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Abstract. Given a Heegaard splitting of a three-manifold Y, we consider the SL(2, C) character
variety of the Heegaard surface, and two complex Lagrangians associated to the handlebodies. We
focus on the smooth open subset corresponding to irreducible representations. On that subset, the
intersection of the Lagrangians is an oriented d-critical locus in the sense of Joyce. Bussi asso-
ciates to such an intersection a perverse sheaf of vanishing cycles. We prove that in our setting,
the perverse sheaf is an invariant of Y, i.e., it is independent of the Heegaard splitting. The hyper-
cohomology of the perverse sheaf can be viewed as a model for (the dual of) SL(2, C) instanton
Floer homology. We also present a framed version of this construction, which takes into account
reducible representations. We give explicit computations for lens spaces and Brieskorn spheres, and
discuss the connection to the Kapustin—Witten equations and Khovanov homology.

Keywords. Three-manifold, Heegaard splitting, d-critical locus, Floer homology, character variety,
Khovanov homology

1. Introduction

In [22], Floer associated to each homology three-sphere Y an invariant I,.(Y), called in-
stanton homology. This is the homology of a complex generated by (perturbations of)
irreducible flat SU(2) connections on Y, with the differential counting solutions to the
SU(2) anti-self-dual (ASD) Yang—Mills equations on the cylinder R x Y. As shown by
Taubes [68], the Euler characteristic of 7, (Y) equals twice the Casson invariant from [1].
The main motivation for instanton homology was to allow a definition of relative Don-
aldson invariants for four-manifolds with boundary; see [20] for results in this direction.
Apart from this, instanton homology has had applications to three-manifold topology—
most notably the proof of property P for knots by Kronheimer and Mrowka [47].
Recently, there has been a surge of interest in studying the ASD equations with non-
compact groups SL(2, C) or PSL(2, C) instead of SU(2), as well as their topological
twist, the Kapustin—Witten equations [45, 69, 66]. In particular, Witten has a proposal
for intepreting the Khovanov homology of knots or links in R? in terms of solutions to a
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set of partial differential equations in five dimensions (usually called the Haydys—Witten
equations) [77, 34]. In this proposal, the Jones polynomial is recovered by counting so-
lutions to the Kapustin—Witten equations on R? x R, with certain boundary conditions
[77,27,78, 75].

In view of these developments, one would like to construct a variant of instanton
Floer homology using the group SL(2, C) instead of SU(2). In a sense, the SL(2, C)
case should be simpler than SU(2). For the unperturbed equations with complex gauge
groups, physicists expect “no instanton corrections”, i.e., no contributions to the Floer
differential. Indeed, if there are only finitely many SL(2, C) irreducible flat connections,
and all are transversely cut out, then they must be in the same relative grading. In that case,
the SL(2, C) Floer homology could just be defined as the free Abelian group generated
by those connections, in a single grading. However, for arbitrary three-manifolds, the
moduli space (character variety) of SL(2, C) flat connections can be higher-dimensional,
singular, and even non-reduced as a scheme. Furthermore, instanton corrections appear
when we perturb the equations, and we run into difficult non-compactness issues. Thus,
defining SL(2, C) Floer homology directly using gauge theory seems challenging.

Nevertheless, the lack of instanton corrections for the unperturbed equations indicates
that SL(2, C) Floer homology could be defined algebraically, without counting solutions
to PDEs. The purpose of this paper is to use sheaf theory to give such a definition.

Our construction draws inspiration from the Atiyah—Floer conjecture [2]. (See [16] for
recent progress in the direction of this conjecture.) The Atiyah—Floer conjecture states that
the SU(2) instanton homology 7. (Y) can be recovered as the Lagrangian Floer homology
of two Lagrangians associated to a Heegaard decomposition for Y, with the ambient sym-
plectic manifold being the moduli space of flat SU(2) connections on the Heegaard sur-
face X. In a similar fashion, we consider the moduli space X (X) of flat SL(2, C) connec-
tions on ¥ (or equivalently representations of 71 (%) into SL(2, C)). The space X (X) is
called the character variety of ¥. It contains an open set X (X) C X(X) corresponding
to irreducible flat connections. For the three-manifold Y, we can define X (Y) and X (Y)
in an analogous way. The space Xj+(X) is a smooth, complex symplectic manifold. Inside
Xirr(¥) we have two complex Lagrangians Lo and L1, associated to the two handlebod-
ies. The intersection Lo N Ly is isomorphic to X (Y) (see Lemma 3.1(a) below).

We could try to take the Lagrangian Floer homology of Ly and L inside X (%),
but non-compactness issues appear here just as in the gauge-theoretic context. Instead,
we make use of the structure of Xj.(Y) as a derived scheme. Joyce [40] introduced the
theory of d-critical loci, which is a way of encoding some information from derived alge-
braic geometry in terms of classical data. The intersection of two algebraic Lagrangians
in an algebraic symplectic manifold is a d-critical locus (see [57, Corollary 2.10] and
[10, Corollary 6.8]). If the Lagrangians come equipped with spin structures, the d-critical
locus gets an orientation in the sense of [40, Section 2.5]. Furthermore, to any oriented
d-critical locus one can associate a perverse sheaf of vanishing cycles [9]; in the case of
an algebraic Lagrangian intersection, the hypercohomology of this sheaf is conjectured
to be the same as the Lagrangian Floer cohomology [9, Remark 6.15]. Furthermore, in
the complex-analytic context, Bussi [11] gave a simpler way of constructing the perverse
sheaf for complex Lagrangian intersections.
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In our setting, we apply Bussi’s construction to the Lagrangians Lo, L1 C Xir(X).
The resulting perverse sheaf of vanishing cycles is denoted PL'O Ly Our main result is:

Theorem 1.1. Let Y be a closed, connected, oriented three-manifold. Then the object
Pe(Y) := PL.O, L (constructed from a Heegaard decomposition as above) is an invariant
of the three-manifold Y, up to canonical isomorphism in a category of perverse sheaves
Perv' (X (Y)). As a consequence, its hypercohomology

HP*(Y) = H*(P*(Y))

is also an invariant of Y, well-defined up to canonical isomorphism in the category of
Z-graded Abelian groups.

The content of Theorem 1.1 is that PL'O’ 1, is independent of the Heegaard decomposition
used to construct it. The proof requires checking invariance under a stabilization move,
as well as a naturality result similar to that proved by Juhdsz, Thurston and Zemke [41],
for Heegaard Floer homology. Naturality means that as we relate a Heegaard diagram
to another by a sequence of moves, the induced isomorphism is independent of the se-
quence we choose. Moreover, we want the diffeomorphism group of Y to act on our
invariant PL°O, L Since the diffeomorphism group can act non-trivially on Xj(Y) itself,
we cannot simply view PL'O’ L, @ an object in the usual category of perverse sheaves
Perv(Xi(Y)), where the morphisms cover the identity on Xj(Y). Rather, we use a
slightly different category Perv’(Xiy(Y)), which will be introduced in Definition 7.1
below.

Remark 1.2. One can construct the perverse sheaves P*®(Y) more directly, without Hee-
gaard decompositions, by resorting to the theory of shifted symplectic structures in de-
rived algebraic geometry developed by Pantev—Toén—Vaquié—Vezzosi [57]. In this paper,
we preferred to use the methods from [11] since they are more concrete, and make com-
putations easier. In particular, they do not require any knowledge of derived algebraic
geometry.

We call HP*(Y) the sheaf-theoretic SL(2, C) Floer cohomology of Y . If an SL(2, C) Floer
cohomology for Y can be defined (using either gauge theory or symplectic geometry), we
conjecture that HP*(Y) would be isomorphic to it.

Note that, whereas SU(2) instanton homology is only defined for integer homol-
ogy spheres, the invariant HP*(Y) is defined for all closed, connected, oriented three-
manifolds.

We call the Euler characteristic

AP(Y) = x (HP*(Y))

the full (sheaf-theoretic) SL(2, C) Casson invariant of Y. We use the name full to distin-
guish it from the SL(2, C) Casson invariant defined by Curtis [14], which counts only the
isolated irreducible flat connections.

Our construction of HP*(Y) has some limitations too, because it only involves ir-
reducible flat connections. In the SU(2) context, one theory that takes into account the



3644 Mohammed Abouzaid, Ciprian Manolescu

reducibles is the framed instanton homology FI.(Y) considered by Kronheimer and
Mrowka [48]. This is defined for any three-manifold Y, and its construction uses con-
nections in an admissible PU(2) bundle over Y # T3. Framed instanton homology was
further studied by Scaduto [59], who denoted it I¥(Y). Moreover, symplectic counter-
parts to framed instanton homology were defined in [72] and [50].

Consider a Heegaard decomposition of a three-manifold Y, as before. Following
Wehrheim and Woodward [72, Section 4.4], we take the connected sum of the Hee-
gaard surface ¥ (near a basepoint z) with a torus 72, and obtain a higher genus sur-
face =¥, On =¥ we consider the moduli space of twisted flat SL(2, C) connections,
Xw(=#), which is a smooth complex symplectic manifold. There are smooth Lagrangians
L}, L* C Xw(E*) coming from the two handlebodies. Their intersection is the represen-
tation variety R(Y) := Hom(m((Y), SL(2, C)). Bussi’s construction yields a perverse
sheaf of vanishing cycles PL‘g. Lt over R(Y).

Theorem 1.3. Let Y be a closed, connected, oriented three-manifold, and z € Y a base-
point. Then the object Pg (Y, z) := PZ# L is an invariant of the three-manifold Y and the
0-L7

basepoint z, up to canonical isomorphism in a category of perverse sheaves Perv' (R(Y)).
As a consequence, its hypercohomology

HP; (Y, z) := H*(Pg (Y, 2))

is also an invariant of (Y, z), well-defined up to canonical isomorphism in the category
of Z-graded Abelian groups.

We call HP; (Y, z) the framed sheaf-theoretic SL(2, C) Floer cohomology of Y. When we
are only interested in its isomorphism class, we will drop z from the notation and write
HP;(Y) for HP; (Y, 2).

To compute the invariants defined in this paper, the main tool we use is the following.

Theorem 1.4. Let Y be a closed, connected, oriented three-manifold, R(Y) its SL(2, C)

representation variety, and X(Y) = R(Y)//PSL(2, C) its character variety, with the

open subset Xi:(Y) C X (Y) consisting of irreducibles. Also let Z#(Y) be the correspond-

ing representation scheme, and Zin(Y) C Z(Y) the character scheme. Let z € Y be a

basepoint.

(@) If Zix(Y) is regular, then P*(Y) is a (degree shifted) local system on Xi(Y), with
stalks isomorphic to 7.

(b) If Z(Y) is regular, then P (Y, ) is a (degree shifted) local system on R(Y), with
stalks isomorphic to 7.

In some situations, we can show that the local systems appearing in Theorem 1.4 are
trivial. This allows us to do concrete calculations for various classes of three-manifolds.
We give a few examples below, with Z ) denoting the group Z in degree 0.

Theorem 1.5. Consider the lens space L(p, q) with p and q relatively prime. Then

Zoy ® H*2($%,2)2P=D/2if pis odd,

Z?(B)? & H*T2(82, 72)®P=D/2 i p is even.

HP*(L(p,q)) =0 and HP{(L(p,q)) =
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Theorem 1.6. For the Brieskorn spheres X(p,q,r) with p,q,r pairwise relatively
prime, we have

HP*(E(I?, q, r)) ~ Z?(B)gpfl)(qfl)(rfl)/“

and
HP;(Z(p, q, 1)) = Ly & H* (RP?; 2)®P~ D@~ D=b/A,

Let Y be a closed oriented three-manifold. Recall that a smoothly embedded surface
S C Y is called incompressible if there is no disk D embedded in M such that DNS = 9D
and 0D does not bound a disk in S. The manifold Y is called sufficiently large if it con-
tains a properly embedded, two-sided, incompressible surface. (Haken manifolds are suf-
ficiently large and irreducible.) By the work of Culler and Shalen [13], when Y is not
sufficiently large, the character variety Xj(Y) has only zero-dimensional components
(compare [14, Proposition 3.1]). From this we easily obtain the following result.

Theorem 1.7. For three-manifolds Y that are not sufficiently large, the invariant HP*(Y)
is supported in degree 0.

We also have the following relation between our invariants and the Heegaard genus, which
was pointed out to us by Ikshu Neithalath.

Theorem 1.8. If Y admits a Heegaard splitting of genus g, then
HP*(Y) #0 = —3g+3 <k <3g—3,
HPL(Y) #0 = —3g <k <0.

Character varieties of SL(2, C) representations play an important role in three-dimen-
sional topology, for example in the paper [13] mentioned above, in the work of Morgan
and Shalen [52, 53, 54], and in the proof of the cyclic surgery theorem by Culler, Gordon,
Luecke and Shalen [12]. It would be interesting to explore if there are more connections
between HP* and classical three-manifold topology, beyond Theorems 1.7 and 1.8.

The organization of the paper is as follows. In Section 2 we gather a few facts about
representation and character varieties. In Section 3 we introduce the complex Lagrangians
Lo, Ly, Lg, L’i‘, and present in more detail the motivation coming from the Atiyah—Floer
conjecture. Section 4 contains a review of Bussi’s construction of perverse sheaves as-
sociated to complex Lagrangian intersections. In Section 5 we discuss the behavior of
Bussi’s perverse sheaf under stabilization, and in Section 6 we study the perverse sheaf in
the case where the Lagrangians intersect cleanly. In Section 7 we define our invariants and
prove Theorems 1.1 and 1.3. Section § contains the proofs of Theorems 1.4-1.6, together
with a few other calculations. In Section 9 we describe further directions for research, and
connections to other fields.

2. Representation varieties and character varieties

In this section we gather some facts about representations of finitely generated groups
into SL(2, C), as well as examples. We recommend the books [49], [42] and the articles
[29], [13], [36], [62] for more details about this topic.
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Throughout the paper (except where otherwise noted, in Section 9.1), we let G denote
the group SL(2, C), with Lie algebra g = sl(2, C) and center Z(G) = {£I}. We let
G = G/Z(G) = PSL(2, C) be the adjoint group of G.

We denote by B C G the Borel subgroup of G consisting of upper triangular matrices,
and by D the subgroup consisting of diagonal matrices. We also let Bp C B be the
subgroup of B consisting of parabolic elements, i.e. those of the form :I:((l) ‘f) witha € C.
Note that D and Bp are both Abelian, with intersection D N Bp = Z(G).

2.1. Representation varieties

Let I" be a finitely generated group. Its representation variety is defined as
R(I') = Hom(T", G).

If " has k generators, by viewing G as a subset of GL(2,C) = C* we find that R(I")
is an affine algebraic subvariety of C*. Indeed, the relations in T, together with the
determinant 1 conditions, produce a set of polynomial equations in 4k variables,

fitxt, ... x4) =0,

such that their common zero set is R(I"). Here, the subscripts i take values in some index
setZ.
We can also consider the representation scheme

Z((") = Spec(Clx1, ..., xa1/(f)ieT)- )

The affine scheme Z(I") is independent of the presentation of I, up to canonical isomor-
phism. The scheme Z(I") may be non-reduced; the corresponding reduced scheme gives
the variety R(T").

The group G acts on R(I") by conjugation. Given a representation p : I' — G, we
denote by Stab(p) € G its stabilizer, and by 0, = G /Stab(p) its orbit.

We distinguish five kinds of representations p : ' — G:

(a) irreducible, those such that the corresponding representation on C2 does not preserve
any line; in other words, those that are not conjugate to a representation into the Borel
subgroup B. An irreducible representation has trivial stabilizer. Its orbit is a copy of
G* = PSL(2, C), which is topologically RP? x R3;

(b) non-Abelian reducible, those that are conjugate to a representation with image in B,
but not into one with image in Bp or D. Such representations have trivial stabilizer
also;

(c) parabolic non-central, those that are conjugate to a representation with image in Bp,
but not in {£7}. Such representations have stabilizer Bp/{£I} = C. Their orbit
O, = G/Bp is a bundle over G/B = CP! with fiber B/Bp = C*.In fact, O, is
diffeomorphic to RP3 x R;

(d) diagonal non-central, those that are conjugate to a representation with image in D,
but not in {#-7}. Such representations have stabilizer D/{1} = C*. Their orbit is a
copy of G3/C*, topologically T §?;
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(e) central, those with image in Z(G) = {£1}. Their stabilizer is the whole group G,
and their orbit is a single point.

