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Abstract. Given a Heegaard splitting of a three-manifold Y , we consider the SL(2,C) character
variety of the Heegaard surface, and two complex Lagrangians associated to the handlebodies. We
focus on the smooth open subset corresponding to irreducible representations. On that subset, the
intersection of the Lagrangians is an oriented d-critical locus in the sense of Joyce. Bussi asso-
ciates to such an intersection a perverse sheaf of vanishing cycles. We prove that in our setting,
the perverse sheaf is an invariant of Y , i.e., it is independent of the Heegaard splitting. The hyper-
cohomology of the perverse sheaf can be viewed as a model for (the dual of) SL(2,C) instanton
Floer homology. We also present a framed version of this construction, which takes into account
reducible representations. We give explicit computations for lens spaces and Brieskorn spheres, and
discuss the connection to the Kapustin–Witten equations and Khovanov homology.

Keywords. Three-manifold, Heegaard splitting, d-critical locus, Floer homology, character variety,
Khovanov homology

1. Introduction

In [22], Floer associated to each homology three-sphere Y an invariant I∗(Y ), called in-
stanton homology. This is the homology of a complex generated by (perturbations of)
irreducible flat SU(2) connections on Y , with the differential counting solutions to the
SU(2) anti-self-dual (ASD) Yang–Mills equations on the cylinder R × Y . As shown by
Taubes [68], the Euler characteristic of I∗(Y ) equals twice the Casson invariant from [1].
The main motivation for instanton homology was to allow a definition of relative Don-
aldson invariants for four-manifolds with boundary; see [20] for results in this direction.
Apart from this, instanton homology has had applications to three-manifold topology—
most notably the proof of property P for knots by Kronheimer and Mrowka [47].

Recently, there has been a surge of interest in studying the ASD equations with non-
compact groups SL(2,C) or PSL(2,C) instead of SU(2), as well as their topological
twist, the Kapustin–Witten equations [45, 69, 66]. In particular, Witten has a proposal
for intepreting the Khovanov homology of knots or links in R3 in terms of solutions to a
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set of partial differential equations in five dimensions (usually called the Haydys–Witten
equations) [77, 34]. In this proposal, the Jones polynomial is recovered by counting so-
lutions to the Kapustin–Witten equations on R3

× R+, with certain boundary conditions
[77, 27, 78, 75].

In view of these developments, one would like to construct a variant of instanton
Floer homology using the group SL(2,C) instead of SU(2). In a sense, the SL(2,C)
case should be simpler than SU(2). For the unperturbed equations with complex gauge
groups, physicists expect “no instanton corrections”, i.e., no contributions to the Floer
differential. Indeed, if there are only finitely many SL(2,C) irreducible flat connections,
and all are transversely cut out, then they must be in the same relative grading. In that case,
the SL(2,C) Floer homology could just be defined as the free Abelian group generated
by those connections, in a single grading. However, for arbitrary three-manifolds, the
moduli space (character variety) of SL(2,C) flat connections can be higher-dimensional,
singular, and even non-reduced as a scheme. Furthermore, instanton corrections appear
when we perturb the equations, and we run into difficult non-compactness issues. Thus,
defining SL(2,C) Floer homology directly using gauge theory seems challenging.

Nevertheless, the lack of instanton corrections for the unperturbed equations indicates
that SL(2,C) Floer homology could be defined algebraically, without counting solutions
to PDEs. The purpose of this paper is to use sheaf theory to give such a definition.

Our construction draws inspiration from the Atiyah–Floer conjecture [2]. (See [16] for
recent progress in the direction of this conjecture.) The Atiyah–Floer conjecture states that
the SU(2) instanton homology I∗(Y ) can be recovered as the Lagrangian Floer homology
of two Lagrangians associated to a Heegaard decomposition for Y , with the ambient sym-
plectic manifold being the moduli space of flat SU(2) connections on the Heegaard sur-
face6. In a similar fashion, we consider the moduli space X(6) of flat SL(2,C) connec-
tions on 6 (or equivalently representations of π1(6) into SL(2,C)). The space X(6) is
called the character variety of 6. It contains an open set Xirr(6) ⊂ X(6) corresponding
to irreducible flat connections. For the three-manifold Y , we can defineX(Y) andXirr(Y )

in an analogous way. The spaceXirr(6) is a smooth, complex symplectic manifold. Inside
Xirr(6) we have two complex Lagrangians L0 and L1, associated to the two handlebod-
ies. The intersection L0 ∩ L1 is isomorphic to Xirr(Y ) (see Lemma 3.1(a) below).

We could try to take the Lagrangian Floer homology of L0 and L1 inside Xirr(6),
but non-compactness issues appear here just as in the gauge-theoretic context. Instead,
we make use of the structure of Xirr(Y ) as a derived scheme. Joyce [40] introduced the
theory of d-critical loci, which is a way of encoding some information from derived alge-
braic geometry in terms of classical data. The intersection of two algebraic Lagrangians
in an algebraic symplectic manifold is a d-critical locus (see [57, Corollary 2.10] and
[10, Corollary 6.8]). If the Lagrangians come equipped with spin structures, the d-critical
locus gets an orientation in the sense of [40, Section 2.5]. Furthermore, to any oriented
d-critical locus one can associate a perverse sheaf of vanishing cycles [9]; in the case of
an algebraic Lagrangian intersection, the hypercohomology of this sheaf is conjectured
to be the same as the Lagrangian Floer cohomology [9, Remark 6.15]. Furthermore, in
the complex-analytic context, Bussi [11] gave a simpler way of constructing the perverse
sheaf for complex Lagrangian intersections.



A sheaf-theoretic model for SL(2,C) Floer homology 3643

In our setting, we apply Bussi’s construction to the Lagrangians L0, L1 ⊂ Xirr(6).
The resulting perverse sheaf of vanishing cycles is denoted P •L0,L1

. Our main result is:

Theorem 1.1. Let Y be a closed, connected, oriented three-manifold. Then the object
P •(Y ) := P •L0,L1

(constructed from a Heegaard decomposition as above) is an invariant
of the three-manifold Y , up to canonical isomorphism in a category of perverse sheaves
Perv′(Xirr(Y )). As a consequence, its hypercohomology

HP∗(Y ) := H∗(P •(Y ))

is also an invariant of Y , well-defined up to canonical isomorphism in the category of
Z-graded Abelian groups.

The content of Theorem 1.1 is that P •L0,L1
is independent of the Heegaard decomposition

used to construct it. The proof requires checking invariance under a stabilization move,
as well as a naturality result similar to that proved by Juhász, Thurston and Zemke [41],
for Heegaard Floer homology. Naturality means that as we relate a Heegaard diagram
to another by a sequence of moves, the induced isomorphism is independent of the se-
quence we choose. Moreover, we want the diffeomorphism group of Y to act on our
invariant P •L0,L1

. Since the diffeomorphism group can act non-trivially on Xirr(Y ) itself,
we cannot simply view P •L0,L1

as an object in the usual category of perverse sheaves
Perv(Xirr(Y )), where the morphisms cover the identity on Xirr(Y ). Rather, we use a
slightly different category Perv′(Xirr(Y )), which will be introduced in Definition 7.1
below.

Remark 1.2. One can construct the perverse sheaves P •(Y ) more directly, without Hee-
gaard decompositions, by resorting to the theory of shifted symplectic structures in de-
rived algebraic geometry developed by Pantev–Toën–Vaquié–Vezzosi [57]. In this paper,
we preferred to use the methods from [11] since they are more concrete, and make com-
putations easier. In particular, they do not require any knowledge of derived algebraic
geometry.

We call HP∗(Y ) the sheaf-theoretic SL(2,C) Floer cohomology of Y . If an SL(2,C) Floer
cohomology for Y can be defined (using either gauge theory or symplectic geometry), we
conjecture that HP∗(Y ) would be isomorphic to it.

Note that, whereas SU(2) instanton homology is only defined for integer homol-
ogy spheres, the invariant HP∗(Y ) is defined for all closed, connected, oriented three-
manifolds.

We call the Euler characteristic

λP (Y ) := χ(HP∗(Y ))

the full (sheaf-theoretic) SL(2,C) Casson invariant of Y . We use the name full to distin-
guish it from the SL(2,C) Casson invariant defined by Curtis [14], which counts only the
isolated irreducible flat connections.

Our construction of HP∗(Y ) has some limitations too, because it only involves ir-
reducible flat connections. In the SU(2) context, one theory that takes into account the
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reducibles is the framed instanton homology FI∗(Y ) considered by Kronheimer and
Mrowka [48]. This is defined for any three-manifold Y , and its construction uses con-
nections in an admissible PU(2) bundle over Y # T 3. Framed instanton homology was
further studied by Scaduto [59], who denoted it I #(Y ). Moreover, symplectic counter-
parts to framed instanton homology were defined in [72] and [50].

Consider a Heegaard decomposition of a three-manifold Y , as before. Following
Wehrheim and Woodward [72, Section 4.4], we take the connected sum of the Hee-
gaard surface 6 (near a basepoint z) with a torus T 2, and obtain a higher genus sur-
face 6#. On 6# we consider the moduli space of twisted flat SL(2,C) connections,
Xtw(6

#), which is a smooth complex symplectic manifold. There are smooth Lagrangians
L#

0, L
#
1 ⊂ Xtw(6

#) coming from the two handlebodies. Their intersection is the represen-
tation variety R(Y ) := Hom(π1(Y ),SL(2,C)). Bussi’s construction yields a perverse
sheaf of vanishing cycles P •

L#
0,L

#
1

over R(Y ).

Theorem 1.3. Let Y be a closed, connected, oriented three-manifold, and z ∈ Y a base-
point. Then the object P •# (Y, z) := P

•

L#
0,L

#
1

is an invariant of the three-manifold Y and the

basepoint z, up to canonical isomorphism in a category of perverse sheaves Perv′(R(Y )).
As a consequence, its hypercohomology

HP∗# (Y, z) := H∗(P •# (Y, z))

is also an invariant of (Y, z), well-defined up to canonical isomorphism in the category
of Z-graded Abelian groups.

We call HP∗# (Y, z) the framed sheaf-theoretic SL(2,C) Floer cohomology of Y . When we
are only interested in its isomorphism class, we will drop z from the notation and write
HP∗# (Y ) for HP∗# (Y, z).

To compute the invariants defined in this paper, the main tool we use is the following.

Theorem 1.4. Let Y be a closed, connected, oriented three-manifold, R(Y ) its SL(2,C)
representation variety, and X(Y) = R(Y )// PSL(2,C) its character variety, with the
open subsetXirr(Y ) ⊂ X(Y) consisting of irreducibles. Also let R(Y ) be the correspond-
ing representation scheme, and Xirr(Y ) ⊂ X(Y ) the character scheme. Let z ∈ Y be a
basepoint.

(a) If Xirr(Y ) is regular, then P •(Y ) is a (degree shifted) local system on Xirr(Y ), with
stalks isomorphic to Z.

(b) If R(Y ) is regular, then P •# (Y, z) is a (degree shifted) local system on R(Y ), with
stalks isomorphic to Z.

In some situations, we can show that the local systems appearing in Theorem 1.4 are
trivial. This allows us to do concrete calculations for various classes of three-manifolds.
We give a few examples below, with Z(0) denoting the group Z in degree 0.

Theorem 1.5. Consider the lens space L(p, q) with p and q relatively prime. Then

HP∗(L(p, q)) = 0 and HP∗# (L(p, q)) ∼=

{
Z(0) ⊕H ∗+2(S2

;Z)⊕(p−1)/2 if p is odd,
Z⊕2
(0) ⊕H

∗+2(S2
;Z)⊕(p−2)/2 if p is even.
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Theorem 1.6. For the Brieskorn spheres 6(p, q, r) with p, q, r pairwise relatively
prime, we have

HP∗(6(p, q, r)) ∼= Z⊕(p−1)(q−1)(r−1)/4
(0)

and
HP∗# (6(p, q, r)) ∼= Z(0) ⊕H ∗+3(RP3

;Z)⊕(p−1)(q−1)(r−1)/4.

Let Y be a closed oriented three-manifold. Recall that a smoothly embedded surface
S ⊂ Y is called incompressible if there is no diskD embedded inM such thatD∩S = ∂D
and ∂D does not bound a disk in S. The manifold Y is called sufficiently large if it con-
tains a properly embedded, two-sided, incompressible surface. (Haken manifolds are suf-
ficiently large and irreducible.) By the work of Culler and Shalen [13], when Y is not
sufficiently large, the character variety Xirr(Y ) has only zero-dimensional components
(compare [14, Proposition 3.1]). From this we easily obtain the following result.

Theorem 1.7. For three-manifolds Y that are not sufficiently large, the invariant HP∗(Y )
is supported in degree 0.

We also have the following relation between our invariants and the Heegaard genus, which
was pointed out to us by Ikshu Neithalath.

Theorem 1.8. If Y admits a Heegaard splitting of genus g, then

HPk(Y ) 6= 0 =⇒ −3g + 3 ≤ k ≤ 3g − 3,

HPk#(Y ) 6= 0 =⇒ −3g ≤ k ≤ 0.

Character varieties of SL(2,C) representations play an important role in three-dimen-
sional topology, for example in the paper [13] mentioned above, in the work of Morgan
and Shalen [52, 53, 54], and in the proof of the cyclic surgery theorem by Culler, Gordon,
Luecke and Shalen [12]. It would be interesting to explore if there are more connections
between HP∗ and classical three-manifold topology, beyond Theorems 1.7 and 1.8.

The organization of the paper is as follows. In Section 2 we gather a few facts about
representation and character varieties. In Section 3 we introduce the complex Lagrangians
L0, L1, L

#
0, L

#
1, and present in more detail the motivation coming from the Atiyah–Floer

conjecture. Section 4 contains a review of Bussi’s construction of perverse sheaves as-
sociated to complex Lagrangian intersections. In Section 5 we discuss the behavior of
Bussi’s perverse sheaf under stabilization, and in Section 6 we study the perverse sheaf in
the case where the Lagrangians intersect cleanly. In Section 7 we define our invariants and
prove Theorems 1.1 and 1.3. Section 8 contains the proofs of Theorems 1.4–1.6, together
with a few other calculations. In Section 9 we describe further directions for research, and
connections to other fields.

2. Representation varieties and character varieties

In this section we gather some facts about representations of finitely generated groups
into SL(2,C), as well as examples. We recommend the books [49], [42] and the articles
[29], [13], [36], [62] for more details about this topic.
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Throughout the paper (except where otherwise noted, in Section 9.1), we letG denote
the group SL(2,C), with Lie algebra g = sl(2,C) and center Z(G) = {±I }. We let
Gad
= G/Z(G) = PSL(2,C) be the adjoint group of G.

We denote byB ⊂ G the Borel subgroup ofG consisting of upper triangular matrices,
and by D the subgroup consisting of diagonal matrices. We also let BP ⊂ B be the
subgroup of B consisting of parabolic elements, i.e. those of the form±

(
1 a
0 1

)
with a ∈ C.

Note that D and BP are both Abelian, with intersection D ∩ BP = Z(G).

2.1. Representation varieties

Let 0 be a finitely generated group. Its representation variety is defined as

R(0) = Hom(0,G).

If 0 has k generators, by viewing G as a subset of GL(2,C) ∼= C4 we find that R(0)
is an affine algebraic subvariety of C4k . Indeed, the relations in 0, together with the
determinant 1 conditions, produce a set of polynomial equations in 4k variables,

fi(x1, . . . , x4k) = 0,

such that their common zero set is R(0). Here, the subscripts i take values in some index
set I.

We can also consider the representation scheme

R(0) = Spec
(
C[x1, . . . , x4k]/(fi)i∈I

)
. (1)

The affine scheme R(0) is independent of the presentation of 0, up to canonical isomor-
phism. The scheme R(0) may be non-reduced; the corresponding reduced scheme gives
the variety R(0).

The group Gad acts on R(0) by conjugation. Given a representation ρ : 0 → G, we
denote by Stab(ρ) ⊆ Gad its stabilizer, and by Oρ

∼= Gad/Stab(ρ) its orbit.
We distinguish five kinds of representations ρ : 0→ G:

(a) irreducible, those such that the corresponding representation on C2 does not preserve
any line; in other words, those that are not conjugate to a representation into the Borel
subgroup B. An irreducible representation has trivial stabilizer. Its orbit is a copy of
Gad
= PSL(2,C), which is topologically RP3

× R3;
(b) non-Abelian reducible, those that are conjugate to a representation with image in B,

but not into one with image in BP or D. Such representations have trivial stabilizer
also;

(c) parabolic non-central, those that are conjugate to a representation with image in BP ,
but not in {±I }. Such representations have stabilizer BP /{±I } ∼= C. Their orbit
Oρ
∼= G/BP is a bundle over G/B ∼= CP1 with fiber B/BP ∼= C∗. In fact, Oρ is

diffeomorphic to RP3
× R;

(d) diagonal non-central, those that are conjugate to a representation with image in D,
but not in {±I }. Such representations have stabilizer D/{±I } ∼= C∗. Their orbit is a
copy of Gad/C∗, topologically T S2;
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(e) central, those with image in Z(G) = {±I }. Their stabilizer is the whole group Gad,
and their orbit is a single point.

Representations of types (b)–(e) are called reducible. Those of types (a), (d) and (e)
are completely reducible, or semisimple. Those of types (c), (d) and (e) have Abelian
image, and we call them Abelian.

We will denote by Rirr(0) ⊂ R(0) the (Zariski open) subset consisting of irreducible
representations, and similarly by Rirr(0) ⊂ R(0) the open subscheme associated to
irreducibles. (For a proof of openness, see for example [62, Proposition 27].)

