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A two-variable series for knot complements

Sergei Gukov! and Ciprian Manolescu?

Abstract. The physical 3d N = 2 theory T[Y] was previously used to predict the
existence of some 3-manifold invariants Z (¢g) that take the form of power series with
integer coefficients, converging in the unit disk. Their radial limits at the roots of unity
should recover the Witten—Reshetikhin—Turaev invariants. In this paper we discuss how,
for complements of knots in S3, the analogue of the invariants Za (g) should be a two-
variable series Fx (x, g) obtained by parametric resurgence from the asymptotic expansion
of the colored Jones polynomial. The terms in this series should satisfy a recurrence given
by the quantum A-polynomial. Furthermore, there is a formula that relates Fx (x,q) to
the invariants Z,(g) for Dehn surgeries on the knot. We provide explicit calculations of
Fk (x, q) in the case of knots given by negative definite plumbings with an unframed vertex,
such as torus knots. We also find numerically the first terms in the series for the figure-
eight knot, up to any desired order, and use this to understand Z4(q) for some hyperbolic
3-manifolds.
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1. Introduction

Khovanov homology [48] is by now a well-known invariant of knots and links
in R3, with a number of striking applications, e.g., to concordance and four-ball
genus [76, 74], contact geometry [65] and unknot detection [52]. Although its
original definition is combinatorial in nature, Khovanov homology has properties
similar to those of the Floer homologies coming from gauge theory (instanton,
Seiberg—Witten). Since Floer theory gives invariants not just for classical knots,
but also for closed 3-manifolds (and knots in those), it is natural to ask if Khovanov
homology can be extended to general 3-manifolds. This is one of the major open
problems in quantum topology.

In fact, the Euler characteristic of Khovanov homology is the Jones polyno-
mial, which does have an extension to 3-manifolds: the Witten—Reshetikhin—
Turaev (WRT) invariant [90, 77]. Thus, one would like to categorify the WRT
invariant. However, this invariant is only defined at roots of unity, and does not
have obvious integrality properties to make it the Euler characteristic of a vector
space. One strategy pursued in the mathematical literature is to develop categori-
fication at roots of unity; see [50, 75, 27].

Different strategies can be pursued from physics. For example, Witten [91]
proposed a gauge-theoretic interpretation of Khovanov homology, in terms of
counts of solutions to certain differential equations: the Kapustin—Witten and
Haydys—Witten equations. In principle, one can study the solutions to these
equations in settings where R is replaced by another 3-manifold; see Taubes
[85, 86] for analytical results in this direction.
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In recent work, Gukov, Putrov, and Vafa [38] and Gukov, Pei, Putrov, and
Vafa [37] considered the 6d (0, 2) theory (describing the dynamics of M5-branes
in M-theory) and its reduction on a 3-manifold Y. The resultis a 3d N = 2 theory,
denoted 7'[Y]. The BPS sector of its Hilbert space should give rise to homological
invariants of Y, denoted }Cg’{;s (Y; a), similar in structure to Khovanov homology.
This picture is related by S-duality to Witten’s proposal from [91]; see [37,
Section 2.10]. Furthermore, a similar set-up, in terms of BPS states, was used
in [40] to describe Khovanov homology and HOMFLY-PT homology for knots
in R3.

The theory T'[Y] depends on the choice of a Lie group G but, for simplicity,
in this paper we will limit our discussion to G = SU(2), which is the case corre-
sponding to the Jones polynomial.

A rigorous mathematical definition of the invariants predicted in [38, 37] is yet
to be found. In fact, such a definition is lacking even for the Euler characteristic
of these invariants, which is a power series

Za(Yiq) =) (=1)q/ kHyl(Y:a) € 27°¢"Z[[q]],
iJ

for some ¢ € Z4 and A, € Q. Apart from the 3-manifold Y (which in this paper
will always be assumed to be a rational homology sphere), the series depends
on the choice of a Spin® structure a on Y, up to conjugation; this can also be
thought of as (non-canonically) the choice of an Abelian flat connection on Y or,
equivalently, of a value a € H{(Y;Z)/Z,. Up to multiplication by a factor, the
invariant Z, (Y; q) is a power series in ¢ with integer coefficients, which converges
for ¢ in the unit disk. When Y is understood from the context, we write Z,(g) for
Za(Y:q). A

A general conjecture was formulated in [38] which relates Z,(g) to the WRT
invariants of Y. Specifically, if we consider a certain linear combination of Za (q)
over different a and then take the limit as g goes to a root of unity, we should
obtain the WRT invariant. See Conjecture 3.1 below for the precise statement.

Apart from a few trivial cases (S3, lens spaces, S! x S?2), the conjecture was
also verified mathematically in the case of Brieskorn homology spheres with three
singular fibers: this is the older work of Lawrence and Zagier [53]; see also the
work of Hikami [45, 46]. However, the physics literature gives several methods
for computing Z4(q) for other 3-manifolds.

¢ In principle, for any 3-manifold, one could construct Z4(q) from the partition
function of Chern—Simons theory using resurgence. This is a general method
but challenging to put into practice. Some examples (for Seifert fibered
spaces) are presented in [36, 18, 16];
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e An explicit formula for Z4(q) for all negative definite plumbed 3-manifolds
is given in Appendix A of [37];

e Modularity properties can help compute the series for a manifold Y when we
know it for —Y, the manifold with the opposite orientation. See [16].

The purpose of this paper is to propose an analogue of the invariants Za(q)
for 3-manifolds with torus boundary, as well as a formula for gluing along tori.
In particular, we are interested in knot complements, and in Dehn surgery (gluing
a solid torus). One motivation for this work is to understand the theory T[Y]
in the case of knot complements. Another motivation is that, in the long term,
one could hope to give mathematical definitions of Za(g) and its categorification
in terms of surgery presentations. Indeed, this was exactly the strategy that
worked for the WRT invariants, in that it enabled Reshetikhin and Turaev to give
a mathematical definition of Witten’s theory. Every closed oriented 3-manifold
Y can be obtained from $3 by surgery on a link, and Reshetikhin and Turaev
expressed the WRT invariants of Y in terms of invariants associated to the link
(the colored Jones polynomials). A similar story exists in Heegaard Floer theory,
where there are surgery formulas for knots and links [72, 73, 57]. In our case, the
analogues of Za(q) for links in S3 are also related to colored Jones polynomials,
but in a more subtle fashion. The colored Jones polynomial has been categorified
[49, 13, 19, 89], and this should play arole in categorifying Za (g) for 3-manifolds.

We start with knot complements ¥ = ¥ \ vK that are represented by plumbing
graphs with one distinguished vertex. (Examples of knots with such complements
include the algebraic knots in S3, i.e., iterated torus knots.) If the plumbing graph
satisfies a certain weakly negative definite condition, we can imitate the formula
for Z, (g) of closed plumbed manifolds from [37] and obtain an invariant

Za(Y;z,n,q).

This is a series in two variables z and ¢, which depends on the choice of a
relative Spin® structure a € Spin®(Y, dY), as well as on another variable n € Z.
Furthermore, we have the following gluing result.

Theorem 1.1. Let Y~ and Y+ be knot complements represented by weakly nega-
tive definite plumbing graphs, andY = Y ~Up2 Y T the result of gluing them along
their common torus boundary. Let also a— and a™ be relative Spin® structures on
Y~ and YT, which glue together to a Spin® structure a on Y. Then

~ dz -~ _ ~
2.0:9) = (~1)7gE Y 95 O e iz )2 (Vi 2m ),
n
lz]=1

for some Tt € Z and £ € Q. (See Section 6.3 for the exact values of T and €.)
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For a given Y and a, we can view the set of invariants Za(Y; z,n,q) as an
element in a vector space V associated to the torus 72. Roughly, V is the space of
functions

(Z—i—%)xZ—)k

with certain properties, where Kk is a field consisting of Novikov-type series in g.
Theorem 1.1 can then be interpreted as an aspect of a TQFT for plumbed 3-man-
ifolds.

There is an interesting action of H(7?) = Z? onV, which allows us to relate
the invariants Z, (Y;z,n, q) for different ¢ and n. For example, when the weakly
negative definite plumbed manifold Y is the complement of a knot in an integral
homology sphere Y, all the different Z, (Y ; z, n, ¢) can be read from a single two-
variable series

Fr(x.q) € 27¢2Zx"2, 71 2[g 7" q],

which corresponds to choosing x = z2

A € () are some constants.

By computing the invariants associated to the solid torus, and applying Theo-
rem 1.1, we can prove a Dehn surgery formula. A formula of this type was already
conjectured in [36]. For p/r surgery, it involves the “Laplace transform”

,a = 0andn = 0. Here, ¢ € Z4 and

/P gV ifru—ae pZ
Ll()a/)r:xuqv —> q q ) PL, (1)
0 otherwise.

Theorem 1.2. Let Y be the complement of a knot K in an integer homology
3-sphere Y, and let Y,r the result of Dehn surgery along K with coefficient
p/r € Q*. Suppose that both Y and Y,r are represented by negative definite
plumbings. Let Fx(x,q) be the series associated to K. Then, the invariants of
Y,,r are given by

~ A L
Za(Ypyr) = £q - L) [(x7F —x720) Fr(x, )],
for some ¢ € {£1} and d € Q. (See Section 6.8 for the values of € and d.)
We have an explicit formula for Fk(x, ¢) in the case of torus knots in S3.

Theorem 1.3. Let s,t > 1 with gcd(s,t) = 1. For the positive torus knot
K = T(s,t), the series Fx(x, q) is given by
G=DE=D m2—(st—s—1)2

1 m m
Fe(eq)=q 2 5) em (xF —x")g v @)

m>1
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where
—1 ifm=st+s+torst—s—t (mod 2st),
em=14+1 ifm=st+s—torst—s+t (mod2st), 3)

0 otherwise.

If K = T(s,t),its mirror m(K) is the negative torus knot 7'(s, —t). In this case
it makes sense to define

1
Fm(K)(X, q) = FK(X’ q_l) = E(\p(x7 q) - \Ij(x_17q))v

where
rnz—(st—s—t)2

Veq) =g 2 Y e x B o

m=>1

The series (4) can be related to the colored Jones polynomials of negative torus
knots as follows. In [34], Garoufalidis and Lé defined the stability series of a
sequence of power series O n(q) € Z[[q]] as series of the form

D(x.q) =Y Pj(g)x/, )
J
such that
k .
N@mq"‘N(QN(q) - .2)4% (@)¢’™) =0, forallk > 0. (6)
Jj=

This encapsulates the asymptotic behavior of Q x(g), as N — oo.

It was proved in [34] that, for any alternating knot, its colored Jones polyno-
mials (suitably normalized) admit stability series. This is also true for negative
knots (those that can be represented by a diagram with only negative crossings),
such as the torus knots 7'(s, —t).

Theorem 1.4. Let s,t > 1 with gcd(s, t) = 1. The stability series for the colored
Jones polynomials of the negative torus knot T (s, —t ) is (¢"/>—g~"/?)~1.W(x, q),
where VU(x, q) is the series from (4).

This direct connection between Fg (x, ¢) and the stability series is specific to
negative torus knots; for example, it even fails for the positive trefoil. For arbitrary
knots, the relation between Fg(x, g) and the colored Jones polynomials J,(g) is
more complicated. What we have to do is to start with Rozansky’s asymptotic



A two-variable series for knot complements 7

expansion of J,(¢g) from [81]. This is in terms of the variables x and %, where
g =e"and x = g™

Jn(eh): 1 I PI(X) h—l— PZ(X) h2+"'=ZZCm,jnjhm' (7)

Ag(x)  Ag(x)3 Ag(x)? m=0;=0

Here, Ag(x) is the Alexander polynomial of K, and the coefficients c,, ; are
Vassiliev invariants of the knot K. The series Fx(x,q), or more precisely its

normalized version
Fg(x,q)

Je(x.q) = G — 5
should be a repackaging of the invariants c,, ;, in a similar manner to how the
Za (g) invariants for closed manifolds are obtained from the WRT invariants via
resurgence in [36].

Conjecture 1.5. For any knot K C S3, the Borel resummation of the double
series (7) gives a knot invariant fx(x,q) with integer coefficients (up to some

monomial):
Borel

In(@) =33 e inl W R fie(x.q) ®)

m=0 j=0

where ¢ = e and x = " = ¢".

Physically, the series fx(x,q) is a count of BPS states for the T[Y] theory
on the knot complement ¥ = S3\ vK. The exponential change of variables
h ~> g = e" that “magically” leads to integrality from a series with non-integer
coefficients is, in fact, rather common in the study of BPS states. A well-known
example of this is the relation between the (non-integral) Gromov—Witten invari-
ants and the (integral) Donaldson—Thomas invariants; see [59].

While the resurgence procedure in Conjecture 1.5 is general, in practice it is
hard to work out. We will explain how it is done in a simple example, that of the
right-handed trefoil 7'(2, 3), in which case we recover the corresponding series (2).

A better method to compute the series fx(x,q) is to take advantage of a re-
currence relation. The AJ Conjecture says that that the colored Jones polynomials
satisfy a difference equation given by the quantization A of the A-polynomial of
the knot; cf. [32, 35]. We conjecture that the same recurrence is satisfied by the
series fx(x,q), with initial conditions inspired by (7).

Conjecture 1.6. For any knot K C S3, the quantum A-polynomial of K annihi-
lates the series fx(x,q):
A fk(x,q) = 0. )
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Furthermore,

. B 1
Jim fie(r.q) = s.e. ( AK(x)), (10)

where the “symmetric expansion” s.e. denotes the average of the expansions of
the given rational function as x — 0 (as a Laurent power series in x) and as
x — oo (as a Laurent power series in x™1).

Equation (9) sets up a recursion for the coeflicients f,,(q) of each power of x
in the series fx(x,q). Equation (10) is a “boundary value” which is supposed to
determine fx(x,q) uniquely in combination with (9). In practice, this is done
by first calculating the polynomials Py (x) from (7), and then reading off the
coeflicients of each power of x in (7). These coefficients are power series in #, and
(through resurgence) we can turn them into series in ¢; in fact, for simple knots
the resurgence procedure is trivial, because we happen to obtain polynomials in
g = e*. In this fashion we get the first few series f;,(q), which act as initial
conditions for the recursion given by (9). This gives an effective procedure to
compute the first terms of fx(x,q) (or, if we prefer, of Fx(x,g)) to any desired
order of precision.

Experimentally, for the trefoil, the recursion produces the first terms of the
series (2), as expected. We can also obtain the first terms of the series for a
hyperbolic knot, the figure-eight knot 45 :

I -
Fay(x.q) = 5(E(x.q) — 2" q)). (1)
where
B, q)=x"2 42024 (g7 43 4q)x P+ 272 42¢ 7 4542 +2¢D)x 7 4

To check that we are on the right track, it is helpful to formulate another
conjecture, which is inspired by Theorem 1.2.

Conjecture 1.7. Let K C S3 be a knot, and S 5 f . (K) the result of Dehn surgery
on K with coefficient p/r. Then, there exist e € {1} and d € Q such that

~ 1 _L
Za(Vpyr) = £q® - L) [(x7F = x77 ) Fg(x. )],
provided that the right hand side of this equation is well defined.

The proviso of well-definedness in Conjecture 1.7 is due to the fact that we can
only apply the Laplace transform to Fg(x, q) for some surgery coefficients. The
range of applicability depends on the growth properties of the series.
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For the figure-eight knot, Conjecture 1.7 can be applied, for example, to the
—1 surgery, which gives the Brieskorn sphere c. We get

Zo(=2(2,3, 7)) =—¢*(I+q9+0*+4*+¢°+2¢"+¢°+2¢° +¢"*+2¢" +- ).

(12)

Observe that (12) agrees with the answer that was obtained from modularity

analysis in [16, eq. (7.21)]. This gives some evidence for Conjectures 1.6 and 1.7.

The same conjectures yield predictions for the invariants Z4(q) of some closed
hyperbolic manifolds. For example, for —1/2 surgery on the figure-eight knot,

Zo(S2,,(41) =—q"2(1—q+24>—2¢°+¢°+3¢""+q" —¢"* =3¢ """ +- ).

(13)
As far as we know, these are the first computations of Za(q) for hyperbolic
manifolds in the literature.

Remark. In addition to presenting the new results, we have written this paper
with the goal to better familiarize the mathematical audience with the invariants
Za (¢). Thus, we include a fair amount of background material (Sections 3 and 4),
and present the proofs of some “folklore” results, such as the invariance of Z4(q)
for plumbed 3-manifolds (Proposition 4.6).

Organization of the paper. In Section 2 we list the notational conventions that
we will use in this paper.

In Section 3 we review some known facts about the WRT invariants and the
g-series Za (g) for closed 3-manifolds.

In Section 4 we recall the formula for the Z, (¢) invariants of negative definite
plumbed 3-manifolds, and prove that they are independent of the plumbing pre-
sentation; we also explain how the labels a can be identified with Spin® structures.
Moreover, we give a more concrete formula for the invariants of Brieskorn spheres
with three singular fibers.

In Section 5 we describe plumbing representations for manifolds with toroidal
boundary (knot complements).

In Section 6 we define the invariants Z, (Y;z,n, q) for plumbed knot comple-
ments, and in particular the series Fx (x, q). Here we prove Theorems 1.1 and 1.2.

In Section 7 we study the invariants for torus knots, proving Theorems 1.3
and 1.4.

In Section 8 we discuss the resurgence procedure from Conjecture 1.5, and
apply it to the trefoil.
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In Section 9 we set up the recursion for the terms in the series Fx(x, q), as in
Conjecture 1.6. We show how it works in practice for the trefoil and the figure-
eight knot.

Finally, in Section 10 we discuss the physical interpretation of Fx(x,q), and
make some speculations about how one can approach the categorification of the
series Fx (x, q) and of the invariants Za (9).

Acknowledgements. We would like to thank Steve Boyer, Yoon Seok Chae,
Nathan Dunfield, Gerald Dunne, Francesca Ferrari, Stavros Garoufalidis, Matthias
Goerner, Sarah Harrison, Slava Krushkal, Thang L€, Jeremy Lovejoy, Satoshi
Nawata, Du Pei, Pavel Putrov, Marko Stosi¢, Cumrun Vafa, Ben Webster, Don
Zagier, and Christian Zickert for helpful conversations.

2. Conventions

With regard to knots, we denote by U be the unknot, by 37 and 3f the right-handed
resp. left-handed trefoil, and by 44 the figure-eight knot. We also let T'(s, ) be
the positive (s, )-torus knot, such that, for example, 7'(2,3) = 3]. We let m(K)
denote the mirror of the knot K.

We let 3, (K) denote the result of Dehn surgery along a knot K C S, with
coefficient p/r € Q.

With regard to 3-manifolds, we will follow the orientation conventions in
Saveliev’s book [84]. In particular, we will orient Brieskorn spheres as boundaries
of negative definite plumbings, so that, for example,

$(2,3,5) = 83,35 = =33,
$(2.3.7) = 83,(3) = —=S3(3}) = S3(41) = —S3,(41).
These are the same conventions as in Heegaard Floer theory [70, 71], and opposite

to the “positive Seifert orientation” conventions in other sources.
For lens spaces, we let

L(p.r) = S3,,.(U).

which is the usual convention but different from the one is [51] or in [69].
Note that L(p,r) depends only on r mod p, and there are symmetries
L(p,r)=L(p,r~")=—L(p,p—r).
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For example,
L(5,1) = $2(3]) = =S25(3) = =S3(U) = $2,(U) = —L(5,4),
L(7.1) = S3(3)) = —82,(3]) = =S3(U) = $3,(U) = —L(7.6),
S3(3) = —83,3) = LB, 2)#L(2,3) = LGB, D#LQ2, ).

With regard to quantum invariants, if we use the Kauffman bracket with vari-
able A, weletq = A% in the definition of the Jones polynomial. Thus, for example,
@) =q ' +q73—q7*

This is the convention used in most of the literature on WRT invariants of 3-mani-
folds, for example in [53], [11], or [38]. However, it is the opposite of the conven-
tion in the categorification literature and in most knot theory books, for example
in [56], and also in [34], where ¢ is replaced by ¢!, i.e., g = A™*.
The colored Jones polynomial of a knot K is denoted Jg , or just J, (when
K is implicit), so that J, = J is the usual Jones polynomial. (Some sources call
that J;.) The colored Jones polynomial is normalized so that for the unknot we
have Jy, = 1. Thus,
Jn(q) = [n]- Jn(q)
is the unnormalized or unreduced version of the colored Jones polynomial, where
qn/2 _ q—n/2
=g gn
is the “quantum integer.” Our conventions here follow [5], but are opposite to those
used by Khovanov in [49], where J,, was the unnormalized Jones polynomial and
J,, the normalized (or reduced) version.
The Alexander polynomial of a knot K is denoted Ag(x), and it is normalized
so that it symmetric with respect to x <> x~! and

Ag(l)y=1, Aykx)=1.
We will also make use of the g-Pochhammer symbol

(x;@)n = (1= x)(1 = xg)(1 = xg?) ... (1 —xq" ™).
We usually just write (x), for (x;q),. We allow for n = oo, in which case the
g-Pochhammer symbol is an infinite product (which can be expanded into a power
series).
As noted in Conjecture 1.6, given a rational function Q(x), we define the
symmetric expansion s.e.(Q(x)) as the average of the expansions of Q(x) as
x — 0 and as x — oo. For example,

s.e.(#) = %((x—x3 +x% =) T =X —),
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3. WRT invariants and ¢-series for closed 3-manifolds

3.1. WRT invariants. Let Y be a closed, connected, oriented 3-manifold. We
denote by A the space of SU(2) connections over Y modulo gauge equivalence.
Let CS: A — R/Z be the Chern—Simons functional. The Chern—Simons path
integral is given by

Zes(Y k) :/ezni(k—z)CS(A)DA.
A

See [90]. We denote & = 2mi/k and set

For example,

1/2 _ . —1/2

2. _q q
ch(SZXSI;k):l, ch(S?’;k):\/iSln—:—
k—k i2k
The Witten—Reshetikhin—Turaev (WRT) invariant is a normalization of Zcg
used in the math literature:

2k
7w(Y) = WZCS(YJC),

so that 7 (S3) = 1. A mathematical definition of 7; was given in [77]. The
definition of r can be extended to g being any root of unity, giving a map

7(Y): {roots of unity} — C.

Strictly speaking, in the definition, one also needs to choose a fourth root of ¢,
denoted A. This is not necessary when Y is an integral homology sphere. Further-
more, in that case, Habiro [43] showed that one can express 7(Y) as the evaluation
(at any desired root of unity) of an element

Hab(Y) = 3" an(q) - (9)n € Zlg).

n>0

where
@n=0-)(1=g*...(1—¢")
and Z/[E] = 1(31 Z]q]/((q)n) is called the Habiro ring. (The polynomials a,(q) are
not unique.)
One consequence is that the values of t(Y') at any root of unity ¢ are algebraic
integers in Z[g]. If we know them at the standard root of unity £ = ¢27%/¥ then we
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know them at any other primitive kth root of unity, by acting with the Galois group
Gal(Q(§)/Q). See [11, 10, 12] for extensions of these results to other 3-manifolds.
When we reverse the orientation of the manifold, we have

t(=Y)(g) = t1(Y)(g™"). (14)

3.2. The g-series. In [38, 37], a new set of 3-manifold invariants was predicted
from physics. They have integrality properties, and are in fact ordinary power
series in g (as opposed to elements in the Habiro ring). For rational homology
spheres, their relation to the WRT invariants should be as follows.

