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HOMOLOGY COBORDISM AND TRIANGULATIONS

Ciprian Manolescu

Abstract

The study of triangulations on manifolds is closely related to understanding the
three-dimensional homology cobordism group. We review here what is known about
this group, with an emphasis on the local equivalence methods coming from Pin.2/-
equivariant Seiberg-Witten Floer spectra and involutive Heegaard Floer homology.

1 Triangulations of manifolds

A triangulation of a topological space X is a homeomorphism f W jKj ! X , where jKj

is the geometric realization of a simplicial complex K. If X is a smooth manifold, we
say that the triangulation is smooth if its restriction to every closed simplex of jKj is a
smooth embedding. By the work of Cairns [1935] and Whitehead [1940], every smooth
manifold admits a smooth triangulation. Furthermore, this triangulation is unique, up to
pre-compositions with piecewise linear (PL) homeomorphisms.

The question of classifying triangulations for topological manifolds is much more dif-
ficult. Research in this direction was inspired by the following two conjectures.

Hauptvermutung (Steinitz [1908], Tietze [1908]): Any two triangulations of a space X
admit a common refinement (i.e., another triangulation that is a subdivision of both).

Triangulation Conjecture (based on a remark by Kneser [1926]): Any topological mani-
fold admits a triangulation.

Both of these conjectures turned out to be false. The Hauptvermutung was disproved
by Milnor [1961], who used Reidemeister torsion to distinguish two triangulations of a
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space X that is not a manifold. Counterexamples on manifolds came out of the work
of Kirby and Siebenmann [1977]. (For a nice survey of the mathematics surrounding
the Hauptvermutung, see Ranicki [1996].) With regard to the triangulation conjecture,
counterexamples were shown to exist in dimension 4 by Akbulut and McCarthy [1990],
and in all dimensions � 5 by the author Manolescu [2016].

When studying triangulations on manifolds, a natural condition that one can impose
is that the link of every vertex is PL homeomorphic to a sphere. Such triangulations are
called combinatorial, and (up to subdivision) they are equivalent to PL structures on the
manifold.

In dimensions � 3, every topological manifold admits a unique smooth and a unique
PL structure; cf. Moise [1952] and Radó [1925]. In dimensions � 5, PL structures on
topological manifolds were classified in the 1960’s. Specifically, building on work of Sul-
livan [1996] and Casson [1996], Kirby and Siebenmann [1969] andKirby and Siebenmann
[1977] proved the following:

• A topological manifoldM of dimension d � 5 admits a PL structure if and only if
a certain obstruction class �.M/ 2 H 4.M I Z=2/ vanishes;

• For every d � 5, there exists a d -dimensional manifoldM such that �.M/ ¤ 0,
that is, one without a PL structure;

• If �.M/ D 0 for a d -dimensional manifoldM with d � 5, then the PL structures
on M are classified by elements of H 3.M I Z=2/. (This shows the failure of the
Hauptvermutung for manifolds.)

Finally, in dimension four, PL structures are the same as smooth structures, and the classifi-
cation of smooth structures is an open problem—although much progress has been made
using gauge theory, starting with the work of Donaldson [1983]. Note that Freedman
[1982] constructed non-smoothable topological four-manifolds, such as the E8-manifold.

We can also ask about arbitrary triangulations of topological manifolds, not necessarily
combinatorial. It is not at all obvious that non-combinatorial triangulations of manifolds
exist, but they do.
Example 1.1. Start with a triangulation of a non-trivial homology sphereM d with�1.M/ ¤