Given a representation ρ : 0 → G, we denote by Ad ρ := Ad ◦ ρ the associated
adjoint representation on g. A map ξ : 0→ g is called a 1-cocycle if

ξ(xy) = ξ(x)+ Adρ(x) ξ(y) for all x, y ∈ 0. (2)

Further, ξ is a 1-coboundary if it is of the form

ξ(x) = u− Adρ(x) u

for some u ∈ g. The space of 1-cocycles is denoted Z1(0;Ad ρ) and the space of
1-coboundaries is denoted B1(0;Ad ρ). Their quotient is the group cohomology

H 1(0;Ad ρ) = Z1(0;Ad ρ)/B1(0;Ad ρ).

When 0 = π1(M) for a topological space M , we can identify H 1(0;Ad ρ) with
H 1(M;Ad ρ), the first cohomology of M with coefficients in the local system given
by Ad ρ.

By a result of Weil [74], the Zariski tangent space to the scheme R(0) at a closed
point ρ is identified withZ1(0;Ad ρ). We can also consider the (possibly smaller) Zariski
tangent space to the variety R(0). In general, we have a chain of inequalities

dimOρ = dimB1(0;Ad ρ) ≤ dimρ R(0) ≤ dim TρR(0)

≤ dim TρR(0) = dimZ1(0;Ad ρ), (3)

where dimρ denotes the local dimension at ρ. Compare [49, Ch. 2] and [36, Lemma 2.6].
Following [36] and [62], we introduce

Definition 2.1. (a) The representation ρ is called reduced if dim TρR(0) =

dimZ1(0;Ad ρ) i.e., the last inequality in (3) is an equality. This is the same as ask-
ing for the scheme R(0) to be reduced at ρ.

(b) The representation ρ is called regular (or scheme smooth) if dimρ R(0) =

dimZ1(0;Ad ρ), i.e., the last two inequalities in (3) are equalities. This is the same as
asking for the scheme R(0) to be regular (i.e., smooth) at ρ.

Note that if H 1(0;Ad ρ) = 0, then from (3) we see that ρ is regular. In fact, in that case,
any representation sufficiently close to ρ is actually conjugate to ρ (see [74]).
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2.2. Character varieties

Let us consider again the action ofGad on the representation variety R(0). The character
variety of 0 is defined to be the categorical quotient

X(0) = R(0)//Gad.

If we let R′(0) ⊂ R(0) denote the subset consisting of completely reducible representa-
tions, the categorical quotient can be constructed explicitly as

X(0) = R′(0)/Gad

(see [49, Theorem 1.27] or [62, Section 7]).
There is also a representation scheme

X(0) = R(0)//Gad.

In terms of the notation in (1), we have

X(0) = Spec
(
C[x1, . . . , x4k]/(fi)i∈I

)Gad
.

The reduced scheme associated to X(0) is the character variety X(0) (see [62, Sec-
tion 12] for more details).

We denote byXirr(0) = Rirr(0)/G
ad
⊂ X(0) the open subvariety made up of classes

of irreducible representations. Similarly, there is an open subscheme Xirr(0) of X(0),
corresponding to irreducible representations.

By [49, Corollary 1.33], the conjugacy class of a completely reducible representation
ρ ∈ R′(0) is determined by its character,

χρ : 0→ C, χρ(g) = Tr(ρ(g)).

For each g ∈ G, we can define a regular function

τg : R(0)→ C, τg(ρ) = χρ(g). (4)

Let T be the ring generated by the functions τg; this is the coordinate ring of X(0) [49,
1.31]. Using the identities

τgτh = τgh + τgh−1 ,

one can prove that if g1, . . . , gn are generators of 0, then the 2n − 1 functions

τgi1 ...gik
, 1 ≤ k ≤ n, 1 ≤ i1 < · · · < ik ≤ n,

generate T . This gives a closed embedding of X(0) into an affine space CN , where N =
2n − 1 (see [13, Proposition 1.4.1 and Corollary 1.4.5] and [61, Proposition 4.4.2]).

With regard to tangent spaces, we have the following:
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Proposition 2.2 (cf. [62, Theorems 53 and 54]).

(a) Let ρ ∈ R(0) be a completely reducible representation. Then the projections R(0)
→ X(0) and R(0)→X(0) induce natural linear maps

φ : TρR(0)/B
1(0;Ad ρ)→ T[ρ]X(0) and 8 : H 1(0;Ad ρ)→ T[ρ]X(0).

(b) If ρ is irreducible, then φ and 8 are isomorphisms.
(c) If ρ is completely reducible and regular, then

dim T0(H
1(0;Ad ρ)//Stab(ρ)) ∼= T[ρ]X(0) = T[ρ]X(0),

where we consider the natural action of Stab(ρ) on group cohomology.

Proposition 2.3 (cf. [62, Corollary 55]). An irreducible representation ρ ∈ R(0) is re-
duced if and only if the scheme X(0) is reduced at [ρ].

We refer to Sikora’s paper [62] for more details. The results are stated there for good
representations into a reductive algebraic group G. (See Section 9.1 for the definition of
good.) In the case G = SL(2,C), all irreducible representations are good.

We also have the following fact:

Lemma 2.4. An irreducible representation ρ ∈ R(0) is regular if and only if the scheme
X(0) is regular at [ρ].

Proof. The “only if” part is [49, Lemma 2.18]. For the “if” part, note that if X(0) is
regular at [ρ], it is regular in a neighborhood U of [ρ]. The neighborhood U may be cho-
sen to consist of irreducibles. We conclude that a neighborhood of ρ in the representation
scheme R(0) is a Gad-bundle over U , which is smooth. Hence, ρ is regular (see Defini-
tion 2.1(b)). ut

Remark 2.5. If ρ is regular but reducible, then X(0) may not be regular at [ρ]: see
Section 2.3 below, the case where 0 is a free group with at least three generators.

2.3. The case of free groups

We now specialize to the case where 0 = Fk , the free group on k variables. The repre-
sentations of free groups into SL(2,C) have been extensively studied in the literature (see
for example [38], [35]).

We have R(Fk) ∼= Gk , and all representations are regular. When k = 1, the repre-
sentations are Abelian, and they can be central, diagonal non-central, or parabolic non-
central. For k ≥ 2, we find representations of all possible types. For example, one obtains
a non-Abelian reducible representation of F2 by sending one generator to a non-central
diagonal matrix, and the other to a non-central parabolic matrix. This also works for Fk
for k > 2 by simply sending all the other generators to I .

With regard to the character variety X(Fk):

• When k = 1, let g be the generator of F1. We then have X(F1) ∼= C, with the coordi-
nate being the trace τg , in the notation (4).
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• When k = 2, let g and h be the generators of Fk . We have X(F2) ∼= C3, with the
three coordinates being x = τg , y = τh and z = τgh. By a result of Fricke [24]
and Vogt [71], the reducible locus X(F2) \ Xirr(F2) is the hypersurface given by the
equation x2

+ y2
+ z2
− xyz = 4 (see [28] for an exposition).

• For k ≥ 3, the character variety is singular, and its singular locus is exactly the re-
ducible locus, X(Fk) \ Xirr(Fk) [35, Section 5.3]. The fact that all irreducible repre-
sentations are regular can be seen from Lemma 2.4. The variety X(Fk) has complex
dimension 3k − 3, and its reducible locus has dimension k.

For future reference, we note the following facts about the topology of Xirr(Fk).

Lemma 2.6. For k ≥ 3, we have π1(Xirr(Fk)) = 1 and π2(Xirr(Fk)) = Z/2. Conse-
quently, H 1(Xirr(Fk);Z/2) = 0 and H 2(Xirr(Fk);Z) = 0.

Proof. For k ≥ 3, consider the reducible locus of the representation variety, Z = R(Fk)\
Rirr(Fk). Any reducible representation fixes a line in C2; once we choose the line, we can
assume the representation is upper triangular, i.e. takes values in B ⊂ G. Since B has
complex dimension 2, we find that Z has dimension 2k+1. (The extra degree of freedom
comes from choosing the line.) Since R(Fk) ∼= Gk , we see that Z is of codimension
k − 1, which means real codimension at least 4. Hence, removing Z from R(Fk) does
not change π1 or π2. From the polar decomposition we see that G is diffeomorphic to
T SU(2) ∼= T S3 ∼= S3

× R3, which has π1 = π2 = 1. We deduce that π1(Rirr(Fk)) =

π2(Rirr(Fk)) = 0.
We now look at the long exact sequence for the homotopy groups of the fibration

Gad ↪→ Rirr(Fk)� Xirr(Fk).

Since Gad is diffeomorphic to T SO(3) ∼= RP3
× R3, we obtain π1(Xirr(Fk)) = 1 and

π2(Xirr(Fk)) ∼= π1(RP3) = Z/2.
The results for cohomology come from the Hurewicz theorem and the universal coef-

ficients theorem. ut

Remark 2.7. When k = 2, we can view Xirr(F2) as the complement of the hypersurface
w(x2w + y2w + z2w − xyz− 4w3) = 0 in CP3. By [18, Ch. 4, Proposition 1.3], we get
H1(Xirr(F2);Z) ∼= Z, so the fundamental group is non-trivial.

2.4. Examples for three-manifolds

In this section we will give a few examples of representation and character varieties com-
ing from fundamental groups of three-manifolds Y . In general, when Y is a manifold, we
will write R(Y ) for R(π1(Y )), and similarly with R(Y ),X(Y ), etc.

Remark 2.8. Note that π1(Y ) and hence R(Y ),R(Y ) are defined after choosing a base-
point z ∈ Y . A different choice of basepoint induces a (non-canonical) isomorphism be-
tween the respective objects. However, we will drop z from notation for convenience. In
the case of character varieties and character schemes, since we divide out by conjugation,
the isomorphisms induced by the change of basepoint are actually natural.
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In Examples 2.9–2.14 below, both the character and representation schemes are reduced,
as can be checked using Definition 2.1(a) and Proposition 2.3. In view of this, we will
focus on describing the varieties R(Y ) and X(Y).

Example 2.9. When Y = S3, we have that π1(Y ) is trivial, so both R(Y ) and X(Y)
consist of a single point.

Example 2.10. Let Y be the connected sum of k copies of S1
×S2. Then π1(Y ) is the free

group Fk on k generators. The varieties R(Fk) and X(Fk) were discussed in Section 2.3.

Example 2.11. Let Y be the lens space L(p, q) with p > 0 and gcd(p, q) = 1. Then
π1(L(p, q)) = Z/p. A representation ρ : Z/p → SL(2,C) is determined by what it
does on the generator [1] ∈ Z/p; up to conjugacy, it must send it to a diagonal matrix of
the form diag(u, u−1), where u is a pth root of unity. Note that diag(u, u−1) is conjugate
to diag(u−1, u). Thus, in terms of the list of representation types in Section 2.1:

• If p is odd, then R(Y ) consists of (p + 1)/2 conjugacy classes of diagonal represen-
tations, one being the trivial representation and the others all non-central. Thus, R(Y )
is the disjoint union of a point and (p − 1)/2 copies of T S2, and X(Y) consists of
(p + 1)/2 points.
• If p is even, then R(Y ) consists of p/2 + 1 conjugacy classes of diagonal representa-

tions, two being central and the other non-central. Thus, R(Y ) is the disjoint union of
two points and (p − 2)/2 copies of T S2, and X(Y) consists of p/2+ 1 points.

Furthermore, all representations are regular. Indeed, we claim that H 1(Z/p;Ad ρ) = 0
for any such ρ. In general, the first cohomology of the cyclic group Z/p with values in a
module M is

H 1(Z/p;M) = {m ∈ M | (1+ ζ + ζ 2
+ · · ·+ ζp−1)m = 0}/{(1− ζ )m | m ∈ M}, (5)

where ζ is the action of the generator. In our case, ζ is conjugation by the matrix
A = ρ([1]), and m is a traceless 2-by-2 matrix. If A = ±I then clearly the right hand
side of (5) is zero. If A ∼ diag(u, u−1) 6= ±I , then any element of g can be written as the
commutator [m,A] for some m ∈ g. Hence, (1− ζ )m = [m,A]A−1 can be any element
of g, and we again find that the right hand side of (5) is zero.

Example 2.12. Let Y be the Brieskorn sphere

6(p, q, r) = {(x, y, z) ∈ C3
| xp + yq + zr = 0} ∩ S5,

where p, q, r > 0 are pairwise relatively prime integers. The representations of
π1(6(p, q, r)) into SL(2,C) were studied by Boden and Curtis [7, Section 3]. There
is the trivial representation and

N = (p − 1)(q − 1)(r − 1)/4

irreducible ones. The first cohomology H 1(6(p, q, r);Ad ρ) vanishes for all these rep-
resentations, by [7, Lemma 2.4], so they are all regular.

Therefore, R(Y ) consists of one point and N copies of PSL(2,C) ∼= RP3
× R3, and

X(Y) consists of N + 1 points.
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Example 2.13. More generally, let Y = 6(a1, . . . , an) be a Seifert fibered homology
sphere, where a1, . . . , an > 0 are pairwise relatively prime. We can arrange that ai is
odd for i ≥ 2. The representations of π1(Y ) into SL(2,C) were studied in [7, proof of
Theorem 2.7]. There is the trivial representation and some irreducibles, which come in
families. Precisely, the character variety X(Y) = pt ∪ Xirr(Y ) is regular, with Xirr(Y )

being the disjoint union of components Mα , one for each α = (α1, . . . , αn), with

α1 = k1/(2a1), k1 ∈ Z, 0 ≤ k1 ≤ a1,

αi = ki/ai, ki ∈ Z, 0 ≤ ki < ai/2 for i ≥ 2.

Each Mα can be identified with the moduli space of parabolic Higgs bundles of parabolic
degree zero over CP1 with n marked points p1, . . . , pn of weights ai, 1 − αi at pi . The
space Mα is smooth of complex dimension 2m− 6, where

m = m(α) = |{αi | αi ∈ (0, 1/2)}|.

(When m < 3, we have Mα = ∅.) Boden and Yokogawa [8] showed that the spaces Mα

are connected and simply connected, and computed their Poincaré polynomials (which
only depend on m). In particular, the Euler characteristic of Mα is (m− 1)(m− 2)2m−4.

Example 2.14. For an example where the representation variety R(Y ) is singular, take
the three-torus T 3, with π1(T

3) = Z3. One can check that R(Y ) has complex dimen-
sion 5, whereas the Zariski tangent space to R(Y ) at the trivial representation is 9-dimen-
sional: Z1(T 3

; g) ∼= H 1(T 3
; g) ∼= g3.

Example 2.15. An example of a three-manifold Y where the character scheme X(Y) is
non-reduced, based on [49, equation 2.10.4, p. 43], was given on p. 27 of the version
arXiv:1303.2347v2 of [43]. (However, it does not appear in the published version.) The
manifold in question is a Seifert fibered space over the orbifold S2(3, 3, 3), i.e. over the
sphere with three cone points of order 3.

Remark 2.16. Kapovich and Millson [43] proved universality results for representation
schemes and character schemes of three-manifolds, which show that their singularities
can be “arbitrarily complicated”. Specifically, let Z ⊂ CN be an affine scheme over Q,
and x ∈ Z a rational point. Then there exists a natural number k and a closed (non-
orientable) 3-dimensional manifold Y with a representation ρ : π1(Y )→ SL(2,C) such
that there are isomorphisms of analytic germs

(R(Y ), ρ) ∼= (Z × C3k+3, x × 0) and (X(Y ), [ρ]) ∼= (Z × C3k, x × 0).

2.5. The case of surfaces

Let 6 be a closed oriented surface of genus g ≥ 2, and let 0 = π1(6). We review a few
facts about the character variety of 0, following Goldman [29, 30] and Hitchin [37].

A representation ρ : π1(6) → G is regular if and only if it is non-Abelian. The
character scheme X(6) = X(0) is reduced, of complex dimension 6g − 6. Concretely,

http://arxiv.org/abs/1303.2347v2
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in terms of the images Ai, Bi of the standard generators of π1(6), we can write the
character variety as

X(6) =
{
(A1, B1, . . . , Ag, Bg) ∈ G

2g
∣∣∣ g∏
i=1

[Ai, Bi] = 1
}
//Gad. (6)

The singular locus of X(6) consists exactly of the classes of reducible representa-
tions, and is of complex dimension 2g. The irreducible locusXirr(6) is a smooth complex
manifold; we denote by J its complex structure (coming from the complex structure on
G = SL(2,C)). More interestingly, Xirr(6) admits a natural complex symplectic struc-
ture, invariant under the action of the mapping class group. Explicitly, if we identify the
tangent space to Xirr(6) at some [ρ] with H 1(6;Ad ρ), the complex symplectic form is
the pairing

ωC : H
1(6;Ad ρ)×H 1(6;Ad ρ)→ H 2(6;C) ∼= C, (7)

which combines the cup product with the non-degenerate bilinear form (x, y)→ Tr(xy)
on g (which is 1/4 of the Killing form). Alternatively, we can identify the points
[ρ] ∈ X(6) with flat SL(2,C) connections Aρ on 6 up to gauge, and H 1(6;Ad ρ)
with de Rham cohomology with local coefficients,

H 1
Aρ
(6; g) = ker(dAρ : �

1(6; g)→ �2(6; g))/im(dAρ : �
0(6; g)→ �1(6; g)).

We then have
ωC(a, b) =

∫
6

Tr(a ∧ b),

where a, b ∈ �1(6; g) are dAρ -closed forms.
Let us now equip 6 with a Riemannian metric. Its conformal class determines a com-

plex structure j . By the work of Hitchin [37], we can identify Xirr(6) with the moduli
space of stable Higgs bundles on (6, j) with trivial determinant, and thus give it the
structure of a hyperkähler manifold. In Hitchin’s notation, we now have three complex
structures I, J andK = IJ , where I comes from the moduli space of Higgs bundles, and
J is the previous structure on Xirr(6). We also have three symplectic forms ω1, ω2 and
ω3 (in Hitchin’s notation), where

ωC = −ω1 + iω3.