Conjecture 3.1. Ler Y be a closed 3-manifold Y with by(Y) = 0. Let Spin°(Y)
be the set of Spin® structures on Y, with the action of Z., by conjugation. Set

T := Spin°(Y)/Z,.
Then, for every a € T, there exist invariants
N €Q. ceZy, Zalg) €2°¢"Z[[q]].

with Z (q) converging in the unit disk {|q| < 1}, such that, for infinitely many k,
the radial limits lim,_, ;2xi/k Za (q) exist and can be used to recover the Chern—
Simons path integral in the following way:

Zes(Yik) = (iv2k) ™ Y e K@D W, 718, 2y (9) |y e2mize. (15)
a,beT

Here, the coefficients S,y are given by

e2ni 1k(a,b) + e—2m’ 1k(a,b)

Sap = , (16)
‘ Wal - HL(Y: Z)]

where the group Wy = Stabz, (x) is Z, if x = x and is 1 otherwise.

Conjecture 3.1 is basically Conjecture 2.1 in [37], but updated to take into
account various developments that have increased our understanding since then.

(a) Conjecture 2.1 in [37] is stated to hold for any value of k. This should be true,
for example, for negative definite plumbings. However, recent insight from
the theory of mock modular forms suggests that, for other 3-manifolds (e.g.,
positive definite plumbings), the relation to the WRT invariants only holds
as stated for the values of k in some congruence classes. At the remaining
values, there are certain corrections to the formula; see [16].
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(b) We restricted here to rational homology spheres. For manifolds Y with

b1(Y) > 0, the analogue of T proposed in [38, 37] was the set of connected
components of the space of Abelian flat SU(2) connections on ¥ (modulo
conjugation), which can be identified with (Tor H; (Y ; Z))/Z.,. However, it
is now believed that, for some 3-manifolds, there should also be series Z4(g)
associated to certain non-Abelian flat connections of special type; cf. [17].

(c) Even for rational homology spheres, our set of indices 7' differs from the

one proposed in [37], where it was H;(Y ;Z)/Z., (the space of Abelian flat
connections on Y). The two sets can be identified, using an affine isomor-
phism between Spin®(Y) and H,(Y;Z) =~ H?(Y;Z) that takes conjugation
of Spin® structures to the symmetry ¢ — —a on H;(Y;Z). However, this
identification is not canonical. For an explanation of why it is more natural
to consider Spin® structures (in the case of plumbed manifolds), see Sec-
tion 4.5. Note that Spin® structures also appear naturally in Seiberg—Witten
(or Heegaard Floer) theory, and this theory is related to T'[Y]; cf. [38, Sec-
tion 3].

(d) We also made a change of convention compared to [37, Conjecture 2.1].

There, the factor [W,|~! from (15) did not appear, but was rather incorpo-
rated into Z, (¢) itself. We chose this different convention because it makes
the gluing and Dehn surgery formulas more elegant, and because it is con-
sistent with the formula for plumbings in [37, Appendix A].

Let us make a few more comments about Conjecture 3.1.

Remark 3.2. The linking numbers lk(a, b) in (15), (16) appeared in [37, Conjec-
ture 2.1] as the usual linking numbers on H;(Y; Z), cf. [37, eq. (2.1)]. Here, we

define them on Spin® structures by using a Z,-equivariant identification between
Spin® structures and H;(Y;Z) as in point (c) above. The linking numbers are

independent of this identification.

Remark 3.3. After an identification as in (c), the numerator in the formula (16)
for S,, admits a geometric interpretation: it is the trace of the holonomy of the
flat connection labeled by a along a 1-cycle representing the homology class b.

Remark 3.4. The simplest version of Conjecture 3.1 is for ¥ an integral homology

asqg — e

3-sphere. Then, T = {0}, Soo = 1, and the conjecture predicts the existence of a
single series Zo(q) that converges (up to a power of ¢g) to

2" =72 (Y) = 2iv/2k - Zes(Y 3 k)
2ri/k
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Remark 3.5. One can conjecture that the limit on the right hand side of (15) also
exists at primitive k™ roots of unity different from ¢>7/*¥ The analogue of (15)
should hold for many such values, with the left hand side replaced by the (suitably
normalized) WRT invariant at that root of unity.

Remark 3.6. Equation (15) does not characterize the series Z4(q) uniquely.
Indeed, consider Euler’s pentagonal series

o0

@)oo = [[(A=g") =D (~1)mgmCm=1/2, (17)

n=1 meZ

This series converges in the unit disk |¢| < 1, and the result approaches 0 near each
root of unity. Thus, to every Za (g) we could add (¢) (times any polynomial in
q, if we prefer) and get a new series that has the same limits at the roots of unity.
However, physics predicts that there is a particular series Za(q), among all those
that satisfy (15), which is the one that should be categorified; cf. Remark 3.7
below.

Remark 3.7. The name “homological block™ is used in [38, 37] to refer to the
series Zg (¢)- This is due to the fact that we expect Zq (g) to have a homological
refinement, a bi-graded vector space U—CE’;‘S(Y) whose Euler characteristic is Z, (q).
We can think of this as an extension of Khovanov homology to 3-manifolds. We
denote the Poincaré polynomial of Hgpg(Y) by Z.(q.t) so that

Za(q.—1) = Za(q)-
As a simple example, when Y = S3, the relevant series is
Zo(q) = ¢ (=2 + 29).

with Ag = 1/2 and ¢ = 1. Its categorification is more complicated; according to
[38, eq. (6.80)], its Poincar€ series is

—172 (-19)o0
(2¢*) oo
=—2¢""2(1 +1q + (t + 1H)¢?
+ (@t +222+ )+ @ 2024203 +1hHgt + ).
(18)

20(S3; q,t) = —2q
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Remark 3.8. There are also “unreduced” versions of the invariants Za and Za.
For example, for Y = S3, according to [38, eq. (6.49)] and [37, eq. (3.6)],

Zo(S%q)  —2q7V2
Do (Do

28nred(s3;q) — — _2q1/2(1 +q2 +q3 + 2q4 + )

and

iunred(S3,q f) = ZO(S3§C],I) _ —2(]_1/2
0 s Y (_tq)oo ([2612)00

=272+ 2> + 123 + (2 + 1Hgt + ).

3.3. Surgery and Laplace transforms. The definition of the WRT invariant
7% (Y) in [77] is based on representing a 3-manifold by integral surgery on a link
in §3. In particular, for a knot K C S> and p € Z non-zero, the formula is

k— pn2=1)
] ) ) 100

(19)
S K [npgsientn) @5

w(Sy(K)) =

where Jx ,(q) is the colored Jones polynomial and sign(p) € {£1}.

In [9] and [12], Beliakova, Blanchet, and L& used this formula to express
the Habiro series of certain 3-manifolds in terms of “Laplace transforms.” As
mentioned in the Introduction, the Laplace transform L;"/)r takes a series in two
variables x, ¢ into a series in a single variable g, by the formula (1).

In our situation, Habiro [42, 43] showed that there are Laurent polynomials
Cm(q) € Z|q.q™"] such that

Tkn@ =Y Cn@(@" m@ ™ )m. (20)

m=>0

This is called the cyclotomic expansion of the colored Jones polynomial. If we set
x = g" and write

Ck(x.q) = Y Cn(@)(@X)m(qx " Im 1)

m=>0

and plug (20) into (19), we find that 7z (S;(K )) is a linear combination of expres-
sions of the form Lé“) ((x4+x71=2)-Ck(x, ¢)). This can be generalized to rational
surgeries S ; . (K), using the formula for the WRT invariants of rational surgeries
in [12]. What we get is that the Laplace transforms

L9 [(x7 —x73)(xF —x"27)Ck(x, )]

p/r

can be combined to give the Habiro expansion Hab(S ;’ Ia (K)).
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Inspired by this, in [36, Section 5.3], Gukov, Marifio, and Putrov conjectured
that the g-series of Y can be obtained by a Laplace transform from a two-variable
series associated to the knot:

2a(S3,(K)iq) = £ [(x7 —x™)(x27 —x7%) fx(x.q)).  (22)

In contrast to what was claimed in [36], our new understanding is that fx is
not directly related to the cyclotomic expansion (just as the g-series Z4 is not
directly related to the Habiro series). In this paper we will explore different ways
of constructing the series fx(x,q).

Note that Ck(x,q) is not a true power series in ¢ and x, because in the
summation in (21) there may be infinitely contributions from the same monomial
x"-q?. Rather, it is a cyclotomic expansion, and by applying the Laplace transform
to each of the summands and then summing up, we obtain an element of the Habiro
ring. On the other hand, our new object fx(x,q) will be a Laurent power series,
and by applying the Laplace transform we will obtain Z4(¢), which s a true power
series (up to a monomial). Roughly, the cyclotomic expansion and the Habiro
series are tailored to g being a root of unity, whereas fx(x,q) and Za(q) deal
with |¢| < 1.

3.4. An example: the Poincaré sphere. The Poincaré sphere is obtained by
(—1) surgery on the left-handed trefoil:

P =3(2,3,5=533). (23)

The cyclotomic expansion of the colored Jones polynomial for Sf is

I3t @ =) d" @ (@ m. (24)

m=>0

Applying the surgery formula (19), we find that the WRT invariant of P is

o
() = 12 24" " 3)
m=1
The above expression can be evaluated at any root of unity, and in fact it is the
Habiro series for P.
The g-series Z for P was computed in [36, Section 3.4] using resurgence, and
can also be deduced from the general case of negative definite plumbings (since
P is the boundary of the — Eg plumbing). We have

Zo(P:q) = ¢7*?(2 - A(9)). (26)



18 S. Gukov and C. Manolescu

where
o0 o0 5
AQ) = 4" (@ =) x+ (g /120
n=0 =1 (27)
=1+q+q3+q7—q8—q14—q20—q29+q31—l-"'
and
1 ifn=1,11,19,29 (mod 60),
x+(m) =13—1 ifn =31,41,49,59 (mod 60), (28)
0 otherwise.
Thus,

ZoPiq)=q 0 —q—¢* " +® + ¢ +¢* + ¥ - + ).

This expression (which is easily seen to converge for |¢| < 1) had already
appeared in the math literature, in the older work of Lawrence and Zagier, where
they proved the following.

Theorem 3.9 (Lawrence and Zagier [53]). For every root of unity &, the radial
limit of Zo(P;q) as ¢ — & gives the (renormalized) WRT invariant of P:

lim, Zo(P:q) = 2(¢"* — g7 V?)2(P)(§).
q—)

This shows that Conjecture 3.1 is satisfied for the Poincaré sphere; cf. Re-
mark 3.4.

Interestingly, note that A(g), when written as the sum A(q) = Y vy 4" (¢")n,
can also be viewed as an element of the Habiro ring, and thus evaluated at roots
of unity. As we take radial limits towards a root of unity &, in view of (25), (26),
and Theorem 3.9, we get

lim A(q) = 2A4(§).
q—&

This relation is specific to the Poincaré sphere. In general, for an arbitrary
3-manifold, we cannot interpret its Habiro series as an actual power series in g.

The expression A(g) is the false theta function associated to the following
Ramanujan mock modular form of order 5:

n

o
xo@)=Y L 14 q+ P24 +q* 3¢5 +2¢5+3¢7 +3¢5 +5¢° +--- .
n=0

— (@™ n B

The ¢-series Zo(q) for — P (the Poincaré sphere with the opposite orientation) is
in fact

Zo(=P;q) = ¢**(2 - x0(q)).



A two-variable series for knot complements 19

Remark 3.10. For any 3-manifold Y, recall from (14) that the WRT invariant
of —Y is obtained from the one for Y by taking ¢ — ¢~!. The series Za (Y) and
Za(~Y)arenotas easily related. Rather, one needs to find an analytic continuation
of Z, (Y) outside the unit disk, and then take ¢ — ¢~!. This is how one can obtain
A(g) from y¢(q), and vice versa. For other examples of such relations (using
modularity properties of the respective series), we refer to [16].

4. Plumbed manifolds

4.1. Plumbings. Let " be a weighted graph, that is, a graph together with the
data of integer weights associated to vertices. Throughout this paper we will
always assume (for simplicity) that I" is a tree.

If Vert is the set of vertices of I', we let m, € Z be the weight of a vertex
v € Vert, and deg(v) be the degree of v, that is, the number of edges meeting at
that vertex. Let s be the cardinality of Vert. Consider the s x s matrix M given by

1, v1, U5 are connected,
My, v, = ymy, vI =V =0, v; € Vert. (29)
0, otherwise.

From I we can construct a framed link L (I") made of one unknot component
for each vertex v € Vert, with framing m,, and with the components correspond-
ing to vy and v, chained together whenever we have an edge from v; and v,. (See
Figure 1 for an example.) We let W(I") be the four-dimensional manifold obtained
by attaching two-handles to B* along L(T") or, equivalently, by plumbing together
disk bundles over S? with Euler numbers m,. Let Y = Y(I") be the boundary of
W(I'). This is a closed, oriented 3-manifold whose first homology is

H\(Y) =75 /MZ°.

The manifolds Y obtained this way are always graph manifolds, that is, made
of Seifert fibered pieces glued along tori (in the JSJ decomposition). We will
mostly be interested in the case where M is nondegenerate, so that Y is a rational
homology sphere. When M is negative definite, we will say that Y is a negative
definite plumbed 3-manifold.

There is a set of Neumann moves (sometimes also called “3d Kirby moves”) on
weighted trees that change the graph but not the manifold Y (I"); see Figure 2. In
[63, Theorem 3.2], Neumann showed that two plumbed trees represent the same
3-manifold if and only if they are related by a sequence of these moves.
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-2 -2
—1 —7 Qw -7
&/1
-3 -3

Figure 1. On the left we show a plumbing graph representing the Brieskorn sphere
3(2,3,7). The corresponding surgery diagram is on the right.

+ 1 0

;mlil m2:|:2 §m1:|:1 +1 ; mi my

12 12 12

my + mop
E mi my E nmi
() (b) (©)
Figure 2. Moves on plumbing trees that preserve the 3-manifold.

One large class of plumbed 3-manifolds is obtained as follows. Consider the
Seifert bundle over S? with orbifold Euler number e € Q, and Seifert invariants

(b17a1)7 MR (bn,an),
with gcd(a;, b;) = 1. This manifold is usually denoted

M(b'al a—”),

) Es ceey bn
where
n
ai
b=e— — e Z.
With respect to changing orientations, we have
ap ay a an
(b Y (i ),
by by ( by by
Write b; /a; as a continued fraction
b; . 1
—=k-— 30)
a; ! ; 1
kb — "
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Let I" be the star-shaped graph with n arms, such that the decoration of the central
vertex is b and along the i ™ arm we see the decorations —ki, —k%. ..., —k% , in that
order starting from the central vertex. Then Y (I") is the given Seifert fibration. We
will mostly focus on negative definite plumbings, so we will usually take b < 0
and 0 < a; < b,’.

In some cases (for example, if n < 2, the manifold M(b;a,/b1,...,an/by)
is a lens space, S' x S2, or a connected sum. We call such cases special, and
the other Seifert manifolds generic. Lens spaces can be represented by both
negative definite and positive definite plumbings. For generic Seifert manifolds,
the orbifold Euler number e determines whether the Seifert fibration admits such
plumbings.

Theorem 4.1 (Neumann and Reymond [64]). Let M be a generic Seifert bundle
over S2, with orbifold number e. Then, M can be represented by a positive definite
plumbing if and only if e > 0, and by a negative-definite one if and only if e < 0.

Finally, we note that if
blbz...bne:—l, (31)

then Y is an integral homology sphere, denoted X (b1, . . ., b,). The values of a; are
uniquely determined by the values of b;, the fact that b € Z, and the condition (31).
In fact, any Seifert fibered integral homology sphere is of the form £3 (b, ..., by,)
for some b; .

4.2. Identification of Spin® structures. A Spin® structure on an oriented n-
dimensional manifold Y is a lift of the structure group of its tangent bundle from
SO(n) to

Spin‘(n) = Spin(n) xz/2 S'.

When they exist (which they always do for n < 4), Spin® structures form an affine
space over H2(Y ; 7). We are interested in describing the space Spin®(Y') of such
structures in the case where Y is Y(I") for a plumbing tree I". Such a description
has already appeared in the literature on Heegaard Floer homology [71], but we
will give a slightly different description, tailored to our purposes.

Let us first consider Spin® structures on the four-manifold W = W(I") with
boundary Y. Note that H; (W) = 0 and Hy(W) =~ Z*, with a basis given by the
2-spheres associated to the vertices of I'. Spin® structures on W can be canonically
identified (via the first Chern class ¢1) with characteristic vectors K € H?*(W),
that is, those such that

K@) = (v,v), forallve Hy(W).
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If we identify H?(W) = Z* using Poincaré duality, we see that characteristic
vectors are those K € Z° such that

K =m (mod 27°),

where m is the vector made of the weights m, for v € Vert. Therefore, we have a
natural identification
Spin®(W) ~ 27° + m. (32)

This identification has the nice property that conjugation of Spin® structures
corresponds to the involution a <> —a on the right-hand side.
For the 3-manifold Y, Poincaré duality and the long exact sequence

H*(W,0W) — H*(W) — H?*(Y) — 0

gives the identification H,(Y) =~ H?(Y) = 7Z*/MZ*. Further, we see that the
map
Spin® (W) — Spin®(Y)

is surjective and, using (32), we obtain a natural identification
Spin“(Y) =~ (2Z° + m)/(2M Z°), (33)

again taking the conjugation symmetry to a <> —a.
We claim that there is also a natural identification

Spin®(Y) =~ (2Z* + 8)/2MZ*), (34)

where § € Z° is the vector given by the degrees (valences) of the vertices of T,
that is
8 == (8U)U€Vel't’ 81} == deg(v). (35)
Observe that
m+ 8= Mu,
where u = (1, 1,...,1). To go from (33) to (34), we will use the map

b: Q75 + i)/ QM Z*) —> Q75 + 8)/ M Z),

. . (36)
[£] — [£ — Mul],

taking [m] to [—g]. Note that (36) commutes with the conjugation symmetry
a < —a.

To be justified in calling the resulting identification (34) natural, we should
check that it does not depend on how we represent the manifold ¥ by a plumb-
ing tree. Specifically, for each of the Neumann moves from Figure 2, we
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should describe some (reasonably simple) isomorphisms between the spaces
7 + 5) /(2MZ*) before and after the move. Similar isomorphisms already
exist between the spaces (2Z° + m)/(2MZ*) before and after the move, due to
their identifications (33) with Spin®(Y). These before / after isomorphisms should
commute with (36). Further, all our isomorphisms should commute with the con-
jugation symmetry.

Let us explain how this is done for the Kirby move from Figure 2 (a), with the
signs being —1. We use M to denote the adjacency matrix for the bottom graph
in that figure, and M’ to denote the one for the top graph. Similarly, we use m and
§ for the bottom graph, and m’ and §' for the top. For the bottom graph, we write
a vector £ € Z* as a concatenation

€= (. by,

where € 1 corresponds to the part of the graph on the left of the edge where we do
the blow-up (including the vertex labeled ), and A corresponds to the part on
the right (including the vertex labeled m,). From ¢ we can construct a vector for
the top graph of the form

TC = (€,,0,0,) € 751,
with the 0 entry corresponding to the newly introduced vertex. Let also
¢y =1(0,...,0,0,1,0,0,...,0)
be the vector with the 1 entry in the position of the new vertex. Note that
M'éy =(0,...,0,1,—1,1,0,...,0)

with the nonzero entries being for the three vertices shown in the figure.
Note that

m =Tm+(0,...,0,—1,—-1,—1,0,...,0) = T — Mg, — 2&,

and
8 =T5§+1(0,...,0,0,2,0,0,...,0) = TS + 2ey.

With this in mind, the before / after isomorphisms are given by

M (QZF + i)/ CMZE) —> Q75T + i)/ @M 75T,

R (37
[0] —> [TL+ M'é),
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and

W (275 +8))@MZ5) = 75T + 8 /M7,

. (38)
[€] —> [T2).

We claim that these commute with the identification ¢ from (36), i.e.,
Ylop=goy™ (39)

Since all our maps are affine, it suffices to check this when evaluated on a single
element, say [m]. We have

WP o) (]) = vi ([-8]) = [-T5] = [28, — ']

and
(¢ o y™)([m]) = ¢([Tm + M'é])
= ¢([m' + M'éy + 2o + M'éy))
= ¢ (I’ + 2éo))
= [280— &),
which proves (39).

The other Neumann moves can be treated similarly.
The isomorphisms between the different spaces (2Z° +§)/(2M Z*) will appear
again later, in the proof of Proposition 4.6.

4.3. The g-series. Letus review the formula for the g-series Za (g) for the closed
3-manifolds given by negative definite plumbings along trees. This formula was
proposed in [37, Appendix A], by applying Gauss reciprocity and a regularization
procedure to the WRT invariants of those manifolds. It was shown in [16] that
the same formula also works for some graphs that are not negative definite; see
Definition 4.3 below.

We keep the notation from Subsections 4.1 and 4.2. The series Za (g) will be
canonically indexed by Spin® structures on Y'; or, if we prefer, by Spin® structures
modulo the conjugation a <> —a, since we will have

Za(q) = Z—a(q).

See Section 4.5 for a discussion of the identification between Spin® structures and
Abelian flat connections.
As in (34), we have identifications

Spin‘(Y) =~ (2Z° + §)/(2MZ*) = 2 Coker M + §. (40)
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Pick some @ € 2Z° + § that represents a class
a € (2Z° + 8)/(2MZ*) =~ Spin°(Y).

Then, the formula in [37] reads as follows:

~ 30—Yymy dZU 12_deg(v) _ >
Zu@ = 07 b [z ) 0@, @)

|ZUl:lvaergmzv Zy
where 3 ;
0" = Y g ] (42)
{e2M 75 +a veVert
Here, v.p. denotes taking the principal value of the integral. This is given by
the average of the integrals over the circles |z,| = 1 4+ € and |z,| = 1 — ¢, for

€ > 0 small. (For simplicity, we will drop v.p. from notation from now on.) Also,
m = w(M) denotes the number of positive eigenvalues of M, and 0 = (M) is
the signature of the matrix M, that is, the number of positive minus the number of
negative eigenvalues. We have 0 = 2z — s. Further, when M is negative definite,
we simply have # = 0 and 0 = —s.

Remark 4.2. The sign (—1)” in (41) was missing in [37], since that paper only
dealt with the negative definite case. The sign is necessary for the formula to give
an invariant; cf. Proposition 4.6 below.

