules. The main result of this section is the following.

Theorem 4.1. We have that gr}¥ Oy (%) =0 if w < n? or w > n? +n, and

— 1
gr%M_pO%(*&‘”):ICD% <_<Tl, ]27+ >> forp=0,---,n.

Combined with Theorem this result determines the Hodge filtration on Q4 (x%), and with that the
Hodge ideals I;,(Z). We explain the details in Section

4.1. The weight filtration on O4 (x%). The goal of this section is to explain the proof of Theorem
We write Sqet or D) when we refer to D-modules, and Oy (xZ) or IC’%(Z{:) when we want to keep track of

the (mixed) Hodge module structure.

Since distinct D-module composition factors of Sqer have distinct support, it follows from the decomposition
by strict support of pure Hodge modules [HTTO08, Section 8.3.3(p4)] that gr!¥ (Sget) is a direct sum of simple
D-modules for each w € Z. Since the filtration completely characterizes the D-submodule structure of
Sqdet, it follows that the only subquotients of Sge; that are direct sums of simple modules are the successive
quotients in the filtration , and hence they are simple. It follows that we can find wg > wi > -+ > wy,
such that

grg)z(Sdet) =D, forp=0,---,n,
and gr'V (Sge) = 0 if w & {wo, - -+ ,w,}. At the level of Hodge modules, we have
grg; Oy (xZ) = IC%)(kp) forp=20,---,n,
where w, = d,—2k, by the discussion in Section Since the restriction of O g (%) to the dense orbit is (’)gn

of weight n?, we obtain w,, = n? and k,, = 0. To prove Theorem E it suffices to check that w, = n?4+n—p
for p=0,---,n — 1, since then it follows that

d, —w p-(2n—p)—n?—n+p n—p+1
kp=-"L—-L = =— 4.1
P 2 2 2 ’ (4.1)
as desired. Moreover, since the weights w; are strictly decreasing, it is enough to check that w, —wpy1 <1
for p=20,---,n — 1, which we do next.

Since maps in the category of mixed Hodge modules are strict with respect to the Hodge filtration, it follows
that for each r € Z, the weight filtration on Sge; determines a filtration by S-submodules on F;.(Sget), with
composition factors F,.(D,) for p =0,--- ,n. As GL-representations, we get a direct sum decomposition

F,(S4et) = Fr-(Do) ® F.(D1) @ -+ @ F.(Dy,). (4.2)
We let [, be the starting level for the Hodge filtration on D), and note that by Theorem C) we have
wy = n? + (n—p)* — 21, (4.3)
It follows from (4.2) and Theorem that 07 = ((p —n)") € W(F},(Dp)) € W(F},(Sget)). Suppose that
0 <p<n-—1. Using , we obtain 6” + (1771) € 20(F}, (Sqet))- Notice that

B3) n—p—1
o 4+ (1) E o) Byl e (D), (4.4)

n—p—1 =
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where the last equality follows from Theorem b). Since 67 + (1P11) € W(F, (Saer)) NWPTL, it follows from
(4.2) that 67 + (1P*1) € (F, (Dpy1)). Combining this with (4.4)), we obtain the inequality

lp+1 +tn—p—-1< lpv
which is equivalent via (4.3)) to w, < wp41 + 1, as desired.

Remark 4.2. It was pointed to us by a referee that Theorem can be verified using a microlocal approach
based on |Gyo97]. Indeed, if we let A, denote the conormal variety to the orbit of rank p matrices, then
[Kas03, Example 9.27] computes the corresponding microlocal b-function for the determinant hypersurface as
b, (s) = (s +1)(s+2)---(s+n—p). By [Rail6], A, is the characteristic variety of D,, and each D, appears
with multiplicity one as a D-module composition factor of O g (xZ). It follows from |[Gyo97, Equation 4.7(6)]
that D, appears as a composition factor of gr% +j Oy (xZ) if and only by, (s) has exactly j integer roots,
that is, if and only if j = n — p. This shows that gr%Jrn_p Oy (xZ) agrees with IC’gpp up to a Tate twist,
which is then computed as in (4.1]) using Theorem