Remark 2.17. It is worth noting that ω2 and ω3 are exact forms, whereas ω1 is not (see
[37, p. 109] or [45, Section 4.1]).

There is also a variant of the character variety that is smooth. Let us choose a basepoint
w ∈ 6 and a small disk neighborhood D of w, whose boundary γ = ∂D is a loop
around w. Then, instead of representations ρ : π1(6) → G, we can consider twisted
representations, i.e., homomorphisms ρ : π1(6 \ {w}) → G with ρ(γ ) = −I . Any
such ρ has trivial stabilizer, and is irreducible (it does not preserve any line in C2). Note
also that Ad ρ is still well-defined as a representation of π1(6) on g, because conjugation
by −I is the identity.



3654 Mohammed Abouzaid, Ciprian Manolescu

We denote by Rtw(6) the space of twisted representations, and byXtw(6) the twisted
character variety

Xtw(6) := Rtw(6)/G
ad.

In terms of the images Ai, Bi of the standard generators of π1(6 \ {w}), we have

Xtw(6) =
{
(A1, B1, . . . , Ag, Bg) ∈ G

2g
∣∣∣ g∏
i=1

[Ai, Bi] = −1
}
/Gad. (8)

The spaces Rtw(6) and Xtw(6) are smooth complex manifolds (and the correspond-
ing schemes are reduced). The twisted character variety has complex dimension 6g − 6,
and its tangent bundle at some [ρ] is still identified withH 1(6;Ad ρ). We can equip Xtw
with a complex symplectic form ωC = −ω1 + iω3, as before. In terms of gauge theory,
twisted representations correspond to central curvature (i.e., projectively flat) connections
in a rank 2 bundle of odd degree on 6.

After choosing a conformal structure on 6, we can identify Xtw(6) with a moduli
space of Higgs bundles of odd degree and fixed determinant [37]. This gives a hyperkähler
structure on Xtw(6), with complex structures I, J,K and symplectic forms ω1, ω2, ω3.
They have properties similar to those of the respective objects on Xirr(6).

Let us end with some remarks about the case when the surface 6 is of genus g = 1.
Then all representations ρ : π1(6)→ G are reducible. The character varietyX(6) is the
quotient of C∗ × C∗ by an involution, and Xirr(6) = ∅. On the other hand, the twisted
character variety Xtw(6) is still smooth, consisting of a single point. Indeed,

A =

(
i 0
0 −i

)
, B =

(
0 1
−1 0

)
(9)

are (up to conjugation) the only pair of anti-commuting matrices in SL(2,C).

3. Lagrangians from Heegaard splittings

As mentioned in the Introduction, the Atiyah–Floer conjecture [2] asserts that the SU(2)
instanton homology of a three-manifold can be constructed as Lagrangian Floer homol-
ogy, for two Lagrangians inside the moduli space of flat SU(2) connections of a Heegaard
surface. In this section we pursue a complex version of this construction, with SU(2) re-
placed by SL(2,C).

The Lagrangians constructed below are examples of (A,B,A) branes, in the sense
that they are of type A (Lagrangian) for the complex structures I and K (more precisely,
for the forms ω1 and ω3), and of type B (complex) for the complex structure K . These
Lagrangians have also appeared in the work of Gukov [31] and that of Baraglia and Scha-
posnik [4, Section 11], [5].

3.1. Lagrangians in the character variety

Let Y be a closed, connected, oriented three-manifold. Any such manifold admits a Hee-
gaard splitting

Y = U0 ∪6 U1,
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where 6 is a closed oriented Heegaard surface, and U0, U1 are handlebodies. We denote
by g the genus of 6.

Given a Heegaard splitting, we consider the irreducible locus of its character variety,
Xirr(6) ⊂ X(6). Note that when g = 0 or 1, the group π1(6) is Abelian, and hence
Xirr(6) is empty. Thus, we will assume g ≥ 2.

We equipXirr(6) with the complex structure J and the complex symplectic form ωC,
as in Section 2.5. For each handlebody Ui, i = 0, 1, let ιi : 6→ Ui be the inclusion, and
(ιi)∗ the induced map on π1. We consider the subspace

Li = {[ρ ◦ (ιi)∗] | ρ : π1(Ui)→ G irreducible} ⊂ Xirr(6).

Equivalently, if we view Xirr(6) as the space of irreducible flat SL(2,C) connections
on 6, then Li consists of those flat connections that extend to Ui .

Lemma 3.1. (a) The subspaces Li ⊂ Xirr(6) can be naturally identified with Xirr(Ui),
and their intersection L0 ∩ L1 with Xirr(Y ).

(b) The subspaces Li are smooth complex Lagrangians of Xirr(6).

Proof. (a) Note that (ιi)∗ : π1(6)→ π1(Ui) is surjective. Consequently, two representa-
tions ρ1, ρ2 : π1(Ui)→ G are the same if and only if ρ1 ◦(ιi)∗ = ρ2 ◦(ιi)∗. Furthermore,
a representation ρ : π1(Ui)→ G is reducible (fixes a line in C2) if and only if ρ ◦ i∗ is.
This gives the identifications Li ∼= Xirr(Ui).

The same argument can be used to identify L0∩L1 withXirr(Y ). The key observation
is that if ι : 6 → Y denotes the inclusion, then the induced map ι∗ on π1 is surjective.
This follows from the fact that π1(6) surjects onto π1(U0) and π1(U1), together with the
Seifert–van Kampen theorem.

(b) Let us check that ωC vanishes on T[ρ]Li ⊂ T[ρ]Xirr(Y ). Let A = Aρ be the
flat connection associated to ρ on Ui . In terms of connections, the inclusion T[ρ]Li ⊂
T[ρ]Xirr(Y ) corresponds to

H 1
A(Ui; g) ⊂ H

1
A(6; g).

For dA-closed forms a, b ∈ �1
A(Ui; g), by Stokes’ theorem, we have

ωC(a, b) =

∫
6

Tr(a ∧ b) =
∫
Ui

d Tr(a ∧ b) =
∫
Ui

Tr(dAa ∧ b − a ∧ dAb) = 0.

Moreover, since π1(Ui) is the free group Fg on g generators, the spaces Li are dif-
feomorphic to the varieties Xirr(Fg) from Section 2.3. These are of complex dimension
3g − 3, which is half the dimension of Xirr(6). We conclude that Li are Lagrangians.
They are also complex submanifolds, since the complex structures come from the com-
plex structure on g. ut

Explicitly, we can choose standard generators a1, . . . , ag, b1, . . . , bg of π1(6) with∏
i[ai, bi] = 1 such that b1, . . . , bg also generate π1 of one of the handlebodies, say U0.

If we denote Ai = ρ(ai), Bi = ρ(bi), we have the description (6) of X(6). In terms of
that description, the Lagrangian L0 corresponds to the irreducible representations ρ that
satisfy

Ai = 1, i = 1, . . . , g.
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The second Lagrangian L1 is the image of L0 under an element in the mapping class
group of 6.

3.2. Lagrangians in the twisted character variety

We now present a twisted version of the constructions in Section 3.1. This is inspired by
the torus-summed Lagrangian Floer homology in the SU(2) case, proposed by Wehrheim
and Woodward [72, Definition 4.4.1] (see also [39] for a related construction).

We start with a Heegaard splitting Y = U0 ∪6 U1 as before. (We allow the case
when the Heegaard genus g is 0 or 1.) We pick a basepoint z on 6 ⊂ Y , and take the
connected sum of Y with T 2

× [0, 1], by identifying a ball B ⊂ Y around z with a
ball B ′ in T 2

× [1/4, 3/4] ⊂ T 2
× [0, 1]. We assume that B is split by 6 into two solid

hemispheres, with common boundary a two-dimensional disk D ⊂ 6. Similarly, B ′ is
split into two solid hemispheres by T 2

× {1/2}, and D is identified with the intersection
B ′ ∩ (T 2

× {1/2}). In this fashion, we obtain a decomposition of

Y #
:= Y # (T 2

× [0, 1])

into two compression bodies1 U#
0 and U#

1 , each going between 6#
:= 6 # T 2 and a

copy of T 2. We also pick a basepoint w on T 2 ∼= T 2
× {1/2} (away from the connected

sum region), which becomes a basepoint on 6#. We denote by `0 and `1 the intervals
{w} × [0, 1/2] and {w} × [1/2, 1]. See Figure 1.

6#

U#
1

U#
0

6

U1

U0

z w

`1

`0

Fig. 1. The connected sum of a Heegaard decomposition with Y 2
× [0, 1].

As explained in Section 2.5, we can consider the twisted character variety Xtw(6
#),

using representations ρ : π1(6 \ {w}) → G that take a loop around w to −I . Inside
Xtw(6

#) we take the subspaces L#
i , i = 0, 1, consisting of the classes [ρ] for representa-

tions ρ that factor through π1(U
#
i \ `i).

1 In three-dimensional topology, a compression body is either a handlebody or the space obtained
from S × [0, 1] by attaching one-handles along S × {1}, where S is a closed surface. In our case,
S = T 2, and we attach g one-handles, where g is the genus of 6.
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Lemma 3.2. (a) The subspaces L#
i ⊂ Xtw(6

#) can be naturally identified with the rep-
resentation varieties R(Ui), and their intersection L#

0 ∩ L
#
1 with R(Y ).

(b) The subspaces L#
i are smooth complex Lagrangians of Xtw(6

#).

Proof. (a) Arguing as in the proof of Lemma 3.1(a), we can identify L#
i with a

twisted character variety Xtw(U
#
i ), consisting of conjugacy classes of representations

ρ : π1(U
#
i \ `i) → G that take the value −I on a loop around `i . Since π1(U

#
i \ `i)

is the free product of π1(Ui) and π1(T
2
\ {w}), we can write

Xtw(U
#
i ) = (R(Ui)× Rtw(T

2))/Gad.

Therefore, we have a fiber bundle

R(Ui) ↪→ Xtw(U
#
i )� Rtw(T

2)/Gad
= Xtw(T

2), (10)

where the projection Xtw(U
#
i )� Xtw(T

2) is induced by the inclusion of T 2 ∼= T 2
× {i}

into U#
i .

As mentioned at the end of Section 2.5, the twisted character variety Xtw(T
2) is a

single point. Hence, the inclusion R(Ui) ↪→ Xtw(U
#
i ) is an isomorphism. Explicitly, the

inclusion takes ρ ∈ R(Ui) to the class of a representation ρ̃ : π1(U
#
i \ `i) → G by

mapping the generators of π1 of the extra torus to the pair of matrices from (9).
After identifying each L#

i with R(Ui), the intersection L#
0 ∩ L

#
1 becomes the space of

pairs of representations (ρ0, ρ1) ∈ R(U1)×R(U2) that have the same restriction to π1(6).
Using the Seifert–van Kampen theorem as in the proof of Lemma 3.1(a), we see that this
space is the same as R(Y ).

(b) The proof of Lemma 3.1(b) applies here with a slight modification: instead of flat
connections we use projectively flat connections on rank 2 complex bundles with c2 6= 0.

ut

Let us choose standard generators a1, . . . , ag, b1, . . . , bg of π1(6), with
∏
i[ai, bi] = 1

such that b1, . . . , bg also generate π1(U0). We add two more generators ag+1, bg+1 for
the new torus T 2, and we obtain a generating set for π1(6

#). If we denote Ai = ρ(ai),
Bi = ρ(bi), recall from (8) that we can write

Xtw(6
#) =

{
(A1, B1, . . . , Ag, Bg, Ag+1, Bg+1) ∈ G

2g+2
∣∣∣ g+1∏
i=1

[Ai, Bi] = −1
}
/Gad.

Then the Lagrangian L0 is given by the equations

Ai = 1, i = 1, . . . , g,

and L1 is the image of L0 under a mapping class group element.
Observe that since the Lagrangians are identified with R(Ui), they are diffeomorphic

to products of g copies of G ∼= S3
× R3.

3.3. Conditions on intersections

Let us recall the definition of clean intersections.
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Definition 3.3. LetM be a smooth manifold and L0, L1 ⊂ M smooth submanifolds. We
say that L0 and L1 intersect cleanly at a point x ∈ L0 ∩ L1 if there is a neighborhood U
of x in M such that L0 ∩ L1 ∩ U is a smooth submanifold Q and

TxQ = TxL0 ∩ TxL1 ⊂ TxM.

Furthermore, we say that L0 and L1 intersect cleanly if they do so at every x ∈ L0 ∩ L1.

In particular, transverse intersections are clean.
Let Y = U0 ∩6 U1 be a Heegaard splitting of a three-manifold. For the Lagrangians

constructed in Sections 3.1 and 3.2, we have the following criteria for clean and transverse
intersections.

Lemma 3.4. The Lagrangians L0, L1 ⊂ Xirr(6) intersect cleanly at a point [ρ] in
Xirr(Y ) if and only if the representation ρ is regular, i.e. [ρ] is a regular point of the
character scheme Xirr(Y ) (cf. Lemma 2.4).

Proof. For the Heegaard splitting Y = U0∪6U1, the Mayer–Vietoris sequence with local
coefficients reads

· · · → H 0(6;Ad ρ)→ H 1(Y ;Ad ρ)→ H 1(U0;Ad ρ)⊕H 1(U1;Ad ρ)

→ H 1(6;Ad ρ)→ · · · .

Because ρ is irreducible, we have

H 0(6;Ad ρ) = {a ∈ g | [ρ(x), a] = 0, ∀x ∈ π1(6)} = 0.

Thus, we can identify H 1(Y ;Ad ρ) with the intersection

H 1(U0;Ad ρ) ∩H 1(U1;Ad ρ) ⊂ H 1(6;Ad ρ).

Since the character schemes Xirr(U0), Xirr(U1) and Xirr(6) consist of only regular rep-
resentations, they are smooth (by Lemma 2.4), and the tangent bundles to the correspond-
ing varieties L0 = Xirr(U0), L1 = Xirr(U1) and M = Xirr(6) at [ρ] are H 1(U0;Ad ρ),
H 1(U1;Ad ρ), and H 1(6;Ad ρ). Moreover, by Proposition 2.2(b), the tangent space to
the scheme Xirr(Y ) is H 1(Y ;Ad ρ). Therefore,

T[ρ]Xirr(Y ) = T[ρ]L0 ∩ T[ρ]L1 ⊂ T[ρ]M. (11)

Now, if L0 and L1 intersect cleanly at [ρ] (along a submanifoldQ, in a neighborhood
of [ρ]), then (11) implies that T[ρ]Xirr(Y ) = T[ρ]Q, so [ρ] is a regular point of Xirr(Y ).
Conversely, if [ρ] is a regular point, then once again locally the intersection is a smooth
submanifold Q, with T[ρ]Xirr(Y ) = T[ρ]Q. In view of (11), the intersection is clean. ut

Corollary 3.5. The Lagrangians L0, L1 ⊂ Xirr(6) intersect transversely at a point
[ρ] ∈ Xirr(Y ) if and only if H 1(Y ;Ad ρ) = 0.

Proof. By Proposition 2.2(b), since ρ is irreducible, we have T[ρ]Xirr(Y )∼=H
1(Y ;Ad ρ).

The conclusion follows from this and (11). ut



A sheaf-theoretic model for SL(2,C) Floer homology 3659

Lemma 3.6. The Lagrangians L#
0, L

#
1 ⊂ Xtw(6

#) intersect cleanly at a point ρ ∈ R(Y )
if and only if ρ is regular, i.e., ρ is a regular point of the representation scheme R(Y ) (cf.
Definition 2.1).

Proof. The proof is similar to that of Lemma 3.4, with spaces of 1-cocycles instead of
first cohomology groups.

By the Seifert–van Kampen theorem, we have π1(Y ) = π1(U0) ∗π1(6) π1(U1). This
time, in view of the definition (2) of 1-cocycles, we can directly identify Z1(π1(Y );Ad ρ)
with the intersection

Z1(π1(U0);Ad ρ) ∩ Z1(π1(U1);Ad ρ) ⊂ Z1(π1(6);Ad ρ).

Since the schemes R(U0), R(U1) and R(6) are reduced, the tangent spaces to the corre-
sponding varieties L#

0 = R(U0), L#
1 = R(U1) and R(6) at ρ are the spaces of 1-cocycles.

Further, the tangent space to the scheme R(Y ) is Z1(π1(Y );Ad ρ). Therefore,

TρR(Y ) = TρL
#
0 ∩ TρL

#
1 ⊂ TρR(6). (12)

We also have an inclusion

R(6) ↪→ M#
= Xtw(6

#), ρ 7→ [ρ̃],

where ρ̃ acts as ρ on π1(6) ⊂ π1(6
#), and takes the generators of the new torus to the

anti-commuting matrices from (9). At the level of tangent spaces, we get an inclusion

TρR(6) = Z
1(π1(6);Ad ρ) ↪→ TρM

#
= H 1(π1(6

#
1);Ad ρ̃),

where we identified ρ with its image [ρ̃].
Now, instead of (12), let us write

TρR(Y ) = TρL
#
0 ∩ TρL

#
1 ⊂ TρM

#. (13)

If L#
0 and L#

1 intersect cleanly at ρ, along a submanifold Q, then by (13) we have
TρR(Y ) = TρQ, so ρ is a regular point of R(Y ). Conversely, if ρ is regular, then locally
the intersection is a smooth submanifold Q, with TρR(Y ) = TρQ. Using (11), we find
that the intersection is clean. ut

Corollary 3.7. The Lagrangians L#
0, L

#
1 ⊂ Xtw(6

#) intersect transversely at a point
ρ ∈ R(Y ) if and only if Z1(π1(Y );Ad ρ) = 0.