Let us give two other formulas for 2a (¢), easily obtained from (41). First, note

that
95 dz,
270 Zy

|zv|=1

applied to a Laurent series in z, or z; ! simply has the effect of taking the constant
coefficient of that series. With this in mind, we can turn (41) into the formula

vav 17
Za(q) =27 (=D)"q" 3 Fagm 43)
{eaM 75 +a

where F; are the expansion coefficients of

F(zy,....z5) = ZFZHZf”
Z v

1
T {5 s 4

veVert

+ expansion 1
atx — 0o (Zv _ l/Zv)degv—Z ’
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Second, let us transform the formula (41) into one made from local contribu-
tions to each edge and vertex. We write

E: 2Mn + as n= (nv)veVerty a= (av)veVert € Zs’ (45)
so that R R
M~ . . S M~
%:(H,Mn)“r(a,n)‘i‘( n ) (46)

From here we get a new formula

Zalg) = (1y7g T Y 95;?; [TeoTTeo @

where the factor associated to a vertex v with framing coefficient m,, is

—maop2_mu _ 1\2
q myny—-71 av”vzgmvnv‘f‘ﬂv (Zv _ Z_) (48)
v

and the factor for an edge (u, v) is

2ny 2ny
—2nyny Zy Zy

B o T )

These factors have a physical meaning. Each vertex v in the plumbing graph
contributes to the 3d N = 2 theory T'[Y] a vector multiplet with G = SU(2) and
supersymmetric Chern—Simons coupling at level a,. Similarly, each edge (u, v)
of the plumbing graph contributes to 7[Y] matter charged under gauge groups
SU(2), and SU(2),.

In [37, Appendix A], the formula (41) was introduced under the assumption
that M is negative definite. This condition guarantees that there is a lower bound
on the exponents of ¢ that appear in (41), and that there are only finitely many
terms involving the same exponent of ¢. Hence, the right hand side of (41) is well
defined.

The negative definite condition can be relaxed as follows. (Cf. [16, Sec-
tion 6.1].)

(49)

Definition 4.3. We say that a plumbing graph I is weakly negative definite! if
the corresponding matrix M is invertible, and M ! is negative definite on the
subspace of Z° spanned by the vertices of degree > 3.

1 This is not to be confused with negative semi-definite.
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If T is weakly negative definite, then 2a (Y) is still well defined. Indeed, if
a vertex v has degree < 2, then the corresponding expansions in (44) are finite,
which means that only finitely many values of £, produce nonzero contributions.
Hence, what we need is a lower bound on the exponent —w with ¢, taking
values in a finite set for vertices v of degree < 2. The weakly negative definite
condition ensures this.

Examples of weakly negative definite graphs that are not negative definite
can be obtained using the Neumann move (c) from Figure 2. Observe that the
diagram on the top has a vertex labeled 0, and thus cannot be negative definite.
Nevertheless, if the bottom graph is negative definite, the top graph can be seen
to be weakly negative definite. Then, the formula (41) still makes sense for the
top graph, and gives the same result as for the bottom graph. (See Proposition 4.6
below for the invariance result.)

Remark 4.4. In some cases, one can even define Z,(¢) when M is not invertible,
provided that a is in the image of M. Then, we could write { = MK for some IE,
and replace (Z M _IZ) with (12 .M IE) in (42). This allows one to consider manifolds
with by > 0. For a simple example of this, take the graph with a single vertex,
labeled by 0, and @ = (0). The graph represents S' x S2, and the formula (42)
gives

Zo(S! x §%) = -2,

in our normalization.

Remark 4.5. A rigorous proof of the convergence of Z4(g) to the WRT invariants,
as g approaches a root of unity, has not yet appeared in the literature. In the special
case where Y = X (by, by, b3) is a Seifert fibered integer homology sphere with
three singular fibers, convergence to the WRT invariants follows from the work of
Lawrence and Zagier [53, Theorem 3], combined with Proposition 4.8 below.

4.4. Invariance. To make sure that the formula (41) gives an invariant of the
plumbed manifold Y and the Spin® structure a, we need to check that it does not
depend on the presentation of Y as a plumbing. This fact is well known to experts,
but we include a proof here for completeness.

Proposition 4.6. The series Za (q) defined in (41) is unchanged by the Neumann
moves from Figure 2.

Proof. Consider the move (a), with the signs on top being —1. We keep the
notation from Section 4.3 for the quantities associated to the bottom graph, and
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we use a prime to denote those for the top graph. For example, M is the matrix for
the bottom graph, and M’ the one for the top graph. The quadratic form associated
to M’ has an extra negative term compared to the one for M, namely

2 2 2 2
—X7 —2X0X1 — Xy — 2XoxX2 — X5 — 2x1X2 = — (X1 + X0 + x2)~,

where x1, xg, X, are the variables for the three vertices shown in the figure (in this
order, from left to right). Therefore, the signature ¢’ is ¢ — 1, and the number 7 of
positive eigenvalues does not change. The quantity 30 — ), m,, does not change
either, so we have the same factors in front of the integral in (41).

For the bottom graph, as in Section 4.2, let us write a vector (€7 asa
concatenation R

€= ({1, 0y),
where £ 1 corresponds to the part of the graph on the left of the edge where we do
the blow-up (including the vertex labeled m,), and 572 corresponds to the part on
the right (including the vertex labeled m,). From ¢ we can construct a vector for
the top graph
= (Zl, 0, Zz) € Zs+1.

(This was denoted T { in Section 4.2)

If a Spin® structure a is represented by the vector a for the bottom graph, we
will represent it by a’ for the top graph. If zo denotes the variable for the newly
introduced vertex of degree 2 in the top graph, observe that the integral in (41) only
picks up the constant coefficient from the powers of zy in the theta function (42).
Thus, we can just sum over vectors in 2M 751 + G that have a 0 in the respective
spot; that is, those of the form ¢ for some £ € 2MZ° +a. By simple linear algebra,
if

= ib = (iby. D)

then
(M7 = (01, wo, W2),

where wy is the sum of the entries of w at the two vertices abutting the edge where
we do the blow-up. This implies that

€, M~ = @, (M)0). (50)

From here we get that the integrals give the same result for the two graphs, and
hence the series Z, (g) are the same.

The case of the move (a) with the sign +1 is similar, but with some differences.
The quantity 30 — ), m, is unchanged by the move, but 7’ = 7 + 1 so the sign
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switches. Given { = (ZI,ZZ) € 77, this time we define
0 = (£1,0,—05) (51)

and then (50) still holds. We choose @’ from a by (51). To compare the theta
functions for the two graphs, given the change of sign in 572 we need to do the
substitutions z, — z, ! for all the vertices v on the right hand side. Let Vert, be
the set of these vertices. In the formula (41), all the expressions z, — % pick up a
sign for v € Vert,. This produces an overall sign of (—1)&, where

g =) (2—deg(v))

veVerty

is odd. The resulting —1 sign cancels with the one that gives the discrepancy in
=Dr.

Next, we consider the move (b), with the sign of the blow-up being —1. Then,
we have 7’ = n, 0’ = o — 1 and the quantity 30 — )_, m, is 1 lower for the
top graph as for the bottom one. Thus, doing the blow-up gives an extra factor of
¢~"% in front of the integral in (41).

For the bottom graph let us write vectors as

€= (lo.by) € 7°,

with the entry £; being for the vertex labeled m;. For the top graph we have
corresponding vectors of the form

0, = (Lo, £y £1,F1).

Given a vector a for the bottom graph, the same Spin® structure a can be repre-
sented by either a’, or a’_ in the top graph. Let zy be the variable for the newly
introduced terminal vertex in the top graph, and z; for the vertex labeled by m,
in the bottom graph and m; — 1 in the top graph. For the top graph, the integrand

in (41) has new factors
1\-1 1
(-2 (- 2)
Thus, the integral only picks up expressions from the theta function of the form
I, zf” where £y = F1, and these come with a sign +1. We have
€M7 = (@, (M) L) + 1.

This means that the relevant terms (those with £ = F1) in the theta function for
—M' sum up to

A S R}



30 S. Gukov and C. Manolescu

Putting everything together, we get the same answer for Za(q) as computed from
the two graphs.
Move (b) with the sign of the blow-up being +1 is similar, but now we use
vectors of the form
0, = (Lo, £y £ 1,£1).

For move (c), the top graph has an extra negative and an extra positive eigen-
value, son’ = w + 1 and 30 — ), m, is unchanged. Let zy, zo, z, be the variables
for the vertices vy, v, v2 shown in the top graph (in this order), and z, the one for
the vertex v shown in the bottom graph. In the integral for the top graph, since
the middle vertex has degree 2, we only care about contributions from vectors v
with £; = 0. We write these vectors as

Z/ = (Z1,£1,0, K2, Z2)

where £ 1 has the entries for vertices on the left side of the graph (not including v,),
and ¢, has the entries for vertices on the left side of the graph (not including v,).
From ¢’ we can create a vector for the bottom graph

{= (U1, 01 — L, —L5).

A linear algebra exercise shows that
7 -1\ _ (! nN—1pr
(LM = . (M)"L). (52)
Given a vector
a = (ai,ap, —az)

representing the Spin® structure a for the bottom graph, we will use @’ for the top
graph, where a’ is any vector of the form

a' = (d1,a1,0,az,d>)

with a; —a; = ap and a4, a, of the correct parity (determined by the degrees of
those vertices).

Using (52), we see that in the theta function for —M’, we have identical powers
of ¢ from all vectors of the form ¢ with 21,22 and £ — £, = ¢} fixed. Thus, we
are integrating an expression of the form

(Y Giz™) -6,
nez

When we integrate this over the circle with respect to z; and z,, we pick up the
constant terms in z; and z,. In particular, we only get contributions from the terms
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in G(Z’) where the exponents of z; and z, are the same even number, and any such
term contributes once. Thus, we could get the same result by setting zyz, = 1 in
the expression above and just integrate over a single variable z; := z; = z; 1. Let
us also change variables from z, to z;'! for all vertices v on the right hand side of
the graph. Then, observing that

(2 —deg(v1)) + (2 — deg(v2)) = 2 —deg(vp),

we get that the integral in the formula (41) for the top graph recovers the one for
the bottom graph, up to a sign of —1. This sign is canceled by the one coming
from the discrepancy between (—1)” and (=D, O

Remark 4.7. The Neumann moves preserve the property of a graph being weakly
negative definite (so that Za(q) is well defined). For a proof of this fact, see [16,
Appendix A]. Thus, if ¥ admits a weakly negative definite plumbing diagram,
then all of its plumbing diagrams are weakly negative definite. For example, in
view of Theorem 4.1, a generic Seifert bundle over S? with positive orbifold Euler
number (e > 0) admits a positive definite plumbing (which is clearly not weakly
negative definite), and therefore cannot be represented by any weakly negative
definite plumbing. It follows that generic Seifert bundles over S2? have weakly
negative definite representations if and only if e < 0.

4.5. Spin® structures versus Abelian flat connections. In [38, 37], the invari-
ants Z,(g) were indexed by Abelian flat connections (modulo conjugation). In
the case of rational homology spheres, these connections correspond to elements
of H(Y;7Z)/Z,. However, in Section 4.3, the labels were Spin® structures on Y
(modulo conjugation). Let us discuss this discrepancy.

By Poincaré duality, we have H,(Y;7Z) =~ H?(Y;Z). Further, there is a well-
known affine (non-canonical) identification

Spin(Y) = H*(Y; 7).

This identification can be made canonical after choosing a Spin® structure ag that
should correspond to 0 € H?(Y ; Z). Concretely, in the case of a negative definite
plumbed manifold ¥ = Y(T') as in Section 4.1, by (40), we have Spin°(Y) =
27* + 5)/ (2MZ?). On the other hand, H,(Y;Z) =~ H?(Y;Z) is canonically
Z°/MZ*. Choosing an dgy € 27Z°* + § will give the identification

Spin®(Y) = H1(Y:Z). [a] — [(a@ —a0)/2].

In order for this identification to commute with the conjugation on the two
sides, we need that @y € MZ*. One can prove (by induction on the number of
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vertices in the plumbing graph) that such an @, always exists, i.e.,
(Z* +8) N (M - Z°) # 0.

If this intersection contained elements in a single equivalence class modulo 2M Z*
and conjugation, then the identification between Spin® structures and Abelian
flat connections would be uniquely determined (canonical). However, this is not
always the case, as the following example shows.

Let I' be the following graph:

-3 -3
—————eo

The resulting plumbed manifold ¥ = Y(T') is the lens space L(8,3). There
is a self-diffeomorphism 4: Y — Y given by interchanging the two vertices. We
have

H\(Y:;7Z) = 7?/ Span{(—=3, 1), (1, =3)).

The quotient H,(Y;Z)/Z, consists of 5 elements «;, with representatives
(j,0) € 72, for j = 0,...,4. These in fact correspond to the Abelian flat
connections given by sending the generator of m1(Y) to the diagonal matrix
diag(w’, w™7), where w = e™/*. The diffeomorphism & preserves ag, a2, and a4,
but interchanges o with «3.

On the other hand, we have

Spin‘(Y) 2 (2Z + 1)?/ Span((—6, 2), (2, —6)).

The quotient Spin®(Y)/Z, also consists of 5 elements, represented by (1, 1), (3, 1),
(—1,3), (3,—1), and (5,—1). Interestingly, the diffeomorphism 4 induces the
identity map on Spin°(Y)/Z5.

There are two possible choices of do (modulo 2M Z? and conjugation), namely
(—1,3) and (3, —1). This shows that there is no canonical identification between
Spin® structures and Abelian flat connections. Indeed, the two possible identifi-
cations are interchanged under the diffeomorphism /.

With regard to the invariants Z a, WE can compute

2(1,1) — g4, 2(5,_1) — ¢ V8,
and the other three series are zero. Under one of the two possible identifications,
the element (5, —1) € Spin®(Y)/Z, corresponds to the flat connection «;, and
under the other identification, to the flat connection 3. Thus, if we wanted to label
Za by Abelian flat connections, we would need to first make a choice between oy
and o3 (the two connections interchanged by #).
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In conclusion, this example shows that it is more natural to use labels by
Spin® structures instead of Abelian flat connections. It would be interesting to
understand how Spin® structures arise in the resurgence picture (cf. Section 8
below), where we more naturally encounter Abelian flat connections.

4.6. Brieskorn spheres. We now present a simplification of the formula (41)
in the case of the integral homology Seifert fibrations X (b1, b,, b3) with three
singular fibers. The same simplified formula appeared in the work of Lawrence
and Zagier [53, Section 6]. Yet another derivation of this formula was found by
Chung [18], using resurgence analysis.

Let us first introduce the following false theta functions (Eichler integrals of
weight 3/2 vector-valued modular forms):

~ N @), a2
T (g) ="y (g% e ¢ Z[[q]). (53)
n=0
where

@ ) — {:I:l, n=+a (mod2)p, 54

v
2p 0, otherwise.
We will use @Z”mHnb )+ (4) as a shorthand notation for a linear combination

\T,Ir)za(a)+nb(b)+w(q) — naqjl()a) (q) + ”b‘T’I(;b)(CI) 4o (55)

Proposition 4.8. Consider the Brieskorn sphere Y = X (b1, ba, bz), where the
positive integers by < by < bz are pairwise relatively prime. Then

Zo(Y) = q* - (C = Gy, o2 r ) ) (56)

where
oy = b1babs — b1by — b1bz — bybs,
Oy = b1b2b3 + b1b2 — b1b3 — b2b3,
o3 = b1bybs — b1by + b1bs — bybs,
Oyq = b1b2b3 + blbz + b1b3 - b2b3,

A is some rational number, and

o - |20 i (b by) = (2,3.5),
0 otherwise.
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Proof. The Brieskorn sphere Y is the Seifert manifold M(b; ay/b1,a»/b2,a3/b3),
where b < 0 and ay, a», as > 0 are chosen such that

bt Z b b1b2b3
As a negative definite plumbed manifold, ¥ comes from a tree I with central
vertex labelled b and three legs with labels —k;1, ..., —kis,, (i = 1,...,3), giving
the continued fraction decompositions of b; /a; as in (30). The total number of
vertices is
s =581+8,+s53+ 1.

Recall the formula (41) for Za of a negative definite plumbed manifold. In our
case, since Hy(Y;Z) = 0, there is a unique value a = 0 to consider. We have

~ _ 354>y my dZU 1 \ 2—deg(v)
2 =g [] 5o—(2-—)
27 Zy Zy
zp|=1 veVert
RN ) .
D U EE
{e2M 754§ veVert
dzy

Concretely, each integral 9%:1;|=1 30e; gives the constant coefficient in the
expansion in z,. For the three terminal vertices (of degree 1), this means that
the values of £, should be ¢; = £1, fori = 1, 2, 3; and doing the integral results
in a sign of —e¢; in front of the expression. For the degree two vertices (i.e., all but
the central vertex and the three terminal vertices), we get £, = 0. Letting m be
the value £, on the central vertex, note that (since det(M) = =+1) the condition
{ € 2MZL + § means that m should be odd.

Furthermore, the central vertex has degree 3. Writing

(zv — Zi)_l = —% Zsign(k)z{f
v ke2Z+1

we find that the principal value of the integral over z, for the central vertex gives
1/2 times a sum over all expressions with £, = m odd, with coefficients sign(m).
Thus, we have

~ 1 3s+Tymo . _EM7h
ZoY)=—5-q7 T} ) mesessign(m)-g T . (57)
modd g;e{£1}

where  is the vector with coordinates m for the central vertex, ¢; (i = 1,2, 3) for
the final vertices, and 0 for all intermediate vertices.
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Let A denote the (1, 1) entry in the matrix M ~!, corresponding to the central
vertex, and u; the entry in the first row, in the column for the terminal vertex on
theithleg,i = 1,2, 3. Letalso t;; be the diagonal entry in the row for the terminal
vertex on the ith leg and the column for the terminal vertex on the jth leg. Then,
the exponent of ¢ in the last factor in (57) is

€M7 Am?+2m(Y piei) + 3
4 4
To compute the values A, u; and 7;;, we consider the corresponding (s — 1) x
(s — 1) minors in the matrix in Figure 3. Note that det(M) = (—1)* and therefore

det(—M) = 1. Furthermore, the three large diagonal blocks have determinants
(=1)%b;,i = 1,2,3. With this in mind, we find that

A = —b1byb3, 1 = —byb3, 2= —b1bs, 3= —b1bs,
Tij = —bk for {i,j,k} = {1,2,3},

whereas t;; is (up to a sign) the determinant of the linking matrix for the graph
where we delete the terminal vertex on the ith leg. In fact,

(58)

hi = =T > 0

equals the the cardinality of H; of the corresponding plumbed manifold.
Thus, the exponent of ¢ is

bb2b3< L om Zbl‘l'zzglg]) th

b1byb iN2 bi1byb Zih-
= 1423<m+lzz—i> — 1423Zb_iz+ 4’.

From here we get

5 A b1brb3 )2
Zo(Y) = —q? : Z 2818283 sign(m) -q¢  * (m+ 55) ,

modd g;e{£1}

1 o _babs  bibs  bibs
_Z(Xi:h, B m =R E TR (59)

By making use of the symmetry that reverses the signs of all ¢; and m at once,
we can turn the sum over m € 27 + 1 into one over m = 2n + 1 > 0. Thus

where

Zo(Y) = —¢2 - Z Zelgzgs.qblbzbg(n%n%ju( )T (T h )2).
g;€{x£1}n=0
(60)
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Let p = b1byb3. If we fix €1, &; and let e3 = —1, note that
&j
bibb (1 —) -
10203 +lei (073

for some k € {1, 2, 3, 4}. Therefore, the corresponding summation over n in (60)

becomes s

— Y erey P, (61)

n>0
On the other hand, for 3 = 1 (after replacing n with n — 1) we get the contribution

2

P s (62)

n>1
When (b1, by, b3) # (2, 3, 5), since the b; are relatively prime, it is easy to see that
—+—+—x<1 (63)

and therefore
O<oap<2p, fork=1,...,4.

In this case, by replacing a with oy and n with 2pn + «f in (53), we can write

0(2 0[2
{I'}éak) _ qun2+ka,-+ﬁ - qunz—nak-l—ﬁ’ (64)
where the first sum is over all n with n + g—’;) > 0, and the second is over n with
n— ‘;—Z > 0. When 0 < o < 2p, this happens exactly when n > 0 for the first

sum, and when n > 1 for the second sum.
When (b1, by, b3) # (2,3, 5), since the b; are relatively prime, it is easy to see

that . . .
T 65
b b, by 65)

and therefore 0 < ax < 2p for all k = 1,...,4. Therefore, the sum of the two
expressions (61) and (62) is exactly —8182\1},()“" ) The eight kinds of terms in the
sum in (60) combine in pairs to give four different \TII()“") (up to some signs), and
we arrive at the formula (56), with C = 0.

For the Poincaré sphere P = ¥(2,3,5), we have oy = —1, 5 = 19, 3 = 11,
o4 = 31. In this case, in (64), the first summation is over n > 1 and the second is
over n > 0. This gives the extra term C = 2¢'/12° in the formula (56). Further,

the expression Wi @2)7@) 79 (4 in (56) agrees with ¢'/12° A(g) from (27).
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Also, we can compute h; = 8, hp, = 4, h3 = 2,5 = 8, my, = —2 for all v, and
hence A = —181/120. This gives

Zo(P) = ¢ (2— A(g)),
in agreement with (26). O

In principle, the same method can be used to simplify the formula for more
general plumbings. If there is more than one vertex of degree three, we end up
with a sum over several different indices m; instead of m. If there is a vertex of
index more than three, we have to factor out (z, — 1/ zv)deg(")_2 in the integral,
and the formula gets more complicated. Also, if the manifold is not a homology
sphere, we would have to split the sum according to elements in Spin®(Y)/Zs.

5. Knot complements from plumbings

In this section we study 3-manifolds with torus boundary that arise from (negative
definite) plumbings. Manifolds of this type have previously appeared in [68], the
context of Heegaard Floer homology and lattice homology.

5.1. Plumbing representations. Let us keep the notation from Subsection 4.1,
but now assume that in the weighted tree I' we distinguish one particular vertex
vo. We will mostly be interested in the case where vy has degree one, but this
condition is not necessary for most of the discussion. Let I be obtained from T
by deleting vo and the edges incident to it. (Note that [ is disconnected if vy has
degree at least 2. In that case, we still have a plumbed manifold Y (f), which is
the connected sum of the plumbings associated to each component of r.)

The component associated to vy in the link L(I") represents a knot K C
Y(T'). We let Y(T, vo) denote the complement of a tubular neighborhood of K
inY (f‘). This is a 3-manifold with torus boundary. Moreover, the boundary is
parameterized, in the following sense.

Definition 5.1. A compact, oriented 3-manifold Y is said to have parametrized
torus boundary if 3Y is homeomorphic to 72 and, furthermore, we have specified
an orientation-preserving homeomorphism f: 72 — 9Y, where T? = R?/Z? is
the standard torus.

A parametrization of a torus boundary dY produces two simple closed curves
on dY, the images of £({0} x S1) and f(S! x {0}) under the homeomorphism f.
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We call these the meridian and the longitude. Conversely, choosing two simple
closed curves on dY whose classes span H;(dY) determines the parametrization,
up to isotopy. (The curves should be oriented such that the orientation on dY
induced by f agrees with its orientation from being the boundary of Y. In practice,
this means we should specify the orientation on one curve, and then the other is
automatically determined.)