Representations of types (b)—(e) are called reducible. Those of types (a), (d) and (e)
are completely reducible, or semisimple. Those of types (c), (d) and (e) have Abelian
image, and we call them Abelian.

We will denote by R;(I') C R(I") the (Zariski open) subset consisting of irreducible
representations, and similarly by Z(I') C Z(I") the open subscheme associated to
irreducibles. (For a proof of openness, see for example [62, Proposition 27].)

Given a representation p : I' — G, we denote by Ad p := Ad o p the associated
adjoint representation on g. Amap £ : I' — g is called a 1-cocycle if

E(xy) = £(x) + Adp) E(y)  forallx,y e T. )

Further, & is a 1-coboundary if it is of the form
E(x)=u—Adyu

for some u € g. The space of 1-cocycles is denoted Z!(I'; Adp) and the space of
1-coboundaries is denoted B! (I'; Ad p). Their quotient is the group cohomology

HY(T'; Adp) = Z'(I'; Ad p)/B'(T"; Ad p).

When I' = (M) for a topological space M, we can identify H'(I'; Adp) with
H'(M; Ad p), the first cohomology of M with coefficients in the local system given
by Ad p.

By a result of Weil [74], the Zariski tangent space to the scheme Z(I") at a closed
point p is identified with Z!(I"; Ad p). We can also consider the (possibly smaller) Zariski
tangent space to the variety R(I"). In general, we have a chain of inequalities

dim O, = dim B'(I'; Ad p) < dim, R(T") < dim T, R(T")
< dim T, (") = dim Z!(I'; Ad p), (3)

where dim,, denotes the local dimension at p. Compare [49, Ch. 2] and [36, Lemma 2.6].
Following [36] and [62], we introduce

Definition 2.1. (a) The representation p is called reduced if dimT,R(I') =
dim Z!(I"; Ad p) i.e., the last inequality in (3) is an equality. This is the same as ask-
ing for the scheme Z(I") to be reduced at p.

(b) The representation p is called regular (or scheme smooth) if dim, R(I') =
dim Z!'(I"; Ad p), i.e., the last two inequalities in (3) are equalities. This is the same as
asking for the scheme Z(I") to be regular (i.e., smooth) at p.

Note that if H(I"; Ad p) = 0, then from (3) we see that p is regular. In fact, in that case,
any representation sufficiently close to p is actually conjugate to p (see [74]).
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2.2. Character varieties

Let us consider again the action of G on the representation variety R(T"). The character
variety of I' is defined to be the categorical quotient

X(T) = R(T)//GY.

If we let R'(I") C R(T") denote the subset consisting of completely reducible representa-
tions, the categorical quotient can be constructed explicitly as

X(T) = R'(I')/G*

(see [49, Theorem 1.27] or [62, Section 7]).
There is also a representation scheme

2() = ZT) /) GY.
In terms of the notation in (1), we have

2(T) = Spec(Clxi. . .. xaxl/ (fi)iez) ©

The reduced scheme associated to 2(I') is the character variety X (I") (see [62, Sec-
tion 12] for more details).

We denote by X (I') = Rirr(I")/ G* < X (T) the open subvariety made up of classes
of irreducible representations. Similarly, there is an open subscheme 2. (I") of Z(I),
corresponding to irreducible representations.

By [49, Corollary 1.33], the conjugacy class of a completely reducible representation
p € R'(I') is determined by its character,

xp: T = C,  xp(g) =Tr(p(g)).

For each g € G, we can define a regular function

Tt R(T) = C,  14(p) = x,(8) )

Let T be the ring generated by the functions 7g; this is the coordinate ring of X (I') [49,
1.31]. Using the identities

TeTh = Tgn + Toh-1)

one can prove that if g1, ..., g, are generators of ", then the 2" — 1 functions

Toiy o 8iy 1<k<n, 1<ij<---<iy<n,

generate 7. This gives a closed embedding of X (I') into an affine space CV, where N =
2" — 1 (see [13, Proposition 1.4.1 and Corollary 1.4.5] and [61, Proposition 4.4.2]).
With regard to tangent spaces, we have the following:
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Proposition 2.2 (cf. [62, Theorems 53 and 54]).

(a) Let p € R(I") be a completely reducible representation. Then the projections R(I")
— X(I') and Z(T') — Z (') induce natural linear maps

¢ T,R(T)/BY(T; Adp) — Ti;)X(I) and & : HY(T'; Ad p) — Tjp 2(D).

(b) If p is irreducible, then ¢ and ® are isomorphisms.
(c) If p is completely reducible and regular, then

dim To(H ' (T; Ad p)//Stab(p)) = Tjp1 X (T) = T}, Z(T),
where we consider the natural action of Stab(p) on group cohomology.

Proposition 2.3 (cf. [62, Corollary 55]). An irreducible representation p € R(T') is re-
duced if and only if the scheme Z(") is reduced at [p].

We refer to Sikora’s paper [62] for more details. The results are stated there for good
representations into a reductive algebraic group G. (See Section 9.1 for the definition of
good.) In the case G = SL(2, C), all irreducible representations are good.

We also have the following fact:

Lemma 2.4. An irreducible representation p € R(I") is regular if and only if the scheme
Z(T) is regular at [ p].

Proof. The “only if” part is [49, Lemma 2.18]. For the “if” part, note that if 2Z(I") is
regular at [p], it is regular in a neighborhood U of [p]. The neighborhood U may be cho-
sen to consist of irreducibles. We conclude that a neighborhood of p in the representation
scheme Z(I") is a G*-bundle over U, which is smooth. Hence, p is regular (see Defini-
tion 2.1(b)). ]

Remark 2.5. If p is regular but reducible, then 2(I") may not be regular at [p]: see
Section 2.3 below, the case where I is a free group with at least three generators.

2.3. The case of free groups

We now specialize to the case where I' = Fy, the free group on k variables. The repre-
sentations of free groups into SL(2, C) have been extensively studied in the literature (see
for example [38], [35]).

We have R(Fy) = G*, and all representations are regular. When k£ = 1, the repre-
sentations are Abelian, and they can be central, diagonal non-central, or parabolic non-
central. For k > 2, we find representations of all possible types. For example, one obtains
a non-Abelian reducible representation of F, by sending one generator to a non-central
diagonal matrix, and the other to a non-central parabolic matrix. This also works for F
for k > 2 by simply sending all the other generators to /.

With regard to the character variety X (Fy):

e When k = 1, let g be the generator of Fi. We then have X (F1) = C, with the coordi-
nate being the trace 7, in the notation (4).
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e When k = 2, let g and & be the generators of Fy. We have X (F) = C3, with the
three coordinates being x = 74, y = 7, and z = 7. By a result of Fricke [24]
and Vogt [71], the reducible locus X (F2) \ Xi(F>) is the hypersurface given by the
equation x> + y? 4 z2 — xyz = 4 (see [28] for an exposition).

e For k > 3, the character variety is singular, and its singular locus is exactly the re-
ducible locus, X (Fi) \ Xirr(Fx) [35, Section 5.3]. The fact that all irreducible repre-
sentations are regular can be seen from Lemma 2.4. The variety X (F}) has complex
dimension 3k — 3, and its reducible locus has dimension k.

For future reference, we note the following facts about the topology of Xy (Fk).

Lemma 2.6. For k > 3, we have m(Xin(Fy)) = 1 and my(Xie(Fy)) = Z/2. Conse-
quently, H' (Xix(Fr); Z/2) = 0 and H*(Xire(F1); Z) = 0.

Proof. For k > 3, consider the reducible locus of the representation variety, Z = R(Fy) \
Rirr (F). Any reducible representation fixes a line in CZ; once we choose the line, we can
assume the representation is upper triangular, i.e. takes values in B C G. Since B has
complex dimension 2, we find that Z has dimension 2k + 1. (The extra degree of freedom
comes from choosing the line.) Since R(Fy) = Gk, we see that Z is of codimension
k — 1, which means real codimension at least 4. Hence, removing Z from R(F) does
not change 71 or mp. From the polar decomposition we see that G is diffeomorphic to
TSU®R) = TS3 = §3 x R3, which has 71 = mp = 1. We deduce that 71 (R (Fr)) =
72 (Rirr (Fi)) = 0.
We now look at the long exact sequence for the homotopy groups of the fibration

G < Rin(Fr) — Xin(Fr).

Since G s diffeomorphic to 7 SO(3) = RP? x R3, we obtain 71 (Xir(Fy)) = 1 and
72 (Xix(F) = 11 (RPY) = Z/2.

The results for cohomology come from the Hurewicz theorem and the universal coef-
ficients theorem. O

Remark 2.7. When k = 2, we can view Xj(F>) as the complement of the hypersurface
w(x2w 4+ y2w + 22w — xyz — 4w?) = 0 in CP3. By [18, Ch. 4, Proposition 1.3], we get
H\(Xi(F2); Z) = 7Z, so the fundamental group is non-trivial.

2.4. Examples for three-manifolds

In this section we will give a few examples of representation and character varieties com-
ing from fundamental groups of three-manifolds Y. In general, when Y is a manifold, we
will write R(Y) for R(;r1(Y)), and similarly with Z(Y), X (Y), etc.

Remark 2.8. Note that 771 (Y) and hence R(Y), Z(Y) are defined after choosing a base-
point z € Y. A different choice of basepoint induces a (non-canonical) isomorphism be-
tween the respective objects. However, we will drop z from notation for convenience. In
the case of character varieties and character schemes, since we divide out by conjugation,
the isomorphisms induced by the change of basepoint are actually natural.
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In Examples 2.9-2.14 below, both the character and representation schemes are reduced,
as can be checked using Definition 2.1(a) and Proposition 2.3. In view of this, we will
focus on describing the varieties R(Y) and X (Y).

Example 2.9. When ¥ = S3, we have that 7 (Y) is trivial, so both R(Y) and X (Y)
consist of a single point.

Example 2.10. Let Y be the connected sum of k copies of S! x S 2 Then 71 (Y) is the free
group Fj on k generators. The varieties R(F) and X (Fy) were discussed in Section 2.3.

Example 2.11. Let Y be the lens space L(p, g) with p > 0 and ged(p,q) = 1. Then
m1(L(p,q)) = Z/p. A representation p : Z/p — SL(2, C) is determined by what it
does on the generator [1] € Z/ p; up to conjugacy, it must send it to a diagonal matrix of
the form diag(u, u™"), where u is a p'™ root of unity. Note that diag(u, u~") is conjugate
to diag(u_l, u). Thus, in terms of the list of representation types in Section 2.1:

e If pis odd, then R(Y) consists of (p + 1)/2 conjugacy classes of diagonal represen-
tations, one being the trivial representation and the others all non-central. Thus, R(Y)
is the disjoint union of a point and (p — 1)/2 copies of TS%, and X (Y) consists of
(p + 1)/2 points.

e If pis even, then R(Y) consists of p/2 + 1 conjugacy classes of diagonal representa-
tions, two being central and the other non-central. Thus, R(Y) is the disjoint union of
two points and (p — 2)/2 copies of T'S2, and X (Y) consists of p/2 + 1 points.

Furthermore, all representations are regular. Indeed, we claim that H'(Z/p; Adp) = 0
for any such p. In general, the first cohomology of the cyclic group Z/p with values in a
module M is

HYZ/pyM)y={meM | (A+¢+2+--+"P Hm =0/{(1—)m | m € M}, (5)

where ¢ is the action of the generator. In our case, ¢ is conjugation by the matrix
A = p([1]), and m is a traceless 2-by-2 matrix. If A = %1 then clearly the right hand
side of (5) is zero. If A ~ diag(u, u 1 # =1, then any element of g can be written as the
commutator [m, A] for some m € g. Hence, (1 — ¢)m = [m, A]A~! can be any element
of g, and we again find that the right hand side of (5) is zero.

Example 2.12. Let Y be the Brieskorn sphere
(g r) ={(x,y,2) €C’ | x” + 1+ =0}N S,

where p,q,r > 0 are pairwise relatively prime integers. The representations of
w1(2(p, q,r)) into SL(2, C) were studied by Boden and Curtis [7, Section 3]. There
is the trivial representation and

N=(p-D@g-Dr-1/4

irreducible ones. The first cohomology H L(x( P, q,r); Ad p) vanishes for all these rep-
resentations, by [7, Lemma 2.4], so they are all regular.

Therefore, R(Y) consists of one point and N copies of PSL(2, C) = RP3? x R3, and
X (Y) consists of N + 1 points.



3652 Mohammed Abouzaid, Ciprian Manolescu

Example 2.13. More generally, let Y = X(ay, ..., a,) be a Seifert fibered homology
sphere, where ay, ...,a, > 0 are pairwise relatively prime. We can arrange that g; is
odd for i > 2. The representations of 71 (Y) into SL(2, C) were studied in [7, proof of
Theorem 2.7]. There is the trivial representation and some irreducibles, which come in
families. Precisely, the character variety X (Y) = pt U X (Y) is regular, with Xj(Y)
being the disjoint union of components My, one for each ¢ = (¢, ..., o), with

ay =ki1/Q2ay), ki €Z,0=<k Za,
o = ki/a;, kieZ,0<ki <aj/2fori>2.

Each M, can be identified with the moduli space of parabolic Higgs bundles of parabolic
degree zero over CP! with n marked points py, ..., p, of weights a;, 1 — ; at p;. The
space M, is smooth of complex dimension 2m — 6, where

m=m(a) = {a; | a; € (0,1/2)}].

(When m < 3, we have M, = (.) Boden and Yokogawa [8] showed that the spaces M,
are connected and simply connected, and computed their Poincaré polynomials (which
only depend on m). In particular, the Euler characteristic of My is (m — 1)(m — 2)2m—4.

Example 2.14. For an example where the representation variety R(Y) is singular, take
the three-torus 73, with 711(T3) = 73. One can check that R(Y) has complex dimen-
sion 5, whereas the Zariski tangent space to R(Y) at the trivial representation is 9-dimen-
sional: Z(T3; g) = H/(T3; g) = ¢°.

Example 2.15. An example of a three-manifold ¥ where the character scheme X (Y) is
non-reduced, based on [49, equation 2.10.4, p. 43], was given on p. 27 of the version
arXiv:1303.2347v2 of [43]. (However, it does not appear in the published version.) The
manifold in question is a Seifert fibered space over the orbifold 82(3, 3, 3), i.e. over the
sphere with three cone points of order 3.

Remark 2.16. Kapovich and Millson [43] proved universality results for representation
schemes and character schemes of three-manifolds, which show that their singularities
can be “arbitrarily complicated”. Specifically, let Z C CV be an affine scheme over Q,
and x € Z a rational point. Then there exists a natural number & and a closed (non-
orientable) 3-dimensional manifold Y with a representation p : 7;(Y) — SL(2, C) such
that there are isomorphisms of analytic germs

(R(Y), p) = (Z xCH*3 x x0) and (X(Y),[p]) = (Z x C*, x x 0).

2.5. The case of surfaces

Let X be a closed oriented surface of genus g > 2, and let I' = 71 (X). We review a few
facts about the character variety of I', following Goldman [29, 30] and Hitchin [37].

