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ABSTRACT

We study the decremental All-Pairs Shortest Paths (APSP) problem
in undirected edge-weighted graphs. The input to the problem is
an undirected n-vertex m-edge graph G with non-negative lengths
on edges, that undergoes an online sequence of edge deletions.
The goal is to support approximate shortest-paths queries: given a
pair x, y of vertices of G, return a path P connecting x to y, whose
length is within factor a of the length of the shortest x-y path,
in time O(|E(P)|), where « is the approximation factor of the al-
gorithm. APSP is one of the most basic and extensively studied
dynamic graph problems. A long line of work culminated in the
algorithm of [Chechik, FOCS 2018] with near optimal guarantees:
for any constant 0 < € < 1 and parameter k > 1, the algorithm
achieves approximation factor (2 + €)k — 1, and total update time
O(mn”kw(l) log(nL)), where L is the ratio of longest to shortest
edge lengths. Unfortunately, as much of prior work, the algorithm
is randomized and needs to assume an oblivious adversary; that is,
the input edge-deletion sequence is fixed in advance and may not
depend on the algorithm’s behavior.

In many real-world scenarios, and in applications of APSP to static
graph problems, it is crucial that the algorithm works against an
adaptive adversary, where the edge deletion sequence may depend
on the algorithm’s past behavior arbitrarily; ideally, such an algo-
rithm should be deterministic. Unfortunately, unlike the oblivious-
adversary setting, its adaptive-adversary counterpart is still poorly
understood. For unweighted graphs, the algorithm of [Henzinger,
Krinninger and Nanongkai, FOCS ’13, SICOMP ’16] achieves a
(1 + €)-approximation with total update time O(mn/e); the best
current total update time guarantee of n?-5+0(€) js achieved by the
recent deterministic algorithm of [Chuzhoy, Saranurak, SODA’21],
with 20(1/€)_multiplicative and 20(log™" n/€)_additive approxima-
tion. To the best of our knowledge, for arbitrary non-negative edge
weights, the fastest current adaptive-update algorithm has total
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update time O(n> log L/€), achieving a (1 + €)-approximation. Even
if we are willing to settle for any o(n)-approximation factor, no
currently known algorithm has a better than ©(n?) total update
time in weighted graphs and better than ©(n?-) total update time
in unweighted graphs. Several conditional lower bounds suggest
that no algorithm with a sufficiently small approximation factor
can achieve an o(n?) total update time.

Our main result is a deterministic algorithm for decremental APSP
in undirected edge-weighted graphs, that, for any Q(1/loglogm) <
€ < 1, achieves approximation factor (log m)zo(l/e), with total up-
date time O (m”o(e) - (log m)O(l/ez) -log L). In particular, we ob-
tain a (poly log m)-approximation in time O(m'*€) for any con-
stant €, and, for any slowly growing function f(m), we obtain
(log m) ™) -approximation in time m!'*°(1), We also provide an
algorithm with similar guarantees for decremental Sparse Neigh-
borhood Covers.
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1 INTRODUCTION

We study the decremental All-Pairs Shortest-Paths (APSP) problem
in weighted undirected graphs. In this problem, we are given as
input an undirected graph G with lengths £(e) > 1 on its edges, that
undergoes an online sequence of edge deletions. The goal is to sup-
port (approximate) shortest-path queries shortest-path-query(x, y):
given a pair x, y of vertices of G, return a path connecting x to y,
whose length is within factor « of the length of the shortest x-y
path in G, where « is the approximation factor of the algorithm.
We also consider approximate distance queries, dist-query(x, y):
given a pair x, y of vertices of G, return an estimate dist’(x, y) on
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the distance distg(x,y) between x and y in graph G, such that
distg(x,y) < dist’(x,y) < « - distg(x, y). APSP is one of the most
basic and extensively studied problems in dynamic algorithms, and
in graph algorithms in general. Algorithms for this problem often
serve as building blocks in designing algorithms for other graph
problems, in both the classical static and the dynamic settings.
Throughout, we denote by m and n the number of edges and the
number of vertices in the initial graph G, respectively, and by L the
ratio of largest to smallest edge length. In addition to the approxi-
mation factor of the algorithm, two other central measures of its
performance are: query time — the time it takes to process a single
query; and total update time — the total time that the algorithm
takes, over the course of the entire update sequence, to maintain
its data structures. Ideally, we would like the total update time of
the algorithm to be close to linear in m, and the query time for
shortest-path-query to be bounded by O(|E(P)|), where P is the
path that the algorithm returns.