If we have a manifold Y with parametrized torus boundary, we can form a
closed manifold

Y =Y Uy (S x D?),

by gluing the boundaries such that the meridian of dY gets matched to the meridian
ptxdD? on the solid torus. Thus, we can view Y as the complement of (a
neighborhood of) the knot K C Y:

Y =Y \ VK,

where K = S! x {0} is the core of the solid torus and vK = S! x D? is a
tubular neighborhood of K. Further, the longitude on dY specifies a framing of
the knot K.

In the case Y = Y(T, vp), we take ¥ = Y(I'). The plumbing representation
specifies the meridian p of the knot, as well as a longitude A given by the framing
of the knot K. The framing is determined by the weight m,,, of vo in the graph
I'. We will call it the graph framing. We orient the longitude A counterclockwise.
This gives a parametrization of dY (T, vo).

It is important to distinguish A from two other natural choices of longitude:
one is the blackboard (zero) framing of K, which we denote by Apg, so that in
H{(0Y) we have the relation

A = ABB + Myyi;
the other is the (rational) Seifert framing, which is the combination
ASF = App + msF - i

that gets sent to zero under the map H;(dY; Q) — H;(Y;Q). This exists, and
is unique, provided that Y (I") is a rational homology sphere; for example, if I" is
negative definite. The exact value of msr depends on the graph.

Example 5.2. Both diagrams in Figure 4 represent the unknot in S3. The distin-
guished vertex v is marked by an empty circle. On the left, the blackboard and the
Seifert framings coincide (msg = 0), and the graph framing differs by pu from
them. On the right, we have A = Apg + (p — 1) = Asp + pu and mgg = —1.
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p —1 p—1
O = e—O

Figure 4. Plumbing diagrams for the unknot in S3.

Example 5.3. Consider the graph I' on the left of Figure 5. The manifold
Y(I) is just S3. By doing three successive blow-downs on the corresponding
Kirby diagram, we get a trefoil. The graph framing p on the unknot from vq
becomes the p + 6 framing on the trefoil. Thus, Y (T, vy) is the complement of
the trefoil in S3, with framing p + 6 compared to the Seifert framing; that is,
A = ABB + pi = Asp + (p + 6)u and msg = 6.

-2 -2

30+ &

Figure 5. A plumbing diagram for the trefoil in S3.

The Neumann moves from Figure 2 apply equally well to graphs with a distin-
guished vertex, and they can involve this vertex (as, for example, in the blow-
up move from Figure 4); the only restriction is that we do not allow blowing
down the distinguished vertex. Any two diagrams of the same plumbed mani-
fold with parametrized boundary are related by these Neumann moves. Note that
such moves leave the graph and Seifert framings unchanged, but may change the
blackboard framing.

We can change the parametrization of the boundary in a plumbing graph
as follows. First, we can change the longitude (the graph framing) by simply
changing the weight of vy. This does not change the meridian, so the underlying
manifold ¥ = Y(f‘) is the same. Second, we can also change the meridian, by
adding to the graph an extra leg, starting at the distinguished vertex, and making
the end of the leg the new distinguished vertex, as in Figure 6. (The weights on
the new leg can be arbitrary.) This usually changes the manifold Y.

50— S v e e 0

Figure 6. Changing the parametrization of the boundary for a plumbed knot complement.
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Example 5.4. The graph in Figure 7 is obtained from the one in Figure 5 by a
move of the kind in Figure 6. It still represents the trefoil complement, but the
meridian has changed such that Y =3 (2,3,7).

Figure 7. A plumbing diagram for the trefoil complement, viewed as the complement of a
knot in the Brieskorn sphere (2, 3, 7).

Note that the knot complements that are obtained from plumbing diagrams are
all graph manifolds. If it happens that Y(I') = S3, this means that all the knots
in S3 that can be obtained this way are algebraic, i.e., iterated torus knots. For
example, we cannot obtain hyperbolic knots such as the figure-eight in this way.
Plumbing diagrams for torus knots will be shown in Section 7.1.

We can glue together two plumbed knot complements Y; and Y> to produce a
(closed) plumbed manifold. The simplest way to do so is to glue the boundaries
so that the graph longitude A; of Y; is glued to the graph longitude A, of Y5, and
the meridian w; of Y; is glued to the meridian —u, of Y,. (The minus sign on pu,
is needed so that the orientations are consistent.) We call this the standard gluing.
A plumbing diagram for the resulting manifold Y; U Y, is obtained from those for
Y1 and Y, by identifying their distinguished vertices and adding up the weights
there, as shown in Figure 8.

P1 )2) pP1+ p2

50 6= -

Figure 8. Standard gluing of knot complements, shown by plumbing diagrams.

5.2. Spin® structures on 3-manifolds with boundary. We now discuss Spin®
and relative Spin® structures on manifolds with boundary, and how they behave
under gluing. Of course, we are mostly interested in the case of gluing plumbed
knot complements.

Suppose, in general, that we have a compact oriented 3-manifold ¥ with
boundary a surface X. Note that Spin® structures on ¥ are uniquely characterized
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by their first Chern class ¢; € H?(Z;Z). The Spin® structure with ¢; = 0 is
called rrivial. This gives also a Spin® structure (still called trivial) on T x [0, 1].
We define a relative Spin® structure on Y as a choice of extending the trivial
Spin® structure on a collar neighborhood of 3Y = X to a Spin® structure on
Y. The space of relative Spin® structures, Spin®(Y, dY), is affinely isomorphic to
H?(Y,dY) = H,(Y). On the other hand, the space of (ordinary) Spin® structures
on Y, denoted Spin®(Y), is affinely isomorphic to H?(Y) = H,(Y, dY). There is
a natural map

Spin€(Y, dY) — Spin‘(Y) (66)
and this map is surjective, since (up to affine isomorphism) it comes from the long
exact sequence of a pair

oo —> H2(Y,9Y) — H*(Y) — H?(Y) = 0.

There is an action of H1(X) on Spin(Y, dY) given as follows. Consider the
map
c:Hi(2) = HY(Z) — H?(Y,9Y) (67)

obtained by composing Poincaré duality with the connecting homomorphism
from the exact sequence in cohomology for (Y,dY). We let y € H;(X) act on
a € Spin“(Y, dY) by

ar—a+c(y). (68)

Next, suppose we have two 3-manifolds Y+ and Y~ with boundaries 9Y * =
—dY~ = X. We can glue them to get a closed 3-manifold

Y=Y UgY™t.
A Spin® structure a € Spin°(Y') has restrictions
aly, € Spin“(Yz).
We also have a map
Spin®(Y~,dY ™) @ Spin° (Y T, 9Y ) — Spin®(Y) (69)

given by gluing relative Spin® structures. Given a pair (a~,a™) in the preimage
of a, note that a* are always lifts of a|y+ under the map (66). Further, (69) is
affinely isomorphic to the map in the Mayer—Vietoris sequence

o —> Hi1(Z) — HI(Y )@ Hi(YT) — H{(Y) — 0.

This shows that the map (69) is surjective, and that any two pairs (a~,a™) with
the same image a are related via an element y € H;(X), by

(@ ,at)y— (@ +c(y).a™ +c()). (70)
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5.3. Spin° structures on plumbed knot complements. Let us specialize the
discussion from Section 5.2 to plumbed knot complements. Let I', vy, f‘,
Y = Y(I,vo) and ¥ = Y(I') be as in Section 5.1. We let Vert be the set of
vertices in [" (including vo). We will denote the elements of Vert by

vls L] vSs

with vy = vo. When considering vectors labeled by the vertices of I, we will put
the entry for v; in position i. Thus, Z°® will be the set of such vectors with integer
entries, and Z*~! = Z*~! x 0 C Z° the subset consisting of those vectors such
that the entry labeled by vy is zero.

As in Sections 4.1 and 4.3, we let § = (8v)vevert be the vector made of the
degrees of the vertices, and M be the linking matrix of . If M denotes the
framing matrix for the closed manifold Y=Y (f), we have

*

M = M . (71)
%

* L. *‘mvo

Let us identify Z* with H,(W(T")), where W(T") is the four-dimensional cobor-
dism given by surgery along the link coming from the graph I'. The basis element
é; (i =1,...,r)of Z* corresponds to the two-handle attached along the unknot
component from the vertex v;. From here, we get natural identifications

H2(Y,0Y) = H|(Y) = Z5/MZ5!. (72)

The first isomorphism is Poincaré duality and the second is given by taking
¢; € 7° into the element of H;(Y) represented by the belt sphere of the two-
handle associated to v;. In particular, the meridian x and the (graph) longitude A
of the knot K C Y(f‘) correspond to the vectors és and M és, respectively. Thus,
we can identify

H,(X) =~ Span(és, Meg) C Z°

and the map c: H,(X) — H?(Y, dY) from (67) with the composition
Span(ég, Més) — Z° —» Z° /M 75!,
If we are interested in H?(Y) = H, (Y, dY), this would be identified with

7° /(Span(ég, Més) + MZ*~') = Z° /(Span(é,) + MZ®).
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With regard to Spin® structures, we can identify those on the cobordism W(T")
with elements of 27Z° + §, by considering their first Chern class. From here, in the
spirit of (40), we get identifications

Spin® (Y, 9Y) = (2Z° + §)/(2MZ*™) (73)
and R
Spin“(Y) = (2Z°* + 8)/(Span(2és,2Mé;) + 2M Z°™1).
The action of H;(X) on Spin®(Y, dY) is by adding multiples of 2¢; and 2M é;.

5.4. Spin® structures and gluing. Suppose we have two plumbed knot comple-
ments

T=Y(T",vy), YT =Y(TT v)
with framing matrices M~ and M *. The standard gluing described at the end of
Section 5.1 yields a closed 3-manifold

Y=Y uUsgYt =Y(D),

where T is obtained from the graphs '™ and I'* as in Figure 8.

We order the vertices in '™ as before, with v being v; . On the other hand, for
convenience, we order the vertices in I'" by starting with vy . Then, the framing
matrix M for I" takes the form

%
M- ; 0
*
M= * * +m + | * *
*
0 : M-
%
where M~ and M+ are the framing matrices for - =r- \ {vy } and I+ =

't \ {vg}. Thus, M is “almost block diagonal,” being obtained by joining the
diagonal blocks M~ and M ™ at the central entry.
Under our identifications, the map

Spin“(Y ~,dY ") @ Spin(Y T, dY ) — Spin°(Y)
from (69) is given by
([(a7,....a5_y,a0)] (@) a7, . ..aD)])

(74)
— [(ay.....a,_;,a; +a1,a;,...,a,+)].
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As a consistency check, let us see directly that the map in (74) is well defined,

i e its effect does not depend on the representatives a~ = (a7 ....,a;_;.d;) and
= (a],af,...,a") that we chose for the relative Spin® structures. Let us
write
a-*xat=(ay,....a,_,.a; +a,af,....a}).

In view of (70), we just need to check the effect of acting simultaneously on
both ¢~ and a* by an element of H;(X). It suffices to consider acting by the
meridian ©~ = —u ™ and the longitude A~ = A ™. (Recall that when identifying
the boundaries of Y ~ and Y T, we have a change of orientations in the meridians.)
Acting by the meridian ™ adds 2 to a;, and subtracts 2 from af, so it leaves
a~ *a™ unchanged. Acting by the longitude means adding the vector 2M ~¢; to
d~ and the vector 2M ¢ toa™, which results in adding 2M & toa~+a*. Adding

an element in the image of 2M does not change the resulting Spin® structure on Y.

5.5. Dehn surgeries. Suppose we have a manifold ¥ with parametrized torus
boundary, where the parametrization is specified by a longitude A and a merid-
ian . The result of Dehn surgery on Y with coefficient p/r € Q U {oo} is

Y,/ =Y U(S! x D?),

where the gluing is by a diffeomorphism of the boundaries such that pu + rA
gets identified with pt xdD?. The typical situation is that Y = Yoo isan integer
homology 3-sphere, K C Y is the knot whose complement gives Y, as in
Section 5.1, and A is the Seifert longitude. In that case, we write Y,/ (K) for Y,,.

However, here we are concerned with the setting in which ¥ = Y (T, vo) is
plumbed, and A is the graph longitude. (This may or may not agree with the
Seifert longitude.) Then, Dehn surgery with coefficient p/r can be thought of as
the result of standard gluing between I" and the linear plumbing graph showed in

Figure 9, where the labels k1, .. ., ks give the continued fraction expression
1
L (75)
r 1
ko —
1
ks

kl k2 ks—l ks
O @ e @ 7 )

Figure 9. A plumbing diagram for the solid torus S, /.
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We denote by 5, the solid torus with parametrized boundary, as represented
by the graph in Figure 9. When writing vectors labeled by the vertices of the graph,
let us keep the ordering 1, ..., s, that is, the distinguished vertex comes first. The
relative Spin® structures on S,/ form an affine space over H,(S,/,) = Z.

On the other side, if the manifold ¥ is an integer homology sphere, then the
relative Spin® structures on Y form an affine space over Z, too. The generator
of Hy(Y) can be taken to be the meridian and, in terms of (73), relative Spin®
structures differ from each other by multiples of the vector [(0, .. ., 2)]. Under our
identifications, the gluing map

Spin‘(Y, 0Y) & Spin‘(Sp,r. 0S,;) —> Spin‘(Y,/»)
corresponds to
7Z&7—7Z/p, (a ,at)—a +a" (mod p) (76)

up to an affine transformation.

6. An invariant of plumbed knot complements

In this section we will define an analogue of Za (g) for the manifolds with toroidal
boundary introduced in Section 5.

6.1. The definition. Let Y = Y(I',vo) be a plumbed knot complement. (We
keep the notation from Section 5.1.) We assume that the pair (I, vg) is weakly
negative definite, in the following sense. (Compare with Definition 4.3.)

Definition 6.1. Let I" be a plumbing tree and vg € Vert a distinguished vertex.
The pair (T, vo) is called weakly negative definite if if the corresponding matrix
M is invertible, and M ! is negative definite on the subspace of Z* spanned by
the non-distinguished vertices of degree > 3.

Pick a relative Spin® structure
a € Spin°(Y,dY) = (2Z° + §)/(2MZ*Y)

with a representative
a = (ay)vevert € 27° + 6.
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We define the invariant Z,, for Y by analogy with the formula (47) in the closed
case, in terms of contributions from the vertices and edges:

A 30—@.M—\a dz,
Zuizng) = )"0 G T[T, 07

270 Zy
ny lzy|=1 Vert Edges

Here, the sums and the integrals are only over the variables n, and z, with v # vy.
For vg, we set
n =Ny, ZI= Iy,

and let n and z be part of the input in Za.
In (77), the factor for a vertex v # vo with framing coefficient m,, is

q—mvn%—%—avnvzgmvnv—i—av (Zv B l)Z (78)
Zy
and the factor for an edge (u, v) is
2ny 2ny
—2nyny Zu 2y
(O P 7
u Zu v Zy
The contribution from the vertex vy = vy is set as
q—mvonz—@—avonz2mvon+avo (Z o l) (80)
z

This is almost as in (78), except we don’t square the factor z — 1/z. We choose
this contribution to be as such with an eye toward the standard gluing, where v,
gets joined to another unframed vertex.

If we prefer, we can also write

(=2Mii+adac?

and express 2a (Y;z,n,q) in a manner similar to the formulas (41) or (43) for
closed manifolds. For example, the analogue of (41) reads

1 ) 1—deg(vo) 30—y mo

Za(Yizon.q) = (D)7 (z - < g
dZU 1 \2—deg(v) M-
x¢ 1_[ Tmiz, (zv - Z) 0,7 (2)
|ZU|=1 veVert
v#vQ
(1)

where

TN N>
OME) => g 7 ]z (82)
i

veVert
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In (81) we only integrate and sum over z,, with v # vy, and the sum in (82) is over
{ = 2Mii + G where the last entry of 7 is fixed to be n. The formula (81) makes it
clear that Z, (z,n, q) does not depend on which representative a we choose for the
relative Spin® structure a. Also, the weakly negative condition ensures that Za is
well defined.
With regard to conjugation of Spin® structures, observe that we have the
symmetry:
Z_o(Yiz.qn) = =Za(Y;27" g, —n). (83)

Proposition 6.2. The series Za (q) defined in (77) is unchanged by the Neumann
moves from Figure 2.

Proof. This is entirely similar to the proof of Proposition 4.6. O

Remark 6.3. We can sometimes make sense of Za even when M is not invertible.
(Compare Remark 4.4 in the closed case.) An important example of this will
appear in Lemma 6.7.

6.2. The solid torus. Let us compute the invariants Z, for the solid torus S,
represented by the diagram in Figure 9. We assume that

p#0, r>0, gcd(p,r)=1.

Let us start with the simple case where r = 1, s = 1 and k; = p. Then,
I' is the graph with a single (distinguished) vertex, labeled by p # 0. There are
infinitely many relative Spin® structures, labeled by a € Z, and represented by the
vectors @ = (2a). Starting from (81), we compute

A~ 3sign(p)—

Za(Spizin,q) = —sign(p) g~ g penrOr2mmea; ol (g

Let us now assume that we have at least two vertices (s > 2). Recall from
Section 5.5 that the Spin® structures on S,/ are an affine space over Z. Pick a
Spin® structure a represented by some vector a = (ay, ..., ds). From the formula
(81) we get

TR e

ZeA;’jn ZEA(;’”

Z (Sp/rizin,q) = (— l)n

where

={{=Q2j+1,0,....0,£1) | j €Z, {=2Mii +a

for some 11 = (n,n,,...,ng) € Z°}.
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We have
ki 1
1 ky 1
1 k3
M =
ke—1 1
1 ks

The determinant of M is either p or —p. In fact,

det(M) = (—=1)"|p| = (=1)*"" sign(p) p

where v is the number of negative eigenvalues in M.
To get a hold of the exponents —(¢, M~'¢)/4 for £ € AF , we only need to

a,n’

know the entries of M~ in the positions (1, 1), (1, s) and (s, s). They are
(MY =r/p, M~ )is=¢/p, (M™")ss=D/p,

where
e = sign(p) - (=)™ € {£1}

and D is the determinant of the top-left (s — 1) x (s — 1) minor in M. Therefore,
for{ = (2j +1,0,...,0,£1), we find that

€, M~1) rooo1 . eN2 1t
JOMTD _ ralasyy Lo
4 p 2 2r 4pr 4p
Moreover, one can check that the values of j that contribute to [ e Ain are those

such that .
rj + 5 = pn + B,

where § € Z + % is some value depending on ki, ..., ks and a. Also, as we
keep k1, ..., ks fixed and vary the relative Spin® structure a, the values of 8 vary
affinely with respect to a.

From here we get

D

~ 30—-Y k;
ZaSpjrizin.g) = (=)7q 4 tor i

5

2
(edese) i 2208 e oy
r b

2
(j+3-%) 2741 PPt +E£=jez,
r

otherwise.
(85)
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In order for this formula to satisfy the symmetry (83), we see that we must have

r
,B =da — 5
This fixes a canonical identification
Z for r odd
Spin€(S,/,, 05 o~ ’ (86)
pin* (3p/r 95p/r) {Z + 1 for r even,

so that conjugation of relative Spin® structures corresponds to the map a — —a.
Note that there exists a self-conjugate relative Spin® structure on S, if and only
if r is odd.

Now, the formula (85) can be written more simply as

2a(Sp/,;z,n,q)

_wnta)? . . pn+a 1 1
roo g2t 1f—p

+si Lg2(r) | ——=—=jeq,
_ ) Esign(p) g q 7 — F5 5=J¢€
0 otherwise,
(87)
where 3 Sk . D
o — .
a(pr)y=—=2="4+—-—€Q. (33)

4 4dpr 4p
Equation (87) comes with the caveat that the two contributions (from the two
choices of sign) add up in the special case where we have

ph+a 1 1
F T 2%
for both choices of sign. This happens if and only if » = 1. In that case, we can
recover the formula (84) from (87), with «(p, 1) = (3sign(p) — p)/4.

The expression a(p, r) from (88) is independent of the presentation of p/r
as a continued fraction. Indeed, one can check it is invariant under the Neumann

moves. Better yet, this expression can be related to the Dedekind sums

0= Z((D))

1=

where

()= if x € Z.

Using Barkan’s evaluation [8] for Dedekind sums in terms of continued fractions,
we find that

{x—LxJ—l/z ifxeR-7Z,

1
a(p,r)=3 sign(p)(s(p, r)+ Z) — % (89)
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6.3. Gluing formula. In this section we prove Theorem 1.1. Consider the
standard gluing of two plumbed knot complements Y~ and Y. We use the
notation from Section 5.4, and assume that (I'", vy), (', v(}L ) and I" are weakly
negative definite. Pick

a” € Spin°(Y~,9Y™), a%t eSpin°(YT,0Y™)

with representatives @~ and @™ such that the entries corresponding to the un-
framed vertices are zero. Let a be the image of (¢~,a™) in Spin°(Y) under the
map (69), and let a be the representative of a given by joining ¢~ and a™, as
in (74).

Now, from the formulas (47) and (77) for the 7 invariants, we deduce the
desired gluing formula:

~ dz -~ _ ~
ZuViq) = (UG P S 2 (i ) Zy (Vi) | (90

" zl=1

where
t=aM)—a(M~)—a(M™)

and
3
£= Z(O(M) —o(M™)—o(M™T))
- %((a, M™a)—@ . (M) aT) - @t (MHlat) e @

One can check that £ = £(a~,a™) depends only on the Spin® structures ¢~ and
a™, and not on their representatives @~ and a ™.

6.4. TQFT properties. LetY = Y (I, vo) with (I, vo) weakly negative definite.
From now on we will assume that the distinguished vertex v has degree 1. Then,
for any @ € Spin°(Y,dY) =~ (2Z° + 5)/ (2M 75~ 1) represented by a vector
a € 27" + 3, we have that a,,, must be odd. Looking at the factors containing
the variable z in (79) and (80), we see that z always appears with an odd exponent

in Z,(Y;z,n,q). Thus, it is convenient to introduce a new variable

x = 72
We can write

Za(Yiz.n.q) =Y b(m.n)x™, b(m.n) €k 91)

meZ+%
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Here, k is the Novikov-type field consisting of power series of the form
Y bog®. bo€Q
seQ

such that the set 2 = {w | b, # 0} C Q is bounded below, and its projection to
Q/Z is finite.

Remark 6.4. Physically, m and n are interpreted as electric and magnetic fluxes.
The basis with discrete variables (2, n) is sometimes called the flux basis, whereas
the choice of variables (x, n) is called the fugacity basis.

Geometrically, the variable m corresponds to the meridian of the boundary
torus, and the variable n to the longitude. This can be seen in terms of the H(7?)
action that will be defined in Section 6.5.

Definition 6.5. A function
1 w
b:(Z+5)xZ—>k, bm,n) =" bm,n,)q".

is well behaved ifthe set Q@ = {w € Q | b(m,n, ) # 0 for some m, n} is bounded
below, and its projection to /7 is finite. The space of well-behaved functions is
denoted by V.