A representation p : m(¥) — G is regular if and only if it is non-Abelian. The
character scheme Z(X) = Z(I') is reduced, of complex dimension 6g — 6. Concretely,
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in terms of the images A;, B; of the standard generators of m1(X), we can write the
character variety as

8
X = {1, Bi. ... Ag. By € G | [iAs B =1}//G*. ©6)
i=1

The singular locus of X (X) consists exactly of the classes of reducible representa-
tions, and is of complex dimension 2g. The irreducible locus Xj+(X) is a smooth complex
manifold; we denote by J its complex structure (coming from the complex structure on
G = SL(2, C)). More interestingly, Xj(X) admits a natural complex symplectic struc-
ture, invariant under the action of the mapping class group. Explicitly, if we identify the
tangent space to X (X) at some [p] with H I(z; Ad 0), the complex symplectic form is
the pairing

wc: HY(Z; Adp) x H'(Z; Adp) - H*(2;C) = C, (7

which combines the cup product with the non-degenerate bilinear form (x, y) — Tr(xy)
on g (which is 1/4 of the Killing form). Alternatively, we can identify the points
[p] € X(X) with flat SL(2, C) connections A, on ¥ up to gauge, and HY(Z; Adp)
with de Rham cohomology with local coefficients,

Hy (35 9) =ker(da, : Q1(Z; 9) > Q*(Z; 9))/im(dy, : Q°(F;9) > 2'(T; 9)).

We then have
wcla,b) = / Tr(a A b),
b

where a, b € Q1(Z; g) are dAp—closed forms.

Let us now equip X with a Riemannian metric. Its conformal class determines a com-
plex structure j. By the work of Hitchin [37], we can identify X;,(¥) with the moduli
space of stable Higgs bundles on (X, j) with trivial determinant, and thus give it the
structure of a hyperkéhler manifold. In Hitchin’s notation, we now have three complex
structures I, J and K = IJ, where I comes from the moduli space of Higgs bundles, and
J is the previous structure on X (X). We also have three symplectic forms w;, wy and
w3 (in Hitchin’s notation), where

wc = —w1 +iws.

Remark 2.17. It is worth noting that w, and w3 are exact forms, whereas w is not (see
[37, p. 109] or [45, Section 4.1]).

There is also a variant of the character variety that is smooth. Let us choose a basepoint
w € ¥ and a small disk neighborhood D of w, whose boundary y = 9D is a loop
around w. Then, instead of representations p : m1(X) — G, we can consider twisted
representations, i.e., homomorphisms p : 71 (X \ {w}) — G with p(y) = —I. Any
such p has trivial stabilizer, and is irreducible (it does not preserve any line in C?). Note
also that Ad p is still well-defined as a representation of 71 (X) on g, because conjugation
by —1 is the identity.
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We denote by R, (X) the space of twisted representations, and by X (X) the twisted
character variety
Xiw(Z) = R (2)/G¥.

In terms of the images A;, B; of the standard generators of 71 (Z \ {w}), we have
g
Xo(®) = {41 B, A By € 6% | [[lan Bl = —1}/6. @)
i=1

The spaces Ry (X) and Xty (X) are smooth complex manifolds (and the correspond-
ing schemes are reduced). The twisted character variety has complex dimension 6g — 6,
and its tangent bundle at some [p] is still identified with H Iz Ad p). We can equip Xy
with a complex symplectic form wc = —w; + w3, as before. In terms of gauge theory,
twisted representations correspond to central curvature (i.e., projectively flat) connections
in a rank 2 bundle of odd degree on X.

After choosing a conformal structure on X, we can identify X (%) with a moduli
space of Higgs bundles of odd degree and fixed determinant [37]. This gives a hyperkahler
structure on Xy, (¥), with complex structures /, J, K and symplectic forms w;, w;, w3.
They have properties similar to those of the respective objects on X (X).

Let us end with some remarks about the case when the surface X is of genus g = 1.
Then all representations p : m1(X) — G are reducible. The character variety X (X) is the
quotient of C* x C* by an involution, and Xj;(X) = #. On the other hand, the twisted
character variety X, (X) is still smooth, consisting of a single point. Indeed,

i 0 0 1
A=(0 —i)’ Bz(—1 0) ®

are (up to conjugation) the only pair of anti-commuting matrices in SL(2, C).

3. Lagrangians from Heegaard splittings

As mentioned in the Introduction, the Atiyah—Floer conjecture [2] asserts that the SU(2)
instanton homology of a three-manifold can be constructed as Lagrangian Floer homol-
ogy, for two Lagrangians inside the moduli space of flat SU(2) connections of a Heegaard
surface. In this section we pursue a complex version of this construction, with SU(2) re-
placed by SL(2, C).

The Lagrangians constructed below are examples of (A, B, A) branes, in the sense
that they are of type A (Lagrangian) for the complex structures / and K (more precisely,
for the forms w; and w3), and of type B (complex) for the complex structure K. These
Lagrangians have also appeared in the work of Gukov [31] and that of Baraglia and Scha-
posnik [4, Section 11], [5].

3.1. Lagrangians in the character variety
Let Y be a closed, connected, oriented three-manifold. Any such manifold admits a Hee-
gaard splitting

Y =UpUs Uy,



A sheaf-theoretic model for SL(2, C) Floer homology 3655

where X is a closed oriented Heegaard surface, and Uy, U; are handlebodies. We denote
by g the genus of X.

Given a Heegaard splitting, we consider the irreducible locus of its character variety,
Xir(X) C X (). Note that when g = 0 or 1, the group 71 (X) is Abelian, and hence
Xirr(X) is empty. Thus, we will assume g > 2.

We equip Xjr(X) with the complex structure J and the complex symplectic form wc,
as in Section 2.5. For each handlebody U;,i = 0, 1, lett; : ¥ — U; be the inclusion, and
(ti)« the induced map on 1. We consider the subspace

Li ={[po()«]]| p:mU;) = G irreducible} C X (X).

Equivalently, if we view Xj;(X) as the space of irreducible flat SL(2, C) connections
on X, then L; consists of those flat connections that extend to U;.

Lemma 3.1. (a) The subspaces L; C Xi(X) can be naturally identified with Xi(U;),
and their intersection Lo N L1 with Xi(Y).
(b) The subspaces L; are smooth complex Lagrangians of Xir(2).

Proof. (a) Note that (¢;)« : m1(X) — m1(U;) is surjective. Consequently, two representa-
tions p1, p2 : w1 (U;) — G are the same if and only if pj o (¢;)x = p2 o (¢;)«. Furthermore,
a representation p : w1(U;) — G is reducible (fixes a line in C?) if and only if p o iy is.
This gives the identifications L; = X (U;).

The same argument can be used to identify LoN L with X;:(Y). The key observation
is that if ¢ : ¥ — Y denotes the inclusion, then the induced map ¢, on 7 is surjective.
This follows from the fact that 771 (¥) surjects onto 71 (Up) and 1 (Uy), together with the
Seifert—van Kampen theorem.

(b) Let us check that wc vanishes on Ty L; C Tjp Xin(Y). Let A = A, be the
flat connection associated to p on U;. In terms of connections, the inclusion Tj,1L; C
T p1 Xire(Y) corresponds to

H,(Uis g) C Hy(3: g).
For ds-closed forms a, b € Qk(U,-; g), by Stokes’ theorem, we have

wc(a, b) = / Tr(a A D) =f dTr(a A D) =/ Tr(dga ANb —a Adab) =0.
p) U; U;

Moreover, since 71 (U;) is the free group F,, on g generators, the spaces L; are dif-
feomorphic to the varieties Xj(Fg) from Section 2.3. These are of complex dimension
3g — 3, which is half the dimension of X;(¥). We conclude that L; are Lagrangians.
They are also complex submanifolds, since the complex structures come from the com-

plex structure on g. o
Explicitly, we can choose standard generators ay, ..., ag, by, ..., by of m(X) with
]_[l-[a,', bi] = 1suchthat by, ..., bg also generate 71 of one of the handlebodies, say Ujp.

If we denote A; = p(a;), Bi = p(b;), we have the description (6) of X (X). In terms of
that description, the Lagrangian L corresponds to the irreducible representations p that
satisfy
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The second Lagrangian L is the image of Lo under an element in the mapping class
group of X.

3.2. Lagrangians in the twisted character variety

We now present a twisted version of the constructions in Section 3.1. This is inspired by
the torus-summed Lagrangian Floer homology in the SU(2) case, proposed by Wehrheim
and Woodward [72, Definition 4.4.1] (see also [39] for a related construction).

We start with a Heegaard splitting ¥ = Uy Uy U; as before. (We allow the case
when the Heegaard genus g is O or 1.) We pick a basepoint z on ¥ C Y, and take the
connected sum of Y with 72 x [0, 1], by identifying a ball B C Y around z with a
ball B’ in T? x [1/4,3/4] C T? x [0, 1]. We assume that B is split by = into two solid
hemispheres, with common boundary a two-dimensional disk D C . Similarly, B’ is
split into two solid hemispheres by 72 x {1/2}, and D is identified with the intersection
B’ N (T? x {1/2}). In this fashion, we obtain a decomposition of

Y =Y #(T? x [0,1))

into two compression bodies' Ug and Uf, each going between ¥ := L # T2 and a
copy of T'2. We also pick a basepoint w on 7% = T2 x {1/2} (away from the connected
sum region), which becomes a basepoint on £#. We denote by £y and ¢ the intervals
{w} x [0, 1/2] and {w} x [1/2, 1]. See Figure 1.

Fig. 1. The connected sum of a Heegaard decomposition with Y2 x [0, 1].

As explained in Section 2.5, we can consider the twisted character variety X w(ZH),
using representations p : (X \ {w}) — G that take a loop around w to —I. Inside
X (Z%) we take the subspaces Lf, i =0, 1, consisting of the classes [p] for representa-
tions p that factor through (Ul.# \ 4i).

! In three-dimensional topology, a compression bodly is either a handlebody or the space obtained
from S x [0, 1] by attaching one-handles along S x {1}, where S is a closed surface. In our case,
S = T2, and we attach g one-handles, where g is the genus of X.
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Lemma 3.2. (a) The subspaces L? C Xow(Z*) can be naturally identified with the rep-
resentation varieties R(U;), and their intersection Lg N L*f with R(Y).
(b) The subspaces Lf are smooth complex Lagrangians of X (E%).

Proof. (a) Arguing as in the proof of Lemma 3.1(a), we can identify L? with a
twisted character variety th(U,-#), consisting of conjugacy classes of representations
o 7T1(U,~# \ £;) — G that take the value —I on a loop around ¢;. Since m(U,# \ £i)
is the free product of 71 (U;) and m; (T? \ {w}), we can write

Xew(UF) = (R(U;) x Rw(T?))/ G,
Therefore, we have a fiber bundle
R(U;) = Xw(Uf) = Rw(T?)/G™ = X (T?), (10)

where the projection Xy (U") — X (T?) is induced by the inclusion of 72 = T2 x {i}
into Ui# .

As mentioned at the end of Section 2.5, the twisted character variety XtW(T2) is a
single point. Hence, the inclusion R(U;) — th(Ui# ) is an isomorphism. Explicitly, the
inclusion takes p € R(U;) to the class of a representation p : 7T1(U,-# \ ¢;) - G by
mapping the generators of 7; of the extra torus to the pair of matrices from (9).

After identifying each Lf with R(U;), the intersection Lﬁ N L? becomes the space of
pairs of representations (po, 1) € R(U1) x R(U>) that have the same restriction to 71 (X).
Using the Seifert—van Kampen theorem as in the proof of Lemma 3.1(a), we see that this
space is the same as R(Y).

(b) The proof of Lemma 3.1(b) applies here with a slight modification: instead of flat
connections we use projectively flat connections on rank 2 complex bundles with ¢ # 0.

O
Let us choose standard generators ay, ..., dg, b1, ..., bg of m(¥), with ]_[l-[a,-, bil=1
such that by, ..., b, also generate 1 (Up). We add two more generators ag 1, bgyq for

the new torus 7'2, and we obtain a generating set for (=*). If we denote A; = o(a;),
B; = p(b;), recall from (8) that we can write

g+l
Xoo(E" = {(A1 Bi, o Ag, By, Agir, Berr) € G2 ) [Tiai B:1=—-1}/G*.

i=1
Then the Lagrangian Ly is given by the equations
Ai=1, i=1,...,g,

and L is the image of Lo under a mapping class group element.
Observe that since the Lagrangians are identified with R(U;), they are diffeomorphic
to products of g copies of G = §3 x R3.

3.3. Conditions on intersections

Let us recall the definition of clean intersections.
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Definition 3.3. Let M be a smooth manifold and L, L{ C M smooth submanifolds. We
say that Lo and L intersect cleanly at a point x € Lo N L1 if there is a neighborhood U
of x in M such that Ly N L N U is a smooth submanifold Q and

T,Q0=T:LoNTyL; C TyM.
Furthermore, we say that Ly and L intersect cleanly if they do so atevery x € Lo N L.

In particular, transverse intersections are clean.

Let Y = Up Ny U; be a Heegaard splitting of a three-manifold. For the Lagrangians
constructed in Sections 3.1 and 3.2, we have the following criteria for clean and transverse
intersections.

Lemma 3.4. The Lagrangians Lo, L1 C Xi(X) intersect cleanly at a point [p] in
Xir(Y) if and only if the representation p is regular, i.e. [p] is a regular point of the
character scheme Ziy+(Y) (cf. Lemma 2.4).

Proof. For the Heegaard splitting ¥ = UygUyx U1, the Mayer—Vietoris sequence with local
coefficients reads
o> HY(Z; Adp) —> H'(Y; Adp) = H'(Uy; Adp) ® H'(Uy; Ad p)
— HY(Z;Adp) > --- .

Because p is irreducible, we have
HY(Z:Adp) ={aeg|[p(x).a] =0, ¥x € 7 (%)} = 0.
Thus, we can identify H 1(Y; Ad p) with the intersection
H'(Uyp; Adp) N H'(U;; Adp) € H'(Z; Ad p).

Since the character schemes 2. (Up), Zin(U1) and Zi(X) consist of only regular rep-
resentations, they are smooth (by Lemma 2.4), and the tangent bundles to the correspond-
ing varieties Lo = Xi(Up), L1 = Xin(U1) and M = X (%) at [p] are H!(Up; Ad p),
H'(U;; Ad p), and H I(z: Ad p). Moreover, by Proposition 2.2(b), the tangent space to
the scheme Zi(Y) is H'(Y; Ad p). Therefore,

Tip) Zi(Y) = Tip) Lo N Tjp)L1 C Tjp)M. (11)

Now, if Lo and L intersect cleanly at [p] (along a submanifold Q, in a neighborhood
of [p]), then (11) implies that Tj,) Zix(Y) = TjQ, so [p] is a regular point of Zi(Y).
Conversely, if [p] is a regular point, then once again locally the intersection is a smooth
submanifold Q, with Tj,) Zi(Y) = Tj»1 Q. In view of (11), the intersection is clean. O

Corollary 3.5. The Lagrangians Lo, L1 C Xix(X) intersect transversely at a point
[p] € Xiw(Y) if and only if H'(Y; Ad p) = 0.

Proof. By Proposition 2.2(b), since p is irreducible, we have Tj,) Zinr(Y) = H Liy; Ad 0).
The conclusion follows from this and (11). ]
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Lemma 3.6. The Lagrangians Lg, L’f C Xow(Z*) intersect cleanly at a point p € R(Y)
if and only if p is regular, i.e., p is a regular point of the representation scheme Z(Y) (cf.
Definition 2.1).

Proof. The proof is similar to that of Lemma 3.4, with spaces of 1-cocycles instead of
first cohomology groups.

By the Seifert—van Kampen theorem, we have 1 (Y) = 71 (Up) *5,(x) m1(U1). This
time, in view of the definition (2) of 1-cocycles, we can directly identify Z Lz (Y): Ad 0)
with the intersection

ZY (1 (Uo); Ad p) N Z' (1 (U1); Ad p) € Z! (1 (2); Ad p).