4.2. The Hodge filtration on Oy (xZ). In this section we explain the proof of Theorem In light of
(4.2), in order to prove (1.5)) it is enough to check that 20(Fy(Dp)) = Uy, which in turn reduces to showing
that 20(grt (D,)) = U\ UY_,. Notice that

n—p+1 0 if k< (";P
U’S\U’f1:{AEWP:APH+M+A":_< 2 >_k}:{W5 ifd:lgi()”?’bo. (4:5)

It follows from and the fact that w, = n?+n—p that the Hodge filtration on D, starts in level [, = (”;p )
Moreover, using Theorem [3.1(b) we have that 20(grt (D,)) = W,f_lp for k > 1, which by is equal to
UP\UY_,, as desired.

We now discuss the generation level of the Hodge filtration on O g (xZ). Given a filtered D-module (M, F,),
we say that the filtration F, is generated in level g if

Fy(D) - Fy(M) = Fyyy(M) for all £>0,

where Fo(D) denotes the order filtration on D. The generation level of (M, F,) is defined to be the minimal ¢
such that F, is generated in level q.

Since Dg is a quotient of Sget, and the Hodge filtration on Dy starts in level (Z), it follows that the
generation level for the Hodge filtration on Sge; is at least (g) To prove the equality, it suffices to check that
grl’(Sqet) is a graded A-module generated in degree < (72‘) The weight filtration on Sge; induces a filtration
on grl’(Sqet) by graded A-submodules, with composition factors grl (D), so it suffices to check that the latter
are generated in degree < (7). The proof of Theorem (b) shows that grl’'(D,) is generated as an A-module
by the (1-dimensional) isotypic component Ss»Vi ® Ss» Vo which appears in degree [, = (";p) < (g)

Remark 4.3. It is not hard to deduce from the preceding arguments that grf’ (Dp) is isomorphic to the
coordinate ring of the conormal variety C), (with an appropriate degree shift, and a twist by a 1-dimensional
GL-representation).

4.3. Symbolic powers and the Hodge ideals of the determinant hypersurface. In this section we
prove Theorem by showing that (1.5) implies (1.4]). For d > 0 we have by [dCEP80, Section 7] that

W) = {1 € Pt pip+ -+ + pn > d}.
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By adding the redundant term p = n in (|1.4), we can reformulate the conclusion of Theorem as
/”L p—
1 €W(IH(ZL)) = pp+-+pn>m—p)-(k—1)— ( 2p> for 1 <p<n.

Since O ((k+1)%) is the free S-module generated by det =1, it follows that after letting A = p— ((k+1)")
and using ((1.3)), we can rewrite the above equivalence, after manipulations and setting s = p — 1, as

sl
)\EQﬁ(Fk(Sdet))<:>)\s+1—}—---+)\n2—<n ;+ )—k, forall 0 < s <n— 1. (4.6)

Since the sets WP in partition Z} = (when m = n), it suffices to prove under the hypothesis
that A € WP for some fixed p. We note that the left hand side is then equivalent via to the condition
AelU ,f . If p=n then A € P, is a partition, and both sides of are true. We may therefore assume that
0 <p <n—1. The implication “<=" follows from the definition of the set U; by taking s = p.

To prove “=" we consider any A € U, ,f and note that the inequality in is satisfied for s =p. If s <p
then since Agy1, -+, Ap—1 > A\p > p —n we obtain

2
so the inequality in (4.6)) holds for s < p. If s > p then we obtain using p —n > A,41 > -+ > Ag that

_ 1 . 1
)\S+1+..-+)\n2(ps)-)\p+)\p+1+...+)\n2(pS)_(pn)<n p+ >k‘2(n ;—}— >k‘,

—ptl —s5+1
)\s+1+---+)\n:)\p+1+..-+)\n—()\p+1_|_..._|_)\s)Z_(n 127 >—k—(8—p)-(p—n)2—(n ; >—k,

so the inequality in (4.6|) also holds for s > p, concluding the proof.