A straightforward algorithm for the decremental APSP problem is
the following: every time a query shortest-path-query(x, y) arrives,
compute the shortest x-y path in G from scratch. This algorithm
solves the problem exactly, but it has query time ©(m). Another
approach is to rely on spanners. A spanner of a dynamic graph
G is another dynamic graph H C G, with V(H) = V(G), such
that the distances between the vertices of G are approximately pre-
served in H; ideally a spanner H should be very sparse. For example,
a work of [6] provides a randomized algorithm that maintains a
spanner of a fully dynamic n-vertex graph G (that may undergo
both edge deletions and edge insertions), that, for any parameter k,
achieves approximation factor (2k — 1), has expected amortized up-
date time O(k? log? n) per update operation, and expected spanner
size O(kn/¥ log n). A recent work of [10] provides a randomized
algorithm for maintaining a spanner of a fully dynamic n-vertex
graph G with approximation factor O(poly log n) and total update
time O(m*), where m* is the total number of edges ever present
in G; the number of edges in the spanner H is always bounded by
O(npolylogn). One significant advantage of this algorithm over
the algorithm of [6] in that, unlike the algorithm of [6], it can with-
stand an adaptive adversary; we provide additional discussion of
oblivious versus adaptive adversary below. An algorithm for the
APSP problem can naturally build on such constructions of span-
ners: given a query shortest-path-query(x, y) or dist-query(x, y),
we simply compute the shortest x-y path in the spanner H. For
example, the algorithm for graph spanners of [10] implies a ran-
domized poly log n-approximation algorithm for APSP that has
O(mpolylogn) total update time. A recent work of [7] provides
additional spanner-based algorithms for APSP. Unfortunately, it
seems inevitable that this straightforward spanner-based approach
to APSP must have query time Q(n) for both shortest-path-query
and dist-query.

In this paper, our focus is on developing algorithms for the APSP
problem, whose query time is O(|E(P)|) for shortest-path-query,
where P is the path that the query returns, and O(poly log(mL))
for dist-query. There are several reasons to strive for these faster
query times. First, we typically want responses to the queries to be
computed as fast as possible, and the above query times are close
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to the fastest possible. Second, obtaining O(|E(P)|) query time for
shortest-path-query is often crucial to obtaining fast algorithms for
classical (static) graph problems that use algorithms for APSP as a
subroutine. We provide an example of such an application to (static)
Maximum Multicommodity Flow/ Minimum Multicut in uncapac-
itated graphs in Section 4.

We distinguish between dynamic algorithms that work against an
oblivious adversary, where the input sequence of edge deletions
is fixed in advance and may not depend on the algorithm’s past
behavior, and algorithms that work against an adaptive adversary,
where the input update sequence may depend on the algorithm’s
past responses and inner states arbitrarily. We refer to the former
as oblivious-update and to the latter as adaptive-update algorithms.
We note that any deterministic algorithm for the APSP problem is
an adaptive-update algorithm by definition.

The classical data structure of Even and Shiloach [19, 21, 32], that
we refer to as ES-Tree throughout the paper, implies an exact
deterministic algorithm for decremental unweighted APSP with
O(mn?) total update time, and the desired O(|E(P)|) query time for
shortest-path-query, where P is the returned path. Short of obtain-
ing an exact algorithm for APSP, the best possible approximation
factor one may hope for is (1 + €), for any €. A long line of work
[5, 8, 30, 40] is dedicated to this direction. The fastest algorithms in
this line of work, due to Henzinger, Krinninger, and Nanongkai [30],
and due to Bernstein [8] achieve total update time O(mn/e); the
former algorithm is deterministic but only works in unweighted
undirected graphs, while the latter algorithm works in directed
weighted graphs, with an overhead of log L in the total update
time, but can only handle an oblivious adversary. Unfortunately,
known conditional lower bounds show that these algorithms are
likely close to the best possible. Specifically, Dor, Halperin and
Zwick [20], and Roddity and Zwick [39] showed that, assuming the
Boolean Matrix Multiplication (BMM) conjecture', for any a, § > 1
with 2a + f < 4, no algorithm for APSP achieves a multiplicative
a and additive f approximation, with total update time O(n3~%)
and query time O(n'~%), for any constant 0 < § < 1. Henzinger
et al. [31] generalized this result to show the same lower bounds
for all algorithms and not just combinatorial ones, assuming the
Online Boolean Matrix-Vector Multiplication (OMV) conjecture?.
The work of Vassilevska Williams and Williams [43], combined
with the work of Roddity and Zwick [39], implies that obtaining
such an algorithm would lead to subcubic-time algorithms for a
number of important static problems on graphs and matrices.

Due to these negative results, much work on the APSP problem
inevitably focused on higher approximation factors. In this regime,
the oblivious-update setting is now reasonably well understood.
A long line of work [1, 13, 25, 30] recently culminated with a ran-
domized algorithm of Chechik [14], that, for any integer k > 1
and parameter 0 < € < 1, obtains a ((2 + €)k — 1)-approximation,
with total update time O(mn!/k*°(1) Jog L), when the input graph

I The conjecture states that there is no “combinatorial” algorithm for multiplying two
Boolean matrices of size n X n in time n>~% for any constant § > 0.

2The conjecture assumes that there is no n3~%-time algorithm, for any constant
0 < & < 1, for the OMV problem, in which the input is a Bollean (n X n) matrix, with
n Boolean dimension-n vectors vy, . . ., v, arriving online; the algorithm needs to
output Mv; immediately after v; arrives
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is weighted and undirected. This result is near-optimal, as all its
parameters almost match the best static algorithm [42]. We note
that this result was recently slightly improved by [36], who ob-
tain total update time O(mn!/¥ log L), and improve query time for
dist-query.