Since the schemes Z(Uy), Z(U,) and Z(X) are reduced, the tangent spaces to the corre-
sponding varieties L# = R(Uy), L*{ = R(Uj) and R(X) at p are the spaces of 1-cocycles.
Further, the tangent space to the scheme Z(Y) is Z Lz (Y); Ad p). Therefore,
T,Z(Y)=T,LENT,L% C T,R(Z). 12)
We also have an inclusion

R(Z) = M* = Xw(ZH, o [],

where p acts as p on 71(X) C 71(Z%), and takes the generators of the new torus to the
anti-commuting matrices from (9). At the level of tangent spaces, we get an inclusion

T,R(Z) = Z' (1 (2); Ad p) — T,M" = H' (r(Z}); Ad p),

where we identified p with its image [p].
Now, instead of (12), let us write

T,2(Y) =T,LENT,L% c T,M". (13)

It L‘g and L’f intersect cleanly at p, along a submanifold Q, then by (13) we have
T,%(Y) =T,0Q, so p is a regular point of Z(Y). Conversely, if p is regular, then locally
the intersection is a smooth submanifold Q, with T,Z(Y) = T, Q. Using (11), we find
that the intersection is clean. m]

Corollary 3.7. The Lagrangians Lg, L’f C Xw(X¥) intersect transversely at a point
p € R(Y) ifand only if Z' (1 (Y); Ad p) = 0.

Proof. Use (13) and the identification of T,Z(Y) with ZY o (Y); Ad p). ]

3.4. Floer homology for complex Lagrangians

Let us investigate the possibility of defining Lagrangian Floer homology with the spaces
constructed in Sections 3.1 and 3.2. (Such a construction has been explored in the physics
literature, for example in [31].) We refer to [23, 25, 60, 55, 3] for references on Lagrangian
Floer homology.
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With regard to Lo, L1 C Xir(X), note that both X;+(X) and the Lagrangians are non-
compact, and in fact not even complete as metric spaces (with respect to the hyperkidhler
metric mentioned in Section 2.5). Thus, holomorphic strips may limit to strips that go
through the reducible locus, where the character variety X (¥) is singular. Defining Floer
homology in such a situation is problematic.

The situation is more hopeful for the Lagrangians L, L% C X (Z*). They are still
non-compact, but are complete with respect to the hyperkihler metric, and we can try to
understand their behavior at infinity.

We should also decide what symplectic form to use on the manifold M = X, (Z%).
Recall from Section 2.5 that wc = —w; + iw3. We can try w1, w3, or a combination of
these.

Remark 3.8. The intuition behind the Atiyah—Floer conjecture is that, as we stretch the
three-manifold Y along a Heegaard surface X, the ASD Yang—Mills equations on R x Y
become the Cauchy—Riemann equations for strips in the moduli space of flat SU(2) con-
nections on X. In the SL(2, C) case, on R x Y we can consider the Kapustin—Witten
equations [45] for various parameters ¢ € R. In particular, at # = 0 we find the SL(2, C)
ASD equations, and at # = 1 we see the equations considered in Witten’s work on Kho-
vanov homology [77]. When we stretch Y along X, we get the Cauchy—Riemann equa-
tions in X (X), with respect to the complex structure / for t = 0, and with respect to K
fort = 1 [45, Section 4]. The same goes for X (X) if we do a twisted version. Note that,
under the hyperkéhler metric, the complex structure / corresponds to wy, and K to w3.

Another option is to consider the Vafa—Witten equations on R x Y [70]. When we
stretch along X, we obtain once again the Cauchy—Riemann equations for the complex
structure I (see [34, Section 4.2] or [51, Section 8]).

Observe that since M is hyperkéhler, it is Calabi—Yau (c¢; = 0). If we work with w; (which
is not an exact form: see Remark 2.17), we expect sphere bubbles to appear, and they
would not be controlled by their first Chern class. This makes constructing Lagrangian
Floer homology more difficult.

It seems better to use w3, which is exact. Since the Lagrangians L? are diffeomorphic
to products of G, they satisfy H' (Lf; Z) = 0, so are automatically exact. This precludes
the existence of disks and sphere bubbles. Further, since H'(L¥; Z/2) = H*(L¥; Z/2)
= 0, the Lagrangians have unique spin structures, and these can be used to orient the
moduli space of holomorphic disks. Also, the fact that c¢; (M) = 0 implies that M admits
a complex volume form; a choice of a homotopy class of such volume forms induces a
Z-grading on the Floer homology. In fact, the hyperkéhler structure determines a canon-
ical holomorphic volume form; hence, if the Floer homology is well-defined, it admits a
canonical Z-grading.

It still remains to deal with non-compactness. To ensure that at least the intersection
Lg N Lf is compact, one needs to perturb one Lagrangian near infinity, by a suitable
Hamiltonian isotopy. This should lead to an “infinitesimally wrapped” Lagrangian Floer
homology, provided that (after perturbation) holomorphic strips do not escape to infinity.
In particular, we need the following tameness condition on Lagrangians introduced by
Sikorav.
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Conjecture 3.9. The Lagrangians L¥, L’f C Xw(Z¥) are tame, in the sense of [63,
Definition 4.7.1].

Conjecture 3.9 would imply compactness for the moduli spaces of holomorphic disks
with boundary on either Lagrangian. We expect that a similar tameness condition can be
formulated for the pair (Lo, L1), to ensure compactness for the moduli spaces of strips.
If these conditions are all satisfied, then the Lagrangian Floer homology HF, (Lf, LT)
would be well-defined. We also expect HF *(L#, L“f) to be an invariant of Y. A potential
strategy for proving invariance would be to use the theory of Lagrangian correspondences
and pseudo-holomorphic quilts developed by Wehrheim and Woodward [73], [72].

Moreover, since Lg, L’f are complex Lagrangians, there should be no non-trivial
pseudo-holomorphic strips between then. Indeed:

e If two J-complex Lagrangians in a hyperkéhler manifold (M, I, J, K, g) intersect
transversely, then the relative Maslov grading between any two intersection points is
always zero. Indeed, the relative grading is the index of an operator L, the linearization
of the Cauchy—Riemann operator (defined from the complex structure I or K). One can
check that the operators J 'L J and —L* differ by a compact operator, which implies
that ind(L) = ind(L*) = 0. This is an analogue of the fact that, in finite dimensions,
the Morse index of the real part of a holomorphic function is zero (because the signa-
ture of a complex symmetric bilinear form is zero). Since the relative grading is zero,
for generic almost complex structures, the moduli space of pseudo-holomorphic curves
is empty.

e Even if the two J-complex Lagrangians do not intersect transversely, for a generic
value of 6 € R, if we consider the complex structure K () = cos(6)K + sin(f)1, then
there are no K (8)-holomorphic strips with boundary on the Lagrangians [65]. Note
that K (0) is w3-tame for 6 close to 0.

The above results suggest that the Lagrangian Floer homology of complex La-
grangians may have a simpler algebraic interpretation. Indeed, in [9, Remark 6.15], the
authors describe an analogy between Lagrangian Floer homology and a sheaf-theoretic
construction. In the following sections we will follow their suggestion and construct three-
manifold invariants using sheaf theory instead of symplectic geometry.

4. Sheaves of vanishing cycles and complex Lagrangians

In this section we review some facts about complex symplectic manifolds, perverse
sheaves, vanishing cycles, and then present Bussi’s construction from [11].

4.1. Complex symplectic geometry

We start with a few basic definitions and results; some of them also appear in [11, Sec-
tion 1.3].

Definition 4.1. A complex symplectic manifold (M, w) is a complex manifold equipped
with a closed non-degenerate holomorphic two-form w. If M has complex dimension 2n,
an n-dimensional complex submanifold L C M is called complex Lagrangian if w|;, = 0.
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The standard example of a complex symplectic manifold is 7*C" with the canonical
symplectic form w¢an. We have a complex Darboux theorem, whose proof is the same as
in the real case.

Theorem 4.2. Let (M, w) be a complex symplectic manifold, and pick p € M. Then
there exist a neighborhood S of p and an isomorphism (i.e. biholomorphic symplecto-
morphism) h : (S, w) = (T*N, wean) for an open set N € C".

There is also a complex Lagrangian neighborhood theorem:

Theorem 4.3. Let (M, w) be a complex symplectic manifold, and Q C M a complex
Lagrangian. For any p € Q, there exist a neighborhood S of p in M and an isomorphism
h: (S, w) = (T*N, wcan) for an open set N € C" such that h(Q N S) = N, the zero
section in T*N.

Note that, in contrast to the real case, Theorem 4.3 does not describe a neighborhood
of the whole Lagrangian Q. In the complex setting, a neighborhood of QO may not be
isomorphic to 7*Q. This is related to the fact that complex manifolds may have non-
trivial moduli.

We now discuss polarizations, starting with the linear case.

Definition 4.4. A polarization of a complex symplectic vector space (V, ) is a linear
projection w : V — V/L, determined by the choice of a complex Lagrangian subspace
LcV.

Given a polarization, we can choose another Lagrangian subspace Q C V, transverse
to L, identify V /L with Q and get a decomposition V = Q@L, as well as an isomorphism
L = Q* induced by the symplectic form. Overall, we get a decomposition

V=0®0" (14)

Observe that, given L and Q, any other Q' transverse to L is described as the graph of a
linear function f : Q — L, which is symmetric iff Q' is Lagrangian. Therefore, given the
polarization L, the space of possible Q is the space of symmetric matrices, which is con-
tractible. Thus, we sometimes think of polarizations (informally) as decompositions (14).

Definition 4.5. A polarization of a complex symplectic manifold (M, ) is a holomor-
phic Lagrangian fibration w : § — Q, where S C M is open and Q is a complex
manifold.

By slightly refining the proof of Darboux’s theorem, we obtain the following results.

Theorem 4.6. (a) Let (M, w) be a complex symplectic manifold. Suppose we are given
p € M and a polarization o : T,M — T,M /L. Then there exist a neighborhood S
of pin M, an open subset N C C", an isomorphismh : S — T*N as in Theorem 4.2,
and a polarization w : § — Q such that (dm), : T,M — T,0 is the linear
polarization o, that is, ker (dm), = L.
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(b) Let (M, w) be a complex symplectic manifold. Suppose we are given p € M, a polar-
izationo : TyM — T,M/L,, and also a complex Lagrangian submanifold Q C M
through p, such that T, Q intersects L, transversely. Then we can find a neighbor-
hood S of p in M, an open subset N C C", an isomorphism h : S — T*N as
in Theorem 4.3 with h(Q N S) = N, and a polarization w : S — Q such that
dm), =o0.

A complex symplectic bundle E over a space X is a complex vector bundle over X
equipped with continuously varying linear symplectic forms in the fibers. A holomor-
phic symplectic bundle £ over a complex manifold M is a holomorphic bundle over M
equipped with linear symplectic forms in the fibers, which produce a holomorphic section
of (£ ® &)*.

We can extend the notion of polarization to these kinds of bundles.

Definition 4.7. Let M be a complex manifold, and £ — M a complex symplectic vector
bundle. A polarization in E is a bundle map (projection) 7 : E — E/L, given by the
choice of a complex Lagrangian subbundle L C E.

Furthermore, if £ is a holomorphic symplectic bundle, and £ is a holomorphic La-
grangian subbundle, we say that 7 is a holomorphic polarization.

If a complex symplectic vector bundle £ has a polarization 7 : E — E/L, we can find
a Lagrangian subbundle Q C E transverse to E (using the contractibility of the space of
such local choices). This gives a decomposition

E=0& 0" 5)

For holomorphic bundles equipped with a holomorphic polarization 7 : £ — £/L,
we may not always find another holomorphic Lagrangian subbundle Q C & transverse
to L, to identify £/L with Q. Thus, we do not automatically obtain a decomposition of
the form (15).

Example 4.8. Let M = CP!, and £ = O @ O with the standard complex symplectic
structure on the fibers (such that the two copies of O are dual to each other). Let also
L = O(—=1) C & be the tautological bundle, viewed via the usual inclusion of lines
in C2. Then £ gives a holomorphic polarization, but the quotient £/£ is isomorphic to
O(1), which cannot be a subbundle of £.

Finally, we mention a few well-known facts about spin structures.

Fact 4.9. (a) A complex vector bundle E admits a spin structure if and only if wo(E) =
0, or equivalently the mod 2 reduction of c1(E) vanishes.

(b) Ifthey exist, the spin structures on E are in (non-canonical) bijection to the elements
of H'(M;7)2).

(¢) If € is holomorphic vector bundle, then a spin structure on & is the same as the data
of a (holomorphic) square root of the determinant line bundle det(E).

(d) If E is a complex symplectic vector bundle, then the symplectic form gives rise to a
trivialization of det(E). Hence, c1(E) = 0, so E admits a spin structure.
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In particular, we will be interested in spin structures on complex manifolds M, i.e., on
their tangent bundles. Such a spin structure is the same as the choice of a square root for
the anti-canonical bundle det(7' M), or equivalently (after dualizing) of a square root K Ilw/ 2
for the canonical bundle K, = det(T M)*.

Remark 4.10. When L is a complex Lagrangian, a spin structure on L is called an ori-
entation [11, Definition 1.16]. To prevent confusion with actual orientations, we will not
use that terminology.

4.2. Perverse sheaves and vanishing cycles

We now briefly review perverse sheaves on complex-analytic spaces, in the spirit of [11,
Section 1.1]. Almost everything that we state goes back to the original work of Beilinson,
Bernstein, and Deligne [6], but given the likelihood that the reader is more comfortable
with the English language, we refer instead to Dimca’s book [19] for details.

We will work over the base ring Z. Let X be a complex-analytic space, and Df(X )
the derived category of (complexes of) sheaves of Z-modules on X with constructible
cohomology. We can consider the constant sheaf Zy (or, more generally, a local system
on X) to be an object of Dé’ (X), supported in degree 0.

On ch (X) we have Grothendieck’s six operations f*, f!, Rf., Rfi, RHom, L, as
well as the Verdier duality functor Dy : Dé’ (X) —> Dé’ (X)°P.

To an object C* € Df(X ) we can associate its hypercohomology and hypercohomol-
ogy with compact support, defined by

HK(C®) = H*(Rm.(C%), HE(C*) = H*(Rm(C*)),

where 7w : X — x* is the projection to a point. In particular, for C* = Zy, we recover the
ordinary cohomology (resp. cohomology with compact support) of X.
Hypercohomology and hypercohomology with compact support are related by Verdier
duality:
k L] ~ —k L] *
He(C*) @z k = (H*(Dx (C*) @z k)",

where k is any field. Over Z, we have a (non-canonical) isomorphism as in the universal
coefficients theorem:

HE(C*) = Hom(H % (Dx(C*)), Z) ® Ext' (H*~1(Dx (C*)), Z). (16)
For x € X, let us denote by i, : * <> X the inclusion of x.
Definition 4.11. A perverse sheaf on X is an object C*® € Df (X) such that
dim{x € X | H™(i*C*) #0or H™(i:C®) # 0} < 2m
forallm € Z.

Example 4.12. Let X be a complex manifold of complex dimension n, and £ a Z-local
system on X. Then L[n] is a perverse sheaf on X.
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Let Perv(X) be the full subcategory of Df (X) consisting of perverse sheaves. Then
Perv(X) is an Abelian category (unlike Df (X), which is only triangulated). Another way
in which perverse sheaves behave more like sheaves rather than complexes of sheaves
(elements of Df (X)) is that they satisfy the following descent properties.

Theorem 4.13. Let {U;}ics be an analytic open cover for X.

(a) Suppose P°, Q° are perverse sheaves on X, and for each i we have a morphism
a; @ Ply, — Q°ly; in Perv(U;) such that a; and o agree on the double overlap
Ui NUj foralli, j € 1. Then there is a unique morphism o : P* — Q° in Perv(X)
whose restriction to each U; is ;.

(b) Suppose for each i € I we have a perverse sheaf P} on U;, and we are given iso-
morphisms cij : P?lu,nu; — 73j'|U,mU/.. Suppose a;; = id for all i, and on triple
overlaps U; N U; N U we have aji o ajj = ajx. Then there exists P* € Perv(X),
unique up to canonical isomorphism, with isomorphisms p; : P*|y, — P for all
i €l,such ﬂ’lCll‘Oljj o ,3i|U,ﬂUj = ﬂj'Uint fori,j el.