Observe that V is a vector space over k. Furthermore, on V we have a (partially
defined) bilinear pairing (-, -) given by

(pb=.6%)=>" > b (m.n)b*(m.n) k. (92)

meZ+% nez

Observe that, for a closed negative definite plumbed manifold Y, the invari-
ants Za take values in k. Moreover, for a negative definite plumbed manifold
Y = Y(T',vp) with torus boundary, the function b giving the coeflicients of
Za (Y;z,n,q) in (91) is well behaved. Hence, we can view the invariants asso-
ciated to Y and a € Spin®(Y, dY) as elements

Za(Y) € V.
The gluing formula (90) reads
Za(Yiq) = (~1)'¢*(Za- (Y 7). RZo+ (Y ), (93)
where the map R corresponds to reversing the orientation of the meridian:

R:V— 7V, (Rb)(m,n) =b(—m,n).
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We see here some of the structure of a 2 4+ 1 topological quantum field
theory (TQFT), decorated by Spin® structures. In this theory, to the torus 72 we
associated the vector space V, and to 3-manifolds with boundary T2 (equipped
with relative Spin® structures) we associate elements of V. To closed 3-manifolds
(equipped with Spin® structures) we associate elements of the underlying vector
field k. Our invariants satisfy a gluing formula, given by the bilinear pairing as
in (93).

The mapping class group of the torus is the modular group SL(2, Z). This acts
on 'V by pre-composition: if b € V, X € SL(2,7Z) and

then X - b € V is such that
(X -b)(m,n) = b(m',n).

While our discussion so far has been limited to trees with a single unframed
vertex (i.e., knot complements), one can define similar invariants for negative
definite plumbing trees with several unframed vertices, all of degree one. These
correspond to link complements. If we have such a graph, with & unframed
vertices, we will have invariants of the form

ZLI(Y;le'-'1Zk7n11'-'7nksq)s

labeled by relative Spin® structures, and with one pair of variables (z;, n;) for each
boundary component. Thus, the invariants take values in V®X . If we glue two such
manifolds along a single boundary component, we have a gluing formula similar
to (93).

Of course, we do not yet have a TQFT. We have only defined our invariants for
3-manifolds coming from negative definite plumbing graphs, and for the surface of
genus 1. In Section 9 we will also construct invariants for other knot complements
in §3, and for some surgeries on knots. We hope that in the future our theory will
be extended to a true (Spin®-decorated) TQFT in 2 + 1 dimensions.

6.5. The Z2 action. Looking at the gluing formula (93), it is interesting that the
right-hand side gives the same answer, for any choice of pair (¢, a™) that maps
to a fixed a € Spin°(Y). We can explain this fact from the point of view of a
Spin®-decorated TQFT, by introducing the following action of H;(T?) = Z? on
the vector space V.
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We will denote the action by 4. We let the generator (1,0) € Z? correspond to
the meridian u € H,(T?), and the generator (0, 1) to the longitude A € H;(T?).
We let these generators act on 'V by

(Aub)(m,n) =b(m—1,n) (94)

and
(Apb)(m,n) = b(m,n + 1). (95)

If y = (u,v) € Z? = H(T?), we simply set
Ay = A} A7,
It is easy to see that this action is orthogonal with respect to the pairing (92):
(b~,b%) = (4,67, A,bT). (96)

For a 3-manifold Y with boundary Y = T2, recall that we also have the
action (68) of H1(T?) on Spin°(Y): a — a + c(y). Let us describe how the
invariants Z, (Y') behave with respect to this action. For simplicity, we will not
keep track of overall factors of ¢. For b, b’ € 'V, we will write

b~b
if, for all m € Z + 3, n € Z, there exists B(m, n) € Q such that
b (m,n) = ¢g®™b(m, n).

We will also use the symbol ~ to denote elements of k that differ by an overall
factor of ¢# for some B € Q.

Proposition 6.6. Let Y = Y (I, vo) be a negative definite plumbed manifold with
torus boundary. Then, for any a € Spin°(Y,dY) and y € H(T?), we have

Zatey(Y) = Ay Za(Y). 97)

Proof. It suffices to check this when y is one of the two generators p and A.
Suppose y is the meridian u. Pick a representative a = (ay, ..., as) € 27 1§
of a. Recall from Section 5.3 that the action of u is given by adding 2¢; =
(0,...,0,2) to the vector a, that is, changing a,, = a5 to a5 + 2. Let us use the
formula (77) or Z, (Y;z,n,q) in terms of contributions from edges and vertices.
Observe that a,,, appears in this formula only through the overall factor g~ (a’M4_la)
and through the contribution from v, given by (80). Adding 2 to a,, multiplies
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Z4(Y:z,n,q)byafactorof g =222 = ¢—2n

to acting by A,,, according to (94).

x. Up to a power of ¢, this corresponds

Next, suppose y is the graph longitude A. Pick a representative
i=(ai,....a5) €27+ 4

of a. As noted in Section 5.3, the action of A is given by adding 2Mé; to the
vector . This time we will use the formula (81) for Z, (Y;z,n,q). The Theta
function in (82) is defined by summing over

{=2Mii +G=2M(@i — &) + (@ + 2Méy).

Therefore, adding 2Mé; to a yields the same result, provided we replace n by
n — 1. This corresponds to the action of A, in (95). Note that in this case we have

Zatey(Y) = A3 Za(Y) (98)

on the nose, rather than up to a power of q. |

Let us now go back to the gluing formula (93). Recall from (70) that any two
choices of (a~, a™) that produce the same a € Spin®(Y) are related by

(@ ,at)yr— (@ +c(y).a™ +c(y)). (99)

for some y € Hy(T?). Using Proposition 6.6 and the orthogonality property (96),
we have the following consistency check:

(Za+c0) Y ) RZgt 4oy (Y D)) = (Ay Za— (Y 7), RAR() Zo+ (Y )
= (Ayza— xY), AVR2a+ (Y+))
= (Za~(Y7).RZ,+ (Y T)).

Here, by R(y) we meant the image of y under the map that reverses the orientation
of the meridian

R:H\(T?) — H{(T?), R(u,v)= (—u,v).

When applying Proposition 6.6 to Y, we got the action Ag(,) instead of A,
because in the standard gluing we identified the meridian of 0¥ ~ (which we took
w = (1,0) € H{(T?)) with the reverse of the meridian of 3Y .
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6.6. Eliminating some variables. The invariants Z, for plumbed knot comple-
ments involve several variables: the relative Spin® structure a, as well as z = x1/2,
n and ¢ (or, if we prefer, a, m, n and g). However, because of the symmetry (97),
we can reduce these variables by two, using the action of H;(3Y) = Z2. A well-
known fact in 3-dimensional topology (a consequence of Poincaré duality and the
long exact sequence of a pair) says that the kernel S of the map H;(0Y) — H(Y)
has rank one (is a copy of Z in Z2). If y € S, then

a+ c(y) = a € Spin°(Y, dY).

Thus, if we apply Proposition 6.6 to elements of H;(X) that are in S, we obtain
a symmetry of the invariants Za(Y; z,n,q) for fixed a. On the other hand, if we
apply it to elements of H;(X) that are not in S, we get a relation between the
invariants Z,(Y; z, n, ¢) for different relative Spin® structures a.

There is also the dependence of Zq on the way we parametrized the boundary.
We usually fix what the meridian is, since this determines the closed-up manifold
Y and the knot K C Y. We may want to vary the graph longitude A, which we can
do by changing the value of m,,,. Looking at the formula (77), we see that adding
1 to my,, changes the contribution (80) from vg by q_"z_%x and also changes the

. —1z

overall factor q_%. In any case, knowing the invariants for one choice of
My, allows us to know them for all the other choices.

Let us make this more concrete in the case when Y is an integral homology
sphere, so that ¥ = Y \ vK has the homology of a solid torus. Then, the
space Spin®(Y, dY) is an affine copy of H?(Y,dY) =~ H;(Y) = Z. The kernel
S C H;(X) is the span of the Seifert longitude Asp. Acting by the meridian u
(which is not in §) allows us to determine the invariants for all @ € Spin®(Y, 9Y)
structures from the invariant for any a. Also, acting by the graph longitude A
(which is some combination of Agg and w) tells us that to know the invariants
Za(Y:z,n,q) it suffices to know them for n = 0, when they give a power series in
z = x'/? and ¢. Finally, knowing the invariants for one choice of graph longitude
allows us to know them for all possible choices.

A natural choice of graph longitude is the Seifert longitude itself. However,
this is exactly the case where the matrix M is not invertible, because the result Yy
of zero surgery on K has b;(Yy) = 1, and

H\(Yo; Z) =~ Z° | MZ".

Therefore, in that case (I, vg) is not weakly negative definite in the sense of
Definition 6.1, so we do not expect all the invariants Za to be well defined.
Nevertheless, they are defined for ¢ = 0, in the following setting. (Compare
Remark 6.3.)
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Lemma 6.7. Let Y = Y (I, vg) for some plumbed tree I with distinguished vertex
vo. Suppose that Y is an integer homology sphere, T is negative definite, and
that the graph longitude is the Seifert longitude. Let a = 0 € Spin® (Y aY) be
self conjugate. Then, any represenmtzve aofais of the forma = M b for some
b e 75! , and the invariants ZO(Y zZ,n,q) are well defined by the formula 77),
where in the power of ¢ we use the exponent — (b M b) /4 instead of —(a, M ~'a) /4.

Proof. Leta € 275 + 3 be a representative for a. Since a is self-conjugate, we
have that the classes of @ and —a modulo 2M Z5~! are the same, so2a € 2M 751,
It follows that we can write @ = Mb for some b € MZ5~1.

Recall that, in the case where the pair (I, vg) is (weakly) negative definite,
by setting { = 2Mii + @, we saw that the formula (77) for Z, is equivalent to
the formula (81) involving the theta function from (82). The same is true in our
setting, with the theta function being

(2n+b M(2n+b))
0,13 = Zq [z (100)

veVert

where
{=2Mn+a= MQ2n + b).

The exponent of ¢ in (100) is
(b, Mb)
YR

To see that the formula (81) makes sense, it suffices to check that

— (i, Mii) — (i, Mb) —

(i) as we vary 7 € Z* such that n = (1, €s) is fixed, the expression (77, M7) +
(11, M b) is bounded above;

(ii) as we vary 71 € Z° such that n = (71, é;) and (i, M#n) + (7, Mb) are fixed,
there are only finitely many possible values for £ = 2M7i + a.

By writing 71 = W + nés with 0 € Z*~1, we see that
(i, M7i) + (i, Mb) = (i, M) + (B, 2Mnés + Mb) + (nés,nM&s + Mb)

is the sum of a quadratic, a linear, and a constant term in w. Since the quadratic
term is negative definite (because I' is negative definite), the desired claims (i)
and (ii) follow.
In fact, it is worth noting that we can prove a stronger claim than (i):
(iii) as we vary n € Z* arbitrarily, the expression (71, Mn) + (i, M 5) is bounded
above.
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Indeed, since M is symmetric, degenerate, and its restriction to Z*~! C
Z° is negative definite, it follows that M admits an eigenbasis ¢y, ..., ¢s with
eigenvalues

A =0,As,...,A; withA; <Ofori > 2.

Writing 71 = Y ¢; ¢;, we get

(i1, Mii) + (i, Mb) = > (Aic? + ci(@i. Mb)) + c1(¢1. Mb).
i>2
The terms in the sum are bounded above (because A; < 0) and the last term is
zero, because M is symmetric and M ¢; = 0. This proves (iii). O

6.7. Simpler knot invariants. Let Y = Y(T', vo) for some plumbed tree I with
distinguished vertex vo. This gives a closed-up manifold ¥ = ¥ (I'—v) and a knot
KcCY. Suppose that H; (}? ;7)) = 0, the graph T is negative definite, and that
A = Agp, as in Lemma 6.7. In view of that lemma and the discussion preceding
it, in order to know the invariants Z, (Y z,n,q) (for any relative Spin® structure,
and even for other choices of graph longitude), it suffices to know them for

In fact, observe that in this case, the kernel of the map H,(dY) — H;(Y) is
spanned by A, so acting by A relates the invariants Zo(Y:z,n,q) to each other.
By (98),

Zo(Yiz.n,q) = Ay Zo(Y:iz.n,q) = Zo(Y:z.n + 1,9),

SO ZO(Y; z,n,q) is independent of n € Z. We denote

Fi(x,q) := Zo(Y;x'% n,q). (101)

This is the simplest knot invariant associated to K from the 3d N = 2 theory T'[Y].
It involves just two variables x and ¢g. We have

Fg € 27¢q 2 Z[x 2 x712)[g71 q]),

for some ¢ € Z4 and A € Q. Here, Z[x'/2,x71/2][¢™", q]] denotes the ring of
Laurent power series in ¢ with coefficients in the polynomial ring Z[x'/2, x~1/2].
The fact that there is an overall lower bound on the exponents of ¢ follows from
the claim (iii) that was established in the proof of Lemma 6.7. The fact that, if we
fix the power of ¢, then the coefficient is a Laurent polynomial in x'/2 (rather than
a power series) is a consequence of the claim (ii) from the same proof.
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Since a is self-conjugate, the symmetry (83) gives

Fg(x,q) = —Fg(x7".q). (102)
Therefore, we can write
1 m _m
Fi(x.q) =53 fml@) (x% —x7%), (103)
m>1

where f,,(q) are (roughly) Laurent power series in g or, more precisely, elements
of the field k defined in Section 6.4. Moreover, the exponents of x!/2 that appear
in Fg are all odd, so the sum in (103) can be taken over m = 2j + 1 only, with
Jj=0.

It is sometimes convenient to use a different normalization

Fg(x.q)
Jr(x.q) = 2 2 (104)

In terms of the coefficients f;41(g).,

1 o o
fK(x,CI)=§Zf2j+1(6])-(x T x4 X)),
Jj=0

The function fx satisfies the symmetry

fxk(x.q) = fx(x"".q). (105)

This symmetry is expected from the physical interpretation of fx(x, ¢) as a count
of BPS states for the theory T'[Y] on the knot complement. Indeed, there x and
x~1 are interpreted as the eigenvalues of the holonomy around the meridian of an
SL(2, C) flat connection.

Example 6.8. If K = U C S? is the unknot, the condition A = Agsp can be
ensured by taking the graph with a single vertex labeled 0, so that Y is the solid
torus S¢ in the notation from Section 5.5. Observe that the formula (84) cannot
be applied to p = 0 and arbitrary a, since we cannot make sense of the exponent
(pn + a)?/ p. However, when a = 0 that exponent can be set to 0, and Zo (So) is
well defined, in agreement with Lemma 6.7. We get

Fy(x,q) =x"2—x72 fy(x,q) = 1.
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6.8. The Dehn surgery formula. Let us recall from (1) that the Laplace trans-
form L;‘;)r, applied to a power series in x and ¢, takes a monomial x* - g to

q_§"2 - gV, provided ru — a € pZ, and to zero otherwise.

We will identify the relative Spin® structures on the solid torus $,,, with
elements in Z + ’“ as in (86). For p/r surgery on a knot K in a homology
sphere ¥, we 1dent1fy relative Spin® structures on Y = ¥ \ vK with Z, by mapping
the self-conjugate structure to 0. In view of (76), the Spin® structures on the
surgery Y,,, will be canonically identified with elements

1
a eZ+% (mod pZ).

We will consider Laplace transforms L;"/)r for this kind of values of a. When

p = %1, since there is only one possible value of a, we will write £/, for £ » /)r

Recall that Theorem 1.2, as advertised in the Introduction, relates the invariants
of a knot and its surgeries by the formula

Za(Yp)r) = £q? - £ [(xF — x™F) Fg(x.q)),
which we could also write as

Za(Ypyr) = eq? - £ [(xF —x7F)(x3 —x73) fie (x. ). (106)

Proof of Theorem 1.2. As explained in Section 5.5, the surgery Y,,, is obtained
by standard gluing from the knot complement Y and the solid torus 5,,,. We
apply the gluing formula (90) to these two pieces:

2a(Yp) = (- 1)%1525;5
lz|=1

= (1) 5£—FK(Z 0 3 ZalSprizma)

lz|=1

ZO(Y zZ,n, q)Z (Sp/riz.n,q) (107)

since Zo (Y:z,n,q) = Fx(z? q) is independent of n. The values of Z, (Sp/riz.n.q)
were computed in (87). From there we find that

ZZ Sp/riz.n.4) —Slgn(p)qa(pr)( Y Rt 2
]EJ+

_ Zq_%(‘i+§_7)222j+1)

jeJ—

(108)

where e
Je={jez|jr=a-"5= (mod p)}.
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Let us write
fr(x.q) =) crpx'q
so that
1 1
Fr(x.q) =Y crox'T2¢" = crpx'"2¢".
Plugging (108) into (107), we see that the integral picks up the monomials with
2t £ 1 = —(2j + 1). Therefore, we obtain

2
7 _r 1_ 1
Za(Yy;r) = sign(p)(—1)*gfte@n) qu : ( th’vq L (i+4-4)
v —t—1eJ4

S g b (FAE)

—t—leJ_

L 09
— Ct vq_;( 27 2r

—teJ4
+ th,vq—%(t—%+21—r) )

—teJ—

The conditions on the summation indices all translate into asking for the term
—I 2 .
u=t= % + 2_1r that appears in the corresponding exponent ¢~ 7" to satisfy

ru—+a € pZ.
Since
1 _1 1 _1
(x27 —x727)(x2 —x"2) fk(x,q)
= —th qu . (xt+%_% —xt+%+% —xt_%_% —+ xt_%'}_%)’
by taking

e =sign(p)- (=D, d =E+a(p.r),
we see that (109) implies the desired formula in terms of the Laplace transform.
Strictly speaking, we get it for the Laplace transform with —a instead of a.

However, given the conjugation symmetry of the Z, invariants, using a or —a
gives the same answer. O

6.9. Anti-symmetrization. Recall from (102) that the series Fx(x,q) is anti-
symmetric with respect to the variable x. In many cases, it is helpful to write it as
the anti-symmetrization of a series F }; (x, g) with only positive powers of x:

1
Fr(x.q) = 5 - (Fg(x.q) = Fg(x™".q)).
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If we express Fk(x, g) in terms of its coefficients f;,(g) as in (103), we have

FEx.q) =Y fulg)-x%.

m=>1

Observe that, for any Laplace transform L;‘;)r, we have
U 1 _1
L9 [(x7F —x77) Fg(x.q)] = L9 [(x7F —x™ ) Fi(x.q)).

Therefore, when applying the Dehn surgery formula (Theorem 1.2), we could
just as well use F;g(x, q) instead of Fg(x,q).

Series of the form F Iz(x,q) appear naturally in some circumstances. For
example, we will encounter them as stability series for negative torus knots in
Section 7.5.

7. Torus knots

We proceed to study the invariants Fx (x, t) for the torus knots K = T'(s,t) C S>.
We will assume that
2<s<t, gecd(s,t)=1.

7.1. Plumbing presentations. For s and ¢ as above, there are unique integers
t" € (0,1),s" € (0,s) such that st/ = —1 (mod ¢) and ts" = —1 (mod s). These
must satisfy the relation

ts 1

-+ —=1-—.

t N St
We construct a plumbing diagram for 7'(s, ¢), with Seifert framing (A = Agf) as
follows. The diagram consists of a tree with three legs: the central vertex is labeled
—1, two legs have labels given by the continued fraction representations of —¢ /¢’
and —s/s’, and the third has just the distinguished vertex, labelled —s¢. We choose
the continued fraction representations so that all vertices have negative labels. This
ensures that the plumbing satisfies the hypotheses of Lemma 6.7, and therefore the
invariant Z, is well defined for the torus knot complement. The framing matrix

M for our graph will have one 0 eigenvalue and the rest all negative eigenvalues.

Example 7.1. For the torus knots 7(2, 2/ + 1) wehavet’ = [, s’ = 1, the continued
fraction representations of —(2/ + 1)/ consists of one —3 and / — 1 copies of —2,
and the continued fraction representation of —2 is just —2. For 7'(3, 4), we have
—t/t' = —4 and —s/s’ = —3/2, with the latter represented by two copies of —2.
See Figure 10 for the resulting pictures.
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2 -1 -3 =2 -2 —4 -1 -2 =2
@ L e — -+ —O [ L @
l—2(21+1) l—lZ
T2.20 4+ 1) T(3.4)

Figure 10. Plumbing diagrams for the complements of the torus knots 7'(2,2/ + 1) and
7(3,4).

Let p,r € Z with p # 0,r > 0 and gcd(p, r) = 1. Moser [62] showed that the
result of p/r surgery on T'(s, t) is a Seifert manifold, fibered over the S orbifold
with three singular points of orders s, ¢, and |rst — p|. Its orbifold Euler number
is

ts r p

t s rst—p  strst—p)
The surgeries with values

p/re{st—1,st,st + 1}

produce special Seifert manifolds: lens spaces or connected sums of lens spaces.
The other surgeries produce generic Seifert manifolds. In the generic case, by
Theorem 4.1, we have that S ;’ I (T (s,1)) can be represented by a negative definite
plumbing if and only if e < 0, that is,
2o or 2>t (110)
r r
In particular, we will be interested in —1/r surgeries on 7'(s,?), for r > 0.

These are the Brieskorn spheres
S21,(T(s.0)) = (s, 1, rst + 1).
They are obtained from the standard gluing
(S*\VT(s.1)) Up2 S_y/0.

as in Section 5.5. We will represent the solid torus 5_;,, by the linear plumbing
graph
-1 =2 -2

having r — 1 copies of —2. We obtain a plumbing representation for X (s, ¢, rst+1)
from those for the torus knot complement and S_;,,, by adjoining them at their
distinguished vertices. The vertex where we did the gluing is now labeled —s¢ — 1.
One can check that the resulting plumbing graph for X (s, ¢, rst + 1) is negative
definite.
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7.2. Calculation using reverse engineering. Let Y be the complement of the
torus knot T'(s, ). To compute the invariant Fx(x,q) = Zo(Y:x'/2,n,q), we
could use the plumbing representation above, and do a similar calculation to
that for Brieskorn spheres in Proposition 4.8. However, since we already did
the calculation for Brieskorn spheres, it is convenient (and more instructive) to
deduce the answer for 7'(s,t) from that, using the Dehn surgery formula from
Theorem 1.2, applied to —1/r surgeries. We refer to the process of calculating a
series from knowing its Laplace transforms as reverse engineering. The following
lemma makes this process work.

Lemma 7.2. If F, G € Z[x'/?,x712][¢q™, q]] are series such that
F(x.q)=—-F(x"'.q), G(x.q) =-G(x".q)

and
1 _1 1 1
Loyyrl(x2r =x727)F(x,q)] = Loy [(x27 —x727)G(x, q)]
forallr > 0. Then F = G.