1; such homology spheres exist in dimensions d � 3. Take two cones on each simplex, to
obtain a triangulation of the suspension˙M . Repeat the procedure, to get a triangulation
of the double suspension ˙2M . By the double suspension theorem of Edwards [2006]
and Cannon [1979], the space ˙2M is homeomorphic to SdC2. However, the link of
one of the final cone points is ˙M , which is not even a manifold. Thus, SdC2 admits a
non-combinatorial triangulation.
Remark 1.2. One can show that any triangulation of a manifold of dimension � 4 is
combinatorial.
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In general, if we triangulate a d -dimensional manifold, the link of a k-dimensional
simplex has the homology of the .d �k�1/-dimensional sphere. (However, the link may
not be a manifold, as in the example above.) In the 1970’s, Galewski and Stern [1979],
1980 and Matumoto [1978] developed the theory of triangulations of high-dimensional
manifolds by considering homology cobordism relations between the links of simplices.
Their theory involves the n-dimensional homology cobordism group �n

Z, which we now
proceed to define.

Let us first define a d -dimensional combinatorial homology manifoldM to be a simpli-
cial complex such that the links of k-dimensional simplices have the homology of Sd�k�1.
We can extend this definition to combinatorial homology manifoldsM with boundary, by
requiring the links of simplices on the boundary to have the homology of a disk (and so
that @M is a combinatorial homology manifold). We let

�n
Z D fY n oriented combinatorial homology manifolds;H�.Y / Š H�.S

n/g= �

where the equivalence relation is given by Y0 � Y1 () there exists a compact, oriented,
combinatorial homology manifoldW nC1 with @W D .�Y0/[Y1 andH�.W; Yi I Z/ D 0:

If Y0 � Y1, we say that Y0 and Y1 are homology cobordant. Summation in �n
Z is given

by connected sum, the standard sphere Sn gives the zero element, and �ŒY � is the class
of Y with the orientation reversed. This turns �n

Z into an Abelian group.
It follows from the work of Kervaire [1969] that�n

Z D 0 for n ¤ 3. On the other hand,
the three-dimensional homology cobordism group �3

Z is nontrivial. To study �3
Z, note

that in dimension three, every homology sphere is a manifold. Also, a four-dimensional
homology cobordism can be replaced by a PL one, between the same homology spheres,
cf. Martin [1973, Theorem A]. Furthermore, in dimensions three and four, the smooth
and PL categories are equivalent. This shows that we can define �3

Z in terms of smooth
homology spheres and smooth cobordisms.

The easiest way to see that �3
Z ¤ 0 is to consider the Rokhlin homomorphism

(1) � W �3
Z ! Z=2; �.Y / D �.W /=8 .mod 2/;

where W is any compact, smooth, spin 4-manifold with boundary Y , and �.W / denotes
the signature of W . For example, the Poincaré sphere P bounds the negative definite
plumbing �E8 of signature �8, and therefore has �.P / D 1: This implies that P is not
homology cobordant to S3, and hence �3

Z ¤ 0.
Let us introduce the exact sequence:

(2) 0 �! ker.�/ �! �3
Z

�
�! Z=2 �! 0:

We are now ready to state the results of Galewski and Stern [1979], 1980 andMatumoto
[1978] about triangulations of high-dimensional manifolds. They mostly parallel those of
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Kirby-Siebenmann on combinatorial triangulations. One difference is that, when studying
arbitrary triangulations, the natural equivalence relation to consider is concordance: Two
triangulations of the same manifold M are concordant if there exists a triangulation on
M � Œ0; 1� that restricts to the two triangulations on the boundariesM � f0g andM � f1g.

• A d -dimensional manifoldM (for d � 5) is triangulable if and only if ı.�.M// D

0 2 H 5.M I ker.�//: Here, �.M/ 2 H 4.M I Z=2/ is the Kirby-Siebenmann ob-
struction to the existence of PL structures, and ı W H 4.M I Z=2/ ! H 5.M I ker.�//
is the Bockstein homomorphism coming from the exact sequence (2).

• There exist non-triangulable manifolds in dimensions � 5 if and only if the exact
sequence (2) does not split. (In Manolescu [2016], the author proved that it does
not split.)

• If they exist, triangulations on a manifoldM of dimension � 5 are classified (up to
concordance) by elements inH 4.M I ker.�//.