Further examples of perverse sheaves come from vanishing cycles. Given a holomorphic

function f : X — C, denote Xo = f~'(0) and X, = X \ Xo. Let p : C* — C* be

the universal cover of C* = C \ LO}, and p : Xy — X, the Z-cover of X obtained by
pulling back p under f.Let w : X, — X be the composition of p with the inclusion of

X, into X, and leti : Xo < X be the inclusion. We then have a nearby cycle functor

Y DY (X) — DY(Xo), Wy =i*oRm.on™

For each C* € Df(X), there is a comparison morphism E(C®) : i*C* — v#(C*).
We define the vanishing cycle functor ¢y : ch (X)) — Df (Xo) by extending E(C*®) to a
distinguished triangle

i'c* 2 g0t - ¢r ) — e

in D2 (Xo).
Theorem 4.14 (cf. [19, Theorem 5.2.21]). The shifted functors 1//}7 = Yyr[-1] and
qb}’ = ¢r[—1] both map Perv(X) into Perv(Xj).

To make this more concrete, suppose U is an open subset of the affine space C", and
f : U — C is holomorphic. For every x € Uy = f~1(0), we define the Milnor fiber F,
to be the intersection of a small open ball Bs(x) C C" (of radius ) with the fiber f~!(¢),
for 0 < € < 4. By [19, Proposition 4.2.2], we have a natural isomorphism

H*(yyC*) = HN(Fy, C*).

In particular, if C* = Zy and x is the unique critical point of f, then for y # x the
cohomology Hk('(//f (Zx))y is Z in degree 0, and O otherwise. At x we have

7Z ifk=0,
H (Y Zy)y = HY(F D) = {24 ifk=n—1,
0 otherwise,

where p is the Milnor number of f at x.
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As for the vanishing cycle ¢rZy, its cohomology is supported at x, where it is given
by the reduced cohomology H*(Fy; Z), which is Z* in degree n — 1. Thus, if we consider
the perverse sheaf Zg[n], its image under qbf is (up to isomorphism in Perv(Up)) the
skyscraper sheaf supported at x in degree 0, with stalk Z*.

Example 4.15. When U = C" with coordinates x = (x,...,x,) and f is given by
fx1, oo, x0) = x12 + -+ x,f, then the unique critical point is x = 0. The Milnor fiber
F, is diffeomorphic to 7S"~!, and the Milnor number is ;& = 1. Therefore, ¢; (Zy[n))
is the skyscraper sheaf Z at x = 0, in degree 0.

Now suppose we have a complex manifold U, and f : U — C a holomorphic function.
Let X = Crit(f) be the critical locus of f. Note that f|x : X — C is locally constant,
so X decomposes as a disjoint union of components X, = f~Ye)N X, over ¢ € f(X).
Following [11, Definition 1.7], we define the perverse sheaf of vanishing cycles of (U, f)
to be
PVy = P ¢7_(Zyldim UD)x,. 17)
cef(X)

Example 4.16. Let U = C" and f(x1,...,x,) = x,%H + -4+ x,% for some k with
0<k<n.ThenX = Xo = Ck c C" is the subspace with coordinates x, . .., xx. When
k = 0, we are in the setting of Example 4.15 and PV{; ¥ is the skyscraper sheaf Z over 0.
In general, PV{,J is the constant sheaf Zx[k] over X.

4.3. Bussi’s construction

We are now ready to review Bussi’s work [11], which associates to a pair of complex
Lagrangians a perverse sheaf on their intersection.

Let (M, w) be a complex symplectic manifold, and Lo, L; C M two complex La-
grangians. We assume that Ly and L are equipped with spin structures, that is, square
roots K Z{) % and K Z{ 2 (see Fact 4.13 and the paragraph after it).

We denote by X the intersection Lo N L. It will be important to view X not solely
as a subset of M, but as a complex-analytic space (the complex-analytic analogue of a
scheme); that is, we keep track of the structure sheaf Oy . In particular, X may not be re-
duced, and we denote by X™¢ its reduced subspace (with the same underlying topological
space as X).

Definition 4.17. An Lg-chart on M is the data (S, P, U, f, h, i), where

S C M is open;

P=SNXand U = SN Ly;

f : U — C is a holomorphic function;

h : S — T*U is an isomorphism that takes U to the zero section, S N L to the graph
of df, and P to the critical locus Crit(f);

i : P — Crit(f) C U is the isomorphism of analytic sets induced by the inclusion
P —=U.



A sheaf-theoretic model for SL(2, C) Floer homology 3667

Remark 4.18. To be consistent with the convention in [11, Section 2], we will drop S
and /& from the notation, and denote the Ly-chart by (P, U, f,i).

We can construct Lo-charts around any x € X, as follows. We start by choosing a polar-
ization of Ty M that is transverse to both Lo and L. Using Theorem 4.6(b), we can extend
this to a local polarization 7w : § — U (in the sense of Definition 4.5) that is transverse to
Ly and L. This gives the desired Lg-chart. Conversely, an Lg-chart gives a polarization
7 : § — U, obtained by pulling back under % the projection T*U — U.

Given an Lg-chart (P, U, f,i), the polarization w : S — U naturally induces a
local biholomorphism between Lo and L1, and thus a local isomorphism between their
canonical bundles,

©:Krylp = Kir,lp.
We denote by
wpu,fi-Qpru,fi—> P

the principal Z;-bundle parametrizing local isomorphisms between the chosen square
roots (spin structures)
2K p S K
such that ¥ @ ¥ = ©.
On the critical locus Crit(f), we have a perverse sheaf of vanishing cycles PV,

as in (17). We pull it back to X under the isomorphism i, and then twist it by tensormg
it with the bundle Qp y, ;. This produces a perverse sheaf over P C X, for any Lo-
chart. Using the descent properties (Theorem 4.13), Bussi shows that one can glue these
perverse sheaves to obtain a well-defined object

Plo.L, € Perv(X)

with the property that for any Lg-chart there is a natural isomorphism

wpu.fi: Pl |p = i*(PVy p) ®z, Qpu.fi- (18)

The hypercohomology H* (PZ(,, L) is a sheaf-theoretic model for the Lagrangian
Floer cohomology of Lo and L.

5. A stabilization property

In this section we establish a property of the perverse sheaves 7320 1, that will be useful
to us when constructing the three-manifold invariants in Section 7.

Proposition 5.1. Let (M', w) be a complex symplectic manifold, and M C M’ a complex
symplectic submanifold. We denote by ® : M < M’ the inclusion. We are given complex
Lagrangians Lo, L1 C M and L,, L\ C M’ satisfying Lo C Ly, L1 C L and

LoNLy=LyNL)

as complex-analytic spaces.
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Let N := Ny = (TM)® be the subbundle of T M|y which is the symplectic
complement to T M. Suppose we have a direct sum decomposition of N into holomorphic
Lagrangian subbundles

N=Vy& V.

Hence we obtain a direct sum decomposition
TM' |y =TM & Vo ® V1.

We assume that, under this decomposition, the tangent spaces to the Lagrangians are
related by

TLylLy=TLo® Volr, ®0, TLjlz, =TL1®0® Vi|z,.

Further, we assume that the Lagrangians Lo, L1, Ly, L, come equipped with spin
structures such that, fori = 0, 1, the spin structure on L; is the direct sum of that on L;
and a given spin structure on V;. Also, the spin structure on V| should be obtained from
the one on Vy via the natural duality isomorphism Vi = V{ induced by w.

We are also given a non-degenerate holomorphic quadratic form q € H 0(Sym2 V).
We assume that the spin structure on Vy is self-dual under the isomorphism Vo = Vi
induced by q.

Then there is a natural isomorphism of perverse sheaves on X = Lo N Ly,

. ° = °
S ,PLo,Ll - 7DLE),L’I'

Proof. The bilinear form associated to ¢ gives a holomorphic section of Hom(Vp, V).
We can think of it as a bundle map s : Vy — V, which is an isomorphism in every fiber.
We identify V" with Vi, and let W C N = Vp @ V) be the graph of s. Then W is a
holomorphic Lagrangian subbundle of N, and the linear projection ry : N - N/Wisa
global holomorphic polarization of N, transverse to Vp and V.

Near every x € X, choose a polarization 7 , of the tangent space Tx M transverse
to Ty Lo and Ty L. This induces a polarization g on a neighborhood S of x in M. As
described in Section 4.3, we can find an Lo-chart (P, U, f, i) induced by this polarization,
with open neighborhoods P C X and U C L¢ around x, a holomorphic function f :
U — C, the inclusion P < U giving rise to an isomorphism i : P — Crit(f) C U,
and the other Lagrangian L; represented locally as the graph of df. We get a natural
identification

Pl lp S (PVY 1) ®z, Qpu, fis 19

with Qp y, i being the principal Z;-bundle on P that parameterizes square roots of the
local isomorphism ® : K;,|x — Kp,|x. Here, © is induced by the polarization 5. The
sections of Qp y, r,; are local isomorphisms between K 11‘/ 2o K i/l 2,

We now combine the polarizations 7y, and wy to obtain a polarization my , for
T.M', transverse to T, L, and T\ L. Hence we obtain a polarization g of a neigh-
borhood §” O S of x in M such that ¢ restricts to wg on S. Next, we obtain an L6—

chart (P’, U’, g, j) induced by 7y, and extending our previous chart (P, U, f,i). Here,
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P’ C P is a possibly smaller neighborhood of x in X, the Lagrangian L is locally the
graph of dg, the function g : U’ — C satisfies g|y = f, and j is the composition of i
with the restriction to Crit( f) of the inclusion ® : M — M’. We have

Ph uile = PV ) @2, Cprug. ) (20)

. . . ,
where Q PU'g,j Parameterizes square roots of the local 1somorPhlsm G E Kplx —
K L |x,induced by 7rs/. We view the sections of Q p 7 ¢, ; as local isomorphisms between

Ky and K112
We can relate PV g to PVy. ¢ by applying [11, Theorem 1.13]. This gives a natural

identification
PVU F= CD|X(7DV2// )®Z2 P<I)7 (21)

where Pg parameterizes square roots of the local isomorphism
. r®2 = ®2
J(b . KLO |Xred — cD'?(fcd(KL{))

induced by ¢. Indeed, by construction, the quadratic form that appears in the definition
of Jo in [11, Definition 1.11] is the restriction of our given g € H 0(Sym2 V(;“ ).
Moreover, we have
<I>*KL6 = K1, ® det(Vy).

Thus, the sections of Jg, which are locally defined maps from K| yrea to <I>|*Xred(K Lg)’
can be interpreted as local sections of det(V,") that square to det(g).

Let us also compare the bundle Q p v, r,; from (19) to the bundle Q p/ 7 ¢, ; from (20).
We have

1/2N

K| 1/2®det(V W2 i=o,1,

where det(Vi*)l/ 2 are the duals of the given spin structures on V;. Therefore,
Op.u.,gj=0pru.tilp ®z, Ro, (22)

where the sections of Ry — P’ are maps det(V(;k)l/ 2 det(Vl*)l/ 2, whose squares are
the isomorphisms between det(V(;*) and det(Vl*) induced by w and det(g). The form ¢
makes an appearance because we used it to relate the polarization on § C M, which
gives (19), to the polarization on S’ C M’, which gives (20).

We claim that we have a canonical isomorphism

(i*Po)lp = Ro. (23)

Indeed, recall that the spin structures on Vy and Vj are related by the duality isomorphism
induced by w, and the spin structure on Vj is self-dual via g. From the isomorphisms
det(Vp)!/? = det(VO*)l/2 = det(Vl*)l/2, we get an isomorphism

det(Vy) = Hom(det(V{)'/2, det(V;)'/?),

under which the sections of Pg and R¢ correspond to each other. This proves the claim.
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Combining (19)—(23), we obtain

Plolp S (PVY Plp @z, Qpou, filp
=M@Y (PVY ) ®z, Po)lp ®z, Op.u.filp
= j* PV ) ®z, Ro ®z, Qp.u.filp

= J PV o) ®2, QP ure,j = 73';),1‘/1 lpr.

This is a local isomorphism between P; , and P}, defined on the open set P’. We
' 0

Ly
can construct such isomorphisms canonically, near every x € X, so that they agree on
double overlaps. Using the descent property of perverse sheaves (Theorem 4.13(a)), we

glue together the isomorphisms to obtain the desired global isomorphism. O

6. Clean intersections

In this section we study Bussi’s perverse sheaf of vanishing cycles in the case where the
Lagrangians intersect cleanly (in the sense of Definition 3.3).
We start by describing the local model for clean intersections.

Lemma 6.1. Let M be a complex symplectic manifold, of complex dimension 2n. Let L
and L1 be complex Lagrangian submanifolds of M, and x € Lo N L1 a point where they
intersect cleanly, along a submanifold of complex dimension k. Then there is a neighbor-
hood S of x in M and an isomorphism h : S — T*U, where U is a neighborhood of 0
in C", such that h(Lo N S) = U and h(L| N S) is the graph of df, where

f:U_)Cv f(-x17--~vxl’l):x]%+l+"'+-x},2,-

Proof. Because of the clean intersection condition, we can find a linear isomorphism that
takes T M to C?", the tangent space TLy C TM to C"* x {0)" ¢ C*,and TL1 C TM
to the graphof g : C" — C", g(x1,...,x,) = (0,...,0, Xg41, ..., Xy). We then extend
this isomorphism to a local neighborhood, as in the proof of Darboux’s theorem. O

We now turn to studying Bussi’s perverse sheaf PZO L, over aclean intersection.

Proposition 6.2. Let M be a complex symplectic manifold, of complex dimension 2n. Let
Lo and L1 be complex Lagrangian submanifolds of M, equipped with spin structures. Let
Q C Lo N Ly be a component of the intersection along which Ly and L1 meet cleanly.
Denote by k the complex dimension of Q. Then the restriction of 7920’ L, foQisa local
system on Q with stalks isomorphic to Z[k].

Proof. Using Lemma 6.1, we can find an Lo-chart (S, P, U, f, h,i) around any x € Q
such that locally the function f is as in Example 4.16. Using the computation of PV{; ¥
in that example, and the defining property (18) of P}, ., we obtain the conclusion. O

Our next task is to develop tools for identifying the local system that we obtain from
Proposition 6.2.
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Under the hypotheses of that proposition, observe that Q is an isotropic submanifold,
so we have an isomorphism

TMpg=TQ®T*Q® NoQ & N Q, 24

where N; Q is the normal bundle to Q in L;. In fact, we can identify 7*Q with a com-
plex, but not necessarily holomorphic, isotropic subbundle of T M|, transverse to 7 Q &
NoQ @& N1 Q. (There is a contractible set of choices for such a subbundle, just as in the
Lagrangian case.)
The direct sum
NQ = NoQ @ Ni1Q (25)

is the symplectic normal bundle of Q, and N;Q (i = 0, 1) form transverse Lagrangian
subbundles of N Q.

Suppose that the complex bundle N Q has a (not necessarily holomorphic) polariza-
tion, transverse to NoQ and N Q. This gives a decomposition

NQ = NoQ @ Nj Q. (26)

The induced projection
N1Q — NoQ (27)

is an isomorphism of complex vector bundles. We obtain a non-degenerate (complex)
quadratic form ¢ on Ny Q such that the graph of dg gives the inclusion

NiQ C NoQ & NjQ. (28)

By passing to the real part, we obtain a quadratic form on Ny Q of trivial signature. Let
W™ C NyQ denote a maximal real subbundle on which this form is positive. The space
of such subbundles is contractible, and therefore the isomorphism class of W depends
only on the quadratic form. Let o(W™) be the Z,-principal bundle over Q parametrizing
orientations of W™ . Letting Z; act on Z by a — —a, we define

W] = 0o(WT) ®z, Z.