Proof. Since the Laplace transforms are linear, we might as well consider the
difference H = F — G, written as

1 m m
H(x.q) =53 hm@)(x% —x7%), (111)

m=>0

with h,,(q) € Z[g™", ¢q]]. We have

0= Loy ¥ —x ) H )] = Y () (%) —gr(#-3))

1 rm2  m rm?% _m
g7 Y hm(@)(q T TS =g %),
(112)

If H # 0, let mg be the smallest m such that 4,,(¢) # 0. Let N be the smallest
exponent of ¢ that appears in £,,,(q):

hmo(@) = cng®™ + enprgV !+
Pick » > 0 so that

r(m—i—l)2 m—l—1>rm2
4 2 4

m
— =+ N.
2+
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Then, there are no terms in the expansion of

rm2  m
> (@)@ T —g

-

m2 m

which could cancel cy g™ ¢" " 2. This gives a contradiction, and we conclude
that H = 0. |

From the proof of Lemma 7.2, it is worth remembering the formula (112) for
the Laplace transform applied to X277 — x~7 times functions of the form (111).

As a simple example of reverse engineering, consider the —1/r surgeries on
the right-handed trefoil, which are the manifolds

11 r
3 ry __ — -1 = =
S2,,(3) = 2@ 3.6r+ )= M(— 1.2 o).

The corresponding series Zo(q), for small values of r, are shown in Table 1. They
can be computed using the formulas (41) or (56).

From Table 1 let us read off the first few terms:

Zo(S2,,3D:9) =q"*(1—9) ¢ "1 =¢°)—q"" "1 —¢7) +--)

_r r 1 _1 25r 5 _5
=—¢""4(q3(q2 —q 2)—q-q % (2 —q?)
49r

49r 7 _Z
_qz.q4(q2_q 2)+...)'
Table 1. The invariants Zo (g) for —1/r surgeries on the right-handed trefoil.

Y =53,,,.3) Zo(q)

F=1 (2,3,7) ql/z(l—q—qS—i—qu—q“ +q18+q30
_q41 +q43_q56_q76+q93_q96
—I—q“5 +ql43_q166+q170_q195
—g231 4 ¢260 _ 4265 4 4296 4 ..

r=2 3(2,3,13) ql/Z(l_q_qll +ql6_q23+q30+q60
_q71+q85_q98_q148+q165
— 186 4 4205 4 4275 _ 4298 4 ...

r=3 X319 ¢Y2(0-qg—q'7+¢?>—¢% +4¢*%
+q90—q101+q127—q140
_q220+q237_q276+q295+__.)

r=4 ¥(2,3,15) ql/Z(l_q_qZS+q28_q47+q54+q120
— g3l 4 g169 _ 4182 _ ;292 4

r=5 %(2.330) ¢"2(1-q—q*+¢*—¢> +4%
+6]150—6]161 +C]211—6]224+"‘)
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Theorem 1.2, applied to —1/r surgeries on the trefoil, tells us that
5 _r_ 1 L L
Zo(S2,,,3D):9) = ¢~ T 7 Ly, [(x7F —x727) F3r(x, q)].

Thus, from (112) we obtain the first few terms of the series Far (x,q):
1 L 1 5 s 1 7
Fy(x.q) = =5(@(x* =x72) =q*(x =x77) ¢’ (x7 —q"?) +-+). (113)

The same reverse engineering method can be applied to get an exact expression
for Fx(x,q) for all torus knots. Recall from Proposition 4.8 that the Z((g)
invariants for Brieskorn spheres are expressed in terms of the false theta functions

U9 (q) =Y vid(m)q (114)

n=0

where 1//5‘;) (n) is +£1if n = £a (mod 2p), and 0 otherwise.

Lemma 7.3. Suppose a,b,c,d,e € Z.+ with

a 1 bc?
c>d >0, d=;—|—§, e=§.
Then
FGarthte) _FOarth=o — g, (02 — x72)G(x, q)] (115)
where . o
Gr.q) =5 D ¥’ m) - (x% —x"%)gae"
meZ
and

_ a 1
"T 20+ 2ar) 4

Proof. This is a straightforward calculation using the formula (112). Compared
with (111), here we have doubled the summation index m, so that it now runs over
the positive integers. |

At this point we are ready to prove Theorem 1.3, which says that, for K =
T(s,1),
(s=D(=1 m2—(st—s—1)2

1 m m
Fx(x,q)=q 2 '3 ng.(XT —x" %)y wr (116)

m>0
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where
—1 ifm=st+s+torst—s—t (mod 2st),

em = 1+1 ifm=st+s—torst—s+1¢t (mod 2st),
0 otherwise.

Proof of Theorem 1.3. We apply Theorem 1.2 to —1/r surgery on K = T'(s,1),
which yields the Brieskorn sphere

Sil/r(T(s, 1)) = X(s,t,rst + 1).
We get
Zo(S(s.t.rst + 1) = eq? - £y, [(xF —x™2) Fg(x. )], (117)
where in this case we can compute § = 0, T = 0 and hence

e =sign(p)- (="' = +1,
r 1

d:E+0t(—1,r):—Z—E

In view of Lemma 7.2, it suffices to show that when we plug in the expres-
sion (116) for Fx(x, q), the relation (117) holds.

We compute the left hand side of (117) by applying Proposition 4.8 to
3(s,t,rst + 1). In the notation of Proposition 4.8, we have

bi=s, by=r, bz=str+1,
hence b1b,b3 = (st)*r + st and

ap =st(st—s—0)r—(s+1),

ap = st(st —s—t)r — (s +1t) + 2st,
a3 = st(st +s—t)r +s—t,

oy =st(st+s—1)r +s—1+ 2st.

Proposition 4.8 says that

Zo(S(s.t.rst + 1)) = —q - Pl - @2)m@HED g (118)

Here, A = A(s,t,r) is given by the formula (59) applied to the plumbing graph
I representing (s, ¢, srt + 1). This graph can be obtained from the plumbing
tree I" for T'(s, 1), by gluing it to the graph for the solid tours S_;,, as described
in Section 7.1.
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Let I be the linear plumbing graph obtained from I' by deleting the distin-
guished vertex. Note that I'’ represents S3. Let k be the number of vertices in "/,
and let mq, ..., my be the labels of those vertices. Further, let n; and 7, be the
cardinalities of the first homology of the plumbed manifolds represented by the
result of deleting from I'” one of its two terminal vertices. In other words, if we
construct a continued fraction from I'" as in (75), by going along the graph in ei-
ther direction, then in both cases, the numerator of the fraction will be +1; the
denominator in one direction will be 7, and in the other direction 7.

Looking at the formula (59) in our case, we see that what we denoted s in that
formula corresponds to k + r in our current notation, and what was »_ m,, there
is now Zf;l m; — st — 2r + 1. Furthermore, the values 4; from (59) are

hi=rs>4+n1, hya=rt>+n, h3=1.
One can check that

k
n + n2 =3k +Zmi — st.
i=1
Therefore, we have
s—D@E—-1) r st (st —s —1)?

Aty =207 I .
(s.2,7) 2 4 41 +str) 4st

We now apply Lemma 7.3 twice, first with the values

-5 — - D@ —-1
a:M’ b:st_s_t’ c:e:st’ d:w’
2 2
and then with
t(st —1 —1)(¢ 1
a=%, b=st+s—t, c¢=e=st, d=u2(+)+1.

In both cases we have
St 1 1

T 4r(str+ 1)

v Astr +1  4r

By taking the difference of the two resulting relations (115), and plugging in Fx

from (116) and Z, from (118), we obtain that the relation (117) holds. O

If we prefer, for K = T'(s, ), we can write Fx(x, q) as in Section 6.9, as the
anti-symmetrization of the series

s=D@=1 m  m2—(st—s—0)2
Flz(x,q) =q 2t ng.qu 4tst : . (119)

m=>1
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In expanded form, this is

T _ stn2+(st—s—t)n _stn+ S=DE=D
Fg(x.q) = ZCI ( " x 2

n>0
+ Z qstnz—(st—s—t)nxstn—w+l
n>1
~ (120)
. Z q(sn—l—s—l)(tn—l—l)xstn—l—%—l—l
n>0

_ _ _s=DE+D
_E :q(sn s+1)(tn l)xstn 2,

n>1

where we assumed that 2 < s < ¢.

7.3. More on the trefoil. The first few terms of Fx (x, ¢) for the right-handed
trefoil 3] = T'(2, 3) were already written down in (113). Theorem 1.3 gives the
exact formula

> m m m2—1
D emx® —xTH)g (121)

m=1

Far(x.q) =

[NSNIENY

where
—1 ifm=1lorll (mod 12),
em=13+1 ifm=50r7 (mod 12), (122)

0 otherwise.

The Dehn surgery formula (Theorem 1.2) can be applied to this series for the
values p/r ¢ [0, 6]. For fractional —1/r surgeries, we get back the answers from
Table 1. For some integer surgeries, the results are tabulated in Table 2; they can
also be obtained directly from the plumbing formula (41).

Note that, by the discussion in Section 7.1, the manifold S ;/ ~(31) bounds a
negative definite plumbing if and only if

p/r € (—o0,0) U {5} U [6, 0).

7.4. Negative torus knots. Recall from (14) that the WRT invariants of a 3-man-
ifold Y are related to those of —Y by the change of variables g — ¢~!. On the
other hand, in general, the Za (g) invariants of Y and —Y are related in a more
complicated fashion: the change ¢ +— ¢~ ! involves going from a series converg-
ing in the unit disk |¢| < 1 to one converging for |¢| > 1; see [16].
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Table 2a. The invariants Z(g) for some integer surgeries on the right-handed trefoil.

Y =553 Za(q)
—3/20
p =10 M(—Z’llé) g / (1+q5+q7_q11+q18_q24_q28
'3'3'12

_q47+q73+.“)

g~ 13/20

T(—1+q+q2+q9—q22—q39—q44
1453 ¢ 4 g7 4 g8+

—17/20

q

T(1_614_|_q7_qlo_|_qzl_qz6+q33
Lg% g g% )

q~7/20

(—1+q—q>—¢" +¢" +¢> —g*
+g4 — g7l 4 ¢80 — 92 4.
g7 H(=1—q"0 4 ¢ + g3 — g% 4+ ...

2

112 1/18
p=9 M(—2;—,_,_) (1+q—q8—q11+q25+q30
233 2 51 58 86 95
7 ¢ +q" + g7+ )
g1/?
(=1 4+2g —q3 + ¢ —2¢'0 + ¢'5 — ¢2!
+2¢28 —g36 +...)
g~ 1/18
T(l—q4~l—q5—l—q17—q19—q39—|—q42

+q70_q74+“‘)
V21— g3 4 q6 + g5 — g2 —g36 4 g%
+q66_q78+_._)

q—S/IS

(c1—q?+q7 +q'3 =g g3 +4*8

2
462 — B2 _ 4100 4 ..
11 q 38 2, .5 7 12,15, 22
p=8 M(-23.33) (g -a*+4¢° —q"+4'2 —¢' +¢

— g2 4¢3 4.
-3/8

2

q

(_1+q—q2+q5_q7+q12—q15+q22
SR E S
—611/4(—1+6]2—C]10+C]16—6]32+6]42—6]66

+q80+...)
q—1/4(_1+q4_q8+q20_q28+q48
_q60+q88_|_“.)
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Table 2b. The invariants Z(¢) for some integer surgeries on the right-handed trefoil.

Y = 53(3{) 2(1(‘1)
p=1 L(7,1) —-2q, ¢%7
p=-1 $(2,3,7) 21 —q—¢> +q"0—q" +¢'8 + 4%

_q4l+q43_q56_q76+q93+“.)

p=-2 M(—l;l z l) G (1— g3 + 10 — g3 4 g25 — g 4 465
% g% )

—g54 (1 —q° +q° —q'7 + g3 — 452 4¢3

_q82_|_...)
p=-3 M(—l;%,%,é) G+ q5 — b —q'8 4+ q20 4 q40 _ g4 _yT1
+¢7 + ...
_q4/3(1+q2_q7_q13+q23+q33_q48
g2 482 4.
p=—4 M(_l’%’%’%) 1 +q° =g g% +¢%%2+--1)

A =P gt =g g0 — g3 4 ¢
g2 4 b8 g9 L % 4 ..
A g 2t g8 B2

Similarly, for a knot K in a homology sphere Y, we expect the series Fx(x,q)
to be related to that of the same knot in —Y in a complicated way. On the other
hand, when Y = S3 oralens space, the underlying 2a (¢) invariants of the
closed manifold are Laurent polynomials (rather than Laurent power series), and
we expect things to simplify. Indeed, for plumbed knots K in such manifolds, one
can check that, in the series Fx (x, g) from (101) and (103), each coefficient f,,(q)
of a power of x is a Laurent polynomial in g.

In particular, this is true for torus knots in S (or, more generally, for algebraic
knots). For such knots, it makes sense to define the series for the mirror knot by

Fm(K)(X, Q) = _FK(X_lvq_l) = FK()C, q_l)’

so that

oy (x.q) = fr(x"1g7h) = frx(x.q7").
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Observe that the series Fy,(k)(x, ¢) is no longer an element of some

27 q A Zx 2 X2 [g 7 q]),

because there is no lower bound for the exponents of ¢ over all x. Rather, it is a
formal power series in both x and x™ 1, i.e.,

Fnk)(x,q) € 27¢q%Z[g7 ", q][[x "2, x V).

It is worth noting that formal power series in x and x~! form only a vector space,
not a ring.

Going back to torus knots, as we noted in the Introduction, the series for
m(T(s,t)) = T(s,—t) is the anti-symmetrization of

—=le=b _m2=(st=s=n)2
P(x,q) = T(s t)('x q9) =¢ Zem xzq st ]

m>1

Let us focus on the negative trefoil 313 T (2,—3), for which we have

m m2—
W q) =gy emoxEg T
m=>1
=g V(14 ¢ P+ g AP g =)

We can apply Laplace transforms to this series, multiplied by a suitable factor,
as in Theorem 1.2. This makes sense for values p/r € (—6,0). The results for
Za (q) of Ss I (3%) are summarized in Tables 3 and 4. An indication that we have
the right definition of F3¢(x, ¢) is that the same answers can be obtained from the
plumbing formula (41). Note that, by the discussion in Section 7.1, the manifold

p/r(3 ) = S3p/r(31)
bounds a negative definite plumbing if and only if
p/r € {=7} U[-6,0).
It is helpful to study the normalized version of W(x, g):

Y(x,q)
v(x,q) = Y=y

= —x"12w(x, q)-(1+x+x2+---)
=q ' x(1-q7'x* =g + 47 + )+ x+ 7 +0)

= f(1—i—x+x2(l—q_1)+x (I—g H+-)

SI () (- )
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Table 3. The invariants Z, (¢q) for some integer surgeries on the left-handed trefoil.

Y =533 Za(q)
127
=2 M(-22.2.2

P ( ’2’3’8)

p=1 ~%(2.3,7)

p=-l £(2,3.5) g1 ~q~¢>~q" + ¢ +q"* +¢*°

Fq2 — B3 g2 4

123 _

p=-2 M(—Z;E,E,Z) -3+ ¢* - —q" + 4" +¢%

PR JPE SIPE S T
G (1 —q +q° + g —gq'3 — 420
135 4 g% _g50 _ 463 4 ...
) _q—2/3(1_q3+q9_q18+q30_q45
+q63_q84+“.)
G 0 —g+q>+¢5—q7 —q'2+4'5
L2226 35 Lg% 4
112 B
p=—4 M(_27§75’§) —q 1/2(1_q+q5_q8+q16_q21
£ g3 g0 456 o5 4.
G0+ g% —q* +q'0 — g1t 4 g
S0 gt 52 170 4
—q_3/4(1—q2+q4—q10+q14—q24
P N S (U

p=-5 —L(5.1) —2q=V/2 ¢=7/10
p=-6 LG DH#L(2,1)
=—7 —L(7.1)
p=-8 M(—l;l,l,z)
2°2°3

The last expression is (up to a normalization factor) the Garoufalidis—Lg stability
series for the trefoil; cf. [34, p. 11]. Itis obtained by setting x = ¢” in the following
formula for the colored Jones polynomial of the trefoil, from [47, Section 1.1.4]:

o0
Jyea@ =¢"" ) " (=" )1 =¢" ). (1=¢"™") (123)
m=0
o
— qn—l Z qmn(qn—m)m'
m=0

Observe that the sum in (123) is finite, because the terms are 0 for m > n.
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Table 4. The invariants Z (g) for —1/r surgeries on the left-handed trefoil.

Y = Sil/r(sf) Za(Q)
r=1 3235 ¢7720-9-¢-¢"+¢*+q"* +¢*°
+q2 — g3 —g*2 ..
r=2 $2,3,11) ¢ 3?0 -q-¢°+q¢"*—¢"° +¢*° +¢°

bl Tl Bt 124 4 14
_g156 4 g175 4 g231 _ 4254 4 274
g2 4.

r=3 22317 ¢ ?0-q-9¢"+¢°-¢" +¢> +¢%
_q91+q113_q126_q196+q213
_q246+q265+m)

r=4 22323 ¢ ?0-q-¢*"+¢° ¢ +4%
+q110_q121+q155_q168_q268
+C]285+"')

r=25 2(273’29) q—3/2(1_q_q27+q32_q55 _I_q62 _I_ql40
_q151+q197_q210+.”)

Remark 7.4. The papers [34] and [47] give these formulas for the right-handed,
rather than the left-handed, trefoil. This is because their conventions for the
colored Jones polynomial differ from ours by ¢ <> ¢~!. See Section 2.

Remark 7.5. In the literature there is another well-known formula for the colored
Jones polynomial of the trefoil—its cyclotomic expansion (24), whose terms
involve two Pochhammer symbols instead of one:

J3en@ =Y " @ Dm (@' " m.

m=0

We could set ¢” = x and get a series as in (21):

Cx(x.q) =Y q"(@X)m(gx " )m.

m=0

We could try to apply the Dehn surgery formula (106) to Ck(x,q) instead of
fx(x,q), and see if we recover the invariants Za (g) of the surgeries. Interestingly,
we get the right answer for the —1 surgery (the case of the Poincaré sphere), but
not for other surgeries.



A two-variable series for knot complements 75

7.5. Stability series. In this Section we prove Theorem 1.4, relating W(x, ¢) to
the stability series for the negative torus knot. Recall the definition of stability
series from (5) and (6). In [34], Garoufalidis and L& studied the stability series

O(x.q) = Y Dj(gq)x’
J

for a version J; k.n Of the colored Jones polynomial. Specifically, J) K.n is obtained
from the unnormalized version J; k.» by dividing by its lowest monomial, so that
J; k.n starts in degree 0. Of particular interest in the literature has been ®¢(q),
which consists of the lowest degree terms of JAK,,,, and is called the tail of the
colored Jones polynomials. The highest degree terms give the head, which can be
obtained from the tail of the mirror knot by taking ¢ — ¢~ !. See [22, 5].

Garoufalidis and L& showed that stability series exist for alternating knots;
cf. [34, Theorem 1.4]. However, stability series do not exist for all knots. For
example, it was observed by Armond and Dasbach in [5, Proposition 6.1] that the
positive torus knots 7'(s, ) with s,z > 2 do not have a tail; rather, in that case,
the even colored Jones polynomials f2n have one tail, and the odd ones f2n_1
have a different tail. On the other hand, by [34, Theorem 1.17], the colored Jones
polynomials of negative knots admits stability series.?

Proof of Theorem 1.4. Let K = T(s,t). We use Morton’s formula [61] for
Jx.n(q), as rehashed by Hikami in [44, Theorem 1]:

_SIJ w stn

q k2—(st—s—1)2
Jkn(q) = ——F——— Zsm kg, (124)

q 2
where the values &, are as in (3). By replacing ¢ with ¢~! and multiplying by the
quantum integer [#] we obtain the unnormalized Jones polynomial for the mirror
m(K) = T(s,—1):

stn _ (s— 1)(t D stn

~ q 4 k2 —(st—s—1)2
Tn(Kyn = Zesm Y T (125)
q

_l
2

I\)I'—'

After changing variables to m = stn — k, we get

~ S— — stn mn mz— Sl—85— 2
@ =4 ) T =0 D emg g L (126)
m=0
Clearly, the stability series of this is given by W(x, g) from (4). O

2 Because of the difference in conventions for the colored Jones polynomial, the results stated
in [5] and [34] for positive knots apply to negative knots in our setting, and vice versa.
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Remark 7.6. While for negative torus knots we have a direct relation between
F Iz (x, g) and the stability series, we cannot expect this to hold for arbitrary knots.
Indeed, as noted above, stability series do not even exist for all knots. Even when
they do, e.g., for the positive torus knots 7'(2, ), the same relation does not hold.

Remark 7.7. From the formula (124) we can extract the stability series for the
even and odd colored Jones polynomials of the positive torus knot K = T(s, t).
For simplicity, we will work with the normalized colored Jones polynomials
Jx.n(q), shifted to start in degree 0. When # is even, these admit a stability series

D(x,q) = Y; ®;(g)x’ with

o
m2—(st—s—1)2 _ s=D@=1
Doq) =Y emq W =q 2 Fi(lg)

and
®;(q) =0 forj>0.

If we want the series for the unnormalized versions of colored Jones, we divide
®(x,q) by 1 — x, that is, we multiply it by 1 + x + x2 4 --- We get the same tail
®y(g) as before, but this time it is replicated in all degrees j > 0.

When 7 is odd, for the normalized versions Jx ,(g) we get the stability series

Y(x,q) =37, (g9)x’/ with

—(S 1)2
Yo(q) = Z Est— mq o Ast
Ti(g) =0 fOl‘] > 0.

Remark 7.8. When s = 2, the torus knot 7'(2, ¢) is alternating. In that case it is
easy to see that ®o(g) = Yo(g), so the odd and even stability series coincide.
In particular, for the right-handed trefoil 3] = T'(2, 3), the tail of J3{,,, (q) is

Po(q) = Zsmq = YRR = (g,

keZ

which is Euler’s pentagonal series from (17).

8. Resurgence

Resurgence is the process of recovering non-perturbative features of a function
from its asymptotic (perturbative) expansion. This is very useful in quantum



A two-variable series for knot complements 77

mechanics and quantum field theory. For introductions to resurgence, see [21],
[25], or [58].

We are interested in applying resurgence analysis to the Chern—Simons func-
tional. This was done for closed 3-manifolds in [36], and we will show how the
same techniques can be used for knot complements.

8.1. Closed three-manifolds. Let us briefly review how resurgence was applied
in [36] to the Chern—Simons functional on some closed 3-manifolds Y. This
gave a construction of the invariants Za(Y; ) for those manifolds. The examples
in [36] were the Brieskorn spheres 3 (2, 3,5) and X(2, 3, 7). More Seifert fibered
examples were analyzed in [16, 18]. In principle, resurgence can be done for
any Y, but it is not a completely algorithmic procedure, and it is difficult to carry
out in practice.