5. HODGE MODULE STRUCTURE FOR LOCAL COHOMOLOGY WITH SUPPORT IN MAXIMAL MINORS

We let 2" = A(V; ® Va), where dim(V;) = m > n = dim(V2), and use the notation in Section [2| As in the
Introduction, we write fi for both the D-module and Hodge module direct image along some map f. The
goal of this section is to prove the following.

Theorem 5.1. Let f: U — 2 denote the inclusion of the dense orbit U = O,, into 2. We have

ICY (ky) ifj=(n—p)-(m—n), ky=—""5") = (n-p)-(m—n),
0 otherwise,

M (f+Of) = {

and H(”_p)'(m_”)(f+(’)g) is pure of weight mn+ (n—p)-(m—n+1) forp=0,--- ,n.

Writing 2 = 2,1 for the complement of U in 2  and using the standard identification with local
cohomology, together with , it follows that H’(f+OfF) is non-zero only for j = (n —p) - (m —n), in which
case its underlying D-module is D,,. It follows that H(”*p)'(m*”)( f+(’)g ) is equal to I C% up to a Tate twist,
and the content of Theorem is the determination of the constants k:z’j. This is equivalent to finding the

weights w;, of the Hodge modules T C’gp(k;), because of the identity w;, = dj, — 2k, (see Section [2.3{and )
We note that Theorem is an immediate consequence of Theorem in light of the identification (|1.7))

As explained in the Introduction, our strategy to prove Theorem [5.1] proceeds as follows: we factor f as in
1' and understand L+(’){}[ using the information for square matrices developed in Section |4 we then study
w4 using the Decomposition Theorem, as explained in Sections [5.1] and Based on these preliminaries, the
completion of the proof of Theorem is explained in Section [5.3



12 MICHAEL PERLMAN AND CLAUDIU RAICU

5.1. Decomposition theorem for some standard resolutions of determinantal varieties. For p <n
we consider the Grassmannian G, = G(p; V1) of p-dimensional quotients of V; (see Section [2.5) and let

Yy = A, (Qp@Vh) > AVI®@ Vo) = 2 (5.1)

denote one of the standard resolutions of singularities of Z}, (see for instance [Wey03|, Proposition 6.1.1(a)]).
The map 7, is the composition of the closed immersion Ag,(Q,®V2) < Ag, (V1 ®V52) induced by the tautolog-
ical quotient map V3 ® Og, — Qp, with the projection Ag, (V1 ®Va) ~ G, x 2" — 2 . Since T, is projective,
it follows from the Decomposition Theorem of [BBD82,dCMO09] that the D-module direct image of Oy, is a
complex in the derived category whose cohomology #H/ (mp+ Oy, ) is semisimple for all j. Since the map 7, is
GL-equivariant, the summands will be simple GL-equivariant D-modules [BL94, Section 5.3]. The relevant
multiplicities are computed by the following (see the discussion after Theorem for the interpretation of
the formula below).

Theorem 5.2. The D-module direct image of Oy, is given by the formal identity

P
S im0y 8 = 3Dy (MY
- — p—1 2

JEZ =0 q
Proof. Using the Riemann—Hilbert correspondence, we replace the D-modules in Theorem with the corre-
sponding perverse sheaves: Oy, with I C’{/p = Cy, [dy,], and D; with IC%.. We write fi(q) € Z[g, q 1] for the
Laurent polynomials that encode the Decomposition Theorem for I C’;,p:

P
Rrp ICY, =Y ICY%. - fi(q). (5.2)
i=0
We determine f;(q) by considering stalk cohomology in ([5.2)), as is done for instance in the proof of [dCMM18|,
Theorem 6.1]. We consider any point xj € Oy, and compute the stalk cohomology on both sides of (5.2)): since
the fiber 1(zy) is isomorphic to the Grassmannian G(p — k; m — k), whose Poincaré polynomial is (T;:,f) 2
we get that the cohomology on the left is encoded by the Laurent polynomial

g . (m o k) = g P (mtn—p) (m o k) )
pP— k q? pP— k q2

The stalk cohomology of I C:%xk is computed by a Kazhdan—Lusztig polynomial (see [HTT08, Theorem 12.2.5]
for the appropriate grading conventions): this is because of the identification of 2~ with the opposite dense
Schubert cell in the Grassmannian G(n;m + n), under which the subvarieties 2, arise as intersections with
Schubert varieties indexed by certain Grassmannian permutations [LRO8|, Section 5.2]. The corresponding
Kazhdan-Lusztig polynomials are of parabolic type, computed by g-binomial coefficients [LS81, Lemme 10.1].
The conclusion of this discussion is summarized by the identity

S HICy) 7 =

: 1 —
JEZ

Using the fact that dy, —ds, = (p — 1) - (m +n —p — i), it follows from (5.2) that for each k = 0,--- ,p we

have an identity
m—k & ; ; n—=k
— E ' (a) . P—1)(mtn—p—i) )
<p—k>q2 i:kfl(q) ! <i_k>q2

K for i > k.
k 2
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By plugging in k = p,p — ,0 in this order, the polynomials f;(¢q) are uniquely determined by induction.
The conclusion of Theorem amounts to showing that f;(q) = ¢ —(m—n—p+i)-(p—i) . (Tz:ﬂ) ,» which in turn is
q

(2
equivalent to verifying the ¢g-binomial identities

(p—i)-(n—1) -k <k<
<p k) Zq (p_l>q (i—kz>q2’ for all 0 < k < p.

Writinga=m —n,b=n—k, c=p—k, j = p— i, the above identities become

(), Z e (), G0, 63

We derive (j5.3) following [GR04, Chapter 1]. We have using [GR04, Exercise 1.2(vi)] that
n— : n k
(z’q)n = (]__Z)(l_zq)(]__zq 1):2(]) (—z)qq(2),
i=0 M/a

We compute the coefficient of 2¢ on both sides of the identity (—z;¢)ats = (—24% q)a - (—2; q)p and deduce

(1) =50, ()

Since bj + (%) + (C;j) = (5) =j- (b—c+j), we obtain after dividing by q(g) O

5.2. Decomposition theorem for some D—modules of geometric origin. We take p = n in , and
write for simplicity Y =Y, # = m,. As in Section Y has a rank stratification with 2 Y — Qf@,n( Qn, Vo)

and OY Z, Y\ 2z, Y. Welet DY L(Z; YY) denote the corresponding simple D- modules The goal of this
sectlon is to explam how Theorem 1.6 follows from Theorem [5.2]

Proof of Theorem[1.6. Let F = F(n,p; V1) the partial flag variety parametrizing 2-step flags of quotients of V1,
of ranks n and p respectively. Consider the commutative diagram

TZAF(Qp@‘/Q) AG;,,(Qp@‘/Q):Y

Y =Ag,(Qn®V2) AVI@ V) =2

The map s is a small resolution of singularities of the variety D@;Y, so by the Decomposition Theorem we have
s+Op = L(Z),Y)= D)

a complex concentrated in degree zero. The map ¢ is a Grassmannian bundle, with fibers isomorphic to

G(n — p;m — p). Since the Poincaré polynomial of G(n — p;m — p) is (ZL:;’) 20 e obtain
n—p