Proof. Use (13) and the identification of TρR(Y ) with Z1(π1(Y );Ad ρ). ut

3.4. Floer homology for complex Lagrangians

Let us investigate the possibility of defining Lagrangian Floer homology with the spaces
constructed in Sections 3.1 and 3.2. (Such a construction has been explored in the physics
literature, for example in [31].) We refer to [23, 25, 60, 55, 3] for references on Lagrangian
Floer homology.
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With regard to L0, L1 ⊂ Xirr(6), note that bothXirr(6) and the Lagrangians are non-
compact, and in fact not even complete as metric spaces (with respect to the hyperkähler
metric mentioned in Section 2.5). Thus, holomorphic strips may limit to strips that go
through the reducible locus, where the character variety X(6) is singular. Defining Floer
homology in such a situation is problematic.

The situation is more hopeful for the Lagrangians L#
0, L

#
1 ⊂ Xtw(6

#). They are still
non-compact, but are complete with respect to the hyperkähler metric, and we can try to
understand their behavior at infinity.

We should also decide what symplectic form to use on the manifold M = Xtw(6
#).

Recall from Section 2.5 that ωC = −ω1 + iω3. We can try ω1, ω3, or a combination of
these.

Remark 3.8. The intuition behind the Atiyah–Floer conjecture is that, as we stretch the
three-manifold Y along a Heegaard surface 6, the ASD Yang–Mills equations on R× Y
become the Cauchy–Riemann equations for strips in the moduli space of flat SU(2) con-
nections on 6. In the SL(2,C) case, on R × Y we can consider the Kapustin–Witten
equations [45] for various parameters t ∈ R. In particular, at t = 0 we find the SL(2,C)
ASD equations, and at t = 1 we see the equations considered in Witten’s work on Kho-
vanov homology [77]. When we stretch Y along 6, we get the Cauchy–Riemann equa-
tions in X(6), with respect to the complex structure I for t = 0, and with respect to K
for t = 1 [45, Section 4]. The same goes forXtw(6) if we do a twisted version. Note that,
under the hyperkähler metric, the complex structure I corresponds to ω1, and K to ω3.

Another option is to consider the Vafa–Witten equations on R × Y [70]. When we
stretch along 6, we obtain once again the Cauchy–Riemann equations for the complex
structure I (see [34, Section 4.2] or [51, Section 8]).

Observe that sinceM is hyperkähler, it is Calabi–Yau (c1 = 0). If we work with ω1 (which
is not an exact form: see Remark 2.17), we expect sphere bubbles to appear, and they
would not be controlled by their first Chern class. This makes constructing Lagrangian
Floer homology more difficult.

It seems better to use ω3, which is exact. Since the Lagrangians L#
i are diffeomorphic

to products of G, they satisfy H 1(L#
i ;Z) = 0, so are automatically exact. This precludes

the existence of disks and sphere bubbles. Further, since H 1(L#
i ;Z/2) = H 2(L#

i ;Z/2)
= 0, the Lagrangians have unique spin structures, and these can be used to orient the
moduli space of holomorphic disks. Also, the fact that c1(M) = 0 implies that M admits
a complex volume form; a choice of a homotopy class of such volume forms induces a
Z-grading on the Floer homology. In fact, the hyperkähler structure determines a canon-
ical holomorphic volume form; hence, if the Floer homology is well-defined, it admits a
canonical Z-grading.

It still remains to deal with non-compactness. To ensure that at least the intersection
L#

0 ∩ L
#
1 is compact, one needs to perturb one Lagrangian near infinity, by a suitable

Hamiltonian isotopy. This should lead to an “infinitesimally wrapped” Lagrangian Floer
homology, provided that (after perturbation) holomorphic strips do not escape to infinity.
In particular, we need the following tameness condition on Lagrangians introduced by
Sikorav.
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Conjecture 3.9. The Lagrangians L#
0, L

#
1 ⊂ Xtw(6

#) are tame, in the sense of [63,
Definition 4.7.1].

Conjecture 3.9 would imply compactness for the moduli spaces of holomorphic disks
with boundary on either Lagrangian. We expect that a similar tameness condition can be
formulated for the pair (L0, L1), to ensure compactness for the moduli spaces of strips.
If these conditions are all satisfied, then the Lagrangian Floer homology HF∗(L#

0, L
#
1)

would be well-defined. We also expect HF∗(L#
0, L

#
1) to be an invariant of Y . A potential

strategy for proving invariance would be to use the theory of Lagrangian correspondences
and pseudo-holomorphic quilts developed by Wehrheim and Woodward [73], [72].

Moreover, since L#
0, L

#
1 are complex Lagrangians, there should be no non-trivial

pseudo-holomorphic strips between then. Indeed:

• If two J -complex Lagrangians in a hyperkähler manifold (M, I, J,K, g) intersect
transversely, then the relative Maslov grading between any two intersection points is
always zero. Indeed, the relative grading is the index of an operator L, the linearization
of the Cauchy–Riemann operator (defined from the complex structure I orK). One can
check that the operators J−1LJ and −L∗ differ by a compact operator, which implies
that ind(L) = ind(L∗) = 0. This is an analogue of the fact that, in finite dimensions,
the Morse index of the real part of a holomorphic function is zero (because the signa-
ture of a complex symmetric bilinear form is zero). Since the relative grading is zero,
for generic almost complex structures, the moduli space of pseudo-holomorphic curves
is empty.
• Even if the two J -complex Lagrangians do not intersect transversely, for a generic

value of θ ∈ R, if we consider the complex structure K(θ) = cos(θ)K + sin(θ)I , then
there are no K(θ)-holomorphic strips with boundary on the Lagrangians [65]. Note
that K(θ) is ω3-tame for θ close to 0.

The above results suggest that the Lagrangian Floer homology of complex La-
grangians may have a simpler algebraic interpretation. Indeed, in [9, Remark 6.15], the
authors describe an analogy between Lagrangian Floer homology and a sheaf-theoretic
construction. In the following sections we will follow their suggestion and construct three-
manifold invariants using sheaf theory instead of symplectic geometry.

4. Sheaves of vanishing cycles and complex Lagrangians

In this section we review some facts about complex symplectic manifolds, perverse
sheaves, vanishing cycles, and then present Bussi’s construction from [11].

4.1. Complex symplectic geometry

We start with a few basic definitions and results; some of them also appear in [11, Sec-
tion 1.3].

Definition 4.1. A complex symplectic manifold (M,ω) is a complex manifold equipped
with a closed non-degenerate holomorphic two-form ω. If M has complex dimension 2n,
an n-dimensional complex submanifoldL ⊂ M is called complex Lagrangian if ω|L = 0.
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The standard example of a complex symplectic manifold is T ∗Cn with the canonical
symplectic form ωcan. We have a complex Darboux theorem, whose proof is the same as
in the real case.

Theorem 4.2. Let (M,ω) be a complex symplectic manifold, and pick p ∈ M . Then
there exist a neighborhood S of p and an isomorphism (i.e. biholomorphic symplecto-
morphism) h : (S, ω)→ (T ∗N,ωcan) for an open set N ⊆ Cn.

There is also a complex Lagrangian neighborhood theorem:

Theorem 4.3. Let (M,ω) be a complex symplectic manifold, and Q ⊂ M a complex
Lagrangian. For any p ∈ Q, there exist a neighborhood S of p inM and an isomorphism
h : (S, ω) → (T ∗N,ωcan) for an open set N ⊆ Cn such that h(Q ∩ S) = N , the zero
section in T ∗N .

Note that, in contrast to the real case, Theorem 4.3 does not describe a neighborhood
of the whole Lagrangian Q. In the complex setting, a neighborhood of Q may not be
isomorphic to T ∗Q. This is related to the fact that complex manifolds may have non-
trivial moduli.

We now discuss polarizations, starting with the linear case.

Definition 4.4. A polarization of a complex symplectic vector space (V , ω) is a linear
projection π : V → V/L, determined by the choice of a complex Lagrangian subspace
L ⊂ V .

Given a polarization, we can choose another Lagrangian subspace Q ⊂ V , transverse
toL, identify V/LwithQ and get a decomposition V = Q⊕L, as well as an isomorphism
L ∼= Q∗ induced by the symplectic form. Overall, we get a decomposition

V = Q⊕Q∗. (14)

Observe that, given L and Q, any other Q′ transverse to L is described as the graph of a
linear function f : Q→ L, which is symmetric iffQ′ is Lagrangian. Therefore, given the
polarization L, the space of possible Q is the space of symmetric matrices, which is con-
tractible. Thus, we sometimes think of polarizations (informally) as decompositions (14).

Definition 4.5. A polarization of a complex symplectic manifold (M,ω) is a holomor-
phic Lagrangian fibration π : S → Q, where S ⊂ M is open and Q is a complex
manifold.

By slightly refining the proof of Darboux’s theorem, we obtain the following results.

Theorem 4.6. (a) Let (M,ω) be a complex symplectic manifold. Suppose we are given
p ∈ M and a polarization σ : TpM → TpM/Lp. Then there exist a neighborhood S
of p inM , an open subsetN ⊂ Cn, an isomorphism h : S → T ∗N as in Theorem 4.2,
and a polarization π : S → Q such that (dπ)p : TpM → TpQ is the linear
polarization σ , that is, ker (dπ)p = Lp.
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(b) Let (M,ω) be a complex symplectic manifold. Suppose we are given p ∈ M , a polar-
ization σ : TpM → TpM/Lp, and also a complex Lagrangian submanifold Q ⊂ M
through p, such that TpQ intersects Lp transversely. Then we can find a neighbor-
hood S of p in M , an open subset N ⊂ Cn, an isomorphism h : S → T ∗N as
in Theorem 4.3 with h(Q ∩ S) = N , and a polarization π : S → Q such that
(dπ)p = σ .

A complex symplectic bundle E over a space X is a complex vector bundle over X
equipped with continuously varying linear symplectic forms in the fibers. A holomor-
phic symplectic bundle E over a complex manifold M is a holomorphic bundle over M
equipped with linear symplectic forms in the fibers, which produce a holomorphic section
of (E ⊗ E)∗.

We can extend the notion of polarization to these kinds of bundles.

Definition 4.7. LetM be a complex manifold, and E→ M a complex symplectic vector
bundle. A polarization in E is a bundle map (projection) π : E → E/L, given by the
choice of a complex Lagrangian subbundle L ⊂ E.

Furthermore, if E is a holomorphic symplectic bundle, and L is a holomorphic La-
grangian subbundle, we say that π is a holomorphic polarization.

If a complex symplectic vector bundle E has a polarization π : E → E/L, we can find
a Lagrangian subbundle Q ⊂ E transverse to E (using the contractibility of the space of
such local choices). This gives a decomposition

E = Q⊕Q∗. (15)

For holomorphic bundles equipped with a holomorphic polarization π : E → E/L,
we may not always find another holomorphic Lagrangian subbundle Q ⊂ E transverse
to L, to identify E/L with Q. Thus, we do not automatically obtain a decomposition of
the form (15).

Example 4.8. Let M = CP1, and E = O ⊕ O with the standard complex symplectic
structure on the fibers (such that the two copies of O are dual to each other). Let also
L = O(−1) ⊂ E be the tautological bundle, viewed via the usual inclusion of lines
in C2. Then L gives a holomorphic polarization, but the quotient E/L is isomorphic to
O(1), which cannot be a subbundle of E .

Finally, we mention a few well-known facts about spin structures.

Fact 4.9. (a) A complex vector bundle E admits a spin structure if and only if w2(E) =

0, or equivalently the mod 2 reduction of c1(E) vanishes.
(b) If they exist, the spin structures on E are in (non-canonical ) bijection to the elements

of H 1(M;Z/2).
(c) If E is holomorphic vector bundle, then a spin structure on E is the same as the data

of a (holomorphic) square root of the determinant line bundle det(E).
(d) If E is a complex symplectic vector bundle, then the symplectic form gives rise to a

trivialization of det(E). Hence, c1(E) = 0, so E admits a spin structure.
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In particular, we will be interested in spin structures on complex manifolds M , i.e., on
their tangent bundles. Such a spin structure is the same as the choice of a square root for
the anti-canonical bundle det(TM), or equivalently (after dualizing) of a square rootK1/2

M

for the canonical bundle KM = det(TM)∗.

Remark 4.10. When L is a complex Lagrangian, a spin structure on L is called an ori-
entation [11, Definition 1.16]. To prevent confusion with actual orientations, we will not
use that terminology.

4.2. Perverse sheaves and vanishing cycles

We now briefly review perverse sheaves on complex-analytic spaces, in the spirit of [11,
Section 1.1]. Almost everything that we state goes back to the original work of Beı̆linson,
Bernstein, and Deligne [6], but given the likelihood that the reader is more comfortable
with the English language, we refer instead to Dimca’s book [19] for details.

We will work over the base ring Z. Let X be a complex-analytic space, and Dbc (X)
the derived category of (complexes of) sheaves of Z-modules on X with constructible
cohomology. We can consider the constant sheaf ZX (or, more generally, a local system
on X) to be an object of Dbc (X), supported in degree 0.

On Dbc (X) we have Grothendieck’s six operations f ∗, f !, Rf∗, Rf!,RHom,⊗L, as
well as the Verdier duality functor DX : Dbc (X)→ Dbc (X)

op.
To an object C• ∈ Dbc (X) we can associate its hypercohomology and hypercohomol-

ogy with compact support, defined by

Hk(C•) = H k(Rπ∗(C•)), Hkc(C•) = H k(Rπ!(C•)),

where π : X→ ∗ is the projection to a point. In particular, for C• = ZX, we recover the
ordinary cohomology (resp. cohomology with compact support) of X.

Hypercohomology and hypercohomology with compact support are related by Verdier
duality:

Hkc(C•)⊗Z k ∼=
(
H−k(DX(C•))⊗Z k

)∗
,

where k is any field. Over Z, we have a (non-canonical) isomorphism as in the universal
coefficients theorem:

Hkc(C•) ∼= Hom
(
H−k(DX(C•)),Z

)
⊕ Ext1

(
H−k−1(DX(C•)),Z

)
. (16)

For x ∈ X, let us denote by ix : ∗ ↪→ X the inclusion of x.

Definition 4.11. A perverse sheaf on X is an object C• ∈ Dbc (X) such that

dim {x ∈ X | H−m(i∗xC•) 6= 0 or Hm(i!xC•) 6= 0} ≤ 2m

for all m ∈ Z.

Example 4.12. Let X be a complex manifold of complex dimension n, and L a Z-local
system on X. Then L[n] is a perverse sheaf on X.
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Let Perv(X) be the full subcategory of Dbc (X) consisting of perverse sheaves. Then
Perv(X) is an Abelian category (unlikeDbc (X), which is only triangulated). Another way
in which perverse sheaves behave more like sheaves rather than complexes of sheaves
(elements of Dbc (X)) is that they satisfy the following descent properties.

Theorem 4.13. Let {Ui}i∈I be an analytic open cover for X.

(a) Suppose P•,Q• are perverse sheaves on X, and for each i we have a morphism
αi : P•|Ui → Q•|Ui in Perv(Ui) such that αi and αj agree on the double overlap
Ui ∩ Uj for all i, j ∈ I . Then there is a unique morphism α : P• → Q• in Perv(X)
whose restriction to each Ui is αi .

(b) Suppose for each i ∈ I we have a perverse sheaf P•i on Ui , and we are given iso-
morphisms αij : P•i |Ui∩Uj → P•j |Ui∩Uj . Suppose αii = id for all i, and on triple
overlaps Ui ∩ Uj ∩ Uk we have αjk ◦ αij = αik . Then there exists P• ∈ Perv(X),
unique up to canonical isomorphism, with isomorphisms βi : P•|Ui → P•i for all
i ∈ I , such that αij ◦ βi |Ui∩Uj = βj |Ui∩Uj for i, j ∈ I .

Further examples of perverse sheaves come from vanishing cycles. Given a holomorphic
function f : X → C, denote X0 = f−1(0) and X∗ = X \ X0. Let ρ : C̃∗ → C∗ be
the universal cover of C∗ = C \ {0}, and p : X̃∗ → X∗ the Z-cover of X obtained by
pulling back ρ under f . Let π : X̃∗ → X be the composition of p with the inclusion of
X∗ into X, and let i : X0 ↪→ X be the inclusion. We then have a nearby cycle functor

ψf : D
b
c (X)→ Dbc (X0), ψf = i

∗
◦ Rπ∗ ◦ π

∗.

For each C• ∈ Dbc (X), there is a comparison morphism 4(C•) : i∗C• → ψf (C•).
We define the vanishing cycle functor φf : Dbc (X) → Dbc (X0) by extending 4(C•) to a
distinguished triangle

i∗C• 4(C•)
−−−→ ψf (C•)→ φf (C•)→ i∗C•[1]

in Dbc (X0).

Theorem 4.14 (cf. [19, Theorem 5.2.21]). The shifted functors ψpf := ψf [−1] and
φ
p
f := φf [−1] both map Perv(X) into Perv(X0).

To make this more concrete, suppose U is an open subset of the affine space Cn, and
f : U → C is holomorphic. For every x ∈ U0 = f

−1(0), we define the Milnor fiber Fx
to be the intersection of a small open ball Bδ(x) ⊂ Cn (of radius δ) with the fiber f−1(ε),
for 0 < ε � δ. By [19, Proposition 4.2.2], we have a natural isomorphism

H k(ψf C•)x ∼= H k(Fx, C•).
In particular, if C• = ZU and x is the unique critical point of f , then for y 6= x the
cohomology H k(ψf (ZX))y is Z in degree 0, and 0 otherwise. At x we have

H k(ψfZU )y ∼= H k(Fx;Z) ∼=


Z if k = 0,
Zµ if k = n− 1,
0 otherwise,

where µ is the Milnor number of f at x.



3666 Mohammed Abouzaid, Ciprian Manolescu

As for the vanishing cycle φfZU , its cohomology is supported at x, where it is given
by the reduced cohomology H̃ ∗(Fx;Z), which is Zµ in degree n−1. Thus, if we consider
the perverse sheaf ZU [n], its image under φpf is (up to isomorphism in Perv(U0)) the
skyscraper sheaf supported at x in degree 0, with stalk Zµ.