The above results provide an impetus for further studying the group�3
Z, together with

the Rokhlin homomorphism.

2 The homology cobordism group

Since�3
Z can be defined in terms smooth four-dimensional cobordisms, it is not surprising

that the tools used to better understand it came from gauge theory. Indeed, beyond the
existence of the Rokhlin epimorphism, the first progress was made by Fintushel and Stern
[1985], using Yang-Mills theory:

Theorem 2.1 (Fintushel and Stern [ibid.]). The group �3
Z is infinite. For example, it

contains a Z subgroup, generated by the Poincaré sphere ˙.2; 3; 5/.

Their proof involved associating to a Seifert fibered homology sphere ˙.a1; : : : ; ak/

a numerical invariant R.a1; : : : ; ak/, the expected dimension of a certain moduli space of
self-dual connections. By combining these methods with Taubes’ work on end-periodic
four-manifolds Taubes [1987], one obtains a stronger result:

Theorem 2.2 (Fintushel and Stern [1990], Furuta [1990]). The group �3
Z contains a Z1

subgroup. For example, the classes Œ˙.2; 3; 6k � 1/�; k � 1; are linearly independent in
�3

Z.

When Y is a homology three-sphere, the Yang-Mills equations on R � Y were used
by Floer [1988] to construct his celebrated instanton homology. From the equivariant
structure on instanton homology, Frøyshov [2002] defined a homomorphism

h W �3
Z ! Z;
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with the property that h.˙.2; 3; 5// D 1 (and therefore h is surjective). This implies the
following:

Theorem 2.3 (Frøyshov [ibid.]). The group �3
Z has a Z summand, generated by the

Poincaré sphere P D ˙.2; 3; 5/.

Since then, further progress on homology cobordism was made using Seiberg-Witten
theory and its symplectic-geometric replacement, Heegaard Floer homology. These will
be discussed in Sections 3 and 4, respectively.

In spite of this progress, the following structural questions about �3
Z remain unan-

swered:

Questions: Does �3
Z have any torsion? Does it have a Z1 summand? Is it in fact Z1?

We remark that the existence of a Z1 summand could be established by constructing
an epimorphism�3

Z ! Z1. In the context of knot concordance, a result of this type was
proved by Hom [2015]: Using knot Floer homology, she showed the existence of a Z1

summand in the smooth knot concordance group generated by topologically slice knots.

3 Seiberg-Witten theory

The Seiberg-Witten equations Seiberg and Witten [1994] and Witten [1994] are a promi-
nent tool for studying smooth four-manifolds. They form a system of nonlinear partial
differential equations with a U.1/ gauge symmetry; the system is elliptic modulo the
gauge action. In dimension three, the information coming from these equations can be
packaged into an invariant called Seiberg-Witten Floer homology (or monopole Floer ho-
mology). This was defined in full generality, for all three-manifolds, byKMBook in their
book. For rational homology spheres, alternate constructions were given in Marcolli and
B.-L. Wang [2001], Manolescu [2003], Frøyshov [2010]. Lidman and the author Lidman
and Manolescu [2016] showed that the definitions in Manolescu [2003] andKMBook are
equivalent.

In many settings, the Seiberg-Witten equations can be used as a replacement for the
Yang-Mills equations. For example, from the S1-equivariant structure on Seiberg-Witten
Floer homology one can extract an epimorphism

ı W �3
Z ! Z;

and give a new proof of Theorem 2.3; see KMBook; Frøyshov [2010]. It is not known
whether ı coincides with the invariant h coming from instanton homology. Note that
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KMBook; Frøyshov [2010] use the same notation h for the invariant coming from Seiberg-
Witten theory; to prevent confusion with the instanton one, we write ı here. We use the
normalization that ı.P / D 1 for the Poincaré sphere P .