In contrast, progress in the adaptive-update setting has been much
slower. Until recently, the fastest adaptive-update algorithm for
unweighted graphs, due to Henzinger, Krinninger, and Nanongkai
[30], only achieved an O(mn/e) total update time (for approxi-
mation factor (1 + €)); the algorithm was recently significantly
simplified by Gutenberg and Wulff-Nilsen [29]. A recent work of
[18] provided a deterministic algorithm for unweighted undirected
graphs, that, for any parameter 1 < k < o(log'/® n), in response to
query shortest-path-query(x, y), returns a path of length at most
3. 2K distg (x, y) + 2Ok log™/* "), with query time O(|E(P)| - n°())
for shortest-path-query, and total update time n2-3+2/k+o(1) T
the best of our knowledge, the fastest current adaptive-update al-
gorithm for weighted graphs has total update time O(n3 log L/¢)
and approximation factor (1 — €) (see [33]).

Interestingly, even if we allow an o(n)-approximation factor, no
adaptive-update algorithms with better than ©(n?) total update
time and better than ©(n) query time for shortest-path-query and
dist-query are currently known for weighted undirected graphs,
and no adaptive-update algorithms with better than ©(n?->) total
update time and better than ©(n) query time are currently known
for unweighted undirected graphs. Moreover, even for the seem-
ingly simpler Single-Source Shortest Path problem (SSSP), where
all queries must be between a pre-specified source vertex s and
another arbitrary vertex of G, no algorithms achieving a better
than ©(n?) total update time, and better than ©(n) query time for
shortest-path-query are known. To summarize, ideally we would
like an algorithm for decremental APSP in weighted undirected
graphs that achieves the following properties:

e it can withstand an adaptive adversary (and is ideally determin-
istic);

o it has query time O(|E(P)|) for shortest-path-query, where P
is the returned path, and query time O(1) for dist-query;

e it has near-linear in m total update time; and

e it has a reasonably low approximation factor (ideally, polyloga-
rithmic or constant).

Our main result comes close to achieving all these properties. Specif-
ically, we provide a deterministic algorithm for APSP in weighted
undirected graphs. For any precision parameter Q(1/loglogm) <

o
€ < 1, the algorithm achieves approximation factor (log m)? (1/6),

with total update time O (m”o(e) - (log m)O(l/ez) -log L) . The query
time for processing dist-query is O(log mloglog L), and the query
time for shortest-path-query is O(|E(P)|)+O(log mloglog L), where
P is the returned path. In particular, by letting € be a small enough
constant, we obtain a O(poly log m)-approximation with total up-
date time time O(m!*9), for any constant 0 < § < 1, and by
letting 1/€ be a slowly-growing function of m (for example, 1/¢€ =

O(log(log™ m))), we obtain an approximation factor (log m)o(l"g* m),

and total update time O(m!*°()).
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In fact we design an algorithm for a more general problem: dy-
namic sparse Neighborhood Covers. Given a graph G with lengths
on edges, a vertex v € V(G), and a distance parameter D, we de-
note by Bg (v, D) the ball of radius D around v, that is, the set of
all vertices u with distg (v, u) < D. Suppose we are given a static
graph G with non-negative edge lengths, a distance parameter D
(that we call target distance threshold), and a desired approxima-
tion factor a. A (D, a - D)-neighborhood cover for G is a collection
F of vertex-induced subgraphs of G (that we call clusters), such
that, for every vertex v € V(G), there is some cluster C € ¥ with
Bg(v, D) € V(C). Additionally, we require that for every cluster
C € F,for every pair x,y € V(C) of its vertices, distg (x, y) < a-D;
if this property holds, then we say that ¥ is a weak (D, a - D)-
neighborhood cover of G. If, additionally, the diameter of every
cluster C € ¥ is bounded by « - D, then we say that ¥ is a strong
(D, & - D)-neighborhood cover of G. Ideally, it is also desirable that
the neighborhood cover is sparse, that is, every edge (or every ver-
tex) of G only lies in a small number of clusters of ¥ . For this static
setting of the problem, the work of [3, 4] provides a determinis-
tic algorithm that produces a strong (D, O(D log n))-neighborhood
cover of graph G, where every edge lies in at most O(log n) clusters,
with running time O(IE(G)| + [V(G))).