As usual, we will assume that Y is a rational homology sphere. Recall that the
set of labels a for the invariants Z, (Y; q) is Spin‘(Y); if we take into account the
conjugation symmetry, we could say it is Spin®(Y)/Z,. Noncanonically, this can
be identified with

T := H\(Y:Z)/Zy = M, (Y:SU(2)).

the moduli space of Abelian flat SU(2) connections on Y. (Equivalently, we could
consider Abelian flat SL(2, C) connections.)
Let us also introduce

Mia (Y5 SU(2)),

the moduli space of all flat SU(2) connections on Y.
The analysis in [36] starts by considering the asymptotic expansion of the
Chern—Simons partition function as k — +o0:

Zes(Vik) ) 27K CS@ Z0 k),
aemo (M (Y;SU(2)))

It is convenient to change variables to

2mi
h=——0
k

and write dert in terms of 7. We obtain a trans-series of the form

Zes(Yik) Y e CS@/ 70 ),
aemo (M (Y;SU(2)))
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where

o0
ZE (h) = ho Y " clOnn (127)
n=0
for some &, € Q. (For example, when 8 is the trivial flat connection, then Zepert(h)
is the Ohtsuki series from [66] and [67].)

We will use the notation a for Abelian flat connections (elements of 7'). For
Abelian flat connections on rational homology spheres, the value §, is a half-
integer, so we could take it to be 1/2 for simplicity. From 7P (%) we construct
its Borel transform

) C,(:l) 1
BZ,(§) = ;—F(H " %)s :

where I is the gamma function. We analytically continue BZ, (¢) for £ in some
open subset of C, and denote the result by lfB\Za. The poles &, of the Borel transform
in the complex plane will be exactly 27 times the values &, of the CS functional
at all (Abelian and non-Abelian) flat SL(2, C) connections on Y.
Then, we do an inverse Borel transform
I
Zuh) = [ OBz,
Ry

We could also replace the integration contour R+ by another contour. This
choice of contour (which can be a linear combination of curves) corresponds to
a prescription for Borel resummation. Going between contours is related to the
residues n,p around each pole b of 1’3‘2,,. In the examples studies in [36], the new
contour was taken to be 1/2 the union of two half-lines ie’*Ry U ie "R, for
€ > 0 small.

By analyzing the poles and residues of BZ,, and regularizing the infinite sums
that come out of this process, in good cases one obtains a closed form expression
for Z,(h). Wethen setq = e’ in Z,, expand in ¢ and get a ¢-series Z,(g). Finally,
from this, we use an S-transform

Zo(@) =) SavZb(q)- (128)
b

to turn Z,(g) into the desired invariants Za (¢). The values S, in (128) are as
in (16).

8.2. Resurgence for knot complements. Let Y = S\ vK be a knot comple-
ment. We denote by X(Y') the SL(2, C) character variety of Y, and by X(3Y') that
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of the boundary 9Y = T2. The image of the restriction map
r:X(Y) — X(@Y) = (C*x C*)/Z,

has some one-dimensional and (possibly) some zero-dimensional components.
The closure of the one-dimensional components, lifted to the double cover
C* x C*, is the zero locus of a polynomial A(x, y), called the A-polynomial of
the knot [20]. Here, x, y € C* are the eigenvalues of the holonomies around the
meridian and longitude, respectively.

For each fixed value of x, let o label the different SL(2, C) flat connections
with meridian holonomy x. (In fact, for many simple knots, such connections
are uniquely determined by the value of x and the choice of a branch of the
A-polynomial curve A(x,y) = 0.) Around each connection «, the trans-series
expansion of the Chern—Simons functional on the knot complement produces a
perturbative series just as in (127):

o
Z5" () =m0y elOn, (129)
n=0
For example, for the figure-eight, the A-polynomial curve has three branches (il-

lustrated in Figure 11), corresponding to the hyperbolic connection, its conjugate,
and the Abelian connections. At x = 1,

0, o= geom.,
8o =12, o =abel, (130)
0, o = conj.

For « = geom or « = conj, the perturbative coefficients c,(,“) were computed

in [24] and extensively used in subsequent developments (e.g., in 3d-3d corre-
spondence). However, the case « = abel has received less attention.

For general hyperbolic knots, the series (129) for the hyperbolic connection
has been studied in relation to the generalized volume conjecture [35], and that
for its conjugate in relation to the Teichmiiller TQFT [4].

Our interest here is to do resurgence as for closed 3-manifolds, but with an
additional parameter x. Thus, we will start with the asymptotics (129) around the
Abelian flat connection, and the outcome will be the series Fx (x, ¢), which plays
the role of Z,(q). Since there is only one Abelian branch (i.e., for each fixed x,
we have only one Abelian flat connection), there will be a unique series Fg(x, q).

The asymptotics around the Abelian flat connection are the basis of the
Melvin—Morton conjecture [60], proved in [7] and [79], and extended by Rozan-
sky in [80, 81].
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geom.

abel

conj.

>
>

X

Figure 11. An illustration of the different branches of the A-polynomial curve. For the
figure-8 knot there are three branches and, correspondingly, three asymptotic expan-
sions (129) for every fixed value of x. In particular, near x = 1 these three asymptotic
expansions are related to the generalized volume conjecture, the asymptotics of Z and
WRT invariants, and the Teichmiiller TQFT, respectively.

Specifically, the perturbative A-expansion of the Chern—Simons functional on
the knot complement Y = S3\vK is proportional to the colored Jones polynomial
of K:

Zes(Yik) ~ Julg =€) = Y Rp(x)h" (131)

m=0

where, as usual,

Rozansky proved [81] that R, (x) are rational functions, such that

P (x)

Rn) = X oyt

(132)
where P, (x) € Q[x*!] are Laurent polynomials, Py(x) = 1, and Ag(x) is the
Alexander polynomial of K.

The Alexander polynomial and the first few polynomials P, (x) for some
simple knots are listed in the following table:
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| knot K | Ax(x) | Pi(x) | P
unknot l 0 0
-2 2
3 —14+x14+x 2—2x"1—2x 9—6x_1—6x+7x l
2 2
+x72 4 x2 - 23+x4+x_4
X X B )
4q 3—xl—x 0 5—d4x ! —4x +x72 +x?
From (131)—(132) we get an asymptotic expansion
1 P P
Jn(eh) — 1(X)3 2(x)5h2 4.
Ag(x)  Ag(x) Ak (x)
o0
= Zcm-i-jsj ()’ 7™ (133)
m,j=0

o0 m
= E E Cm,jn’ ™.
m=0 j=0

The coefficients ¢,, ; that appear in the above expansion are Vassiliev invari-
ants of the knot; cf. [6, 14]. As proposed in Conjecture 1.5, the series fx(x,q)
should be a repackaging of these coefficients, obtained through resurgence via
Borel resummation:

- resurgence
Vassilie
T fx(x.q) (134)
invariants ¢y, ; <\—h/l
—

x=q"andg =e

The resummation of a double series with variables 7 and » into a series with
variables g and x is a problem in parametric resurgence. Parametric resurgence
has been used in the Mathieu equation, in matrix models, and in other problems
of mathematical physics; see [26, 2, 3]. In our case, the resurgence will be in the
variable 7 (which upon resummation turns into ¢g) and the role of parameter can
be played either by n or x = e””; these should give the same answer.

Observe that in (133) we used the normalized (or, reduced) version J, (gq) of

the colored Jones polynomial. Its resummation should give a function fx(x,q)

symmetric under x < x~!:

k("' q) = fx(x.q). (135)
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J
4 o o &

3 \//

Figure 12. The Vassiliev invariants ¢, ; are non-zero only for j < m. Encircled in green
are the terms Y _,,, ¢, 0", whose resummation gives the g-series fx (x = 1,¢).

If, instead, in (133) we used the unnormalized (unreduced) version J~,,(q) of the
colored Jones polynomial, then the result of the resummation would be

Fr(x,q) _ x'2—x717

FK(X’Q) = ql/z_q_l/z = ql/z_q_l/z fK(x7q) (136)

antisymmetric under x <> x~!. In practice, it is helpful to multiply this with the
overall factor of ¢'/2 — g—'/2 and work with Fg (x, q).

In Sections 8.4 and 9 we will present evidence for Conjecture 1.5 by explic-
itly resumming (133) for a few simple knots and uncovering the knot invariant
Fk(x,q), or some of its terms.

8.3. Relation to the Alexander polynomial. The Alexander polynomial A (x)
of a knot K is symmetric under x <> x~! and takes values in Z[x, x!].
We define
s.e.(1/Ax(x)) € Z[[x,x™1]]

as the half-sum of the power series expansions in x and 1/x at x = 0 and x = oo,
respectively; compare Section 2. Then, from (133) and the symmetry properties
of fx and Fk, we see that we should expect the relation

Jim fie(eq) = s.e.( i (x)) (137)
and its unnormalized version:
K1/2 _—1/2
lim Fkx(x,q) =s.e.|—— ). 138
Jim Fi(x.q) = s.e. ( e ) (138)

Both versions of this relation are illustrated in Tables 5 and 6.
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Table 5. The specialization of fx (x, q) in the limit ¢ — 1 for knots with up to 5 crossings.

Knot 2fk(x,g = 1)
1 1 1 1 1 1
2 4 5 7 8 10
31 X+;+X +;—X —x—4—x —x—5~|—x +7+X +F—X
Ly
10
1 3 8 21 55
44 —x———3x2——2—8x3——3—21x4——4—55x5——5—144x6
X X X X X
144 5 371 g 987 o 2584 10
—— —37Tx" — — — 98Tx® — — —2584x" — —— — 6765x
X X X X
6765
T 10
1 1 1 1 1
5 24 3 T 8 gy 12 13
1 L T iz N
1
17 L.
X x17+
x 1 3x2 30 5x3 5 3x* 3 x> 11
5, -+ —+ + —+ + — 4+

2 2x 4 +4x2 8 8x3 16  16x* 32 32x°
45x6 45 91x7 91 93x8 93 85x° 85
64  64x6 128  128x7 256  256x8 + 512 + 512x°
627x10 627

1024 * 1024x10

8.4. An example: the trefoil. We now explain how resurgence works for a
specific example, the right-hand trefoil K = 3] = T(2,3). In our conventions
(cf. Section 2), from the formula (124) we get that K has the following normalized
colored Jones polynomials

Jl(q) = 17
L@ =q "' +q
J3@)=q > +q

3 —4
_q s

_ _ _ _ _ (139)
g T g g O g,

5

By setting ¢ = ", expanding in #, and then looking at the coefficient of each #¥
as we vary n, we find polynomial expressions in n. From here we can compute
the first few terms in the expansion (133),

Julg =€) =14+ (1 —n®h% + (=2 + 20?43

3, 1 ., 4379, 29 N\«
+(12 Tn +12n)h +( S g 6n)h+ .
(140)
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Table 6. The specialization of Fx (x,q) in the limit ¢ — 1 for knots with up to 5 crossings.

Knot 2Fg(x,q —> 1)
3 —ﬁ+L+x5/2——+x7/2—L—x“/2+;—x13/2
! Jx x5/2 x7/2 1172
1
+x13/2 te
1 2 5 13
- 3/2 _ % 5/2 _ 7/2 _ 0
44 Jx ﬁ+2x x3/2—|—5x = —=5 + 13x 77
34 233
9/2 _ ' 11/2 _ 13/2 _
+34x 972 + 89x by 11372
610
15/2 _
+610x 11572
5 _x3/2+L+x7/2_L+x13/z_;_x17/2+ 1
1 372 X772 1372 1772
_y23/2
X + 2372 +
X 1 x3/2 1 x>/2 1 7x7/2 7
32 o - + 5T T - 2
2./x 4 4x3/ 8 8x5/ 16 16x7/
17x%/2 7 23x11/2 23 x13/2 1
32 32x9/2 64 64x11/2 128 128x13/2
89x15/2 89

256 25651572 T

We could also write this “diagonally,” in terms of the variable n# instead of #. The

“first diagonal” of this double series indeed agrees with the power series expansion

1
of xemmy:

1
This works even better: for other diagonals, we find a polynomial P, (x) divided
by a corresponding power of A(e™), so we can find the polynomials P,,(x)
experimentally.
In fact, the problem of finding P, (x) for torus knots was tackled by Rozansky
in [80, Section 2]. Following his methods, we obtain the following result, close to
his equation (2.2):

11 301
=1 — (h)? + — (k) — ——(nh)® + - . 141
(nh)? + 3 (h)* = S (nh)® + (141)

oo

T3 a(q) = g% Z

— m! ay2m 1 4 (eyx% —.e—yx_%)2 y=0

1 m g2m eVx? — e Vx3
(EZ) (142)

When all factors of ¢ = e’ and x = e™ = ¢” are expanded in # and n, this agrees
with (140).
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We will do resurgence in # with parameter x. The simplest case is x = 1,
which corresponds to n = 0. In the notations of (133), the perturbative series at
n=20is anozo cm,0h™. Following [36], let us introduce

Z(h) = Y amh™ 2 o= VhgTR Y o oh™ (143)

and its Borel transform

o0

BZ() =Y F(’:—’:’r%)gm—%. (144)

m=0

Using I'(m + 1) = 4—‘/,,7; - 2mt e learn that

“ml

g P e E\m
Bz¢) = 2:: T (2m)' _\/,,—gn;b’”(zm)!(_é)’ (145)

where

bm = (—24)"a,,.
In this form, the right-hand side of (145) can be experimentally related to the
logarithmic derivative of the simple rational function

z—z71 72 772
I+ G-z 12 Btz3 Z em(2” ) (146)

where ¢,, are precisely the coefficients introduced in (122). Observe that the
Alexander polynomial of the trefoil appears in the denominator of (146). Alterna-
tively, we could get the same rational fraction from Rozansky’s formula (142).

As we shall see shortly, the rational function in (146) is basically the sought-
after Borel transform of the original series in . We can relate it to (145) by writing
z = ¢” and differentiating with respect to y. We get

z(Z2+ 1)(z* =322+ 1) >
=2 Z m

2\m
-2+ 1) ="

1 & m o —m m!
3 2 e = @m)

Comparing this with the right-hand side of (145), we see that the two expressions
match if we identify
yo==. 147)
In other words, the exact Borel transform is
1 zZ2+1)(z* =322+ 1)
2,/nk (z4 =22+ 1)?

with the above identification of variables z = ¢” = ¢V§/6,

BZ(¢) = — (148)
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Now, what remains is to perform the inverse Borel transform, i.e., an integral
over £. In general, if the Borel transform has the form

BZ(¢) = —Zcme /e (149)

then the inverse Borel transform gives the g-series (cf. eq. (3.38) in [36]):

fa) =5 [ e g = > en (150)

iRy

In other words, the inverse Borel transform acts as a familiar to us “Laplace trans-
form” with respect to powers of z. Luckily, our expression for BZ(§) is most con-
veniently presented in terms of the variable z anyway. Therefore, applying (150)
we see that in our case p = 24 and

2

F@) =3 meng">. (asn)

m

This is precisely the answer we got for fx (1, ¢) of the trefoil, obtained from (121)
by dividing by x!/2 — x~1/2_and then taking the limit as x — 1.

The resurgent analysis above, in fact, extends to general values of x. Indeed,
using the simple change of variables (147), we can write the &-integral (150) as a
y-integral which, in turn, following Rozansky’s formula (142), is a limit (x — 1)
of a more general family of integrals parametrized by x (cf. [80]):

23
q2 eVx3 — e Vx"3
freq) = 1\ 33 / dy /" . (152)
X2 —x72 14 (e7x% —e~7x72)?

On the one hand, for all values of x, such integrals have the form of the inverse
Borel transform. With the help of the familiar formulae (146) and (150), we get
the answer in (121):

Fr(x,q) = (x? —x72) fx(x,q) =

AT

e m m m2—1

D em(xT —xTP)ge . (153)
m=1
On the other hand, using the general formula,

5 0 (2m) m
[ roay = van y 203 (154)
R

m=0
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we immediately reproduce the perturbative #i-expansion (142) from (152). This
means that the integrand

1/2 —-1/2

er’x''t—eVx
1+ (e¥x1/2 —e=vx—1/2)2

BZ(x,y) ~

is indeed the Borel transform of the original perturbative series (140).

9. Recursion

9.1. The general principle. Consider the character variety of a surface, X(X) =
Mgt (2, Ge). Quantization replaces the algebra of functions on X(X) by an
algebra of operators. In particular, for ¥ = 72 and G = SU(2) the classical C*-
valued holonomy eigenvalues x and y become operators (which, for simplicity,
we denote by the same letters) that no longer commute, but rather “g-commute’:

YX = gxy. (155)

Correspondingly, as in the standard deformation quantization, the A-polynomial
of a knot, A(x, y), turns into a g-difference operator

A= /Tq(x,y).

This is called the quantum (or noncommutative) A-polynomial.
It was proposed independently in [32, 35] that the colored Jones function

Jg:IN — Z[CI_I,CI], nkH JK,n(‘])s

satisfies a recursion given by A. Here, the variable x acts by multiplication by ¢”,
and the variable y acts by shifting the index » by 1, i.e., taking J,(q) to J,+1(q)-

Mathematically, it was proved that the colored Jones function is g-holonomic,
that is, it satisfies a finite linear recursion with polynomial coefficients [33]. The
A-polynomial is then defined as the generator of its recurrence ideal [32], and the
AJ conjecture says that its specialization to ¢ = 1 is the usual A-polynomial. The
Al conjecture remains open in general, although it has been proved for several
families of knots; see [54, 55].

In practice, the operator A canbe computed either numerically [33] by looking
for a recursion satisfied by J,(¢q), or via deformation quantization [23] of the
algebra of functions on (C*xC*)/Z,, or via the B-model (“topological recursion’)
applied to the classical curve A(x, y) = 0, see [41]. Cf., e.g., [39] for a review.
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Recall that Conjecture 1.5 says that the series fx(x,q) is obtained from the
colored Jones polynomials by resurgence through Borel resummation. Since the
colored Jones function is annihilated by ffq (x, y), one expects that so is fx(x,q),
where now x acts by multiplication by x and y takes the variable x to xq.

In fact, it was argued in [35] that any partition function of SL(2, C) Chern—
Simons theory on the knot complement should be annihilated by A. Later, this
was justified in the framework of 3d—3d correspondence. In particular, this applies
to fx(x,q) of our interest here, leading to the first claim in Conjecture 1.6:

Afx(x,q) = 0. (156)

Usually, this equation is solved for the normalized version of the colored Jones
polynomial or some other SL(2, C) partition function. Here, it is convenient to
work with it in its unnormalized form: by conjugating Awith x2 — x_%, we obtain
an operator A which annihilates J,(¢). We can rephrase (156) as

AFg(x,q) = 0. (157)
Let us write .
Fr(x.q) =53 fm(@)- (% —x7%) (158)
m>1

as in (103), where f;,(¢) can be non-zero only for m odd. Then, equation (157),
after clearing denominators, becomes

ao fm + a1 fm1 + az fmi2 + -+ an fman =0, (159)

where f; = fi(q) and a; = a;(g) are Laurent power series in ¢. This form of
the g-difference equation appears to be new and has not been discussed in the
literature so far.

To start the recursion given by (159), we need to know the initial values
f1(q), ..., fu(q). In view of (133), we should look for a solution of (158) of the
form

Fr(x,q = e")

_ (xl/z _x—l/z) ) ( 1 Pi(x) Pr(x) ., P3(x)

Ax) Ak Ak T Ax()

#H3 +>
(160)

We will first apply the recursion (157) to the right hand side of (160). This will
determine the Laurent polynomials Py (x) up to an arbitrary order k. Indeed,
solving the recursion order-by-order in %, we obtain a linear PDE for each Py (x).
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A convenient way to fix the corresponding “integration constant” is to require that
the value of Pr(x) at x = 1 (i.e., n = 0) matches the coefficient of A¥ in (133).
This coefficient cx ¢ can be found by expanding the colored Jones polynomials
in #, as we did for the trefoil in (140).

Once we know the polynomials Py (x), we read off the coefficients of x
(as power series in #) from the right hand side of (160), form = 1,...,n. We
then convert these power series in % into Laurent power series in ¢ = e”. In
general, this conversion means doing resurgence, but in the two examples below
(the trefoil and the figure-eight) the power series in # are seen experimentally to be
just finite Laurent polynomials in ¢ = e”. These give the desired initial conditions
f1(q), ..., fa(q), allowing the recursion (158) to start. The result of the recursion
is the series Fx(x,q).

m/2

Remark 9.1. Both versions Fg(x, g) and fx(x, g) could be used for the recursion
analysis. However, since Tables 5 and 6 suggest that the unnormalized version
Fk(x,q) may be easier to deal with, we chose to use that one.

Remark 9.2. The coefficients of each power of x in Fg(x, q) are finite Laurent
polynomials in ¢ for all algebraic knots (compare Section 7.4), and for the figure-
eight knot. However, this cannot be true in general. For example, the knot
K = 5; has non-monic Alexander polynomial; hence, the specialization ¢ — 1
of Fkx(x,q), which is s.e.(1/A(x)), does not have integer coefficients. This can
be seen from Table 6. Therefore, in this case, we expect the coefficients of the
powers of x in Fg(x, ¢) to be infinite Laurent power series in ¢, rather than Laurent
polynomials.

9.2. The trefoil. The A-polynomial for the right-handed trefoil K = 3] can be
read off, for example, from [32, Section 3.2] or [39, Example 6]. Conjugating it
with x2 — x_%, we find the recursion relation (157) for Fx(x, ¢g) in this case:

a(x;q)Fx(x.q) + B(x:q) Fx(xq.q) + y(x:q) Fx (xq*.q) = 0 (161)
where

g3x? -1
q*x3(qx? —1)
1 222 2(x* —6x2 + 4)
T X3 x3(x2-1) x3(x2—-1)2

a(x;q) =

B2+ O(h%),
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GOx5 —g?x3 —gx? + 1

_x?—1 x5—5x3—9x2+9h
X3 2x3(x2—1)
x7 —42x% — 81x* + 25x3 + 162x2 — 817512 + oM.
8(x — 1)2x3(x + 1)2
yxiq) = — 1.

We apply this recurrence to find the first few Laurent polynomials Py (x). We
use the initial conditions
73
E )
which follow from (140). The results of the recursion are tabulated in Table 7.
Plugging the polynomials Py (x) into (160), we obtain

—2FK(x,eh) _ (x1/2 — V2 _ 52 + X732 _ /2 + <72 )
+ h(x1/2 —x V2 _x5/2 4 9752 _357/2
+3x772 4

Pi(1) =0, P(1) =1, P3(1) =-2, Py(l) =

2
+ ;%(xl/2 —xTV2 4xS2 4TS24 T/2
+ x4
h3
+ Z(xl/2 —x7V2 x5/ 4 gxT5/2 _27x7/2
+27x772 4
h4
+ —(xl/2 —xV2 _16x5/2 4+ 16x75/2 — 81x7/2

24
+81x 72 4.0

5
+ h—(xl/z —x Y2 _32x5/2 4 30x75/2 — 243x7/2
120
+243x7 72 4.0
I

From here, we find the initial conditions
fi=—q, f=0, fs=q> fi=q¢, fo=0

for the recursion (159), which is

(95}

q m_ 3
fmt10 = ———=[fm(@2 "2 —q""?)

_q + m 1
+ fnta(@™t® —g272) (162)
+ fure(1—g3T3)].

NN
N
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Note that the steps in m are multiples of 2 in our notation (only odd values of m
give nonzero terms), so this is a 5-step recursion.