The construction of Seiberg-Witten Floer homology inManolescu [2003] actually gives
a refined invariant: an S1-equivariant Floer stable homotopy type, SWF, which can be
associated to rational homology spheres equipped with spinc structures. The definition
of SWF was recently generalized to all three-manifolds (in an “unfolded” version) by
Khandhawit, J. Lin, and Sasahira [n.d.].

When the spinc structure comes from a spin structure, the S1 symmetry of the Seiberg-
Witten equations (given by constant gauge transformations) can be expanded to a symme-
try by the group Pin.2/, where

Pin.2/ D S1
[ jS1

� C ˚ jC D H:

As observed in Manolescu [2016], this turns SWF into a Pin.2/-equivariant stable homo-
topy type, and allows us to define a Pin.2/-equivariant Seiberg-Witten Floer homology.
By imitating the construction of the Frøyshov invariant ı in this setting, we obtain three
new maps

(3) ˛; ˇ; 
 W �3
Z

// Z:

These are not homomorphisms (we use the dotted arrow to indicate that), but on the other
hand they are related to the Rokhlin homomorphism from (1):

˛ � ˇ � 
 � � .mod 2/:

Under orientation reversal, the three invariants behave as follows:

˛.�Y / D �
.Y /; ˇ.�Y / D �ˇ.Y /:

The properties of ˇ suffice to prove the following.

Theorem3.1 (Manolescu [ibid.]). There are no 2-torsion elements ŒY � 2 �3
Z with�.Y / D

1. Hence, the short exact sequence (2) does not split and, as a consequence of Galewski
and Stern [1980] and Matumoto [1978], non-triangulable manifolds exist in every dimen-
sion � 5.

Indeed, if Y were a homology sphere with 2ŒY � D 0 2 �3
Z, then Y would be homology

cobordant to �Y , which would imply that

ˇ.Y / D ˇ.�Y / D �ˇ.Y / ) ˇ.Y / D 0 ) �.Y / D 0:
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An alternate construction of Pin.2/-equivariant Seiberg-Witten Floer homology, in the
spirit of KMBook and applicable to all three-manifolds, was given by F. Lin [2014]. In
particular, this gives an alternate proof of Theorem 3.1. Lin’s theory was further developed
in Dai [2016] and F. Lin [2015], 2016, a, b.

The invariants ˛; ˇ; 
 were computed for Seifert fibered spaces by Stoffregen [2015b]
and by F. Lin [2015]. One application of their calculations is the following result (a proof
of which was also announced earlier by Frøyshov, using instanton homology).

Theorem 3.2 (Frøyshov [n.d.], Stoffregen [2015b], F. Lin [2015]). There exist homology
spheres that are not homology cobordant to any Seifert fibered space.

This should be contrasted with a result of Myers [1983], which says that every element
of �3

Z can be represented by a hyperbolic three-manifold.
In Stoffregen [2015a], Stoffregen studied the behavior of the invariants ˛; ˇ; 
 under

taking connected sums, and used it to give a new proof of the infinite generation of �3
Z.

He found a subgroupZ1 � �3
Z generated by the Brieskorn spheres˙.p; 2p�1; 2pC1/

for p � 3 odd. (Compare Theorem 2.2.)
In fact, the information in ˛; ˇ; 
; ı, and much more, can be obtained from a stronger

invariant, a class in the local equivalence group LE defined by Stoffregen [2015b]. To
define LE, we first define a space of type SWF to be a pointed finite Pin.2/-CW complex
X such that

• The S1-fixed point set XS1 is Pin.2/-homotopy equivalent to . QRs/C, where QR is
the one-dimensional representation of Pin.2/ on which S1 acts trivially and j acts
by �1;

• The action of Pin.2/ on X �XS1 is free.

The definition ismodeled on the properties of the Seiberg-Witten Floer spectra SWF.Y /
for homology spheres Y . Any SWF.Y / is the formal (de)suspension of a space of type
SWF. The condition on the fixed point set comes from the fact that there is a unique re-
ducible solution to the Seiberg-Witten equations on Y .