In this paper we consider a partially dynamic version of the prob-
lem, in which the input graph G undergoes an online sequence
of edge deletions. We are required to maintain a weak (D, « - D)-
neighborhood cover # of the graph G, and we require that the
clusters in ¥ may only be updated in a specific fashion: once an
initial neighborhood cover ¥ of G is computed, we are only allowed
to delete edges or vertices from clusters that lie in 7, or to add a
new cluster C to ¥, which must be a subgraph of an existing cluster
of . Additionally, we require that the algorithm supports queries
short-path-query(C, v, v’): given two vertices v, v’ € V, and a clus-
ter C € ¥ with v,v” € C, return a path P in the current graph G, of
length at most « - D connecting v to v’ in G, in time O(|E(P)|). The
algorithm must also maintain, for every vertex v € V(G), a cluster
C = CoveringCluster(v) in ¥, with B (v, D) C V(C). Lastly, we
require that the neighborhood cover is sparse, namely, for every
vertex v of G, the total number of clusters of ¥ to which v may ever
belong over the course of the algorithm is small. It is not hard to ver-
ify that an algorithm for the dynamic Sparse Neighborhood Cover
problem that we just defined immediately implies an algorithm
for decremental APSP with the same approximation factor, and
the same total update time (to within O(log L)-factor). We provide
a deterministic algorithm for the dynamic Sparse Neighborhood

Cover problem with approximation factor « = O ((log m)zo(l/g) )

and total update time O (m“o(e) - (log m)o(l/ez)). Our algorithm
ensures that, for every vertex v € V(G), the total number of clus-
ters of F that v ever belongs to, is bounded by m©(1/loglogm) e
note that algorithms for static Sparse Neighborhood Covers have
found many applications in the area of graph algorithms, and so
we believe that our algorithm for dynamic Sparse Neighborhood
Cover is interesting in its own right. A Sparse Neighborhood Cover
for a dynamic graph G naturally provides an emulator for G. If
graph G is decremental, then, while the edges may sometimes be
inserted into the emulator (when a new cluster is added to the
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neighborhood cover ¥), due to the restrictions that we impose on
the types of allowed updates to the clusters of ¥, such edge inser-
tions are limited to very specific types, and so they are relatively
easy to deal with. This allows us to compose emulators given by
the neighborhood covers recursively. We note that the idea of using
clustering of a dynamic graph G in order to construct an emulator
was used before (see e.g. the constructions of [15, 23, 24] of dynamic
low-stretch spanning trees). In several of these works, a family of
clusters of a dynamic graph G is constructed and maintained, and
the restrictions on the allowed updates to the cluster family are
similar to the ones that we impose; it is also observed in several
of these works that with such restrictions one can naturally com-
pose the resulting emulators recursively — an approach that we
follow here as well. However, neither of these algorithms provide
neighborhood covers, and in fact the clusters that are maintained at
each distance scale are disjoint (something that cannot be achieved
by neighborhood covers). Additionally, all the above-mentioned
algorithms are randomized and assume an oblivious adversary. On
the other hand, the algorithms of [29, 30] implicitly provide a de-
terministic algorithm for maintaining a neighborhood cover of a
dynamic graph. However, these algorithms have a number of draw-
backs: first, the running time for maintaining the neighborhood
cover is too prohibitive (the total update time is O(mn)). Second,
the neighborhood cover maintained is not necessarily sparse; in
fact a vertex may lie in a very large number of resulting clusters.
Lastly, clusters that join the neighborhood cover as the algorithm
progresses may be arbitrary. The restriction that, for every cluster
C added to the neighborhood cover ¥, there must be a cluster C’
containing C that already belongs to F, seems crucial in order to
allow an easy recursive composition of emulators obtained from the
neighborhood covers, and the requirement that the neighborhood
cover is sparse is essential in bounding the sizes of the graphs that
arise as the result of such recursive compositions.

We provide an application of our algorithm for the APSP problem: a
deterministic algorithm for Maximum Multicommodity Flow and
Minimum Multicut in unit-capacity graphs. In both problems, the
input is an undirected n-vertex m-edge graph G, and a collection
M ={(s1,t1)- ., (g, tg)} of pairs of its vertices, that we call de-
mand pairs. In the Maximum Multicommodity Flow problem, the
goal is to send maximum amount of flow between the demand
pairs, such that the total amount of flow traversing each edge is
at most 1. We denote by OPTpcr the value of the optimal solu-
tion to this problem. In the Minimum Multicut problem, given a
graph G and a collection M of demand pairs as before, the goal is
to select a minimum-cardinality subset E’ C E(G) of edges, such
that, for all 1 < i < k, vertices s; and t; lie in different connected
components of G \ E’. We use the standard primal-dual technique-
based algorithm of [22, 28], that can equivalently be viewed as
an application of the multiplicative weight update paradigm [2],
which essentially reduces the Multicommodity Flow problem to
decremental APSP; this reduction was first discovered by [38]. Plug-
ging in our algorithm for APSP, we obtain a deterministic algo-
rithm for Maximum Multicommodity Flow, that, for any 0 < € <
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O(1/€)
¢ ) and has run-

1, achieves approximation factor O ((log m)?

ning time O (m1+o(e) (log m)2°"/®

+k/ e). The algorithm also pro-
vides an integral solution to the Maximum Multicommodity Flow
problem with congestion O(logn), and a fractional solution to
the standard LP-relaxation for Minimum Multicut. Using the stan-
dard ball-growing technique of [27, 37], we then obtain an al-
gorithm for Minimum Multicut, with the same asymptotic run-
ning time, and similar approximation factor. The fastest previous
approximation algorithms for Maximum Multicommodity Flow,
achieving (1 + €)-approximation, have running times o(kOM .
m4/3/eo(1)) [34] and 5(mn/62) [38]; we are not aware of any al-
gorithms that achieve a faster running time with possibly worse
approximation factors, and we are not aware of any fast algorithms
for the Minimum Multicut problem. The best polynomial-time algo-
rithm for Minimum Multicut, due to [27, 37], achieves an O(log n)-
approximation.