JEZ
Since g+ Or = € H7 (g+Or)[—j], it follows that

my Dy =my(s1:01) = mpy (91 O1) = @Wp+(Hj(Q+OT))[—j],
J
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and we conclude using Theorem and the fact that each H7 (g, Or) is a direct sum of copies of Oy,. O

Remark 5.3. Tt is notable that the formulas in Theorem are reminiscent of those for local cohomology with
determinantal support [LR20,RW14]. However, we were not able to establish a direct implication between the
two contexts. One reason for this is perhaps the fact that due to the Decomposition Theorem, the modules
involved in Theorem are always semi-simple (and even better, the direct image complexes are formal).
By contrast, local cohomology is described by push-forwards along open immersions, which often result in
interesting extensions that are typically hard to control. One common feature in both Theorem and
the work on local cohomology is the presence of g-binomial coefficients, which compute the Poincaré series
of Grassmann varieties. The standard desingularizations of determinantal varieties arise as vector bundles
over Grassmann varieties, and the fibers of the desingularization maps are themselves Grassmannians: this is
potentially an explanation for the ubiquity of g-binomial coefficients in the aforementioned works.

5.3. The determination of weights. The results in the previous sections have immediate analogues at
the level of Hodge modules. More precisely, it follows from [HTT08, Section 8.3.3(m8)—(m11)] that if D)’

underlies a pure Hodge module of weight w then 7 (7T+D;/ ) underlies a pure Hodge module of weight w + j.
We record some basic consequences of Theorem before proving Theorem

Lemma 5.4. (a) If D; appears as a summand in H? (7. DY) then i < p.

(b) For i < p, the largest j for which D; appears as a summand in Hj(W+D;/) is

j=Mm=p)-(m=n)+(p—i)-(m—n—p+i).

(c) D; appears as a summand in H =9 (m=n) (7T+D2,/) if and only if i = p.
Proof. Conclusions (a) and (b) are direct consequences of the formula in Theorem Part (c) follows from
(a), (b), and the inequalities

m=p)-(m—n)+(p—i)-(m—n—p+i) < (n—1) - (m—n) for i <p,
which can be rewritten as (p —¢)- (m —n—p+1i) < (p—1i)- (m —n), and follow from p > i. O
Proof of Theorem [5.1. Using the exact sequence (with 2 = 2,1 = 2"\ U)
0— HY(Z,049) — 0L — #O(f,08) — HL(2,04) — 0,

it follows from that we have an isomorphism H°(f,OH) ~ O =1 C’gﬂ, proving the case p = n (j = 0) of
the theorem. We assume from now on that j = (n—p)-(m—n) for 1 < p < n, so that 1 (f+OH) is a pure Hodge
module with underlying D-module D). Our goal is to prove that its weight is w;, = mn+(n —p) - (m —n+1)
(from which it follows that H/(fLOf) =1 C% (k,), as desired).

Using the identification U ~ O) ~ O,,, with Y =Y, as in Section we can factor f = 7o asin .
Since Y is locally identified with a space of n x n matrices over a base G,, of dimension n - (m —n), it follows
from Theorem |1.3]and the behavior of weights under pull-back that the weight filtration on 1. Off = Oy (*ZY)
satisfies grlV’ 1+ O = 0if w < mn or w > mn +n, and

ngVXnJrn,S 1L OF = Ing (ks), with underlying D-module DY, (5.4)

where ks = —("_SH) as in 1} Using the spectral sequence associated to this filtration, it follows that

HI(f+Of) = H (71 (140f)) is a sub-quotient of EBHj <7T+ (ICgpsy(ks)>) .
5=0
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Since H7( f+Of) has underlying D-module D, and H/ (7r+ (I CLly (k:s)>> has underlying D-module # (7 DY),
it follows from Lemmal5.4|that H7 (f+Of) is a sub-quotient of H’ (7r+ (I C%y (k:p)>) whose weight is by 1)
j+mn+n—-—p)=mn+(n-—p)-(m-n+1),

concluding our proof. O
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