The elements of LE are equivalence classes ŒX�, where X is a formal (de)suspension
of a space of type SWF, and the equivalence relation (called local equivalence) is given
by: X1 � X2 () there exist Pin.2/-equivariant stable maps

� W X1 ! X2;  W X2 ! X1;

which are both Pin.2/-equivalences on the S1-fixed point sets. This relation is motivated
by the fact that if Y1 and Y1 are homology cobordant, then the induced cobordismmaps on
Seiberg-Witten Floer spectra give a local equivalence between SWF.Y1/ and SWF.Y2/.
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We can turn LE into an Abelian group, with addition given by smash product, the
inverse given by taking the Spanier-Whitehead dual, and the zero element being ŒS0�. We
obtain a group homomorphism

�3
Z ! LE; ŒY � ! ŒSWF.Y /�:

The class ŒSWF.Y /� 2 LE encapsulates all known information from Seiberg-Witten
theory that is invariant under homology cobordism. The group LE is still quite compli-
cated, but there is a simpler version, called the chain local equivalence group CLE, which
involves chain complexes rather than stable homotopy types. The elements of CLE are
modeled on the cellular chain complexes1 C CW

� .SWF.Y /I F/ with coefficients in the field
F D Z=2, viewed as modules over

C CW
� .Pin.2/I F/ Š F Œs; j �=.sj D j 3s; s2

D 0; j 4
D 1/:

and divided by an equivalence relation (called chain local equivalence), similar to the one
used in the definition of LE. We have a natural homomorphism

LE ! CLE; ŒX� ! ŒC CW
� .X I F/�:

To construct interesting maps from�3
Z to Z, one strategy is to factor them through the

groups LE or CLE. Indeed, the Frøyshov homomorphism ı can be obtained this way, by
passing from chain complexes to the S1-equvariant Borel cohomology, which is a module
over

H�

S1.pt I F/ D H�.CP 1
I F/ D F ŒU �; deg.U / D 2:

Given the structure of theS1-fixed point set of SWF.Y /, one can show thatH�

S1.SWF.Y /I F/
is the direct sum of an infinite tower F ŒU � and an F ŒU �-torsion part. The invariant ı.Y /
is set to be 1=2 the minimal grading in the F ŒU � tower. The resulting homomorphism ı

factors as
�3

Z
// LE // CLE

ı // Z;

Here, by a slight abuse of notation, we also used ı to denote the final map from CLE to
Z.

Themaps˛; ˇ; 
 from (3) are constructed similarly to ı, but using the Pin.2/-equivariant
Borel cohomologyH�

Pin.2/
.SWF.Y /I F/. This is a module over

H�
Pin.2/.pt I F/ D H�.B Pin.2/I F/ D F Œq; v�=.q3/; deg.q/ D 1; deg.v/ D 4:

1When applied to SWF, all our chain complexes and homology theories are reduced, but we drop the usual
tilde from notation for simplicity.
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In this case, if we just consider the F Œv�-module structure, we find three infinite towers
of the form F Œv�, and ˛; ˇ; 
 are the minimal degrees of elements in this towers, suitably
renormalized. We can write

�3
Z

// LE // CLE
˛;ˇ;


// Z:

Two other numerical invariants ı; Nı W CLE // Z can be obtained by considering the
Z=4-equivariant Borel cohomology, where Z=4 is the subgroup

Z=4 D f1;�1; j;�j g � Pin.2/ D C ˚ jC:

As shown by Stoffregen [2016], if one considers the Borel homology for other sub-
groups G � Pin.2/, one does not get any information beyond that in ˛; ˇ; 
; ı; ı and Nı.

However, one can consider other equivariant generalized cohomology theories. For
example, there are invariants �i ; i 2 f0; 1g coming from Pin.2/-equivariant K-theory
(cf. Furuta and Li [2013] and Manolescu [2014]), and �oi ; i D 0; : : : ; 7; from Pin.2/-
equivariant KO-theory J. Lin [2015]. These factor through LE, albeit not through CLE,
and have applications to the study of intersection forms of spin four-manifolds with bound-
ary.