Example 4.15. When U = Cn with coordinates x = (x1, . . . , xn) and f is given by
f (x1, . . . , xn) = x

2
1 + · · · + x

2
n , then the unique critical point is x = 0. The Milnor fiber

Fx is diffeomorphic to T Sn−1, and the Milnor number is µ = 1. Therefore, φpf (ZU [n])
is the skyscraper sheaf Z at x = 0, in degree 0.

Now suppose we have a complex manifold U , and f : U → C a holomorphic function.
Let X = Crit(f ) be the critical locus of f . Note that f |X : X → C is locally constant,
so X decomposes as a disjoint union of components Xc = f−1(c) ∩ X, over c ∈ f (X).
Following [11, Definition 1.7], we define the perverse sheaf of vanishing cycles of (U, f )
to be

PV•U,f =
⊕
c∈f (X)

φ
p
f−c(ZU [dimU ])|Xc . (17)

Example 4.16. Let U = Cn and f (x1, . . . , xn) = x2
k+1 + · · · + x

2
n for some k with

0 ≤ k ≤ n. ThenX = X0 = Ck ⊂ Cn is the subspace with coordinates x1, . . . , xk . When
k = 0, we are in the setting of Example 4.15 and PV•U,f is the skyscraper sheaf Z over 0.
In general, PV•U,f is the constant sheaf ZX[k] over X.

4.3. Bussi’s construction

We are now ready to review Bussi’s work [11], which associates to a pair of complex
Lagrangians a perverse sheaf on their intersection.

Let (M,ω) be a complex symplectic manifold, and L0, L1 ⊂ M two complex La-
grangians. We assume that L0 and L1 are equipped with spin structures, that is, square
roots K1/2

L0
and K1/2

L1
(see Fact 4.13 and the paragraph after it).

We denote by X the intersection L0 ∩ L1. It will be important to view X not solely
as a subset of M , but as a complex-analytic space (the complex-analytic analogue of a
scheme); that is, we keep track of the structure sheaf OX. In particular, X may not be re-
duced, and we denote byXred its reduced subspace (with the same underlying topological
space as X).

Definition 4.17. An L0-chart on M is the data (S, P,U, f, h, i), where

• S ⊂ M is open;
• P = S ∩X and U = S ∩ L0;
• f : U → C is a holomorphic function;
• h : S → T ∗U is an isomorphism that takes U to the zero section, S ∩ L1 to the graph

of df , and P to the critical locus Crit(f );
• i : P → Crit(f ) ⊂ U is the isomorphism of analytic sets induced by the inclusion
P ↪→ U .



A sheaf-theoretic model for SL(2,C) Floer homology 3667

Remark 4.18. To be consistent with the convention in [11, Section 2], we will drop S
and h from the notation, and denote the L0-chart by (P,U, f, i).

We can construct L0-charts around any x ∈ X, as follows. We start by choosing a polar-
ization of TxM that is transverse to both L0 and L1. Using Theorem 4.6(b), we can extend
this to a local polarization π : S → U (in the sense of Definition 4.5) that is transverse to
L0 and L1. This gives the desired L0-chart. Conversely, an L0-chart gives a polarization
π : S → U , obtained by pulling back under h the projection T ∗U → U .

Given an L0-chart (P,U, f, i), the polarization π : S → U naturally induces a
local biholomorphism between L0 and L1, and thus a local isomorphism between their
canonical bundles,

2 : KL0 |P

∼=
−→ KL1 |P .

We denote by
πP,U,f,i : QP,U,f,i → P

the principal Z2-bundle parametrizing local isomorphisms between the chosen square
roots (spin structures)

ϑ : K
1/2
L0
|P

∼=
−→ K

1/2
L1
|P

such that ϑ ⊗ ϑ = 2.
On the critical locus Crit(f ), we have a perverse sheaf of vanishing cycles PV•U,f

as in (17). We pull it back to X under the isomorphism i, and then twist it by tensoring
it with the bundle QP,U,f,i . This produces a perverse sheaf over P ⊂ X, for any L0-
chart. Using the descent properties (Theorem 4.13), Bussi shows that one can glue these
perverse sheaves to obtain a well-defined object

P•L0,L1
∈ Perv(X)

with the property that for any L0-chart there is a natural isomorphism

ωP,U,f,i : P•L0,L1
|P

∼=
−→ i∗(PV•U,f )⊗Z2 QP,U,f,i . (18)

The hypercohomology H∗(P•L0,L1
) is a sheaf-theoretic model for the Lagrangian

Floer cohomology of L0 and L1.

5. A stabilization property

In this section we establish a property of the perverse sheaves P•L0,L1
that will be useful

to us when constructing the three-manifold invariants in Section 7.

Proposition 5.1. Let (M ′, ω) be a complex symplectic manifold, andM ⊂ M ′ a complex
symplectic submanifold. We denote by8 : M ↪→ M ′ the inclusion. We are given complex
Lagrangians L0, L1 ⊂ M and L′0, L

′

1 ⊂ M
′ satisfying L0 ⊂ L

′

0, L1 ⊂ L
′

1 and

L0 ∩ L1 = L
′

0 ∩ L
′

1

as complex-analytic spaces.
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Let N := NMM ′ = (TM)ω be the subbundle of TM ′|M which is the symplectic
complement to TM . Suppose we have a direct sum decomposition of N into holomorphic
Lagrangian subbundles

N = V0 ⊕ V1.

Hence we obtain a direct sum decomposition

TM ′|M = TM ⊕ V0 ⊕ V1.

We assume that, under this decomposition, the tangent spaces to the Lagrangians are
related by

T L′0|L0 = T L0 ⊕ V0|L0 ⊕ 0, T L′1|L1 = T L1 ⊕ 0⊕ V1|L1 .

Further, we assume that the Lagrangians L0, L1, L
′

0, L
′

1 come equipped with spin
structures such that, for i = 0, 1, the spin structure on L′i is the direct sum of that on Li
and a given spin structure on Vi . Also, the spin structure on V1 should be obtained from
the one on V0 via the natural duality isomorphism V1 ∼= V

∗

0 induced by ω.
We are also given a non-degenerate holomorphic quadratic form q ∈ H 0(Sym2 V ∗0 ).

We assume that the spin structure on V0 is self-dual under the isomorphism V0 ∼= V ∗0
induced by q.

Then there is a natural isomorphism of perverse sheaves on X = L0 ∩ L1,

S : P•L0,L1

∼=
−→ P•

L′0,L
′

1
.

Proof. The bilinear form associated to q gives a holomorphic section of Hom(V0, V
∗

0 ).
We can think of it as a bundle map s : V0 → V ∗0 , which is an isomorphism in every fiber.
We identify V ∗0 with V1, and let W ⊂ N = V0 ⊕ V1 be the graph of s. Then W is a
holomorphic Lagrangian subbundle of N , and the linear projection πN : N → N/W is a
global holomorphic polarization of N , transverse to V0 and V1.

Near every x ∈ X, choose a polarization πM,x of the tangent space TxM transverse
to TxL0 and TxL1. This induces a polarization πS on a neighborhood S of x in M . As
described in Section 4.3, we can find anL0-chart (P,U, f, i) induced by this polarization,
with open neighborhoods P ⊂ X and U ⊂ L0 around x, a holomorphic function f :
U → C, the inclusion P ↪→ U giving rise to an isomorphism i : P → Crit(f ) ⊂ U ,
and the other Lagrangian L1 represented locally as the graph of df . We get a natural
identification

P•L0,L1
|P
∼= i
∗(PV•U,f )⊗Z2 QP,U,f,i, (19)

with QP,U,f,i being the principal Z2-bundle on P that parameterizes square roots of the
local isomorphism 2 : KL0 |X → KL1 |X. Here, 2 is induced by the polarization πS . The
sections of QP,U,f,i are local isomorphisms between K1/2

L0
to K1/2

L1
.

We now combine the polarizations πM,x and πN to obtain a polarization πM ′,x for
TxM

′, transverse to TxL′0 and TxL′1. Hence we obtain a polarization πS′ of a neigh-
borhood S′ ⊃ S of x in M such that πS′ restricts to πS on S. Next, we obtain an L′0-
chart (P ′, U ′, g, j) induced by πS′ , and extending our previous chart (P,U, f, i). Here,
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P ′ ⊆ P is a possibly smaller neighborhood of x in X, the Lagrangian L′1 is locally the
graph of dg, the function g : U ′ → C satisfies g|U = f , and j is the composition of i
with the restriction to Crit(f ) of the inclusion 8 : M → M ′. We have

P•
L′0,L

′

1
|P ′
∼= j
∗(PV•U ′,g)⊗Z2 QP ′,U ′,g,j , (20)

where QP ′,U ′,g,j parameterizes square roots of the local isomorphism 2′ : KL′0
|X →

KL′1
|X, induced by πS′ . We view the sections ofQP ′,U ′,g,j as local isomorphisms between

K
1/2
L′0

and K1/2
L′1

.

We can relate PV•U ′,g to PV•U,f by applying [11, Theorem 1.13]. This gives a natural
identification

PV•U,f ∼= 8|
∗

X(PV•U ′,g)⊗Z2 P8, (21)

where P8 parameterizes square roots of the local isomorphism

J8 : K
⊗2
L0
|Xred

∼=
−→ 8|∗

Xred(K
⊗2
L′0
)

induced by q. Indeed, by construction, the quadratic form that appears in the definition
of J8 in [11, Definition 1.11] is the restriction of our given q ∈ H 0(Sym2 V ∗0 ).

Moreover, we have
8∗KL′0

∼= KL0 ⊗ det(V ∗0 ).

Thus, the sections of J8, which are locally defined maps from KL0 |Xred to 8|∗
Xred(KL′0

),
can be interpreted as local sections of det(V ∗0 ) that square to det(q).

Let us also compare the bundleQP,U,f,i from (19) to the bundleQP ′,U ′,g,j from (20).
We have

8∗K
1/2
L′i

∼= K
1/2
Li
⊗ det(V ∗i )

1/2, i = 0, 1,

where det(V ∗i )
1/2 are the duals of the given spin structures on Vi . Therefore,

QP ′,U ′,g,j
∼= QP,U,f,i |P ′ ⊗Z2 R8, (22)

where the sections of R8 → P ′ are maps det(V ∗0 )
1/2
→ det(V ∗1 )

1/2, whose squares are
the isomorphisms between det(V ∗0 ) and det(V ∗1 ) induced by ω and det(q). The form q

makes an appearance because we used it to relate the polarization on S ⊂ M , which
gives (19), to the polarization on S′ ⊂ M ′, which gives (20).

We claim that we have a canonical isomorphism

(i∗P8)|P ′ ∼= R8. (23)

Indeed, recall that the spin structures on V0 and V1 are related by the duality isomorphism
induced by ω, and the spin structure on V0 is self-dual via q. From the isomorphisms
det(V0)

1/2 ∼= det(V ∗0 )
1/2 ∼= det(V ∗1 )

1/2, we get an isomorphism

det(V ∗0 ) ∼= Hom(det(V ∗0 )
1/2, det(V ∗1 )

1/2),

under which the sections of P8 and R8 correspond to each other. This proves the claim.
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Combining (19)–(23), we obtain

P•L0,L1
|P ′
∼= i
∗(PV•U,f )|P ′ ⊗Z2 QP,U,f,i |P ′

∼= i
∗(8|∗X(PV•U ′,g)⊗Z2 P8)|P ′ ⊗Z2 QP,U,f,i |P ′

∼= j
∗(PV•U ′,g)⊗Z2 R8 ⊗Z2 QP,U,f,i |P ′

∼= j
∗(PV•U ′,g)⊗Z2 QP ′,U ′,g,j

∼= P•
L′0,L

′

1
|P ′ .

This is a local isomorphism between P•L0,L1
and P•

L′0,L
′

1
, defined on the open set P ′. We

can construct such isomorphisms canonically, near every x ∈ X, so that they agree on
double overlaps. Using the descent property of perverse sheaves (Theorem 4.13(a)), we
glue together the isomorphisms to obtain the desired global isomorphism. ut

6. Clean intersections

In this section we study Bussi’s perverse sheaf of vanishing cycles in the case where the
Lagrangians intersect cleanly (in the sense of Definition 3.3).

We start by describing the local model for clean intersections.

Lemma 6.1. Let M be a complex symplectic manifold, of complex dimension 2n. Let L0
and L1 be complex Lagrangian submanifolds of M , and x ∈ L0 ∩ L1 a point where they
intersect cleanly, along a submanifold of complex dimension k. Then there is a neighbor-
hood S of x in M and an isomorphism h : S → T ∗U , where U is a neighborhood of 0
in Cn, such that h(L0 ∩ S) = U and h(L1 ∩ S) is the graph of df , where

f : U → C, f (x1, . . . , xn) = x
2
k+1 + · · · + x

2
n.

Proof. Because of the clean intersection condition, we can find a linear isomorphism that
takes TM to C2n, the tangent space T L0 ⊂ TM to Cn × {0}n ⊂ C2n, and T L1 ⊂ TM

to the graph of g : Cn → Cn, g(x1, . . . , xn) = (0, . . . , 0, xk+1, . . . , xn). We then extend
this isomorphism to a local neighborhood, as in the proof of Darboux’s theorem. ut

We now turn to studying Bussi’s perverse sheaf P•L0,L1
over a clean intersection.

Proposition 6.2. LetM be a complex symplectic manifold, of complex dimension 2n. Let
L0 and L1 be complex Lagrangian submanifolds ofM , equipped with spin structures. Let
Q ⊂ L0 ∩ L1 be a component of the intersection along which L0 and L1 meet cleanly.
Denote by k the complex dimension of Q. Then the restriction of P•L0,L1

to Q is a local
system on Q with stalks isomorphic to Z[k].

Proof. Using Lemma 6.1, we can find an L0-chart (S, P,U, f, h, i) around any x ∈ Q
such that locally the function f is as in Example 4.16. Using the computation of PV•U,f
in that example, and the defining property (18) of P•L0,L1

, we obtain the conclusion. ut

Our next task is to develop tools for identifying the local system that we obtain from
Proposition 6.2.
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Under the hypotheses of that proposition, observe that Q is an isotropic submanifold,
so we have an isomorphism

TM|Q ∼= TQ⊕ T
∗Q⊕N0Q⊕N1Q, (24)

where NiQ is the normal bundle to Q in Li . In fact, we can identify T ∗Q with a com-
plex, but not necessarily holomorphic, isotropic subbundle of TM|Q, transverse to TQ⊕
N0Q ⊕ N1Q. (There is a contractible set of choices for such a subbundle, just as in the
Lagrangian case.)

The direct sum
NQ ∼= N0Q⊕N1Q (25)

is the symplectic normal bundle of Q, and NiQ (i = 0, 1) form transverse Lagrangian
subbundles of NQ.

Suppose that the complex bundle NQ has a (not necessarily holomorphic) polariza-
tion, transverse to N0Q and N1Q. This gives a decomposition

NQ ∼= N0Q⊕N
∗

0Q. (26)

The induced projection
N1Q→ N0Q (27)

is an isomorphism of complex vector bundles. We obtain a non-degenerate (complex)
quadratic form q on N0Q such that the graph of dq gives the inclusion

N1Q ⊂ N0Q⊕N
∗

0Q. (28)

By passing to the real part, we obtain a quadratic form on N0Q of trivial signature. Let
W+ ⊂ N0Q denote a maximal real subbundle on which this form is positive. The space
of such subbundles is contractible, and therefore the isomorphism class of W+ depends
only on the quadratic form. Let o(W+) be the Z2-principal bundle over Q parametrizing
orientations of W+. Letting Z2 act on Z by a 7→ −a, we define

|W+| := o(W+)⊗Z2 Z.

This is a Z-local system over Q.
Observe also that by taking the direct sum of (27) with the identity on TQ, we obtain

an isomorphism
T L1|Q→ T L0|Q. (29)

Lemma 6.3. If the projection (29) preserves spin structures, we have a canonical iso-
morphism

P•L0,L1
|Q
∼= |W

+
|[k]. (30)

Proof. The given polarization of NQ induces a polarization on TM , with kernel
T ∗Q⊕ N∗0Q. Near every point x ∈ Q, we can apply Theorem 4.6(b) to obtain from this
polarization an L0-chart (P,U, f, i), as explained in Section 4.3. Recall that P•L0,L1

|P is
naturally isomorphic to

i∗(PV•U,f )⊗Z2 QP,U,f,i .
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As in the proof of Proposition 6.2, we can choose f to be a quadratic form on N0Q. At x,
this can be identified with the quadratic form on TxL0 = TxQ ⊕ (N0Q)x that depends
only on the (N0Q)x coordinates, where it is given by the form q coming from (27). Thus,
the stalk of i∗(PV•U,f ) at x is canonically H k−1(q−1(ε)) (shifted to be in degree −k)
for a small ε 6= 0. (Compare Example 4.16.) The preimage q−1(ε) is (non-canonically)
diffeomorphic to T ∗Sk−1, and an identification of H k−1(q−1(ε)) with Z is the same as
the choice of an orientation on W+ at x, or of an identification of |W+|x to Z. Thus, we
have a canonical isomorphism

i∗(PV•U,f )x ∼= |W
+
|x[k].

Moreover, because of the condition on spin structures, the bundleQP,U,f,i has a canonical
section, so tensoring it with it has no effect. The conclusion follows. ut

As a consequence of Lemma 6.3, to compute P•L0,L1
one needs to find a polarization in the

symplectic normal bundle of Q, in which the two spin structures and the quadratic form
can be explicitly understood. An example of such a situation will appear in Lemma 8.3
below.

7. Three-manifold invariants

In this section we construct the three-manifold invariants advertised in the Introduction,
and prove Theorems 1.1 and 1.3.