Before we discuss our results and techniques in more detail, we
provide some additional background on related work.

1.1 Other Related Work

APSP on Expanders. A very interesting special case of the APSP
problem is APSP on expanders. In this problem, we are given an ini-
tial graph G that is a ¢-expander. Graph G undergoes a sequence of
edge deletions and isolated vertex deletions, that arrive in batches.
We are guaranteed that, after each such batch of updates, the re-
sulting graph G remains an Q(¢)-expander. As in the general APSP
problem, the goal is to support approximate shortest-path-query
in graph G. This problem is especially interesting for several rea-
sons. First, it seems to be a relatively simple special case of the
APSP problem, and, if our goal is to obtain better algorithms for
general APSP, solving the problem in expander graphs is a natural
starting step. Second, this problem arises in various algorithms
for static cut and flow problems, and seems to be intimately con-
nected to efficient implementations of the Cut-Matching game of
[35], which is a central tool in the design of fast algorithms for
cut and flow problems (see, e.g. [16]). Third, expander graphs are
increasingly becoming a central tool for designing algorithms for
various dynamic graph problems, and obtaining good algorithms
for APSP on expanders will likely become a powerful tool in the
toolkit of algorithmic techniques in this area. A recent work of [18],
building on [16], implies a deterministic algorithm for APSP in ex-
panders with approximation factor O (Az(log )0/ ) / q)), query
time O(|E(P)|) for shortest-path-query, where P is the returned
path, and total update time O (nl+o(€)A7(10g n)o(l/ez)/(ps); here,
A is the maximum vertex degree of G, ¢ is its expansion, and € is a
given precision parameter’. In fact, algorithms in this paper also
use this algorithm for APSP in expanders as a subroutine.

Single-Source Shortest Paths. Single-Source Shortest Paths (SSSP)
is a special case of APSP, where all queries must be between a

3The work of [18] only explicitly provides such an algorithm for a specific setting of
the parameter €, but it is easy to see that the same algorithm works for the whole
range of values of €; we prove this in the full version of the paper for completeness.
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fixed source vertex s and arbitrary other vertices in the graph G.
This problem has also been studied extensively. Algorithms for
decremental SSSP are a well-established tool in the design of fast
algorithms for various variants of maximum s-t flow and minimum
s-t cut problems (see, e.g. [17, 18, 38]).

In the oblivious-adversary setting, our understanding of the prob-
lem is almost complete: a sequence of works [13, 25, 26] has led
to a (1 + €)-approximation algorithm, that achieves total update
time O(m!*°() log L), which is close to the best possible. The query
time of the algorithm is also near optimal: query time for dist-query
is poly log n, and query time for shortest-path-query is O(|E(P)|),
where P is the returned path. Conditional lower bounds of [20, 39]
(that are based on the Boolean Matrix Multiplication conjecture)
and of [31] (based on the Online Matrix-vector Multiplication con-
jecture), show that no algorithm that solves the problem exactly can
simultaneously achieve an O(n~%) query time, and 0(n37%) total
update time, for any constant § > 0, in graphs with m = ©(n?).
The work of Vassilevska Williams and Williams [43], combined
with the work of Roddity and Zwick [39], implies that obtaining
an exact algorithm with similar total update time and query time
would lead to subcubic-time algorithms for a number of important
static problems on graphs and matrices. This shows that the above
oblivious-update algorithm is likely close to the best possible.

For the adaptive-update setting, the progress has been slower. It is
well known that the classical ES-Tree data structure of Even and
Shiloach [19, 21, 32], combined with the standard weight round-
ing technique (e.g. [8, 44]) gives a (1 + €)-approximate determin-
istic algorithm for SSSP with O(mnlog L) total update time and
near-optimal query time. Recently, Bernstein and Chechik [9, 11,
12], provided algorithms with total update time O(n®log L) and
O(n®/*ym) < O(mn®/*), while Gutenberg and Wulff-Nielsen [29]
showed an algorithm with O(m**°(+/n) total update time. Un-
fortunately, all these algorithms only support distance queries,
and they cannot handle shortest-path queries. This problem was
recently addressed by [17, 18], leading to a deterministic algo-
rithm with total update time O(n?+°() logL/e?), that achieves
a (1 + €)-approximation factor, and has query time O(|E(P)]| -
no() loglog L) for shortest-path-query. Lastly, the work of [10] on
dynamic spanners also provides a randomized adaptive-update (1 +
€)-approximation algorithm with total update time O(m+/n), and
query time O(n). As mentioned already, they also provide an algo-
rithm for dynamic spanners, leading to a poly log n-approximation
algorithm with total update time O(m polylogn) for APSP, and
hence for SSSP, with query time O(n). To the best of our knowledge,
our result for the APSP problem is also the first adaptive-adversary
algorithm for SSSP with near-linear total update time, that achieves
an approximation that is below ©(n), and query time O(|E(P)|) for
shortest-path-query. We now discuss our results and techniques
in more detail.