This is a Z-local system over Q.
Observe also that by taking the direct sum of (27) with the identity on 7 Q, we obtain
an isomorphism
TLilg — TLolg. 29)

Lemma 6.3. If the projection (29) preserves spin structures, we have a canonical iso-
morphism
Pl lo = IWH k. (30)

Proof. The given polarization of NQ induces a polarization on T M, with kernel
T*Q & Nj Q. Near every point x € Q, we can apply Theorem 4.6(b) to obtain from this
polarization an Lo-chart (P, U, f, i), as explained in Section 4.3. Recall that PZO!L] |p is
naturally isomorphic to

i*(PVYy, ¢) ®z, QP fi-



3672 Mohammed Abouzaid, Ciprian Manolescu

As in the proof of Proposition 6.2, we can choose f to be a quadratic form on Ny Q. At x,
this can be identified with the quadratic form on 7, Ly = Tx QO @ (NoQ), that depends
only on the (N Q), coordinates, where it is given by the form ¢ coming from (27). Thus,
the stalk of i*(PVy; f) at x is canonically H*~!(g~'(¢)) (shifted to be in degree —k)
for a small € # 0. (Compare Example 4.16.) The preimage ¢! (¢) is (non-canonically)
diffeomorphic to 7*Sk~1 and an identification of H*~! (q_l(e)) with Z is the same as
the choice of an orientation on W at x, or of an identification of |W |, to Z. Thus, we
have a canonical isomorphism

F(PVY x = WAL
Moreover, because of the condition on spin structures, the bundle Q p y, f,; has a canonical
section, so tensoring it with it has no effect. The conclusion follows. O

As a consequence of Lemma 6.3, to compute PZO L, one needs to find a polarization in the
symplectic normal bundle of Q, in which the two spin structures and the quadratic form
can be explicitly understood. An example of such a situation will appear in Lemma 8.3
below.

7. Three-manifold invariants

In this section we construct the three-manifold invariants advertised in the Introduction,
and prove Theorems 1.1 and 1.3.

7.1. Definitions

Let Y be a closed, connected, oriented three-manifold. Suppose we are given a Heegaard
splitting Y = Uy Uy, U; of genus g > 3. We equip Xjr(X) with the complex structure J
and the complex symplectic form wc = —w1 + iw3, as in Section 2.5. Let

Lo, L1 C X ()

be the complex Lagrangians constructed in Section 3.1. By Lemma 3.1, the intersec-
tion X = Lo N L can be identified with Xj.(Y). Further, each L; is diffeomorphic to
Xirnr(Fg), where F is the free group on g elements. By Lemma 2.6, we have H*(L;i;7)2)
= 0, so ¢1(TL;) = 0 and hence L; admits a spin structure, which is unique because
H'(L;;Z/2) = 0 (cf. Fact 4.13). Applying Bussi’s work described in Section 4.3, we
obtain a perverse sheaf

P*(Y) = PI:o,Ll € Perv(Xi(Y)).
We can do a framed version of this construction, using the complex Lagrangians
LE LY C Xw (%)

constructed in Section 3.2. In this case we can use a Heegaard splitting of any genus
g > 0, and we need to pick a basepoint z € ¥ C Y. The Lagrangians L%, L*{ are
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diffeomorphic to products of g copies of G = §3 x R3, so they too have unique spin
structures. We let
P;(Y,z) = PZ# ,# € Perv(R(Y)).
0’1

When relating the perverse sheaves coming from different Heegaard splittings, we
may encounter non-trivial self-diffeomorphisms of Y, which in turn give non-trivial auto-
morphisms (self-biholomorphisms) of Xj(Y) and R(Y). Therefore, it will be helpful to
work in the following variant of the category of perverse sheaves.

Definition 7.1. If X is a complex-analytic space, we let Perv’(X) be the category whose
objects are the same as in Perv(X), and whose morphisms are defined as follows. If C*
and D* are perverse sheaves on X, a morphism from C® and D* in Perv/(X) is a pair
(f, ¢), where f : X — X is an automorphism and ¢ : C* — f*D* is a morphism in
Perv(X). Composition of morphisms is given by

(f.d)o(g. V) =(fog, g'poy).

We will prove below that P*(Y) is a natural invariant of Y in the category Perv' (X (Y)),
and Py (Y, z) is a natural invariant of the pair (Y, z) in the category Perv'(R(Y)). By
taking hypercohomology, we will then obtain invariants

HP*(Y), HP{(Y,2),

as noted in the Introduction.

7.2. Stabilization invariance

When describing Heegaard splittings of three-manifolds, it will be convenient to use Hee-
gaard diagrams, as in Heegaard Floer theory [56]. Specifically, we represent the handle-
body Uy with boundary X by a collection of g disjoint simple closed curves oy, ..., ag
on X, homologically independent in H;(X), such that Uy is obtained from X by attaching
disks with boundaries «;, and then attaching a three-ball. Similarly, we represent U; by
another collection of curves, denoted 8, ..., B,. The data

(E,O(l,...,(xg,ﬂl,...,ﬂg)

is a Heegaard diagram.

Note that our constructions of P*(Y) and Pg (Y, z) start directly from a Heegaard
splitting, not a Heegaard diagram. Thus, in contrast to Heegaard Floer theory, to prove
invariance there will be no need to consider moves that change the Heegaard diagram
but leave the splitting fixed. (These Heegaard moves are the handleslides and curve iso-
topies, considered in [56].) For us, Heegaard diagrams will be just a way of representing
Heegaard splittings pictorially, as in Figures 2, 3, and 6 below.

The one Heegaard move that we have to consider is stabilization. This consists in
drilling out a solid torus from one of the handlebodies, say Ui, such that a part of its
boundary (a disk D) is on X, and then attaching the solid torus to Up. In this way,
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from the Heegaard splitting (X, Uy, U;1) of genus g we obtain a new Heegaard split-
ting (X', Uy, U}) of genus g + 1, for the same three-manifold Y. In terms of Heegaard
diagrams, we have introduced two new curves «’ and 8, intersecting transversely in one
point. See Figure 2.

Uy g
U o
) >/
Uo U

Fig. 2. Stabilization.

The inverse move to a stabilization is called destabilization.

Theorem 7.2 (Reidemeister [58], Singer [64]). Given a three-manifold Y, any two Hee-
gaard splittings for Y are related by a sequence of stabilizations and destabilizations.

Remark 7.3. We view all our Heegaard surfaces not just as abstract surfaces, but as
submanifolds of Y. Changing the Heegaard surface by an ambient isotopy in Y could be
considered another Heegaard move (relating different Heegaard splittings). However, note
that we can obtain a small ambient isotopy by composing a stabilization (perfomed from a
disk D C X) with a destabilization that collapses the solid torus to a new disk D’, a slight
deformation of D. Therefore, every ambient isotopy is a composition of stabilizations and
destabilizations.

Even more generally, we could consider diffeomorphisms f : ¥ — Y that take a
Heegaard splitting to another one, and are not necessarily isotopic to identity. Once again,
these are not necessary if we want to relate different Heegaard splittings of Y.

In view of Theorem 7.2, in order to prove that the isomorphism classes of P*(Y) and
Py (Y, z) are invariants of Y, resp. (Y, z), it suffices to consider the effect of stabilizations.

Proposition 7.4. Let (X, Uy, U1) be a Heegaard splitting for Y, and (X', U, U}) be
obtained from it by a stabilization. Let Lo, L1 C Xix(X) and Ly, L} C Xin(X') be the
complex Lagrangians constructed from each Heegaard splitting as in Section 3.1, and
Lg, L’f C Xw(ZH, L¥ L’l# C Xew (2™ be those constructed as in Section 3.2. Then
the stabilization move induces isomorphisms

112

B on.,Ll = 7326’14,' in Perv(Xix(Y)),

12

S Pzg Lt - PZ,# ot in Perv(R(Y)).
’ 0 &1
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Proof. To construct ., we apply Proposition 5.1. We take M = Xj(X) and M’ =
Xirr (7). There is a projection

m1(2) Z 11(Z\ D) #ry 0y T1(T7\ D) — m1(E)

given by sending the generators of (T2 \ D) to 1. This induces an inclusion & :
M — M'.If we describe M in terms of the holonomies of flat connections, as in (6),
and do the same for M’, with the holonomies around &’ and B’ being A’ and B’, then
M C M’ is given by the equations

A =B =1.

(Note that to define the holonomies A’ and B’, we need to choose a basepoint on the
respective curves and an identification of the fiber at that point with C2. However, the
condition that a holonomy is trivial is invariant under conjugation, and hence independent
of those choices.)

Let us push X slightly inside Uy and consider the compression body Zj situated
between this new copy of ¥ and ¥’. Then 71(Zg) = m1(X) * (B'). Let us denote by
Co C Xin(Zp) the space of representations of m1(Zp) whose restriction to w1 (%) is
irreducible. An argument similar to that in the proof of Lemma 3.1(b) shows that Cy is a
coisotropic complex submanifold of M’ = Xj(X’). We have inclusions

McCyocM

with Cp being given by the equation A’ = I. Observe also that Lo = L, Co C M, and
that we have an isomorphism

Co = Rin(¥) x6 G,

where G acts on itself by conjugation. Hence we see that Cy is a G-bundle over M =
Rir+(¥)/G. (This is not a principal bundle.) The G-bundle comes with a canonical section

M — Co, [p]+ [(p, D],

which gives the inclusion M C Cp mentioned above. Note that the tangent bundle to Co
at a point [(p, 1)] € M is T(Rix(X) X g)/g, where the denominator g is the tangent
bundle to the orbit of (p, 1). This orbit lies in Rj(X) x {1}, and therefore we can identify
TColpy withTM x g.

Thus, if we let Vj be the symplectic complement to 7'M inside 7' Co|ys, then Vj is
isomorphic to the trivial g-bundle over M. The Killing form on g gives a non-degenerate
holomorphic quadratic form g € H O(Symz(Vé“ ).

Let us also consider a compression body Z; between X and X/, obtained by com-
pressing 8’ instead of «’. This gives rise to another coisotropic C; C M’, determined by
the equation B’ = I. We have M C Cy and Ly = L N C;. We let Vi be the symplectic
complement to 7 M inside 7' C;. Clearly,

TLylL,=TLo® Volr,®0C TM|L, ® Volr, ® VilL, = TM'|L,.



3676 Mohammed Abouzaid, Ciprian Manolescu

In fact, we can naturally identify the normal bundle N, with the trivial bundle with
fiber H(T?; @), where T2 is the torus introduced in the stabilization. Then Vo C Ny
is spanned by the Poincaré dual to o/, and V; by the Poincaré dual to 8’

The bundles Vj and V; are trivial, so they admit spin structures. Further, these spin
structures are unique, by Fact 4.13(b), because the base space M is simply connected,
and therefore H'! (M; Z/2) = 0. To see that M = X;;(¥) is simply connected, one can
imitate the Morse-theoretic proof given by Hitchin ([37, Theorem 9.20] for the space
Xiw(X); compare [17, Section 4]).

Since the spin structures on Vy and Vp are unique, they correspond to each other
under the duality induced by w. Furthermore, the spin structure on V) is self-dual under
the isomorphism induced by ¢. Recall also that the Lagrangians L; and L} have unique
spin structures, so these must be compatible with the ones on Vj and V7.

We conclude that the hypotheses of Proposition 5.1 are satisfied. We let . be the
resulting isomorphism.

The isomorphism .* is constructed in a similar manner. The role of Z is played by
a compression body Zg between £# and ©'%, and we use the coisotropic submanifold
Ch = Xw(Z}) C Xew(EH). O

7.3. Naturality

Proposition 7.4, combined with Theorem 7.2, shows that P*(Y) and P;(Y) are invari-
ants of ¥ up to isomorphism. To complete the proofs of Theorems 1.1 and 1.3, we still
have to show that they are natural invariants, i.e., that the isomorphisms can be chosen
canonically. Specifically, given two Heegaard splittings of ¥, we can relate them by a
sequence of moves, and thus get an isomorphism between the objects constructed from
each Heegaard splitting. The naturality claim is that this isomorphism does not depend on
the chosen sequence of moves. (For the framed invariant P, (Y), we expect dependence
on the basepoint z, so we will only consider moves that keep z fixed.)

Naturality for three-manifold invariants defined from Heegaard diagrams was studied
by Juhdsz, D. Thurston and Zemke [41], where they applied it to Heegaard Floer ho-
mology. Theorem 2.39 in [41] gives a finite list of conditions that need to be checked to
ensure naturality (see [41, Definitions 2.30 and 2.33]). In our context, the invariants are
constructed directly from a Heegaard splitting, so the list is shorter. Indeed, we can view
invariants defined from a Heegaard splitting as being defined from a Heegaard diagram,
with the a-equivalence and S-equivalence moves from [41] inducing the identity. Thus,
for our purposes, we will only consider the following Heegaard moves: stabilizations,
destabilizations, and diffeomorphisms. Diffeomorphisms are not strictly necessary (cf.
Remark 7.3). However, we will include them to keep the statements cleaner and more in
line with [41]. We will write a diffeomorphism f : ¥ — Y that takes a Heegaard splitting
‘H to another one H' as f : H — H’. A particular role will be played by diffeomorphisms
that are isotopic to the identity in Y.

Before stating the naturality result, let us recall the notion of simple handleswap,
which plays an essential role in [41]. Let H = (X, Uy, U7) be a Heegaard splitting. Let
D', D" C X be the disks bounded by the curves ¢’ and ¢” shown in Figure 3. By adding
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the handle H' to Uy, we get a new Heegaard splitting H' = (X', U, U}). We view this
operation as the composition

’
e=egoeio:H—>H,

where ejs, is a small isotopy given by pushing D’ slightly into Uj, to get a new disk
bounded by ¢’, and ey is the stabilization given by attaching a solid torus (the union of the
handle H’ with the region R between D’ and the new disk) to Uy \ R. In a similar manner,
we add a handle H"” to U} to get the splitting H"” = (X", Uy, U{'). The operation

f:fstofiso:'H/%,HN

is the composition of an isotopy fiso (pushing D” into Up) and a stabilization f;.

Uy o

Uy B

Fig. 3. We draw a part of the surface ¥ of genus /& as the middle plane (without the handles), and
Uy and U as the lower and upper half-space, respectively. We drill a handle H’ into Uy to obtain a
Heegaard decomposition (X', U]}, Uy), of genus h + 1. Then we add a handle H” to U as shown,

and we obtain a new Heegaard decomposition (2", Uy, U}'), of genus / +- 2.

Now, on the surface X, we consider the diffeomorphism

_ —1 -1,
§=T 0T, 0T, HDIE D))
given by the composition of a right-handed Dehn twist along the curve y and left-handed
Dehn twists along the curves y’ and y” shown in Figure 4. This maps the curves o’ to &’

and 8" to B

Remark 7.5. Figure 4 should be compared to Figure 4 in [41]. Our curves o', 8/, &”, B”
play the roles of as, B1, a1 and B3 in their notation. Their set-up also involves an o-
equivalence and a 8-equivalence, but in our case these act by the identity. Our diffeomor-
phism g is the inverse of the one considered there.
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Fig. 4. Left: part of the surface ¥ from Figure 3, with the gray circles being the feet of the respec-
tive handles. Right: the effect of the diffeomorphism g on the given curves.

We extend g to a diffeomorphism g : ¥ — Y as follows. Consider the disk enclosed by
the curve y in Figure 4, and enlarge it slightly to obtain a disk D that contains y in its
interior. Let 7" = H' N D and T” = H” N D be the feet of the handles contained in D.
Let also U = D x [—1, 1] be a three-dimensional cylindrical neighborhood of D in Y,
which intersects ¥ at D = D x {0}, as in Figure 5, with

HNU=T x[-1,0], H'NU=T"x[0,1].

Fig. 5. A three-dimensional neighborhood U of the disk enclosed by y. The parts of the handles
H' and H” contained in U are in grey.

Observe that the diffeomorphism g, when restricted to D\ (T"UT"), is not isotopic to
the identity rel boundary. However, if we restrict it to D \ T”, it is isotopic to the identity
rel boundary. This is because the Dehn twist around y” is isotopic to the identity when
we can go over T”, and the Dehn twists along y” and y are in opposite directions, so they
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cancel each other out. By following the isotopy from g|p\7- to the identity in each slice
D x {t},t € [—1,0], we extend g to a diffeomorphism from D x [—1, 0], which acts
by the identity on D x {—1} and on the grey cylinder T’ x [0, 1]. Similarly, we extend
g to the upper half D x [0, 1] C U, using an isotopy from g|p\7~ to the identity. We
obtain a diffeomorphism g : U — U, which is the identity on oU = (dD x [—1,1]) U
(D x {—1,1}) and on the two grey cylinders. We then extend g to a diffeomorphism
g : Y — Y, by the identity outside U.