In summary, we have a diagram

(4) �3
Z

// LE

�i ;�oi

��

// CLE
ı //

ı; Nı

��

˛;ˇ;


$$

Z;

Z Z Z

Recall that CLE was defined using chain complexes with coefficients in F D Z=2.
One could also take coefficients in other fields, say Q or Z=p for odd primes p. From
the corresponding S1-equivariant Borel cohomology (with coefficients in a field of char-
acteristic p) one gets homomorphisms

ıp W LE ! Z:

These are different onLE, but it is not knownwhether they are different when pre-composed
with the map �3

Z ! LE. For every homology sphere for which computations are avail-
able, the values of ıp are the same for all p.

On the other hand, Stoffregen [2015b] showed that the information in chain local equiv-
alence (for specific Seifert fibered homology spheres) goes beyond that in the numerical
invariants from (4). In fact, using chain local equivalence, he defined an invariant of ho-
mology cobordism that takes the form of an Abelian group, called the connected Seiberg-
Witten Floer homology.
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Open problem: Describe the structure of the groups LE and CLE, and use it to under-
stand more about �3

Z.
In particular, it would be interesting to construct more homomorphisms from LE and

CLE to Z, which could perhaps be used to produce new Z summands in �3
Z. Of special

interest is to construct a lift of the Rokhlin homomorphism to Z, as a homomorphism
(rather than just as a map of sets, as is the case with ˛; ˇ; 
 ). The existence of such a lift
would show that �3

Z has no torsion with � D 1, thus strengthening Theorem 3.1. In turn,
one can show that this would give a simpler criterion for a high-dimensional manifold to
be triangulable: the Galewski-Stern-Matumoto class ı.�.M// 2 H 5.M I ker.�// could
be replaced with an equivalent obstruction inH 5.M I Z/.

4 Heegaard Floer homology and its involutive refinement

In a series of papers Ozsváth and Szabó [2003], 2004, a, b, 2006, Ozsváth and Szabó
developed Heegaard Floer homology: To every three-manifold Y and spinc structure s,
they associated invariants

cHF.Y; s/; HFC.Y; s/; HF�.Y; s/; HF1.Y; s/:

These are defined by choosing a pointed Heegaard diagram

H D .˙;˛;ˇ; z/

consisting of the Heegaard surface ˙ of genus g, two sets of attaching curves ˛ D

f˛1; : : : ; ˛gg, ˇ D fˇ1; : : : ; ˇgg, and a basepoint z 2 ˙ , away from the attaching curves.
The attaching curves describe two handlebodies, which put together should give the three-
manifold Y . One then considers the Lagrangians

T˛ D ˛1 � � � � � ˛g ; Tˇ D ˇ1 � � � � � ˇg

inside the symmetric product Symg.˙/. The different flavors (b;C;�;1) of Heegaard
Floer homology are versions of the Lagrangian Floer homology HF.T˛;Tˇ /.

The construction of Heegaard Floer homology was inspired by Seiberg-Witten theory:
the symmetric product is related to moduli spaces of vortices on˙ . In fact, it has been re-
cently established Colin, Ghiggini, and Honda [2012], Kutluhan, Lee, and Taubes [2010],
and Taubes [2010] that Heegaard Floer homology is isomorphic to the monopole Floer ho-
mology fromKMBook. In view of Lidman andManolescu [2016], we obtain a relation to
the different homologies applied to the Seiberg-Witten Floer spectrum SWF (for rational
homology spheres). For example, we have

cHF Š H�.SWF/; HFC
Š HS1

� .SWF/:
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Heegaard Floer homology has had numerous applications to low dimensional topology,
and is easier to compute than Seiberg-Witten Floer homology. In fact, it was shown to
be algorithmically computable; cf. Lipshitz, Ozsváth, and Thurston [2014], Manolescu,
Ozsváth, and Thurston [2009], and Sarkar and J. Wang [2010].