7.1. Definitions

Let Y be a closed, connected, oriented three-manifold. Suppose we are given a Heegaard
splitting Y = U0 ∪6 U1 of genus g ≥ 3. We equip Xirr(6) with the complex structure J
and the complex symplectic form ωC = −ω1 + iω3, as in Section 2.5. Let

L0, L1 ⊂ Xirr(6)

be the complex Lagrangians constructed in Section 3.1. By Lemma 3.1, the intersec-
tion X = L0 ∩ L1 can be identified with Xirr(Y ). Further, each Li is diffeomorphic to
Xirr(Fg), where Fg is the free group on g elements. By Lemma 2.6, we haveH 2(Li;Z/2)
= 0, so c1(T Li) = 0 and hence Li admits a spin structure, which is unique because
H 1(Li;Z/2) = 0 (cf. Fact 4.13). Applying Bussi’s work described in Section 4.3, we
obtain a perverse sheaf

P •(Y ) := P •L0,L1
∈ Perv(Xirr(Y )).

We can do a framed version of this construction, using the complex Lagrangians

L#
0, L

#
1 ⊂ Xtw(6

#)

constructed in Section 3.2. In this case we can use a Heegaard splitting of any genus
g ≥ 0, and we need to pick a basepoint z ∈ 6 ⊂ Y . The Lagrangians L#

0, L
#
1 are
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diffeomorphic to products of g copies of G ∼= S3
× R3, so they too have unique spin

structures. We let
P •# (Y, z) := P

•

L#
0,L

#
1
∈ Perv(R(Y )).

When relating the perverse sheaves coming from different Heegaard splittings, we
may encounter non-trivial self-diffeomorphisms of Y , which in turn give non-trivial auto-
morphisms (self-biholomorphisms) of Xirr(Y ) and R(Y ). Therefore, it will be helpful to
work in the following variant of the category of perverse sheaves.

Definition 7.1. If X is a complex-analytic space, we let Perv′(X) be the category whose
objects are the same as in Perv(X), and whose morphisms are defined as follows. If C•
and D• are perverse sheaves on X, a morphism from C• and D• in Perv′(X) is a pair
(f, φ), where f : X → X is an automorphism and φ : C• → f ∗D• is a morphism in
Perv(X). Composition of morphisms is given by

(f, φ) ◦ (g, ψ) := (f ◦ g, g∗φ ◦ ψ).

We will prove below that P •(Y ) is a natural invariant of Y in the category Perv′(Xirr(Y )),
and P •# (Y, z) is a natural invariant of the pair (Y, z) in the category Perv′(R(Y )). By
taking hypercohomology, we will then obtain invariants

HP∗(Y ), HP∗# (Y, z),

as noted in the Introduction.

7.2. Stabilization invariance

When describing Heegaard splittings of three-manifolds, it will be convenient to use Hee-
gaard diagrams, as in Heegaard Floer theory [56]. Specifically, we represent the handle-
body U0 with boundary 6 by a collection of g disjoint simple closed curves α1, . . . , αg
on6, homologically independent inH1(6), such thatU0 is obtained from6 by attaching
disks with boundaries αi , and then attaching a three-ball. Similarly, we represent U1 by
another collection of curves, denoted β1, . . . , βg . The data

(6, α1, . . . , αg, β1, . . . , βg)

is a Heegaard diagram.
Note that our constructions of P •(Y ) and P •# (Y, z) start directly from a Heegaard

splitting, not a Heegaard diagram. Thus, in contrast to Heegaard Floer theory, to prove
invariance there will be no need to consider moves that change the Heegaard diagram
but leave the splitting fixed. (These Heegaard moves are the handleslides and curve iso-
topies, considered in [56].) For us, Heegaard diagrams will be just a way of representing
Heegaard splittings pictorially, as in Figures 2, 3, and 6 below.

The one Heegaard move that we have to consider is stabilization. This consists in
drilling out a solid torus from one of the handlebodies, say U1, such that a part of its
boundary (a disk D) is on 6, and then attaching the solid torus to U0. In this way,
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from the Heegaard splitting (6,U0, U1) of genus g we obtain a new Heegaard split-
ting (6′, U ′0, U

′

1) of genus g + 1, for the same three-manifold Y . In terms of Heegaard
diagrams, we have introduced two new curves α′ and β ′, intersecting transversely in one
point. See Figure 2.

β ′

6′

U ′0

U ′1

6

U0

U1
α′

D

Fig. 2. Stabilization.

The inverse move to a stabilization is called destabilization.

Theorem 7.2 (Reidemeister [58], Singer [64]). Given a three-manifold Y , any two Hee-
gaard splittings for Y are related by a sequence of stabilizations and destabilizations.

Remark 7.3. We view all our Heegaard surfaces not just as abstract surfaces, but as
submanifolds of Y . Changing the Heegaard surface by an ambient isotopy in Y could be
considered another Heegaard move (relating different Heegaard splittings). However, note
that we can obtain a small ambient isotopy by composing a stabilization (perfomed from a
diskD ⊂ 6) with a destabilization that collapses the solid torus to a new diskD′, a slight
deformation ofD. Therefore, every ambient isotopy is a composition of stabilizations and
destabilizations.

Even more generally, we could consider diffeomorphisms f : Y → Y that take a
Heegaard splitting to another one, and are not necessarily isotopic to identity. Once again,
these are not necessary if we want to relate different Heegaard splittings of Y .

In view of Theorem 7.2, in order to prove that the isomorphism classes of P •(Y ) and
P •# (Y, z) are invariants of Y , resp. (Y, z), it suffices to consider the effect of stabilizations.

Proposition 7.4. Let (6,U0, U1) be a Heegaard splitting for Y , and (6′, U ′0, U
′

1) be
obtained from it by a stabilization. Let L0, L1 ⊂ Xirr(6) and L′0, L

′

1 ⊂ Xirr(6
′) be the

complex Lagrangians constructed from each Heegaard splitting as in Section 3.1, and
L#

0, L
#
1 ⊂ Xtw(6

#), L′0
#
, L′1

#
⊂ Xtw(6

′#) be those constructed as in Section 3.2. Then
the stabilization move induces isomorphisms

S : P•L0,L1

∼=
−→ P•

L′0,L
′

1
in Perv(Xirr(Y )),

S #
: P•

L#
0,L

#
1

∼=
−→ P•

L′0
#
,L′1

# in Perv(R(Y )).
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Proof. To construct S , we apply Proposition 5.1. We take M = Xirr(6) and M ′ =
Xirr(6

′). There is a projection

π1(6
′) ∼= π1(6 \D) ∗π1(∂D) π1(T

2
\D)→ π1(6)

given by sending the generators of π1(T
2
\ D) to 1. This induces an inclusion 8 :

M ↪→ M ′. If we describe M in terms of the holonomies of flat connections, as in (6),
and do the same for M ′, with the holonomies around α′ and β ′ being A′ and B ′, then
M ⊂ M ′ is given by the equations

A′ = B ′ = I.

(Note that to define the holonomies A′ and B ′, we need to choose a basepoint on the
respective curves and an identification of the fiber at that point with C2. However, the
condition that a holonomy is trivial is invariant under conjugation, and hence independent
of those choices.)

Let us push 6 slightly inside U0 and consider the compression body Z0 situated
between this new copy of 6 and 6′. Then π1(Z0) ∼= π1(6) ∗ 〈β

′
〉. Let us denote by

C0 ⊂ Xirr(Z0) the space of representations of π1(Z0) whose restriction to π1(6) is
irreducible. An argument similar to that in the proof of Lemma 3.1(b) shows that C0 is a
coisotropic complex submanifold of M ′ = Xirr(6

′). We have inclusions

M ⊂ C0 ⊂ M
′

with C0 being given by the equation A′ = I . Observe also that L0 = L
′

0 ∩ C0 ⊂ M, and
that we have an isomorphism

C0 ∼= Rirr(6)×G G,

where G acts on itself by conjugation. Hence we see that C0 is a G-bundle over M =
Rirr(6)/G. (This is not a principal bundle.) TheG-bundle comes with a canonical section

M → C0, [ρ] 7→ [(ρ, 1)],

which gives the inclusion M ⊂ C0 mentioned above. Note that the tangent bundle to C0
at a point [(ρ, 1)] ∈ M is T (Rirr(6) × g)/g, where the denominator g is the tangent
bundle to the orbit of (ρ, 1). This orbit lies in Rirr(6)×{1}, and therefore we can identify
T C0|M with TM × g.

Thus, if we let V0 be the symplectic complement to TM inside T C0|M , then V0 is
isomorphic to the trivial g-bundle over M . The Killing form on g gives a non-degenerate
holomorphic quadratic form q ∈ H 0(Sym2(V ∗0 )).

Let us also consider a compression body Z1 between 6 and 6′, obtained by com-
pressing β ′ instead of α′. This gives rise to another coisotropic C1 ⊂ M

′, determined by
the equation B ′ = I . We have M ⊂ C1 and L1 = L

′

1 ∩ C1. We let V1 be the symplectic
complement to TM inside T C1. Clearly,

T L′0|L0 = T L0 ⊕ V0|L0 ⊕ 0 ⊂ TM|L0 ⊕ V0|L0 ⊕ V1|L0 = TM
′
|L0 .
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In fact, we can naturally identify the normal bundleNMM ′ with the trivial bundle with
fiber H 1(T 2

; g), where T 2 is the torus introduced in the stabilization. Then V0 ⊂ NMM ′

is spanned by the Poincaré dual to α′, and V1 by the Poincaré dual to β ′.
The bundles V0 and V1 are trivial, so they admit spin structures. Further, these spin

structures are unique, by Fact 4.13(b), because the base space M is simply connected,
and therefore H 1(M;Z/2) = 0. To see that M = Xirr(6) is simply connected, one can
imitate the Morse-theoretic proof given by Hitchin ([37, Theorem 9.20] for the space
Xtw(6); compare [17, Section 4]).

Since the spin structures on V0 and V1 are unique, they correspond to each other
under the duality induced by ω. Furthermore, the spin structure on V0 is self-dual under
the isomorphism induced by q. Recall also that the Lagrangians Li and L′i have unique
spin structures, so these must be compatible with the ones on V0 and V1.

We conclude that the hypotheses of Proposition 5.1 are satisfied. We let S be the
resulting isomorphism.

The isomorphism S # is constructed in a similar manner. The role of Z0 is played by
a compression body Z#

0 between 6# and 6′#, and we use the coisotropic submanifold
C#

0 = Xtw(Z
#
0) ⊂ Xtw(6

#). ut

7.3. Naturality

Proposition 7.4, combined with Theorem 7.2, shows that P •(Y ) and P •# (Y ) are invari-
ants of Y up to isomorphism. To complete the proofs of Theorems 1.1 and 1.3, we still
have to show that they are natural invariants, i.e., that the isomorphisms can be chosen
canonically. Specifically, given two Heegaard splittings of Y , we can relate them by a
sequence of moves, and thus get an isomorphism between the objects constructed from
each Heegaard splitting. The naturality claim is that this isomorphism does not depend on
the chosen sequence of moves. (For the framed invariant P •# (Y ), we expect dependence
on the basepoint z, so we will only consider moves that keep z fixed.)

Naturality for three-manifold invariants defined from Heegaard diagrams was studied
by Juhász, D. Thurston and Zemke [41], where they applied it to Heegaard Floer ho-
mology. Theorem 2.39 in [41] gives a finite list of conditions that need to be checked to
ensure naturality (see [41, Definitions 2.30 and 2.33]). In our context, the invariants are
constructed directly from a Heegaard splitting, so the list is shorter. Indeed, we can view
invariants defined from a Heegaard splitting as being defined from a Heegaard diagram,
with the α-equivalence and β-equivalence moves from [41] inducing the identity. Thus,
for our purposes, we will only consider the following Heegaard moves: stabilizations,
destabilizations, and diffeomorphisms. Diffeomorphisms are not strictly necessary (cf.
Remark 7.3). However, we will include them to keep the statements cleaner and more in
line with [41]. We will write a diffeomorphism f : Y → Y that takes a Heegaard splitting
H to another one H′ as f : H→ H′. A particular role will be played by diffeomorphisms
that are isotopic to the identity in Y .

Before stating the naturality result, let us recall the notion of simple handleswap,
which plays an essential role in [41]. Let H = (6,U0, U1) be a Heegaard splitting. Let
D′,D′′ ⊂ 6 be the disks bounded by the curves c′ and c′′ shown in Figure 3. By adding
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the handle H ′ to U1, we get a new Heegaard splitting H′ = (6′, U ′0, U
′

1). We view this
operation as the composition

e = est ◦ eiso : H→ H′,

where eiso is a small isotopy given by pushing D′ slightly into U1, to get a new disk
bounded by c′, and est is the stabilization given by attaching a solid torus (the union of the
handleH ′ with the region R betweenD′ and the new disk) to U1 \R. In a similar manner,
we add a handle H ′′ to U ′0 to get the splitting H′′ = (6′′, U ′′0 , U

′′

1 ). The operation

f = fst ◦ fiso : H′→ H′′

is the composition of an isotopy fiso (pushing D′′ into U0) and a stabilization fst.

c′

6

H ′′

H ′

β ′′

α′

U0

U1
α′′

β ′

c′′

Fig. 3. We draw a part of the surface 6 of genus h as the middle plane (without the handles), and
U0 and U1 as the lower and upper half-space, respectively. We drill a handle H ′ into U0 to obtain a
Heegaard decomposition (6′, U ′0, U

′
1), of genus h+ 1. Then we add a handle H ′′ to U ′0 as shown,

and we obtain a new Heegaard decomposition (6′′, U ′′0 , U
′′
1 ), of genus h+ 2.

Now, on the surface 6, we consider the diffeomorphism

g = τγ ◦ τ
−1
γ ′
◦ τ−1

γ ′′
: 6→ 6

given by the composition of a right-handed Dehn twist along the curve γ and left-handed
Dehn twists along the curves γ ′ and γ ′′ shown in Figure 4. This maps the curves α′ to α̂′

and β ′′ to β̂ ′′.

Remark 7.5. Figure 4 should be compared to Figure 4 in [41]. Our curves α′, β ′, α′′, β ′′

play the roles of α2, β1, α1 and β2 in their notation. Their set-up also involves an α-
equivalence and a β-equivalence, but in our case these act by the identity. Our diffeomor-
phism g is the inverse of the one considered there.
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H ′′

H ′ H ′

H ′′

γ

γ ′ β ′

H ′′

H ′ H ′

H ′′

β ′

α̂′

α′

β ′′
α′′

g
γ ′′

α′′

β̂ ′′

Fig. 4. Left: part of the surface 6 from Figure 3, with the gray circles being the feet of the respec-
tive handles. Right: the effect of the diffeomorphism g on the given curves.

We extend g to a diffeomorphism g : Y → Y as follows. Consider the disk enclosed by
the curve γ in Figure 4, and enlarge it slightly to obtain a disk D that contains γ in its
interior. Let T ′ = H ′ ∩D and T ′′ = H ′′ ∩D be the feet of the handles contained in D.
Let also U = D × [−1, 1] be a three-dimensional cylindrical neighborhood of D in Y ,
which intersects 6 at D = D × {0}, as in Figure 5, with

H ′ ∩ U = T ′ × [−1, 0], H ′′ ∩ U = T ′′ × [0, 1].

γ ′

γ ′′

t = −1

T ′

T ′′

H ′

H ′′

D
t = 0

γ

t = 1

Fig. 5. A three-dimensional neighborhood U of the disk enclosed by γ . The parts of the handles
H ′ and H ′′ contained in U are in grey.

Observe that the diffeomorphism g, when restricted toD\(T ′∪T ′′), is not isotopic to
the identity rel boundary. However, if we restrict it to D \ T ′, it is isotopic to the identity
rel boundary. This is because the Dehn twist around γ ′′ is isotopic to the identity when
we can go over T ′′, and the Dehn twists along γ ′ and γ are in opposite directions, so they
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cancel each other out. By following the isotopy from g|D\T ′ to the identity in each slice
D × {t}, t ∈ [−1, 0], we extend g to a diffeomorphism from D × [−1, 0], which acts
by the identity on D × {−1} and on the grey cylinder T ′ × [0, 1]. Similarly, we extend
g to the upper half D × [0, 1] ⊂ U , using an isotopy from g|D\T ′′ to the identity. We
obtain a diffeomorphism g : U → U , which is the identity on ∂U = (∂D × [−1, 1]) ∪
(D × {−1, 1}) and on the two grey cylinders. We then extend g to a diffeomorphism
g : Y → Y , by the identity outside U .

Note that g : U → U preserves the Heegaard splittings H,H′ and H′′. Observe also
that the restrictions of g to 6 and 6′ are isotopic to the identity. However, this is not the
case for 6′′. We refer to

g : H′′→ H′′

as a simple handleswap.
The following definition is a variant of [41, Definition 2.32], adapted to our setting

where the constructions are done starting directly from Heegaard splittings. Also, for
simplicity, we restrict ourselves to invariants associated to a given manifold Y , rather
than to a class of diffeomorphism types as in [41].

Definition 7.6. Let Y be a closed, connected, oriented three-manifold, and C a category.
A strong Heegaard invariant F of Y consists of:

• an assignment to every Heegaard splitting H of Y of an object F(H) ∈ C, and
• to every Heegaard move e (stabilization, destabilization, or diffeomorphism) between

two splittings H1 and H2, an assignment of a morphism F(e) : F(H1)→ F(H2).

Furthermore, these morphisms are required to satisfy the following properties:

(1) Functoriality:
(i) If e : H1 → H2 and f : H2 → H3 are diffeomorphisms, then for the combined

diffeomorphism f ◦ e : H1 → H3, we have F(f ◦ e) = F(f ) ◦ F(e).
(ii) If e : H1 → H2 is a stabilization and e′ : H2 → H1 is the corresponding

destabilization, then F(e′) = F(e)−1.