Note that g : U — U preserves the Heegaard splittings #, H’ and H”. Observe also
that the restrictions of g to X and ¥’ are isotopic to the identity. However, this is not the
case for T. We refer to

g . H// N /H//

as a simple handleswap.

The following definition is a variant of [41, Definition 2.32], adapted to our setting
where the constructions are done starting directly from Heegaard splittings. Also, for
simplicity, we restrict ourselves to invariants associated to a given manifold Y, rather
than to a class of diffeomorphism types as in [41].

Definition 7.6. Let Y be a closed, connected, oriented three-manifold, and C a category.
A strong Heegaard invariant F of Y consists of:

e an assignment to every Heegaard splitting # of ¥ of an object F'(H) € C, and
e to every Heegaard move e (stabilization, destabilization, or diffeomorphism) between
two splittings H; and H;, an assignment of a morphism F(e) : F(H1) — F(H>2).

Furthermore, these morphisms are required to satisfy the following properties:

(1) Functoriality:

(1) Ife:Hy — Hpand f : Hy — Hj3 are diffeomorphisms, then for the combined
diffeomorphism f oe : H; — H3z, we have F(f oe) = F(f) o F(e).

(ii) If e : Hy; — Hp is a stabilization and ¢’ : Hy — H; is the corresponding
destabilization, then F(¢') = F(e) .

(2) Commutativity:

(i) Ife:Hy — Hpand g : Ho — Ha are stabilizations given by adjoining disjoint
solid tori Hj resp. Hp, and f : H1 — H3, h : H3z — H4 are stabilizations given
by attaching H> resp. Hi, then F(h) o F(f) = F(g) o F(e).

(i) If e : H; — Hp is a stabilization and f : H; — H3 is a diffeomorphism, let
g : Ho — Hs be the same diffeomorphism as f but acting on the stabilized
surface, and & : H3 — H4 the corresponding stabilization (the image of e under
f). Then F(h) o F(f) = F(g) o F(e).

(3) Continuity: If e : H — H is a diffeomorphism such that e|y : ¥ — X is isotopic
to idy, then F(e) = idF(H)-

(4) Handleswap invariance: Given a simple handleswap g : H” — H” as in Figure 4,
we ask that F(g) = idp 3.
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If Y is as in Definition 7.6 and z € Y is a basepoint, we can define a strong Heegaard
invariant of the pair (Y, z) in a similar way, by considering only Heegaard splittings with z
on the Heegaard surface, and Heegaard moves that fix z.

The following is a rephrasing of [41, Theorem 2.38] in our context.

Theorem 7.7 (Juhdsz—Thurston—Zemke [41]). Let F be a strong Heegaard invariant of
a three-manifold Y, with values in a category C. Then, for any two Heegaard splittings
H, H', if we relate them by a sequence of Heegaard moves involving only stabilizations,
destabilizations, and diffeomorphisms isotopic to the identity in Y,

€n

H=Ho S H S .. B H, =H,
the induced morphism
F(H,H) = F(e)o---0F(e1) : F(H) - F(H)

depends only on H and H', and not on the sequence of moves chosen to relate them.

Moreover, the same naturality result holds for based three-manifolds (Y, z), if we
consider only Heegaard splittings with z on the Heegaard surface, and Heegaard moves
that fix z.

Note that the output of Theorem 7.7 is the set of isomorphisms F(H,H') : F(H) —
F(H') satisfying

o F(H,H) =idpy) forall H;
o F(H',H")o F(H',H) = F(H,H") forall H, H' and H".

Remark 7.8. If C is the category of groups (or Abelian groups), then the data consisting
of the groups F (H) and the isomorphisms F (H, H') (satisfying the two properties above)
is called a transitive system of groups, in the terminology of Eilenberg—Steenrod [21,
Definition 6.1]. Given such a transitive system of groups, we obtain a single group G
with elements g € [[4, F(H) such that F(H, H')(g(H)) = g(H') for all H, H'. Thus,
under the hypotheses of Theorem 7.7, we obtain a group G that is associated to the three-
manifold Y.

In our setting, once we establish naturality, we can apply this construction to define the
hypercohomology invariants HP*(Y) and HP;(Y) as graded Abelian groups associated
to Y (independent of any choices, except for the basepoint z for the framed versions).

We now seek to apply Theorem 7.7 to the objects
F(H)="Pl, 1, € Perv' (X (Y)),

defined from Heegaard splittings, where Perv’' (Xi:(Y)) is the category introduced in Def-
inition 7.1. For this, we first need to specify the maps F'(e). When e is a stabilization,
we use the isomorphism . constructed in Proposition 7.4; for the corresponding desta-
bilization, we use the inverse of .. When e is a diffeomorphism taking the Heegaard
splitting H = (X, Up, Uy) to H' = (X', Uy, Uy), observe that e induces an isomorphism
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between the complex symplectic manifolds X (X) and Xj(X’), taking the correspond-
ing Lagrangians Lg, L into L/, L/l. Hence we obtain an automorphism of X;(Y) and
an isomorphism F'(e) : PZO L~ P}, ., inthe category Perv' (Xiw (Y)).
’ 01
The proof of Theorem 1.1 will be complete once we establish the following.

Proposition 7.9. The objects F(H) = ZO’ L € Perv/ (X (Y)) and the maps F(e) de-
fined above satisfy the hypotheses of Theorem 7.7. Hence, P*(Y) = ’PZO’ L, isa natural
invariant of Y.

Proof. Functoriality and commutativity are immediate from the construction. For con-
tinuity, note that the induced action of Diff(X) on X;,(X) factors through the mapping
class group mo(Diff(X)) of X; this is clear when we view the elements of Xj(X) as con-
jugacy classes of maps 71(X) — G. Thus, when e is isotopic to the identity, it must act
by the identity on Xj(X), and hence on the perverse sheaves.

To prove handleswap invariance, let us first reformulate it in terms of stabilizations.
With the notation from the definition of a simple handleswap in Theorem 7.7, we have
moves e = eg 0 ejso : H — H and f = fy o fiso : H — H”. Let us also consider
another similar move f = fy o fiso : H' — H”, given by attaching a solid torus to Uy
along the disk bounded by the curve ¢” from Figure 6; the effect of this is still adding the
handle H”, but we choose a different path between its feet to view it as a small isotopy
(push off into Uyp) plus a stabilization.

Ui
<>
5 )
H/
Uy

Fig. 6. Adding the handle H” can be viewed as a stabilization in two different ways.

By the commutativity between stabilizations and diffeomorphisms, together with
functoriality and continuity for isotopies, we have

F(f)o F(g) = F(g) o F(f),

where g’ is the same as g, but acting on H’'. Recall from the discussion of handleswaps
that the restriction of the diffeomorphism g to X’ is isotopic to the identity. By continuity,
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we must have F(g") = idp (3. Therefore,

F(f)=F(g) o F(f).

Thus, the handleswap invariance condition F(g) = idp 3 is equivalent to

F(f) = F(f). 31

In other words, we want the move from H’ to H” to depend only on the handle H”, and
not on the path joining the feet of H”.

Let us also bring the move e = ey o eiso : H — H’ into play. Since F(e) is an
isomorphism, the condition (31) is equivalent to

F(f)oF(e):F(f)oF(e):F(’H)—>F(?—l”). (32)
In our context, let us denote

M= Xin(Z), M =Xin(X), M =Xin(Z").

We let A’, B, A”, B”, B” denote the holonomies of flat connections around o, B, a”

8", B”. With a suitable choice of basepoint, we can arrange that 7 = B” - g/ in 71 (%),
and therefore B” = B"B'.

Then, if we use the curve ¢” to do the second stabilization, we find that M’ sits in-
side M" as the subset given by A” = 1,B” = 1. However, if we use ¢” to do the
stabilization, we get another copy of M’, which we will call M’, given by the subset
of M” with A” = 1, B”B’ = 1. (The two embeddings of M’ into M correspond to
different projections 1(X”) — m1(2’).) Finally, M ¢ M’ N M’ C M" is given by
A =B =A"=B"=1.

In summary, we have a commutative diagram of embeddings of complex symplectic

manifolds:

The Heegaard splittings give rise to complex Lagrangians
Lo,LyCc M, Ly LjcM,
Ly B M, LiLcM,

all equipped with (unique) spin structures. We also have coisotropics induced by the com-
pression bodies (as in the proof of Proposition 7.4), which give decompositions of the
normal bundles to each submanifold into holomorphic Lagrangian bundles

Nuw = Vo®Vi, Nyyr = Vi@ V|, Ny = Vo®Vi, Ny = Vo® V). (33)
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Specifically, the normal bundle Ny to M in M’ can be identified with the trivial
bundle with fiber H!(T?; @), where T2 is the torus attached in the stabilization from ¥
to ’. In the decomposition Ny = Vo @ V1, the first summand Vj is spanned (over g)
by the class a’ Poincaré dual to [«'], and the second summand V) by the class 4’ Poincaré
dual to [8'].

Similarly, the bundle Ny~ decomposes as V@ V|, where Vj is spanned by the class
a” Poincaré dual to [o”'], and V/ by the class b” Poincaré dual to [8"]. The bundle Ny~
decomposes as VO @ V!, where V/ is spanned by a” and \7/ by b” = b’ + b” (the image
of b’ ! under the handleswap dlffeomorphlsm g, cf. Figure 4) Flnally, w i decomposes
as Vo @ Vi, with Vj is spanned by 4’ = @’ + a” (the image of a’ under g) and V/ by b'.

From the proof of Proposition 7.4, we see that we have unique spin structures on all
eight of the Lagrangian bundles appearing in (33). We also have non-degenerate holo-
morphic quadratic forms

g € HOGSym? Vi), ¢’ € HO(Sym>(V))*), ¢ € H'Sym? V), ¢’ € HO(Sym?(V))™),

all coming from the Killing form on g.
Thus, we obtain stabilization isomorphisms

y PL() Ll ﬁ PL/ L/ 5 y P./ L/ ﬁ PL// L//,

I P2

PPy, = P 7

L]
—> .
Ly Ly 7DL()’,L’{

Equation (32) translates into the commutativity of the diagram

The two compositions .’ 0. and 7' 0.7 are both instances of the maps constructed
from Proposition 5.1. They are both associated to the inclusion M < M”, and to the
same normal bundle decomposition

Ny = Wo @ Wi,
where
Wo = Volu & Vilu = Volu & Vilu = Spang(a’. a"),
Wi = Vil @ V{ly = Vilu & V{ly = Spany (v, b").

There are unique spin structures on Wy, Wy, Wo, Wl. The only difference lies in the
quadratic forms on Wy used to apply Proposition 5.1. To construct .’ o ., we use the
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form ¢ @ g/, whereas to construct .’ o .%, we use § @ §’. Concretely, in one case we
take the direct sum of the Killing forms on the spans of a’ and a”, whereas in the other
we take the direct sum of the Killing forms on the spans of a’ + a” and a”’.

We now interpolate between these two quadratic forms by taking the direct sum of
the Killing forms on the spans of a’ + ta” and a”, for t € [0, 1]. Proposition 5.1 gives a
continuous family of maps

% :Pl.‘Ole — PZg,L/{’ t e [0, 1],

interpolating between %) = . 0.% and .} = S 0.7 . However, any such family must
be constant, because morphisms in the category of perverse sheaves (over Z) are discrete
objects.

We conclude that (32) is satisfied, and therefore handleswap invariance holds. ]

Naturality for the objects 7?2# 1+ € Perv/(R(Y)) is established in a similar manner, with
01

the additional constraint that we must fix the basepoint z € Y.
This finishes the proofs of Theorems 1.1 and 1.3.

8. Properties and examples

8.1. Dualities

Our invariants P*(Y) and P, (Y, z) are defined for oriented three-manifolds. However, as
the following result shows, they are independent of the orientation on Y.

Proposition 8.1. Let Y be a closed, connected, oriented three-manifold, and let —Y de-
note Y with the opposite orientation. Pick a basepoint z € Y. Then we have isomorphisms

P*(Y) S PU(=Y), P(Y.2) > PJ(~Y.2).

Proof. A Heegaard splitting (X, Ug, Up) for Y gives a Heegaard splitting for —Y, with
the orientations on X, Up and U being reversed. The orientation on X is involved in the
definition of the complex symplectic form w¢ from (7). Reversing the orientation changes
the sign of wc, but does not affect the complex structure J (since the latter comes from
the complex structure on G = SL(2, C), not on X).

Let us consider Bussi’s construction from Section 4.3. Suppose (M, w) is a complex
symplectic manifold with an Lg-chart (S, P, U, f, h,i). Part of the data is the isomor-
phism i : § — T*U.If we denote by r : T*U — T*U the map given by multiplication
by —1 on the fibers, we find that (S, P, U, — f, hor, i) is an Lo-chart for (M, —w). Given
f : U — C, note that we can relate f to — f via the family ¢’® f, 0 € [0, 7]. This gives
an isomorphism between the vanishing cycle functors for f and — f. (The square of this
isomorphism is the monodromy map.) By patching together these isomorphisms, we ob-
tain an isomorphism between the perverse sheaves P*®(Lg, L) defined in (M, w) and
(M, —w). Applying this to our setting, we get the desired claim about the invariants for Y
and —Y. O
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We can also ask how P*(Y) and Pg (Y, z) behave under Verdier duality. In [11, Theo-
rem 2.1], Bussi shows that, for any spin complex Lagrangians Ly and L1, the perverse
sheaf ’on, L is naturally isomorphic to its Verdier dual. As a consequence, we have

Proposition 8.2. The invariants P*(Y) € Perv' (X (Y)) and Pg(Y,2) € Perv/(R(Y))
are Verdier self-dual.

Starting from P*(Y) and Pg (Y, z), we defined HP*(Y) and HP; (Y, z) by taking hyper-
cohomology. We could alternatively take hypercohomology with compact support, and
define

HPX(Y) := HI(P*(Y)), HP;,C(Y, z) = HI (P (Y, 2)).

From (16) and Proposition 8.2 we obtain duality isomorphisms
HP*(Y) = Hom(HP~*(Y), Z) @ Ext!(HP~*~1(Y), Z)

and
HP} (Y, z) = Hom(HP; *(Y. 2), Z) ® Ext' (HP; " (Y. 2). 7).

Observe also that since we use sheaf cohomology, the invariants HP*(Y) and
HP; (Y, z) are models for Floer cohomology, rather than homology. We can define homo-
logical invariants HP,(Y) and HPZ(Y , 2) by dualizing the complexes that define HP*(Y)
resp. HP/ (Y, z), and then taking homology. We have

HP(Y) = Hom(HP*(Y), Z) @ Ext' (HP**1 (), Z) = HP % (Y),
HPE(Y, z) = Hom(HPK (Y, 2), Z) ® Ext' (HPL T (Y, 2), Z) = HP; (Y, 2).

,C

8.2. Computational tools

To calculate the perverse sheaf invariants P*(Y) and P (Y, z) in specific examples, we
will rely on Theorem 1.4 from the Introduction.

Proof of Theorem 1.4. By Lemmas 3.4 and 3.6, regularity of the underlying schemes is
equivalent to the condition that the Lagrangians intersect cleanly. The desired result now
follows from Proposition 6.2. O

The following lemma describes a simple situation where we can identify the local system
in Theorem 1.4(b).

Lemma 8.3. Let Y be a closed, connected, oriented three-manifold, z € Y a basepoint,
and p € R(Y) a reduced, irreducible representation. Assume that [p] is isolated in the
character variety X(Y), so that (by Lemma 3.6) the Lagrangians Lg and L’;t intersect
cleanly along the orbit Q := O,. Then we have an isomorphism

,P,;(Y, Z)|Q = ZQ[S].
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Proof. Observe that Q is diffeomorphic to G* = PSL(2, C) = RP? x R3. From The-
orem 1.4(b) we know that Pg(Y)|¢ is a local system over Q with fiber Z, in degree —3.
Since H! (Q; Zy) = Z,, there are two possibilities for the local system. To show that it is
the trivial one, we will use Lemma 6.3.