With regard to homology cobordism, in Ozsváth and Szabó [2003] Ozsváth and Szabó
defined the correction terms d.Y; s/, which are analogues of the Frøyshov invariant ı, and
give rise to a homomorphism

d W �3
Z ! Z:

With the usual normalization in Heegaard Floer theory, we have d D 2ı.
One could also ask about recovering Pin.2/-equivariant Seiberg-Witten Floer homol-

ogy and the invariants ˛; ˇ; 
 using Heegaard Floer homology. For technical reasons
(related to higher order naturality), this seems currently out of reach. However, in Hen-
dricks and Manolescu [2017], Hendricks and the author developed involutive Heegaard
Floer homology, as an analogue of Z=4-equivariant Seiberg-Witten Floer homology, for
the subgroup Z=4 D hj i � Pin.2/. We start by considering the conjugation symmetry
on Heegaard Floer complexes CFı (ı 2 fb;C;�;1g), coming from interchanging the
alpha and beta curves, and reversing the orientation of the Heegaard diagram. When s is
self-conjugate (i.e., comes from a spin structure), the conjugation symmetry gives rise to
an automorphism

� W CFı.Y; s/ ! CFı.Y; s/;

which is a homotopy involution, that is, �2 � id. We then define the corresponding invo-
lutive Heegaard Floer homology as the homology of the mapping cone of 1C �:

HFIı.Y; s/ D H�.Cone.CFı.Y /
.1C�/

�����! CFı.Y ///:

While the usual Heegaard Floer homologies are modules over H�

S1.pt/ Š F ŒU �; the
involutive versions are modules over H�

Z=4
.pt/ Š F ŒQ;U �=.Q2/, with deg.U / D �2,

deg.Q/ D �1.

Conjecture 4.1. For every rational homology sphere Y with a self-conjugate spinc struc-
ture s, we have an isomorphism of F ŒQ;U �=.Q2/-modules

HFIC.Y; s/ Š HZ=4
� .SWF.Y; s/I F/:

From involutive Heegaard Floer homology one can extract invariants d.Y; s/; Nd.Y; s/,
which are the analogues of (twice) the invariants ı; Nı coming from H�

Z=4
.SWF/. We get

maps
d; Nd W �3

Z
// Z:
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Involutive Heegaard Floer homology has been computed for various classes of three-
manifolds, such as large surgeries on alternating knots Hendricks and Manolescu [2017]
and the Seifert fibered rational homology spheres˙.a1; : : : ; ak) (or, more generally, almost-
rational plumbings) Dai and Manolescu [2017]. There is also a connected sum formula
for involutive Heegaard Floer homology Hendricks, Manolescu, and Zemke [2016], and
a related connected sum formula for the involutive invariants of knots Zemke [2017]. The
latter had applications to the study of rational cuspidal curves Borodzik and Hom [2016].

The calculations of d and Nd for the above classes of manifolds (and their connected
sums) give more constraints on which 3-manifolds are homology cobordant to each other;
see Hendricks and Manolescu [2017], Hendricks, Manolescu, and Zemke [2016] for sev-
eral examples. Furthermore, by imitating Stoffregen’s arguments fromStoffregen [2015b],
Dai and the author Dai and Manolescu [2017] used HFI to give a new proof that �3

Z has
a Z1 subgroup.

The chain local equivalence group CLE admits an analogue in the involutive context,
denoted I , whose definition is quite simple. Specifically, we define an �-complex to be a
pair .C; �/, consisting of

• aZ-graded, finitely generated, free chain complexC over the ring F ŒU � (degU=-2),
such that there is a graded isomorphism U�1H�.C / Š F ŒU; U�1�;

• a grading-preserving chain homomorphism � W C ! C , such that �2 � id.