(2) Commutativity:
(i) If e : H1 → H2 and g : H2 → H4 are stabilizations given by adjoining disjoint

solid tori H1 resp. H2, and f : H1 → H3, h : H3 → H4 are stabilizations given
by attaching H2 resp. H1, then F(h) ◦ F(f ) = F(g) ◦ F(e).

(ii) If e : H1 → H2 is a stabilization and f : H1 → H3 is a diffeomorphism, let
g : H2 → H4 be the same diffeomorphism as f but acting on the stabilized
surface, and h : H3 → H4 the corresponding stabilization (the image of e under
f ). Then F(h) ◦ F(f ) = F(g) ◦ F(e).

(3) Continuity: If e : H → H is a diffeomorphism such that e|6 : 6 → 6 is isotopic
to id6 , then F(e) = idF(H).

(4) Handleswap invariance: Given a simple handleswap g : H′′ → H′′ as in Figure 4,
we ask that F(g) = idF(H′′).
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If Y is as in Definition 7.6 and z ∈ Y is a basepoint, we can define a strong Heegaard
invariant of the pair (Y, z) in a similar way, by considering only Heegaard splittings with z
on the Heegaard surface, and Heegaard moves that fix z.

The following is a rephrasing of [41, Theorem 2.38] in our context.

Theorem 7.7 (Juhász–Thurston–Zemke [41]). Let F be a strong Heegaard invariant of
a three-manifold Y , with values in a category C. Then, for any two Heegaard splittings
H,H′, if we relate them by a sequence of Heegaard moves involving only stabilizations,
destabilizations, and diffeomorphisms isotopic to the identity in Y ,

H = H0
e1
−→ H1

e2
−→ . . .

en
−→ Hn = H′,

the induced morphism

F(H,H′) = F(en) ◦ · · · ◦ F(e1) : F(H)→ F(H′)

depends only on H and H′, and not on the sequence of moves chosen to relate them.
Moreover, the same naturality result holds for based three-manifolds (Y, z), if we

consider only Heegaard splittings with z on the Heegaard surface, and Heegaard moves
that fix z.

Note that the output of Theorem 7.7 is the set of isomorphisms F(H,H′) : F(H) →
F(H′) satisfying

• F(H,H) = idF(H) for all H;
• F(H′,H′′) ◦ F(H′,H) = F(H,H′′) for all H,H′ and H′′.

Remark 7.8. If C is the category of groups (or Abelian groups), then the data consisting
of the groups F(H) and the isomorphisms F(H,H′) (satisfying the two properties above)
is called a transitive system of groups, in the terminology of Eilenberg–Steenrod [21,
Definition 6.1]. Given such a transitive system of groups, we obtain a single group G
with elements g ∈

∏
H F(H) such that F(H,H′)(g(H)) = g(H′) for all H,H′. Thus,

under the hypotheses of Theorem 7.7, we obtain a groupG that is associated to the three-
manifold Y .

In our setting, once we establish naturality, we can apply this construction to define the
hypercohomology invariants HP∗(Y ) and HP∗# (Y ) as graded Abelian groups associated
to Y (independent of any choices, except for the basepoint z for the framed versions).

We now seek to apply Theorem 7.7 to the objects

F(H) = P•L0,L1
∈ Perv′(Xirr(Y )),

defined from Heegaard splittings, where Perv′(Xirr(Y )) is the category introduced in Def-
inition 7.1. For this, we first need to specify the maps F(e). When e is a stabilization,
we use the isomorphism S constructed in Proposition 7.4; for the corresponding desta-
bilization, we use the inverse of S . When e is a diffeomorphism taking the Heegaard
splitting H = (6,U0, U1) to H′ = (6′, U ′0, U

′

1), observe that e induces an isomorphism
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between the complex symplectic manifolds Xirr(6) and Xirr(6
′), taking the correspond-

ing Lagrangians L0, L1 into L′0, L
′

1. Hence we obtain an automorphism of Xirr(Y ) and
an isomorphism F(e) : P•L0,L1

→ P•
L′0,L

′

1
in the category Perv′(Xirr(Y )).

The proof of Theorem 1.1 will be complete once we establish the following.

Proposition 7.9. The objects F(H) = P•L0,L1
∈ Perv′(Xirr(Y )) and the maps F(e) de-

fined above satisfy the hypotheses of Theorem 7.7. Hence, P•(Y ) = P•L0,L1
is a natural

invariant of Y .

Proof. Functoriality and commutativity are immediate from the construction. For con-
tinuity, note that the induced action of Diff(6) on Xirr(6) factors through the mapping
class group π0(Diff(6)) of 6; this is clear when we view the elements of Xirr(6) as con-
jugacy classes of maps π1(6)→ G. Thus, when e is isotopic to the identity, it must act
by the identity on Xirr(6), and hence on the perverse sheaves.

To prove handleswap invariance, let us first reformulate it in terms of stabilizations.
With the notation from the definition of a simple handleswap in Theorem 7.7, we have
moves e = est ◦ eiso : H → H′ and f = fst ◦ fiso : H′ → H′′. Let us also consider
another similar move f̂ = f̂st ◦ f̂iso : H′ → H′′, given by attaching a solid torus to U0
along the disk bounded by the curve ĉ′′ from Figure 6; the effect of this is still adding the
handle H ′′, but we choose a different path between its feet to view it as a small isotopy
(push off into U0) plus a stabilization.

ĉ′′

6

H ′′

H ′

β ′′

U0

U1

β̂ ′′

c′′

α′′

Fig. 6. Adding the handle H ′′ can be viewed as a stabilization in two different ways.

By the commutativity between stabilizations and diffeomorphisms, together with
functoriality and continuity for isotopies, we have

F(f̂ ) ◦ F(g′) = F(g) ◦ F(f ),

where g′ is the same as g, but acting on H′. Recall from the discussion of handleswaps
that the restriction of the diffeomorphism g to6′ is isotopic to the identity. By continuity,
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we must have F(g′) = idF(H′). Therefore,

F(f̂ ) = F(g) ◦ F(f ).

Thus, the handleswap invariance condition F(g) = idF(H′′) is equivalent to

F(f̂ ) = F(f ). (31)

In other words, we want the move from H′ to H′′ to depend only on the handle H ′′, and
not on the path joining the feet of H ′′.

Let us also bring the move e = est ◦ eiso : H → H′ into play. Since F(e) is an
isomorphism, the condition (31) is equivalent to

F(f̂ ) ◦ F(e) = F(f ) ◦ F(e) : F(H)→ F(H′′). (32)

In our context, let us denote

M = Xirr(6), M ′ = Xirr(6
′), M ′′ = Xirr(6

′′).

We let A′, B ′, A′′, B ′′, B̂ ′′ denote the holonomies of flat connections around α′, β ′, α′′,
β ′′, β̂ ′′. With a suitable choice of basepoint, we can arrange that β̂ ′′ = β ′′ · β ′ in π1(6),
and therefore B̂ ′′ = B ′′B ′.

Then, if we use the curve c′′ to do the second stabilization, we find that M ′ sits in-
side M ′′ as the subset given by A′′ = 1, B ′′ = 1. However, if we use ĉ′′ to do the
stabilization, we get another copy of M ′, which we will call M̂ ′, given by the subset
of M ′′ with A′′ = 1, B ′′B ′ = 1. (The two embeddings of M ′ into M correspond to
different projections π1(6

′′) → π1(6
′).) Finally, M ⊂ M ′ ∩ M̂ ′ ⊂ M ′′ is given by

A′ = B ′ = A′′ = B ′′ = 1.
In summary, we have a commutative diagram of embeddings of complex symplectic

manifolds:
M ′ � p

8′

!!

M
. �

8

>>

� p

8̂

  

M ′′

M̂ ′
. �

8̂′
==

The Heegaard splittings give rise to complex Lagrangians

L0, L1 ⊂ M, L′0, L
′

1 ⊂ M
′,

L̂′0, L̂
′

1 ⊂ M̂
′, L′′0, L

′′

1 ⊂ M
′′,

all equipped with (unique) spin structures. We also have coisotropics induced by the com-
pression bodies (as in the proof of Proposition 7.4), which give decompositions of the
normal bundles to each submanifold into holomorphic Lagrangian bundles

NMM ′ = V0⊕V1, NM ′M ′′ = V
′

0⊕V
′

1, NMM̂ ′ = V̂0⊕ V̂1, NM̂ ′M ′′ = V̂
′

0⊕ V̂
′

1. (33)
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Specifically, the normal bundle NMM ′ to M in M ′ can be identified with the trivial
bundle with fiber H 1(T 2

; g), where T 2 is the torus attached in the stabilization from 6

to 6′. In the decomposition NMM ′ = V0 ⊕ V1, the first summand V0 is spanned (over g)
by the class a′ Poincaré dual to [α′], and the second summand V1 by the class b′ Poincaré
dual to [β ′].

Similarly, the bundleNM ′M ′′ decomposes as V ′0⊕V
′

1, where V ′0 is spanned by the class
a′′ Poincaré dual to [α′′], and V ′1 by the class b′′ Poincaré dual to [β ′′]. The bundleNM ′M ′′
decomposes as V̂ ′0 ⊕ V̂

′

1, where V̂ ′0 is spanned by a′′ and V̂ ′1 by b̂′′ = b′ + b′′ (the image
of b′′ under the handleswap diffeomorphism g; cf. Figure 4). Finally, NMM̂ ′ decomposes
as V̂0 ⊕ V̂1, with V̂0 is spanned by â′ = a′ + a′′ (the image of a′ under g) and V̂ ′1 by b′.

From the proof of Proposition 7.4, we see that we have unique spin structures on all
eight of the Lagrangian bundles appearing in (33). We also have non-degenerate holo-
morphic quadratic forms

q ∈ H 0(Sym2 V ∗0 ), q
′
∈ H 0(Sym2(V ′0)

∗), q̂ ∈ H 0(Sym2 V̂ ∗0 ), q̂
′
∈ H 0(Sym2(V̂ ′0)

∗),

all coming from the Killing form on g.
Thus, we obtain stabilization isomorphisms

S : P•L0,L1

∼=
−→ P•

L′0,L
′

1
, S ′ : P•

L′0,L
′

1

∼=
−→ P•

L′′0,L
′′

1
,

Ŝ : P•L0,L1

∼=
−→ P•

L̂′0,L̂
′

1
, Ŝ ′ : P•

L̂′0,L̂
′

1

∼=
−→ P•

L′′0,L
′′

1
.

Equation (32) translates into the commutativity of the diagram

P•
L′0,L

′

1 � q

S ′

##

P•L0,L1

- 


S
;;

� q

Ŝ

##

P•
L′′0,L

′′

1

P•
L̂′0,L̂

′

1

- 


Ŝ ′
;;

The two compositions S ′◦S and Ŝ ′◦Ŝ are both instances of the maps constructed
from Proposition 5.1. They are both associated to the inclusion M ↪→ M ′′, and to the
same normal bundle decomposition

NMM ′′ = W0 ⊕W1,

where

W0 = V0|M ⊕ V
′

0|M = V̂0|M ⊕ V̂
′

0|M = Spang(a
′, a′′),

W1 = V1|M ⊕ V
′

1|M = V̂1|M ⊕ V̂
′

1|M = Spang(b
′, b′′).

There are unique spin structures on W0,W1, Ŵ0, Ŵ1. The only difference lies in the
quadratic forms on W0 used to apply Proposition 5.1. To construct S ′ ◦S , we use the
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form q ⊕ q ′, whereas to construct Ŝ ′ ◦ Ŝ , we use q̂ ⊕ q̂ ′. Concretely, in one case we
take the direct sum of the Killing forms on the spans of a′ and a′′, whereas in the other
we take the direct sum of the Killing forms on the spans of a′ + a′′ and a′′.

We now interpolate between these two quadratic forms by taking the direct sum of
the Killing forms on the spans of a′ + ta′′ and a′′, for t ∈ [0, 1]. Proposition 5.1 gives a
continuous family of maps

St : P•L0,L1
→ P•

L′′0,L
′′

1
, t ∈ [0, 1],

interpolating between S0 = S ′ ◦S and S1 = Ŝ ′ ◦ Ŝ . However, any such family must
be constant, because morphisms in the category of perverse sheaves (over Z) are discrete
objects.

We conclude that (32) is satisfied, and therefore handleswap invariance holds. ut

Naturality for the objects P•
L#

0,L
#
1
∈ Perv′(R(Y )) is established in a similar manner, with

the additional constraint that we must fix the basepoint z ∈ Y .
This finishes the proofs of Theorems 1.1 and 1.3.

8. Properties and examples

8.1. Dualities

Our invariants P •(Y ) and P •# (Y, z) are defined for oriented three-manifolds. However, as
the following result shows, they are independent of the orientation on Y .

Proposition 8.1. Let Y be a closed, connected, oriented three-manifold, and let −Y de-
note Y with the opposite orientation. Pick a basepoint z ∈ Y . Then we have isomorphisms

P •(Y )
∼=
−→ P •(−Y ), P •# (Y, z)

∼=
−→ P •# (−Y, z).

Proof. A Heegaard splitting (6,U0, U1) for Y gives a Heegaard splitting for −Y , with
the orientations on 6,U0 and U1 being reversed. The orientation on 6 is involved in the
definition of the complex symplectic form ωC from (7). Reversing the orientation changes
the sign of ωC, but does not affect the complex structure J (since the latter comes from
the complex structure on G = SL(2,C), not on 6).

Let us consider Bussi’s construction from Section 4.3. Suppose (M,ω) is a complex
symplectic manifold with an L0-chart (S, P,U, f, h, i). Part of the data is the isomor-
phism h : S → T ∗U . If we denote by r : T ∗U → T ∗U the map given by multiplication
by−1 on the fibers, we find that (S, P,U,−f, h◦r, i) is an L0-chart for (M,−ω). Given
f : U → C, note that we can relate f to −f via the family eiθf, θ ∈ [0, π]. This gives
an isomorphism between the vanishing cycle functors for f and −f . (The square of this
isomorphism is the monodromy map.) By patching together these isomorphisms, we ob-
tain an isomorphism between the perverse sheaves P•(L0, L1) defined in (M,ω) and
(M,−ω). Applying this to our setting, we get the desired claim about the invariants for Y
and −Y . ut
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We can also ask how P •(Y ) and P •# (Y, z) behave under Verdier duality. In [11, Theo-
rem 2.1], Bussi shows that, for any spin complex Lagrangians L0 and L1, the perverse
sheaf P•L0,L1

is naturally isomorphic to its Verdier dual. As a consequence, we have

Proposition 8.2. The invariants P •(Y ) ∈ Perv′(Xirr(Y )) and P •# (Y, z) ∈ Perv′(R(Y ))
are Verdier self-dual.

Starting from P •(Y ) and P •# (Y, z), we defined HP∗(Y ) and HP∗# (Y, z) by taking hyper-
cohomology. We could alternatively take hypercohomology with compact support, and
define

HP∗c (Y ) := H∗c(P
•(Y )), HP∗#,c(Y, z) := H∗c(P

•

# (Y, z)).

From (16) and Proposition 8.2 we obtain duality isomorphisms

HPkc (Y ) ∼= Hom(HP−k(Y ),Z)⊕ Ext1(HP−k−1(Y ),Z)

and
HPk#,c(Y, z) ∼= Hom(HP−k# (Y, z),Z)⊕ Ext1(HP−k−1

# (Y, z),Z).

Observe also that since we use sheaf cohomology, the invariants HP∗(Y ) and
HP∗# (Y, z) are models for Floer cohomology, rather than homology. We can define homo-
logical invariants HP∗(Y ) and HP#

∗(Y, z) by dualizing the complexes that define HP∗(Y )
resp. HP∗# (Y, z), and then taking homology. We have

HPk(Y ) ∼= Hom(HPk(Y ),Z)⊕ Ext1(HPk+1(Y ),Z) ∼= HP−kc (Y ),

HP#
k(Y, z)

∼= Hom(HPk# (Y, z),Z)⊕ Ext1(HPk+1
# (Y, z),Z) ∼= HP−k#,c (Y, z).

8.2. Computational tools

To calculate the perverse sheaf invariants P •(Y ) and P •# (Y, z) in specific examples, we
will rely on Theorem 1.4 from the Introduction.

Proof of Theorem 1.4. By Lemmas 3.4 and 3.6, regularity of the underlying schemes is
equivalent to the condition that the Lagrangians intersect cleanly. The desired result now
follows from Proposition 6.2. ut

The following lemma describes a simple situation where we can identify the local system
in Theorem 1.4(b).

Lemma 8.3. Let Y be a closed, connected, oriented three-manifold, z ∈ Y a basepoint,
and ρ ∈ R(Y ) a reduced, irreducible representation. Assume that [ρ] is isolated in the
character variety X(Y), so that (by Lemma 3.6) the Lagrangians L#

0 and L#
1 intersect

cleanly along the orbit Q := Oρ . Then we have an isomorphism

P•# (Y, z)|Q ∼= ZQ[3].
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Proof. Observe that Q is diffeomorphic to Gad
= PSL(2,C) ∼= RP3

× R3. From The-
orem 1.4(b) we know that P•# (Y )|Q is a local system over Q with fiber Z, in degree −3.
Since H 1(Q;Z2) ∼= Z2, there are two possibilities for the local system. To show that it is
the trivial one, we will use Lemma 6.3.

Recall from the proof of Lemma 3.6 that we have an inclusion R(6) ↪→ M#, and the
Lagrangians L#

0 and L#
1 live inside R(6). In the situation at hand, at any point x ∈ Q, by

the clean intersection condition we see that TxL#
0 ∩ TxL

#
1 = TxQ is three-dimensional.

Therefore, we must have

TxL
#
0 + TxL

#
1 = Tx(R(6)) ⊂ TxM

#.

We deduce that the symplectic normal bundle of Q is

NQ = Tx(R(6))/TxQ.