1.2 Our Results and Techniques

Our main result is a deterministic algorithm for decremental APSP,
that is summarized in the following theorem.
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THEOREM 1.1. There is a deterministic algorithm, that, given an
m-edge graph G with length {(e) > 1 on its edges, that under-
goes an online sequence of edge deletions, together with a parameter
c/loglogm < € < 1 for some large enough constant c, supports ap-
proximate shortest-path-query queries and dist-query queries with

approximation factor O | (log m)zo(l/f) ) The query time for process-
ing dist-query isO(log mloglog L), and the query time for processing
shortest-path-query isO(|E(P)|) + O(log mloglog L), where P is the

returned path, and L is the ratio of longest to shortest edge length. The
total update time of the algorithm is bounded by:

(0] (m”o(e) - (log m)o(l/ez) -log L) .

Our proof exploits the decremental Sparse Neighborhood Cover
problem, for which we provide the following algorithm:

THEOREM 1.2. There is a deterministic algorithm, that, given an m-
edge graph G with integral lengths {(e) > 1 on its edges, that under-
goes an online sequence of edge deletions, together with parameters
c/loglogm < € < 1 for some large enough constant ¢, and D > 1,
maintains a weak (D, a - D)-neighborhood cover ¥ of G, for a =

o ((log m)zo(”s) ), and supports queries short-path-query(C, v,v’):

given a cluster C € F, and two vertices v,v’ € V(C), return a path
P connecting v tov’ in G, of length at most « - D, in time O(|E(P)]).
Additionally, for every vertexv € V(G), the algorithm maintains a
cluster C = CoveringCluster(v) in ¥, with Bg(v,D) € V(C). The
algorithm starts with ¥ = {G}, and the only allowed changes to the
clusters in F are: (i) delete an edge from a cluster C € F ; (ii) delete
an isolated vertex from a cluster C € ¥ ; and (iii) add a new cluster C’
to ¥, where C’ C C for some cluster C € ¥ . The algorithm has total
update time O (m”o(e) - (log m)O(l/EZ)) and ensures that, for every
vertex v € V(G), the total number of clusters C € F to which v ever

belonged over the course of the algorithm is at most m©(1/loglogm)

We remark that the above theorem requires that we initially set
F = {G}. Clearly, this initial cluster set # may not be a valid
neighborhood cover of G. Therefore, before the algorithm processes
any updates of graph G, it may update this initial cluster set ¥,
via changes of the types that are allowed by the theorem, until it
becomes a valid neighborhood cover. We also note that we allow
graphs to have parallel edges, so m may be much larger than |V (G)|.

Lastly, we provide an efficient algorithm for the Minimum Multicut
and Maximum Multicommodity Flow problems in unit-capacity
graphs.

THEOREM 1.3. There is a deterministic algorithm, that, given an
n-vertex m-edge graph G, a collection M = {(s1,t1), ..., (S, t)}
of pairs of its vertices, called demand pairs, and a precision pa-
rameter c¢/loglogm < € < 1 for some large enough constant c,

1+0(e) (log m)ZO(l/e)

computes, in time 10) (m + k/e), a solution to the
Maximum Multicommodity Flow instance (G, M), of value at least
Q (OPTMCF/(log m)zo(l/e) ) and a solution to the Minimum Multicut

oquys
20079 - OPTmM |, where

OPTmcE and OPTpmm are optimal solution values to instance (G, M)

instance (G, M), of cost at most O ((log m)
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of Maximum Multicommodity Flow and Minimum Multicut, respec-
tively.

The proof of Theorem 1.3 follows immediately from the proof of
Theorem 1.2 via standard techniques; see Section 4 for more details.
It is also immediate to obtain the proof of Theorem 1.1 from Theo-
rem 1.2 using the standard approach of considering each distance
scale separately; see Section 3.3 for more details and the full ver-
sion of the paper for a formal proof. We now focus on describing
our algorithm for the Sparse Neighborhood Cover problem from
Theorem 1.2, introducing our new ideas and techniques one by one.