We say that two �-complexes .C; �/ and .C 0; �0/ are locally equivalent if there exist (grading-
preserving) homomorphisms

F W C ! C 0; G W C 0
! C

such that
F ı � ' �0 ı F; G ı �0 ' � ıG;

and F and G induce isomorphisms on U�1H�.
The elements of I are the local equivalence classes of �-complexes, and the multiplica-

tion in I is given by

.C; �/ � .C 0; �0/ WD .C ˝FŒU � C
0; �˝ �0/:

As shown in Hendricks, Manolescu, and Zemke [2016], there is a homomorphism

�3
Z ! I ; ŒY � ! Œ.CF�.Y /; �/�;

and the maps d; d ; Nd factor through I .

Open problem: What is I as an Abelian group? Can we use it to say more about �3
Z?
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5 Variations

So far, we only studied homology cobordisms between integer homology spheres. How-
ever, one can define homology cobordisms between two arbitrary three-manifolds Y0 and
Y1, by imposing the same conditions on the cobordism,H�.W; Yi I Z/ D 0, i D 0; 1:Note
that, if Y0 is homology cobordant to Y1, then they necessarily have the same homology.
The invariants d; d ; Nd; ˛; ˇ; 
 admit extensions suitable for studying the existence of ho-
mology cobordisms between non-homology spheres; see for example Ozsváth and Szabó
[2003, Section 4.2].

We could also weaken the definition of homology cobordism by using homology with
coefficients in an Abelian group A different from Z. One gets an A-homology cobordism
group �3

A, whose elements are A-homology spheres, modulo the relation of A-homology
cobordism. Observe, for example, that there are natural maps

�3
Z ! �3

Z=n ! �3
Q:

Fintushel and Stern [1984] showed that the homology sphere˙.2; 3; 7/ bounds a rational
ball, whereas it cannot bound an integer homology ball, because �.˙.2; 3; 7// D 1. This
implies that the map �3

Z ! �3
Q is not injective. It is also not surjective, and in fact its

cokernel is infinitely generated; cf. Kim and Livingston [2014]. In a different direction,
Lisca [2007] gave a complete description of the subgroup of�3

Q generated by lens spaces.
One can also construct other versions of homology cobordism by equipping the three-

manifolds with spinc structures, or self-conjugate spinc structures. Ozsváth and Szabó did
the former in Ozsváth and Szabó [2003], where they defined a spinc homology cobordism
group �c , and showed that their correction term gives rise to a homomorphism

d W �c
! Q:

The other invariants ˛; ˇ; 
; d ; Nd can be similarly extended to maps from a self-conjugate
spinc homology cobordism group (or, more simply, a spin homology cobordism group) to
Q. Moreover, on a Z=2-homology sphere there is a unique self-conjugate spinc-structure,
which we can use to produce maps

d; d ; Nd; ˛; ˇ; 
 W �3
Z=2

// Q:

Finally, let us mention that homology cobordism is closely related to knot concordance.
Indeed, a concordance between two knots K0; K1 � S3 gives rise to a homology cobor-
dism between the surgeries S3

m.K0/ and S3
m.K1/, for any integer m. It also gives a Q-

homology cobordism between thepn-fold cyclic branched covers˙pn.K0/ and˙pn.K1/,
for any prime p and n � 1. Thus, one can get knot concordance invariants from homology
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cobordism invariants, by applying them to surgeries or branched covers. See Hendricks
and Manolescu [2017], Jabuka [2012], Manolescu and Owens [2007], and Ozsváth and
Szabó [2003] for examples of this. For a survey of the knot concordance invariants coming
from Heegaard Floer homology, we refer to Hom [2017].

Acknowledgments I would like to thank Jennifer Hom, Charles Livingston, Robert Lip-
shitz, Andrew Ranicki, Sucharit Sarkar, Matt Stoffregen and Ian Zemke for comments on
a previous version of this paper.
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