The groupGad acts transitively onQ. There is no natural action ofGad on the ambient
manifoldM#

= Xtw(6
#), but there is one (given by conjugation) on the subvarietyR(6),

and this action preserves the Lagrangians L#
0 and L#

1. Hence, we get a Gad-action on the
normal bundle NQ, which preserves the decomposition

NQ ∼= N0Q⊕N
∗

0Q.

considered in (26). The Gad-action gives a trivialization of the bundles N0Q and N∗0Q
over Q. By choosing a polarization of NQ transverse to N0Q and N∗0Q at some x ∈ Q,
we can use the Gad-action to extend it to such a polarization at all points of Q. For this
polarization, the bundle W+ defined in Section 6 is clearly trivial.

In view of Lemma 6.3, the only thing that remains to be proved is that the isomorphism
T L#

1|Q → T L#
0|Q from (29) preserves spin structures. To do this, recall that the spin

structures on L#
0 = R(U0) and L#

1 = R(U1) are unique (because the Lagrangians are
simply connected). The same is true for Lagrangians L0 = Xirr(U0), L1 = Xirr(U1) ⊂

Xirr(6), which intersect transversely at the point [ρ]. Furthermore, if we consider the
open subsets

L̃i := Rirr(Ui) ⊂ L
#
i = R(Ui), i = 0, 1,

we can see from the proof of Lemma 2.6 that these are also simply connected. There are
natural projections pi : L̃i → Li , with fibers Gad, and therefore we have isomorphisms

T L̃i ∼= p
∗

i T Li ⊕ g.

By the uniqueness of the spin structures on L̃i and Li , we can think of the spin structure
on T L̃i as obtained from the one on Li via pull-back and adding the trivial spin structure
on g.

When restricted to Q, we can also identify the pull-backs p∗i T Li with the normal
bundles NiQ. After these identifications, the projection

T L̃1|Q→ T L̃0|Q (34)
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is the direct sum of the identity on TQ ∼= g and a Gad-equivariant projection
N1Q→ N0Q. This second summand is the pull-back of a projection T[ρ]L1 → T[ρ]L0,
which must preserve spin structures. (A spin structure on a vector bundle over a point,
i.e. on a vector space, is unique.) Note that the spin structures on T L̃i |Q are equivariant
under the Gad-action, because they are restrictions of the spin structures on the whole of
L̃i , which are unique and therefore obtained by pull-back from the ones on Li . Once we
have this, we see that the Gad-equivariant isomorphism (34) matches the spin structures
on L̃1 and L̃0. By uniqueness, these are exactly the restrictions of the spin structures on
L#

0 and L#
1. ut

8.3. Examples

We present a few calculations, for some of the examples discussed in Section 2.4. We
only look at situations where the underlying scheme is regular, so that we can apply
Theorem 1.4. In these cases, the perverse sheaf under consideration is a local system with
fibers Z, supported in degrees −k, where k is the complex dimension of the respective
component ofXirr(Y ) or R(Y ). We will use the subscript (i) to denote a group in degree i.

For Y = S3, we have Xirr(S
3) = ∅ and R(S3) is a point, so

HP∗(S3) = 0, HP∗# (S
3) = Z(0).

For Y being the connected sum of k copies of S1
× S2 (cf. Example 2.10 and Sec-

tion 2.3), the sheaf P•# (Y ) is a local system with fibers Z (in degree −3k) over Gk . Since
G ∼= S3

× R3 is simply connected, the local system must be trivial, and we get

HP∗# (#
k(S1
× S2)) ∼= Zk(−3) ⊕ Zk(0).

When k = 1, there are no irreducible representations and therefore

HP∗(S1
× S2) = 0.

For k = 2, the space Xirr(F2) is not simply connected (see Remark 2.7), and it is not
immediately clear how to identify the local system P•(Y ). However, for all k ≥ 3, we
have π1(Xirr(Fk)) = 1 by Lemma 2.6, and therefore

HP∗(#k(S1
× S2)) ∼= H

∗+3k−3(Xirr(Fk);Z).

Next, we will look at lens spaces L(p, q) and Brieskorn spheres6(p, q, r). For these
manifolds, the computations of HP∗ and HP∗# were stated in the Introduction, in Theo-
rems 1.5 and 1.6.

Proof of Theorem 1.5. Lens spaces were discussed in Example 2.11. Since π1 is
Abelian, there are no irreducible representations, and HP∗(L(p, q)) = 0. To calculate
HP∗# (L(p, q)), note that R(Y ) is the disjoint union of some points and copies of T S2.
Over the points, the perverse sheaf P •# (Y ) is a copy of Z in degree 0, and over each copy
of T S2, it is a local system with fibers Z in degree −2. Since T S2 is simply connected,
the local system is trivial. After taking cohomology, we get the advertised answer. ut
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Proof of Theorem 1.6. The Brieskorn spheres 6(p, q, r) were considered in Ex-
ample 2.12. The variety Xirr(6(p, q, r)) consists of N = (p − 1)(q − 1)(r − 1)/4
isolated points, so HP∗(6(p, q, r)) is ZN in degree 0.

To compute HP∗# , recall that the representation variety is composed of a point and N
copies of PSL(2,C) ∼= RP3

× R3. The perverse sheaf P •# (Y ) is Z over the point, and
(by Lemma 8.3) the trivial local system with fiber Z in degree −3 over each copy of
PSL(2,C). This gives the desired answer. ut

Lastly, we consider HP∗ for the Seifert fibered homology spheres 6(a1, . . . , an) dis-
cussed in Example 2.13. Then the varietyXirr(Y ) is the disjoint union of simply connected
components Mα , of dimensions 2m(α)− 6. It follows that

HP∗(6(a1, . . . , an)) ∼=
⊕
α

H ∗+2m(α)−6(Mα;Z). (35)

The Poincaré polynomials of Mα were computed in [8].

8.4. The Euler characteristic

As noted in the Introduction, the Euler characteristic of Floer’s SU(2) instanton homol-
ogy is twice the Casson invariant (see [68]). The Euler characteristic of the framed theory
I #(Y ) is less interesting, being equal to the order of H1(Y ) if b1(Y ) = 0, and zero other-
wise (see [59]).

In our context, we define the (sheaf-theoretic) full SL(2,C) Casson invariant of Y to
be the Euler characteristic of HP∗(Y ):

λP (Y ) :=
∑
k∈Z
(−1)k rk HPk(Y ). (36)

The following proposition shows that the right hand side of (36) is well-defined.

Proposition 8.4. For any closed, oriented 3-manfiold Y , the invariants HP∗(Y ) and
HP∗# (Y ) are finitely generated as Abelian groups.

Proof. By [11, Theorem 3.1], the intersection of complex Lagrangians is an (oriented)
complex-analytic d-critical locus. The perverse sheaf P•(Y ) = P•L0,L1

is isomorphic to
the one constructed in [9, Theorem 6.9]. The manifold M = Xirr(6) is also an algebraic
variety, and the Lagrangians L0, L1 are algebraic. Thus, L0 ∩L1 is naturally an algebraic
d-critical locus, and from this we get an algebraic perverse sheaf P•alg(Y ). By construction,
P•alg(Y ) is taken to P•(Y ) by the forgetful functor from algebraic to complex-analytic
perverse sheaves. This implies that the cohomology sheaves of P•(Y ) are constructible
for an algebraic stratification ofXirr(Y ) = L0∩L1, which must have finitely many strata.
We conclude that HP∗(Y ) is finitely generated. A similar argument applies to HP∗# (Y ).

ut

The invariant λP should be contrasted with the SL(2,C) Casson invariant of three-mani-
folds defined by Curtis [14], which we will denote by λC . Her invariant counts only
isolated irreducible representations.
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For example, for the Brieskorn spheres 6(p, q, r), all the irreducible representations
are isolated, and we have

λP (6(p, q, r)) = λC(6(p, q, r)) = (p − 1)(q − 1)(r − 1)/4.

On the other hand, for the more general Seifert fibered homology spheres
6(a1, . . . , an), by [7, Theorem 2.7] we have

λC(6(a1, . . . , an)) =
∑

1≤i1<i2<i3≤n

(ai1 − 1)(ai2 − 1)(ai3 − 1)/4.

To calculate λP (6(a1, . . . , an)), we use (35) and the fact that the Euler characteristic
of the spaces Mα is (m(α)− 1)(m(α)− 2)2m(α)−4 (see [8]). We obtain

λP (6(a1, . . . , an)) =
∑
α

(m(α)− 1)(m(α)− 2)2m(α)−4,

For a concrete example, take the homology sphere 6(2, 3, 5, 7). This has 23 isolated
irreducible representations, and six (complex two-dimensional) families of irreducibles
with m(α) = 4. Therefore,

λC(6(2, 3, 5, 7)) = 23 but λP (6(2, 3, 5, 7)) = 23+ 6 · 6 = 59.

8.5. A bound on degrees

We now prove another result from the Introduction.

Proof of Theorem 1.8. Note thatR(Y ) andX(Y) are affine varieties, andXirr(Y ) ⊂ X(Y)

an open subvariety. In general, the hypercohomology of any perverse sheaf on a complex
algebraic variety of dimension d vanishes in degrees outside the interval [−d, d] (see for
example [19, Proposition 5.2.20]). Furthermore, as a consequence of the Artin vanishing
theorem, if the underlying variety is affine, then the hypercohomology of a perverse sheaf
is supported in non-positive degrees (see [19, Corollary 5.2.18]).

If Y has a Heegaard splitting of genus g, then the Lagrangians Li are isomorphic
to Xirr(Fg) and hence have complex dimension 3g − 3. The dimension of Xirr(Y ) is
bounded above by this. This shows that HP∗(Y ) is supported in degrees in the interval
[−3g + 3, 3g − 3].

Similarly, the dimension of R(Y ) is bounded above by 3g. Since R(Y ) is affine, it
follows that HP∗# (Y ) is supported in degrees in [−3g, 0]. ut

9. Further directions

9.1. Other groups

The sheaf-theoretic Floer cohomologies defined in this paper were based on the Lie group
SL(2,C). One may ask about generalizations to other complex reductive Lie groups G.

We refer to [62] for a discussion of G-representations of 0 = π1(M), where M is
either a surface or a three-manifold with boundary (such as a handlebody). Let us review
a few definitions and facts.
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A representation ρ : 0 → G is called irreducible if ρ(0) is not contained in any
proper parabolic subgroup of G. Further, an irreducible representation ρ is called good
if the stabilizer of its image is the center of G. The categorical quotient XG(M) =
Hom(π1(M),G)//G

ad is called the G-character variety. It has open subsets

XG,good(M) ⊂ XG,irr(M) ⊂ XG(M)

corresponding to the good, resp. irreducible representations.
We will focus our attention on complex semisimple Lie groups G. For such groups,

the Killing form on their Lie algebra g is non-degenerate. The existence of a symmetric,
bilinear, invariant form on g is an ingredient in both Goldman’s results on the symplectic
structure nature of the fundamental group of surfaces [29], and in our proof of stabiliza-
tion invariance (where it gives the form q needed in Proposition 5.1).

LetG be a complex semisimple Lie group, and6 a closed orientable surface of genus
g ≥ 2. Then XG,irr(6) is an orbifold, and its open subset XG,good(6) is a smooth man-
ifold (see [62, Proposition 5]). Moreover, Goldman [29] showed that XG,good(6) can
be equipped with a holomorphic symplectic form. If we have a Heegaard decomposition
Y 3
= U0∪6U1, then the image ofXG(Ui) inXG(6) intersectsXG,good(6) in a complex

Lagrangian submanifold (see [62, Theorem 6]).
When G = SL(n,C), we have the further nice property that all irreducible represen-

tations are good. Thus, XG,irr(6) is a complex symplectic manifold, with Lagrangians
coming from the Heegaard decomposition of Y 3. By applying Bussi’s construction we
obtain a perverse sheaf P •(Y,G) over XG,irr(Y ). The same proof as in the SL(2,C) case
carries over to SL(n,C), and we find that P •(Y,G) is a natural invariant of Y . Its hyper-
cohomology

HP∗(Y,G) := H∗(P •(Y,G))
is called the sheaf-theoretic SL(n,C) Floer cohomology of Y .

For other complex semisimple Lie groups, we could restrict to the open set consist-
ing of good representations, and proceed as before. This is somewhat unnatural, but gives
rise to invariants. A more challenging project would be to work on the orbifoldXG,irr(6),
and produce invariants that take into account all irreducible flat connections. Of partic-
ular interest is the case G = PSL(2,C), which is the most relevant one for Witten’s
interpretation of Khovanov homology (cf. Section 9.3 below). We remark that in [15],
Curtis defined a PSL(2,C) Casson invariant for three-manifolds; her invariant is a count
of the isolated irreducible flat connections, with rational weights dictated by the orbifold
structure.

With regard to constructing framed (sheaf-theoretic) Floer cohomologies, for G =
SL(n,C) we can draw inspiration from the constructions of U(n) Floer homologies
in [48] and [72]. Specifically, for 6 and 6#

= 6 # T 2 with a basepoint w ∈ T 2 en-
circled by a curve γ as before, and for any integer d relatively prime to n, we consider a
twisted character variety

Xn,d,tw(6
#) = {ρ : π1(6

#
\ {w})→ G | ρ(γ ) = exp(2πid/n) · I }/Gad.

This is a complex symplectic manifold, and a Heegaard decomposition of Y along 6
produces two Lagrangians inside Xn,d,tw(6#), just as in Section 3.1. We are using here
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the fact thatXn,d,tw(T 2) is a point. We deduce that the intersection of the two Lagrangians
can be identified with the representation variety of Y , and Bussi’s construction gives a
perverse sheaf P •# (Y, z) on that variety. Invariance can be proved as in Section 7.

9.2. Extensions

Going back to the caseG = SL(2,C), there are a number of ways one could try to extend
the constructions in this paper:

• There should be versions of the sheaf-theoretic Floer cohomology for admissible
GL(2,C) bundles, and for knots and links in three-manifolds.
• There should be a PSL(2,C)-equivariant sheaf-theoretic Floer cohomology of three-

manifolds, which involves both the reducibles and the irreducibles.
• An alternative construction of three-manifold invariants should be given using derived

algebraic geometry (cf. Remark 1.2).
• Similar invariants to those in this paper could be constructed using the theory of defor-

mation quantization modules.
• We expect our invariants to be functorial under four-dimensional cobordisms, and thus

part of 3+ 1-dimensional TQFTs, based on the Kapustin–Witten or Vafa–Witten equa-
tions.
• We expect that HP∗ can be categorified to give an A∞-category associated to the three-

manifold, in the spirit of [44], [34], or [26].
• One can investigate the effect on HP∗ or HP∗# induced by varying the complex structure

on the moduli space of flat connections.

9.3. Relation to Khovanov homology

In [46], Khovanov defined a homology theory for knots and links in R3, now known
as Khovanov homology. Witten [77] conjectured that the Khovanov homology of a link
L ⊂ S3 can be understood as a version of Floer homology, using the Haydys–Witten
equation on R3

×R+×R, with certain boundary conditions. The generators of this Floer
complex are solutions to the Kapustin–Witten equations [45] on R3

× R+.
Extending Khovanov homology to an invariant of links in arbitrary three-manifolds

is an open problem. It is natural to attempt to do so by considering the Haydys–Witten
equations on Y × R+ × R, where Y is any three-manifold. There are formidable ana-
lytical difficulties to be overcome in order to carry out this program, having to do with
non-compactness of the moduli spaces [69, 66, 67]. We refer to [33], [32] for some ex-
pectations about the resulting invariants, coming from the physics perspective.

The sheaf-theoretic invariant HP∗(Y ) constructed in this paper is a small step in this
program. It is meant to give SL(2,C) Floer homology, which can be thought of as encod-
ing information from the Kapustin–Witten equations on Y × R. We can view SL(2,C)
Floer homology as the space of integration cycles (thimbles) for the complex Chern–
Simons functional, as in [76], [77], [78]. To obtain analogues of the Jones polynomial,
one would need to also introduce the boundary conditions at Y × {0}. Moreover, to get
analogues of Khovanov homology, one would then need to categorify these invariants.
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9.4. An open question

Zentner [79] proved that if Y is a non-trivial integral homology 3-sphere, then π1(Y )

admits an irreducible representation into SL(2,C).

Question 9.1. Can one use Zentner’s result to prove that HP∗(Y ) detects S3 among ho-
mology spheres?
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(1994) MR 1274929

[64] Singer, J.: Three-dimensional manifolds and their Heegaard diagrams. Trans. Amer. Math.
Soc. 35, 88–111 (1933) Zbl 0006.18501 MR 1501673

[65] Solomon, J. P., Verbitsky, M.: Locality in the Fukaya category of a hyperkähler manifold.
Compos. Math. 155, 1924–1958 (2019) Zbl 1428.53059 MR 4010429

[66] Taubes, C. H.: Compactness theorems for SL(2;C) generalizations of the 4-dimensional anti-
self dual equations. arXiv:1307.6447v4 (2014)

[67] Taubes, C. H.: Sequences of Nahm pole solutions to the SU(2) Kapustin–Witten equations.
arXiv:1805.02773v1 (2018)

[68] Taubes, C. H.: Casson’s invariant and gauge theory. J. Differential Geom. 31, 547–599 (1990)
Zbl 0702.53017 MR 1037415

[69] Taubes, C. H.: PSL(2;C) connections on 3-manifolds with L2 bounds on curvature. Cam-
bridge J. Math. 1, 239–397 (2013) Zbl 1296.53051 MR 3272050

[70] Vafa, C., Witten, E.: A strong coupling test of S-duality. Nuclear Phys. B 431, 3–77 (1994)
Zbl 0964.81522 MR 1305096

[71] Vogt, H.: Sur les invariants fondamentaux des équations différentielles linéaires du second
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