Recursive Dynamic Neighborhood Cover. As mentioned already, one
advantage of considering the Neighborhood Cover problem is that
its solution naturally provides an emulator for the input graph
G, which in turn can be used in order to compose algorithms
for Neighborhood Cover recursively. In fact, we initially prove a
weaker version of Theorem 1.2, by providing an algorithm (that we
denote here for brevity by Alg’), that achieves a similar approxima-
tion factor, but a slower running time of:

(6] (m”o(s) - poly(D) - (log m)o(l/ez))

(on the positive side, the algorithm maintains a strong neighbor-
hood cover of the graph G). Recall that we call the parameter D the
target distance threshold for the Neighborhood Cover problem in-
stance. We use the recursive composability of Neighborhood Cover
in order to obtain the desired running time, as follows*. Using
standard rescaling techniques, we can assume that 1 < D < ©(m).
Forall 1 < i < [1/€], let D; = m€!. We obtain an algorithm for
the Sparse Neighborhood Cover problem for each target distance
threshold D; recursively. For the base of the recursion, when i = 1,
we simply run Algorithm Alg’, to obtain the desired running time of
o (m”o(e) - (log m)o(l/ez)). Assume now that we have obtained
an algorithm for target distance threshold D;, that maintains a
neighborhood cover ¥; of graph G. In order to obtain an algorithm
for target distance threshold D;.1, we construct a new graph H,
by starting with H = G, deleting all edges of length greater than
D;j+1, and rounding the lengths of all remaining edges up to the
next integral multiple of D;. Additionally, for every cluster C € 7,
we add a vertex u(C) (called a supernode), that connects, with an
edge of length D, to every vertex v € V(C) N V(G). It is not hard
to show that this new graph H approximately preserves all dis-
tances between the vertices of G, that are in the range (D;, Dj+1]-
Since the length of every edge in H is an integral multiple of D;,
scaling all edge lengths down by factor D; does not change the prob-
lem. It is then sufficient to solve the Neighborhood Cover problem
in the resulting dynamic graph H, with target distance threshold
Dj+1/D; = m€, which can again be done via Algorithm Alg’, with
total update time O (m”o(e) - (log m)O(l/Ez)). The final algorithm
for Theorem 1.2 is then obtained by recursively composing Algo-
rithm Alg” with itself O(1/¢) times.

In order to be able to compose algorithms for the Neighborhood Cover
problem using the above approach, we define the problem slightly

4A similar approach of recursive composition of emulators was used in numerous
algorithms for APSP; see, e.g. [14].
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differently, and we call the resulting variation of the problem Recur-
sive Dynamic Neighborhood Cover, or RecDynNC. We assume that
the input is a bipartite graph H = (V, U, E), with non-negative edge
lengths. Intuitively, the vertices in set V, that we refer to as regular
vertices, correspond to vertices of the original graph G, while the
vertices in set U, that we call supernodes, represent some neighbor-
hood cover ¥ of the graph G that is possibly maintained recursively:
U = {u(C) | C € ¥ }. (In order to obtain the initial graph H, we sub-
divide every edge of G by a new regular vertex; we view the original
vertices of G as supernodes; and for every vertex v € V(G), we add
a new regular vertex v’ that connects to v with a length-1 edge.) In
addition to supporting standard edge-deletion and isolated vertex-
deletion updates, we require that the algorithm for the RecDynNC
problem supports a new update operation, that we call supernode
splitting®. In this operation, we are given a supernode u € V(H),
and a subset E’ of edges that are incident to u in graph H. The
update creates a new supernode u’ in graph H, and, for every edge
e = (u,v) € E’, adds a new edge (u’,v) of length £(e) to H. The
purpose of this update operation is to mimic the addition of a new
cluster C to ¥, where C C C’ for some existing cluster C’ € F.
The supernode-splitting operation is applied to supernode u(C’),
with edge set E’ containing all edges (v, u(C’)) with v € V(C), and
the operation creates a new supernode u(C). Supernode-splitting
operation, however, may insert some new edges into the graph H.
This creates several difficulties, especially in bounding total update
times in terms of number of edges. We get around this problem as
follows. Recall that the supernodes in set U generally correspond to
clusters in some dynamic neighborhood cover 7, that we maintain
recursively. We ensure that this neighborhood cover is sparse, that
is, every regular vertex may only belong to a small number of such
clusters (typically, at most m!/©1°g1ogm)y Thjs in turn ensures
that, in graph H, for every regular vertex v € V(H), the total num-
ber of edges incident to v that ever belong to H is also bounded by
m1/0(oglogm) \ye refer to this bound as the dynamic degree bound,
and denote it by p. Therefore, if we denote by N(H) the number of
regular vertices that belong to the initial graph H, then the total
number of edges that ever belong to H is bounded by N(H) - pi. This
allows us to use the number of regular vertices of H as a proxy to
bounding the number of edges in H.

To summarize, the definition of the RecDynNC problem is almost
identical to that of the Sparse Neighborhood Cover problem. The
main difference is that the input graph now has a specific structure
(that is, it is a bipartite graph), and, in addition to edge-deletions,
we also need to support isolated vertex deletions and supernode-
splitting updates. Additional minor difference is that we only re-
quire that the covering properties of the neighborhood cover hold
for the regular vertices of H (and not necessarily the supernodes),
and we only bound the number of clusters ever containing a vertex
for regular vertices (and not supernodes). These are minor technical
details that are immaterial to this high-level overview.