Solving the recursion (162) experimentally up to any desired order m, we find
that

m2423

Jm(q) = emq 2% . (163)

This is what we expected from (121). Of course, a posteriori, one can also check
directly that the functions in (163) satisfy the recursion (162).

Table 7. Laurent polynomials P (x) for the trefoil knot K = 3;.

1 2
P1:x2+—2—2x——+2
X

4 2

x 1 2 Tx 7 6
Pp=" b — 233 4 6x——+9
2= T oA 3Tt T
P_x6+1 s L ox* 71X 17 46x? 46
3776 T 6x6 5773 T3yt T3 343 3 3x2

49x 49 25

3 3x 3
» x8+1 x7 1+7x6+7 35 3 117x4+117
= — _— — _— — — X7 — — _— _—
T4 T 24x8 T 3 T 3x7 g 86 x5 8 8x4

9.3. Figure-eight. The normalized version of the colored Jones polynomial

for the figure-eight knot K = 44 is given by the following formula; cf. [33,
Section 6.2]:

n—1 m
T@)=1+Y T]@" +a" =4’ —q7). (164)
m=1j=1
The first few polynomials are
Ji(g) =1,
D@ =q2 ¢ +1-q+q* (165)

J3@)=qg°—q7—q*+2¢7—q?—q"
+3-q-q>+2¢° —q* —¢° +¢°,
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Expanding them in powers of 7 we get

47 13
Inlg = ") =14 (<140 + (55 =502 + Sn )t
L L O PR
360 12 12 360 '
Thus, the coefficients ¢k o in (133) are
47 12361
11 _17 TA YN (167)
12 360

In fact, in this case, a neat way to find all the coefficients ci ¢ is to consider the
following function, obtained from (164) by replacing ¢” and ¢~—" with 1, and
taking the summation over m to infinity:

Jog):=1+ Y [Ja-gHA—q7). (168)

m=1j=1

Setting ¢ = e’ and expanding this function in % produces the coefficients ¢ o.

The /T—polynomial of the figure-eight knot appears, for example, in [32, Sec-
tion 3.2] or [41, Section 3.2]. We find that the series Fx (x, ¢) should obey a 3-step
recursion relation:

a(x;q)Fx(x.q) + B(x:q) Fx(xq.q) + y(x:q) Fk (xq*.q) + Fx(xq>.q) = 0,

(169)
where
(i q) = (¢*x + 1)(g°x* — 1)
T PR+ D@ — 1)
5x2—2x +5, 25x2—58x +25
= 11— h— h? + O(h),
22— 1) 8(x —1)2 + 0@
(@°x* = D(gx(gx(@(x(gx =2) =D+ x+ D) +g—x-2)+ 1)
B(x:q) = T
g*x?(gx*>—1)
Cxt =P —x?—x 41 2(2x6—2x5—x4—x2—2x+2)h
N x2 x2(x2-1)
8x® — 7x7 — 15x% + 11x° 4+ 10x* + 11x3 — 15x2 = 7x +8 ,
+ h
x2(x2—-1)2
+ 0(h?),
g) = - X DEx@axG@Px - D@ +g-D =D =2+ D+1)

q°/2x%(gx + 1)
( , 1 N +1+1) 9x5+4x4—2x3+2x2—4x—9h
=(-x"——=+x+-— —
x2 X 2x2(x + 1)

+ OH?).
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This recursion, together with the initial conditions given by (167), produces the
Laurent polynomials P (x) listed in Table 8. Using this method, we can produce
explicit expressions for Pg(x) up to any desired order k.

This leads to the first terms of the series Fx (x,q = e”) in terms of / and x
2 5
Ay _ ( 1/2 _ 3/2 _ 5/2 _ 7/2
2Fk(x,e") = (x T2 + 2x pIp + 5x P + 13x
89
x11/2

34
_ 9/2 _ °* 11/2
x7/2+3 X x9/2+89x

233
13/2 _
+233x =57 )

1 10 64
2(.5/2 7/2 _ 9/2 _ 7
+ h (x oy + 10x PeIp + 64x o2

+331x11/2—%+1505x13/2—% )
+h4<x5/2_ 1 +17x7/2_ 17 +142x9/2
12 12x5/2 6 6x7/2 3
142 6115x!Y2 6115 50057x13/2
Tiort T Tt 12
50057
~ o)
+h6<x5/2_ 1 +13x7/2_ 13 +818x9/2
360  360x5/2 36 36x7/2 45
818 154891x11/2 154891  472573x13/2
T2 T T 360 3e0x112 72
472573
~ Sy )
+h8< 2 257x7/2 257
20160 20160x5/2 ' 10080  10080x7/2
10781x%/2 10781 916439x11/2

2520 2520x%2 T 4032
916439  19085471x'3/2 19085471

T ozt 2880 T 2880xt2 T )
5/2

+h1°( x 1 N 41x7/2 41
1814400  1814400x5/2 ~ 36288  36288x7/2
9608x°/2 9608 147178651 x11/2

12175 14175x2 T 1814400
147178651 +47916623x13/2 47916623 N )
1814400x11/2 10368 10368x13/2
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Py

P>
P3

Ps

Pg

Py

Pio =
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Table 8. Laurent polynomials P (x) for the figure-8 knot K = 44.

_x6+ 1 +2x5+ 2 3x* 3 98x? 98+293x2+293
12 12x6 0 3 3x5 4 4axt 3 3x3 2 2x2

862x 862 4211

3 3x 12

=0

= %(ﬂ“ +101x"3 4 3160x"> 4+ 12171x" 4 8061x 10
—102498x° 4 214337x8 — 258305x7 + 214337x°
— 102498x° + 8061x* + 12171x3 + 3160x2 + 101x + 1)

=0

= %(ﬁo + 476x19 + 67393x!8 4 1645236x!7 + 14061303x1¢
+ 8176392x 1> — 41755650x 14 — 127433568x 13
+ 583375485x 12 — 1066253508x ! + 1267004367 x 10
— 1066253508x° 4 583375485x8 — 127433568x”
— 41755650x° + 8176392x> + 14061303x% + 1645236x3
+ 67393x2 4 476x + 1)

=0

(> =3x+1)° ¢ 25 24 23
= W(x +2003x2% + 1134523x2% + 91512582x

+ 2727924123x22 + 26367610587x2! + 80642770303x2°

— 185974355518x 19 — 170592137312x '8 4 55832596182x 17
+ 2753722904868x1° — 8501480211618x !>

+ 14284755783843x 14 — 16668636494613x 13

+ 14284755783843x128501480211618x !

— 4+2753722904868x 10 + 55832596182x°
—170592137312x8 — 185974355518x7 + 80642770303x°

+ 26367610587x° + 2727924123x* + 91512582x3

+ 1134523x2 4+ 2003x + 1)
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By analyzing the coefficients of x”/2 for |m| < 13 in this expression, we find
that they are polynomials in ¢ = e”. Precisely, we get

fi=1,

f3=2,

fs=1/g+3+q,

fr=2/4>+2/q +5+2q + 24>,

fo=1/q*+3/4> +4/¢*> +5/q + 8+ 5¢ + 4¢°> + 34> + ¢*.

i =2/¢°+2/4° +6/¢4* +7/¢> +10/¢> + 10/q + 15
+10q + 10¢* + 79> 4 6g* + 2¢° + 24°,

fis=1/¢° +3/¢® +4/q4" +7/¢° + 11/¢° + 15/q* + 18/¢>
+21/g* 4+ 23/q + 27 + 23q + 21¢* + 18¢> + 15¢*
+11¢° + 7¢° + 49" +3¢® + ¢°.

These will act as initial conditions for the following 7-step recursion in terms

of fm(q):

m_ 11
q 272
Jm+1a=——3 [fm(él2+2 —q"")
q2 2 — m_ 15 m_ 17
+fm+2(q2+2 —q2t2 4 g" — gt
m 17 m 19 3m 4 21
+ fura(—qBtT —gBTT ¥R L

+qm+8 +qm+ +q +12)

+q 2 +2 2 +qm+9 +qm+10 qm+12 +qm+13)

+ furs@3 T g BT B Y B
_qm+8 + qm+9 _qm+11 _qm+12)
+fm+10(q2+2 +612+2 +q7t - q3Tm+3_25—qm+9

_ g2 g1y

m o 11 m o 13
+ fut12(g2 T2 —g2 17T 4 gm T gmt12)
— fn+aq” = fnr6q + fn+sq® + fmt1o].
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In this way we can determine Fg(x,q) for the figure-eight knot up to any
desired order. Written as in (11), it will be the anti-symmetrization of a series
E(x, q), whose first terms are

E(x.q) =x2 +2x32 + (¢ + 3+ q)x>/?
+Q2¢ 2427 +542q +2¢H)x"?
+ (g 43¢ +4¢72 + 507 + 845 + 4¢% +3¢° + ¢*)x°?
+ Q¢ +2¢7°+6¢7* +7¢7% +10¢g7% + 107" + 15
+ 10g + 10¢2 + 7¢% + 64* +2¢° + 2c]6)xll/2

4.
170)

9.4. Surgeries on the figure-eight. Thurston [87] proved that all but nine values
of p/r € @Q produce hyperbolic surgeries on the figure-eight knot. The nine
exceptional surgeries are for the coefficients

D o 4,-3,-2.-1.0.1.2.3.4}.
-

The +4 and 0 surgeries are toroidal, and the 1, £2 and £3 surgeries are Seifert
fibered:

Wl— Nl—= ] —

Wl— B W] —

Bl— O] — ] —
N—

S3(4y) = —S3,(4y) = M(— 1;

N—"

S3(41) = =82,(40) = M (1

S3(41) = —82,¢40) = M (1

N—"

See Figure 6 in [15].

The +1, +2 and +3 surgeries bound negative definite plumbings. Thus, for
those we can apply the plumbing formula (41) to compute the invariants Z,(q).
The results are shown in Table 9.

Using modularity analysis, from these answers one can also obtain Za(q) for
the reverse manifolds, which are the —3, —2, and —1 surgeries. In particular, for

S3,(41) =-2(2.3.7)
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Table 9. The invariants Z(q) for negative definite Seifert fibered surgeries on the figure-8
knot.

Y =S3(4) Za(q)
=1 $(2,3,7) G20 —qg—q5 +q10 — g1 4 ¢18 430 _ 441
L g g5 g6 4.
p=2 M(—l;l ll) GV 0 =g +q'12 — g1 4+ q21 —¢30 4 403 _ 478
Fq82 99 4 g154 4.
G =1+ g3 — g% +q° — 3 + g2 — ¢S
g8 —gl02 4 121
1—q+qf —q'l 4 ¢'3 =420 4 435 _ 4%
150 — g®3 4 ¢88 _ 4105 | ..
G573 (=1 4¢3 — g1 4 q30 — 466 4 481 _ 4135
4 q156 228 | 255 )

the invariant was computed in [16, eq. (7.21)], yielding (up to a power of g)
Ramanujan’s mock theta function Fy(g) of order 7:

2

~ _ q”
Zo(-2(2.3.7) =—q Y —
n=0 (g )n

=—q¢ V20 +qg+¢@P +q*+¢ +2¢" + ¢ +2¢°
g1 2" g2 43¢ ),

(171)

Remark 9.3. Equation (7.21) in [16] had a factor of ¢—'/168 instead of ¢~1/2.
This is related to the modularity properties of the function, but ¢ ~'/2 is the correct
factor to ensure that Zy(q) converges to the WRT invariants.

Conjecture 1.7 says that we can compute Za (S; /r(41)) for a whole range of
surgeries, using the calculation of Fy4, (x, ¢) in Section 9.3 and the formula

~ 1 L
Za(Vpr) = £q® - £ [(x7F = x777) Fg(x. )]. (172)

(
p
In general, suppose that for a series Fk(x,q), the lowest powers of g in the

coefficients f;,(¢) of x/2 have exponents of the order of cm?, for some ¢ € R.
Then, after we apply the Laplace transform, the lowest powers of ¢ have exponents

of the order
m 1\2 r 5
(—:I:—) -—+cm”.
p
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In order to get Laurent power series in ¢, we need to have a lower bound on these
values. This can be guaranteed by asking that

sc+ Lo (173)
p

The values of p/r that satisfy (173) are the range of applicability for the surgery
formula (172). For example, for the trefoils 3; and 3f we had ¢ = 1/24 and
¢ = —1/24, respectively. For the figure-eight knot, by calculating more terms
in (170), we find experimentally that c = —1/16, which means that we should be
able to apply (172) for

geeam

In particular, we recover the answer for the —1 surgery in (171). We can also
compute the invariants Z,(¢) for some hyperbolic manifolds, for example for the
—1/r surgeries on 44, for r > 1. Note that Conjecture 1.7 does not specify the
values of ¢ and d in (172). However, by analogy with what happens for torus
knots, in the case of —1/r surgeries we take them to be

r 1

e =1, d:a(l,r):—z—4—.
r

The results are given in Table 10.

10. Comments on physics and categorification

As mentioned in the Introduction and in Remark 3.7, we expect the series Za (g)to
admit a categoriﬁcatiAon, i.e., a homology theory ﬂ-(;;ffs(Y) whose (graded) Euler
characteristic gives Z,(¢q). Relatively little is known about this categorification.
We will discuss here some clues in this direction, their relation to physics and to
the work in the current paper.

10.1. Plumbed 3-manifolds. Since we have the formula (41) for Z, (g) for
(weakly) negative definite plumbed manifolds, it is natural to ask for a similar
formula for U—CE’;‘S (Y) in that case. In fact, in this paper we gave an equivalent
version of (41), namely (47), in terms of contributions from vertices and edges,
according to the rules (48) and (49). This formula may be easier to categorify.
Indeed, the key property is that the contributions are “local”: for every building
block (vertex or edge), its contribution depends only on that block and its nearest
neighbors, not on the rest of the construction.
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Table 10. The invariants Zo(q) for some hyperbolic —1/r surgeries on the figure-eight
knot.

Y =534 Za(q)

r=2 —61_1/2(1—6]+26]3—26]6+6]9+36]10+6]11—6]14—36]15
+2q19_q16+2q20+5q21 +2q22+2q23_2q26
_2q27_5q28_2q29_2q30_|_“_)

r=3 _q—l/Z(l_q_l_qu_qu_l_qlS+3ql6+ql7_q20_3q21
—6]22+26]31 +26]32+56133+26134+26]35—26]38
—26]39—56]40—26]41—26]42-1-'”)

r=4 _q—l/Z(l_q+2q7_2q10+q21 +3q22+q23_q26_3q27
—q28+2q43—|—2q44+5q45+2q46—|—2q47—2q50
—2¢51 —5¢52 —2¢53 —2g5% 4 ...)

F=5 _q—1/2(1_q+2q9_2q12+q27+3q28+q29_q32_3q33
_q34+2q55+2q56+5q57+2q58+2q59_2q62
— 253 —5¢%% — 2465 — 2466 1 ...)

r==6 _q—l/Z(l_q+2qll_2q14+q33+3q34+q35_q38_3q39
_q40+2q67+2q68+5q69+2q70+2q71 _2q74
_2q75_5q76_2q77_2q78+q112+___)

F=7 _q—l/Z(l_q+2q13_2ql6+q39+3q40+q41 —q44—3q45
_q46+2q79+2q80+5q81 +2q82+2q83_2q86
_2q87_5q88_2q89_2q90+m)

F—8 _q—1/2(1_q+2q15_2q18+q45+3q46+q47_q50_3q51
_q52+2q91 —|—2q92+5q93+2q94—|—2q95—2q98
—2q99—5q100—2q101—2q102—|—---)

F=9 —q_l/z(l—q+2q17—2q20+q51 +3q52+q53_q56_3q57
—q58+26]103+26]104+56]105+2q106+26]107
—2q”0—2q1”—5q”2—2q”3—2q”4+---)

r =10 _q—l/Z(l_q+2ql9_2q22+q57+3q58+q59_q62_3q63
_q64+2q115+2qll6+5qll7+2q118+2q119
—2q122 24123 _ 54124 4 ...
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Physically, the origin of this simple but important property has to do with
the fact that each basic building block of Y corresponds to a particular building
block of the corresponding 3d N = 2 theory T[Y]. This has an implication to
the categorification of the g-series invariants Za (¢). In the context of 3d-3d
correspondence or, equivalently, in the fivebrane system

6d N = (0, 2) theory

Za(Y:q) = on D% x, St xY

3d N = 2 theory T[Y]
on D2 x, St

(174)

3dN =2

theory 2dN=(0.2)

boundary condition

categorification is achieved by passing from the BPS g-series to the space of BPS
states ﬂ-(;;’ffs. At the level of the Poincaré polynomial, this corresponds to turning
on a fugacity ¢ (sometimes denoted y) that keeps track of a U(1)g symmetry that
“locks” with the R-symmetry U(1)r (see [40, 31] for more details).

Important for us here is that turning on the fugacity ¢ does not spoil the local
nature of the gluing rules. Therefore, we only need to know how 7 enters (48)—(49).

The categorification/t-deformation of the vertex factor is relatively simple and
has already appeared in [37]. It follows from the fact that T[Y, G] is a quiver-like
gauge theory, such that each vertex contributes a gauge symmetry G with N = 2
supersymmetric Chern—Simons coupling at level a and a chiral multiplet in the
adjoint representation:

vertex & — 3d N = 2 super-Chern—Simons (175)
| with G, and an adjoint chiral

In this paper, we are only interested in the case G = SU(2). Note that (48)
indeed equals a 2d-3d half-index of this simple theory with Neumann boundary
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conditions [37]. Its “refinement” with a ¢-variable turned on looks like

SU(2) gauge

. 2. -2,
vertex C.l — _q—mun%—%—aunvzgmunu-l—av (q’ q)OO(ZU ’zq)oo(zv 4 Q)i.; .
(=41 @)oo(—4125: 4o (=412, ¢ oo
adjoint chiral
(176)
Specializing to t = —1 returns (48), as it should.

An edge connecting two vertices decorated with Euler numbers a and b con-
tributes to T'[Y, G] interactions between 3d N = 2 super-Chern—Simons theories
G, and Gp. We do not have a formula for this yet.

10.2. Relation to log-VOAs. In Remark 3.8 we noted that there should also be an
“unreduced” version of Z, (Y q), denoted Zgnred(y ;q). Among other things, the
physical setup (174) suggests that, for closed 3-manifolds, the g-series invariants
Zgnred(y ;q) should be related to characters of 2d chiral algebras (non-strongly-
finite for hyperbolic Y'); compare [38] and [16, Section 5]. Recall that a character
of a VOA module M is defined as

x[M] = Trpy gko2a

where Ly is the conformal vector and c is the central charge. Therefore, it is
natural to expect that a categorification of 2§“red(Y ;q) = x[Mg] is given by M,
(or, rather, by its Felder resolution [28]).

For example, in the case of Brieskorn spheres Y = X (b1, b», b3) the corre-
sponding algebra was found in [16] to be the so-called logarithmic (1, p) singlet
VOA (see [29, 1]) with p = bbob3 and central charge ¢ = 13 — 6(p + p~ ).
Namely, 28“red (¢) is a character of the atypical module M; o, & M1 o, D Mi,o; @
M, o, where o;, 1 = 1,...,4, are as in Proposition 4.8, and each M, , admits a
Felder resolution in terms of the standard Fock modules F; (also known as Feigin—
Fuchs modules), see, e.g., [78]. In particular,

AMia) =Y UFa_spod = XFrznra)):

n>0

where A, s = —%«/ﬂ + f/;z_;'

It would be interesting to identify log-VOAs that correspond to other types of
3-manifolds, such as the hyperbolic surgeries on the figure-eight knot for which
we computed Za (¢) in Section 9.4.
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10.3. Knot complements. The series Fx(x,q) is the analogue of 2a(Y, q) for
knot complements. It has the same physical interpretation (174), with ¥ =
S3\vK. We also expect it to admit a categorification: this could be a triply-graded
homology theory (whose Poincaré polynomial is in the variables x, ¢, and ¢), or
perhaps a more complicated algebraic object. Furthermore,

o if we could find the categorification of the edge contribution for plumbing
graphs, then the same formula as in the closed case would give a categorifi-
cation of Fx(x, g) for plumbed knot complements, in the spirit of (77);

e the series Fg(x,q) should give characters of some VOA modules, and the
categorification of Fg(x, g) should be related to Felder resolutions;

e at least for simple knots, the categorification of Fg(x,q) should produce
a Poincaré polynomial that satisfies a recurrence given by a categorified A
operator, as in [31].

The physical formulation (174) of the two-variable series Fg(x,q) for knot
complements is useful for producing concrete computations and, perhaps more
importantly, for understanding some of its general properties. However, the infor-
mation also goes in the opposite direction and many results of the present paper
shed light on various aspects of the “knot complement theory” T[S3 \ vK]. Un-
til now, a complete formulation of such theory remained elusive for most knots,
even though it was clear since the early days of 3d—3d correspondence that its
vacua should correspond to all SL(2, C) flat connections on S3 \ vK, abelian and
non-abelian. Another longstanding open problem in 3d-3d correspondence was
the “gluing” of knot complement theories that corresponds to gluing along torus
boundaries. This is precisely the main subject of the present paper and, in partic-
ular, Theorem 1.1 can be viewed as an answer to this question at the level of the
half-index Zq(Y; q).

We also learned here that 2d N = (0, 2) boundary conditions in (174) should be
labeled by Spin® structures and that in the limit ¢ — 1 the partition function (174)
should equal the symmetric expansion of 1/Ag (x). We expect thatthe ¢ — 1 limit
admits an interpretation as a topologically twisted index of the knot complement
theory T[S\ vK] on D2 x S, similar to [38].

10.4. Mathematical ingredients. In Sections 8 and 9, we noted that Fg(x, g)
is obtained from the colored Jones polynomials of K by resurgence and/or recur-
rence relations. Hence, we expect that one of the ingredients in the categorification
of Fg(x,q) should be the categorification of the colored Jones polynomials. In
fact, for the un-normalized colored Jones polynomial Tn (9), there are at least two
different homology theories in the literature.
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e One is due to Khovanov [49], and extended by Beliakova and Wehtli using
Bar-Natan style techniques [13]. Khovanov’s colored homology is finite
dimensional, for every knot;

e Another one is infinite dimensional, even for the unknot. This theory was
constructed independently by Cooper and Krushkal [19], Frenkel, Stroppel,
and Sussan [30], Rozansky [82], and Webster [89, 88].

The two theories are expected to have the same reduced version (except for the
grading). They also agree for n = 2, giving Khovanov homology.

To categorify Fk(x,q), one should also develop ways to extract information
from the categorifications of Jnu(q) for all n. As far as we know, the only mathe-
matical work in this direction is that of Rozansky [83], who categorified the tail
®, of the colored Jones polynomials for adequate knots. Recall that @, is the
first term in the stability series ®(x, ¢) discussed in Section 7.5. By Theorems 1.3
and 1.4, the stability series for negative torus knots is closely related to its series
Fk(x,q). Thus, a natural (and perhaps tractable) problem would be to categorify
Fx (x, g) for negative torus knots.
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