Recall from the proof of Lemma 3.6 that we have an inclusion R(X) — M*, and the
Lagrangians L} and L¥ live inside R(X). In the situation at hand, at any point x € Q, by
the clean intersection condition we see that Tng N Ty L’f = T, Q is three-dimensional.
Therefore, we must have

T, Lh+ T, LY = T.(R(D)) C T, M*.
We deduce that the symplectic normal bundle of Q is
NQ =T, (R(%))/T: Q.

The group G acts transitively on Q. There is no natural action of G2 on the ambient
manifold M* = X (Z*), but there is one (given by conjugation) on the subvariety R(X),
and this action preserves the Lagrangians Lg and L#f. Hence, we get a G-action on the
normal bundle N Q, which preserves the decomposition

NQ = NoQ @ N Q.

considered in (26). The G®-action gives a trivialization of the bundles Ny Q and N(’)‘Q
over Q. By choosing a polarization of N Q transverse to NoQ and N Q at some x € Q,
we can use the G*-action to extend it to such a polarization at all points of Q. For this
polarization, the bundle W™ defined in Section 6 is clearly trivial.

In view of Lemma 6.3, the only thing that remains to be proved is that the isomorphism
TL’f|Q — TL§|Q from (29) preserves spin structures. To do this, recall that the spin
structures on Lg = R(Up) and L’f = R(U)) are unique (because the Lagrangians are
simply connected). The same is true for Lagrangians Lo = X (Up), L1 = Xir(U1) C
Xirr(X), which intersect transversely at the point [p]. Furthermore, if we consider the
open subsets

Li = Rin(Up) C L¥ = RWU),i =0, 1,
we can see from the proof of Lemma 2.6 that these are also simply connected. There are

natural projections p; : L; — L;, with fibers G, and therefore we have isomorphisms
TL; = piTL; ®g.

By the uniqueness of the spin structures on L; and L;, we can think of the spin structure
on T L; as obtained from the one on L; via pull-back and adding the trivial spin structure
on g.

When restricted to Q, we can also identify the pull-backs p*T L; with the normal
bundles N; Q. After these identifications, the projection

TLilg — TLolg (34)
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~

is the direct sum of the identity on 7Q = g and a G®-equivariant projection
N1 Q — NpQ. This second summand is the pull-back of a projection Tj,1L1 — Tjp1Lo,
which must preserve spin structures. (A spin structure on a vector bundle over a point,
i.e. on a vector space, is unique.) Note that the spin structures on 7'L; |o are equivariant
under the G®-action, because they are restrictions of the spin structures on the whole of
L;, which are unique and therefore obtained by pull-back from the ones on L;. Once we
have this, we see that the G*-equivariant isomorphism (34) matches the spin structures
on L and Ly. By uniqueness, these are exactly the restrictions of the spin structures on
L¥and L% O

8.3. Examples

We present a few calculations, for some of the examples discussed in Section 2.4. We

only look at situations where the underlying scheme is regular, so that we can apply

Theorem 1.4. In these cases, the perverse sheaf under consideration is a local system with

fibers Z, supported in degrees —k, where k is the complex dimension of the respective

component of Xj(Y) or R(Y). We will use the subscript (i) to denote a group in degree i.
For Y = S3, we have Xx(S3) = @ and R(S?) is a point, so

HP*(S%) =0, HP(S®) = Z).

For Y being the connected sum of k copies of §' x §? (cf. Example 2.10 and Sec-
tion 2.3), the sheaf Pg(Y) is a local system with fibers Z (in degree —3k) over G*. Since
G = §3 x R? is simply connected, the local system must be trivial, and we get

HPF(# (8" x §%) = Z{_3 & Zy,.
When k = 1, there are no irreducible representations and therefore
HP*(S' x §%) = 0.

For k = 2, the space Xj(F>) is not simply connected (see Remark 2.7), and it is not
immediately clear how to identify the local system P*(Y). However, for all k > 3, we
have 1 (Xir(Fx)) = 1 by Lemma 2.6, and therefore

HP*#(S' x §2)) = H*P* 3 (X (Fr); 2).

Next, we will look at lens spaces L(p, ¢) and Brieskorn spheres X (p, ¢, r). For these
manifolds, the computations of HP* and HPq,;Ek were stated in the Introduction, in Theo-
rems 1.5 and 1.6.

Proof of Theorem 1.5. Lens spaces were discussed in Example 2.11. Since m; is
Abelian, there are no irreducible representations, and HP*(L(p, g)) = 0. To calculate
HP; (L(p, q)), note that R(Y) is the disjoint union of some points and copies of TS2.
Over the points, the perverse sheaf P;(Y) is a copy of Z in degree 0, and over each copy
of T2, it is a local system with fibers Z in degree —2. Since T'S? is simply connected,
the local system is trivial. After taking cohomology, we get the advertised answer. O
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Proof of Theorem 1.6. The Brieskorn spheres X(p, q,r) were considered in Ex-
ample 2.12. The variety X (2X(p,q,r)) consists of N = (p — 1)(¢g — H)(r — 1)/4
isolated points, so HP*(X(p, g, r)) is Z" in degree 0.

To compute HP;, recall that the representation variety is composed of a point and N
copies of PSL(2,C) = RP? x R3. The perverse sheaf Py (Y) is Z over the point, and
(by Lemma 8.3) the trivial local system with fiber Z in degree —3 over each copy of
PSL(2, C). This gives the desired answer. ]

Lastly, we consider HP* for the Seifert fibered homology spheres X (ay, ..., a,) dis-
cussed in Example 2.13. Then the variety X;.(Y) is the disjoint union of simply connected
components M, of dimensions 2m (o) — 6. It follows that

HP*(S(ar, ..., an) = @ HF"O0(M,: 7). (35)
o
The Poincaré polynomials of M, were computed in [8].

8.4. The Euler characteristic

As noted in the Introduction, the Euler characteristic of Floer’s SU(2) instanton homol-
ogy is twice the Casson invariant (see [68]). The Euler characteristic of the framed theory
I*#(Y) is less interesting, being equal to the order of H;(Y) if by (Y) = 0, and zero other-
wise (see [59]).

In our context, we define the (sheaf-theoretic) full SL(2, C) Casson invariant of Y to
be the Euler characteristic of HP*(Y):

AP(Y) = Z(—”k tk HPK(Y). (36)
keZ

The following proposition shows that the right hand side of (36) is well-defined.

Proposition 8.4. For any closed, oriented 3-manfiold Y, the invariants HP*(Y) and
HP; (Y) are finitely generated as Abelian groups.

Proof. By [11, Theorem 3.1], the intersection of complex Lagrangians is an (oriented)
complex-analytic d-critical locus. The perverse sheaf P*(Y) = 7)'0 L is isomorphic to
the one constructed in [9, Theorem 6.9]. The manifold M = X (X¥) is also an algebraic
variety, and the Lagrangians Lo, L are algebraic. Thus, Lo N L1 is naturally an algebraic
d-critical locus, and from this we get an algebraic perverse sheaf ’P;lg (Y). By construction,
a:lg(Y ) is taken to P*(Y) by the forgetful functor from algebraic to complex-analytic
perverse sheaves. This implies that the cohomology sheaves of P*®(Y) are constructible
for an algebraic stratification of Xj(Y) = Lo N L1, which must have finitely many strata.

We conclude that HP*(Y) is finitely generated. A similar argument applies to HP; (Y).
O

The invariant A¥ should be contrasted with the SL(2, C) Casson invariant of three-mani-
folds defined by Curtis [14], which we will denote by AC. Her invariant counts only
isolated irreducible representations.
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For example, for the Brieskorn spheres X (p, ¢, r), all the irreducible representations
are isolated, and we have

AP (S(p,q,m) =25((p, g, 7)) = (p— (g — D(r — 1)/4.

On the other hand, for the more general Seifert fibered homology spheres
¥(ai, ...,an), by [7, Theorem 2.7] we have

(S, ..oa) = Y (@, — Day, — Da; — 1)/4.

1<iy<iz<iz<n

To calculate A” (Z(ay, . .., an)), we use (35) and the fact that the Euler characteristic
of the spaces M, is (m(a) — 1)(m(a) — 2)2m@)=4 (see [8]). We obtain

WS, ... a) =Y (m(a) — Dim(@) —2)2" @4,

For a concrete example, take the homology sphere X (2, 3, 5, 7). This has 23 isolated
irreducible representations, and six (complex two-dimensional) families of irreducibles
with m () = 4. Therefore,

A6 (2(2,3,5,7) =23 but AP (2(2,3,5,7) =234+6-6=59.

8.5. A bound on degrees

We now prove another result from the Introduction.

Proof of Theorem 1.8. Note that R(Y) and X (¥) are affine varieties, and X (Y) C X(Y)
an open subvariety. In general, the hypercohomology of any perverse sheaf on a complex
algebraic variety of dimension d vanishes in degrees outside the interval [—d, d] (see for
example [19, Proposition 5.2.20]). Furthermore, as a consequence of the Artin vanishing
theorem, if the underlying variety is affine, then the hypercohomology of a perverse sheaf
is supported in non-positive degrees (see [19, Corollary 5.2.18]).

If Y has a Heegaard splitting of genus g, then the Lagrangians L; are isomorphic
to Xj(Fg) and hence have complex dimension 3g — 3. The dimension of X (Y) is
bounded above by this. This shows that HP*(Y) is supported in degrees in the interval
[-3g +3,3¢ —3].

Similarly, the dimension of R(Y) is bounded above by 3g. Since R(Y) is affine, it
follows that HP; (Y) is supported in degrees in [—3g, 0]. O

9. Further directions

9.1. Other groups

The sheaf-theoretic Floer cohomologies defined in this paper were based on the Lie group
SL(2, C). One may ask about generalizations to other complex reductive Lie groups G.

We refer to [62] for a discussion of G-representations of I' = (M), where M is
either a surface or a three-manifold with boundary (such as a handlebody). Let us review
a few definitions and facts.
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A representation p : I' — G is called irreducible if p(I") is not contained in any
proper parabolic subgroup of G. Further, an irreducible representation p is called good
if the stabilizer of its image is the center of G. The categorical quotient Xg(M) =
Hom(rr| (M), G)// G* is called the G-character variety. It has open subsets

XG,good(M) C XG,irr(M) C XG(M)

corresponding to the good, resp. irreducible representations.

We will focus our attention on complex semisimple Lie groups G. For such groups,
the Killing form on their Lie algebra g is non-degenerate. The existence of a symmetric,
bilinear, invariant form on g is an ingredient in both Goldman’s results on the symplectic
structure nature of the fundamental group of surfaces [29], and in our proof of stabiliza-
tion invariance (where it gives the form ¢ needed in Proposition 5.1).

Let G be a complex semisimple Lie group, and ¥ a closed orientable surface of genus
g > 2. Then X¢ jr(X) is an orbifold, and its open subset X good(X) is a smooth man-
ifold (see [62, Proposition 5]). Moreover, Goldman [29] showed that X good(%) can
be equipped with a holomorphic symplectic form. If we have a Heegaard decomposition
Y3 = UyUsx Uy, then the image of X (U;) in X (%) intersects X G, good (%) in a complex
Lagrangian submanifold (see [62, Theorem 6]).

When G = SL(n, C), we have the further nice property that all irreducible represen-
tations are good. Thus, X¢ ix(X) is a complex symplectic manifold, with Lagrangians
coming from the Heegaard decomposition of ¥3. By applying Bussi’s construction we
obtain a perverse sheaf P*(Y, G) over X irr(Y). The same proof as in the SL(2, C) case
carries over to SL(n, C), and we find that P*(Y, G) is a natural invariant of Y. Its hyper-
cohomology

HP*(Y, G) := H*(P*(Y, G))
is called the sheaf-theoretic SL(n, C) Floer cohomology of Y.

For other complex semisimple Lie groups, we could restrict to the open set consist-
ing of good representations, and proceed as before. This is somewhat unnatural, but gives
rise to invariants. A more challenging project would be to work on the orbifold X i (%),
and produce invariants that take into account all irreducible flat connections. Of partic-
ular interest is the case G = PSL(2, C), which is the most relevant one for Witten’s
interpretation of Khovanov homology (cf. Section 9.3 below). We remark that in [15],
Curtis defined a PSL(2, C) Casson invariant for three-manifolds; her invariant is a count
of the isolated irreducible flat connections, with rational weights dictated by the orbifold
structure.

With regard to constructing framed (sheaf-theoretic) Floer cohomologies, for G =
SL(n, C) we can draw inspiration from the constructions of U(n) Floer homologies
in [48] and [72]. Specifically, for ¥ and >* = S #7T? with a basepoint w € T2 en-
circled by a curve y as before, and for any integer d relatively prime to n, we consider a
twisted character variety

Xnaw(E) = {p: mi(E*\ {w) = G | p(y) = expQrid/n) - 1}/G*.

This is a complex symplectic manifold, and a Heegaard decomposition of ¥ along X
produces two Lagrangians inside X, 4..w(Z*), just as in Section 3.1. We are using here
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the fact that X, 4, (w (T?isa point. We deduce that the intersection of the two Lagrangians
can be identified with the representation variety of Y, and Bussi’s construction gives a
perverse sheaf P (Y, z) on that variety. Invariance can be proved as in Section 7.

9.2. Extensions

Going back to the case G = SL(2, C), there are a number of ways one could try to extend
the constructions in this paper:

e There should be versions of the sheaf-theoretic Floer cohomology for admissible
GL(2, C) bundles, and for knots and links in three-manifolds.

e There should be a PSL(2, C)-equivariant sheaf-theoretic Floer cohomology of three-
manifolds, which involves both the reducibles and the irreducibles.

e An alternative construction of three-manifold invariants should be given using derived
algebraic geometry (cf. Remark 1.2).

e Similar invariants to those in this paper could be constructed using the theory of defor-
mation quantization modules.

e We expect our invariants to be functorial under four-dimensional cobordisms, and thus
part of 3 4+ 1-dimensional TQFTs, based on the Kapustin—Witten or Vafa—Witten equa-
tions.

e We expect that HP* can be categorified to give an Aoo-category associated to the three-
manifold, in the spirit of [44], [34], or [26].

e One can investigate the effect on HP* or HP}; induced by varying the complex structure
on the moduli space of flat connections.

9.3. Relation to Khovanov homology

In [46], Khovanov defined a homology theory for knots and links in R®, now known
as Khovanov homology. Witten [77] conjectured that the Khovanov homology of a link
L C S can be understood as a version of Floer homology, using the Haydys—Witten
equation on R3 x R, x R, with certain boundary conditions. The generators of this Floer
complex are solutions to the Kapustin—Witten equations [45] on R3 x R.

Extending Khovanov homology to an invariant of links in arbitrary three-manifolds
is an open problem. It is natural to attempt to do so by considering the Haydys—Witten
equations on ¥ x Ry x R, where Y is any three-manifold. There are formidable ana-
Iytical difficulties to be overcome in order to carry out this program, having to do with
non-compactness of the moduli spaces [69, 66, 67]. We refer to [33], [32] for some ex-
pectations about the resulting invariants, coming from the physics perspective.

The sheaf-theoretic invariant HP*(Y') constructed in this paper is a small step in this
program. It is meant to give SL(2, C) Floer homology, which can be thought of as encod-
ing information from the Kapustin—Witten equations on ¥ x R. We can view SL(2, C)
Floer homology as the space of integration cycles (thimbles) for the complex Chern—
Simons functional, as in [76], [77], [78]. To obtain analogues of the Jones polynomial,
one would need to also introduce the boundary conditions at ¥ x {0}. Moreover, to get
analogues of Khovanov homology, one would then need to categorify these invariants.
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9.4. An open question

Zentner [79] proved that if Y is a non-trivial integral homology 3-sphere, then 71 (Y)
admits an irreducible representation into SL(2, C).

Question 9.1. Can one use Zentner’s result to prove that HP*(Y) detects S among ho-
mology spheres?
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