Procedure ProcCut and reduction to the MaintainCluster problem.
One of the main building blocks of our algorithm is Procedure
ProcCut. Suppose our goal is to design an algorithm for the RecDynNC

SWe note that a similar approach to handling cluster-splitting in an emulator that is
based on clustering was used before in numerous works, including, e.g., [9, 11, 15, 17].
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problem on input graph H, with target distance threshold D, and let
¥ be the neighborhood cover that we maintain. We denote by N the
number of regular vertices in the initial graph H, and, for each sub-
graph H' C H, we denote by N(H’) the number of regular vertices
in H’. Given a cluster C € ¥, and two vertices x,y € C, such that
diste(x,y) > Q(D polylog N), procedure ProcCut produces two
vertex-induced subgraphs C’,C”” C C, such that N(C’) < N(C"'),
diam(C’) < O(D polylog N), and each of C’,C" contains exactly
one of the two vertices x, y. Moreover, it guarantees that, for every
vertex v € V(C), either B¢ (v, D) € C’, or Bo(v, D) € C” holds. We
then add C’ to F, and update C by deleting edges and vertices from
it, until C = C”” holds. This procedure is exploited by our algorithm
in two ways: first, we compute an initial strong (D, D - poly log N)-
neighborhood cover ¥ of the input graph H, before it undergoes
any updates, by repeatedly incurring this procedure. Later, as the
algorithm progresses, and update operations are applied to H, the
diameters of some clusters C € ¥ may grow. Whenever we iden-
tify such a situation, we use Procedure ProcCut in order to cut the
cluster C into smaller subclusters. We note that, if C’ and C”’ are
the outcome of applying Procedure ProcCut to cluster C, then we
cannot guarantee that the two clusters are disjoint, so they may
share edges and vertices. Therefore, a vertex of H may belong to a
number of clusters in ¥ . The main challenge in designing Proce-
dure ProcCut is to ensure that every vertex of H only belongs to a
small number of clusters (at most NO(1/10810g N)) gyer the course
of the entire algorithm. The procedure uses a carefully designed
modification of the ball-growing technique of [37] that allows us
to ensure this property. We note that several previous works used
the ball-growing technique in order to compute and maintain a
clustering of a graph. For example, [15] employ this technique in
order to maintain clustering at every distance scale. However, the
clusters that they maintain at each distance scale are disjoint, and
so they can use the standard ball-growing procedure of [37] in or-
der to ensure that relatively few edges have endpoints in different
clusters. In contrast, in order to maintain a neighborhood cover,
we need to allow clusters at each distance scale to overlap. While
one can easily adapt the standard ball-growing procedure of [37]
to still ensure that the total number of edges in the resulting clus-
ters is sufficiently small, this would only ensure that every vertex
belongs to relatively few clusters on average. It is the strict require-
ment that every vertex may only ever belong to few clusters in the
neighborhood cover that makes the design of Procedure ProcCut
challenging. We are not aware of any other work that adapted the
ball-growing technique to this type of requirement, except for the
algorithm of [3, 4], who did so in the static setting. It is unclear
though how to adapt their techniques to the dynamic setting.

We also use Procedure ProcCut to reduce the RecDynNC problem
to a new problem, that we call MaintainCluster. In this problem, we
are given some cluster C that was just added to the neighborhood
cover ¥ . The goal is to support queries short-path-query(C,v,v’):
given a pair v,v” € V(C) of vertices of C, return a path P con-
necting v to v’ in C, of length at most « - D, in time O(|E(P)]).
However, the algorithm may, at any time, raise a flag Fc, to indi-
cate that the diameter of C has become too large. When flag Fc
is raised, the algorithm must provide two vertices x,y € C, with
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diste(x,y) > Q(Dpolylog N). The algorithm then obtains a se-
quence of update operations (that we call a flag-lowering sequence),
at the end of which either x or y are deleted from C, and flag F¢
is lowered. Queries short-path-query may only be asked when the
flag Fc is down. Once flag Fc is lowered, the algorithm may raise
it again immediately, as long as it supplies a new pair x’,y” € V(C)
of vertices with distc(x’, y’) > Q(D poly log N). Intuitively, once
flag Fc is raised, we will simply run Procedure ProcCut on cluster
C, with the vertices x, y supplied by the algorithm, and obtain two
new clusters C’, C’; assume that C” contains fewer regular vertices
than C”’. We then add C’ to #, and delete edges and vertices from C
until C = C”” holds, thus creating a flag-lowering update sequence
for it. In order to obtain an algorithm for the RecDynNC problem,
it is then enough to obtain an algorithm for the MaintainCluster
problem. We focus on this problem in the remainder of this exposi-
tion.

Pseudocuts, expanders, and their embeddings. The next central tool
that we introduce is balanced pseudocuts. Consider a cluster C,
for which we would like to solve the MaintainCluster problem, as
C undergoes a sequence of online updates, with target distance
threshold D. For a given balance parameter p, a standard balanced
multicut for C can be defined as a set E’ C E(C) of edges, such that
every connected component of C \ E’ contains at most N(C)/p reg-
ular vertices. We weaken this notion of balanced multicut, and use
instead balanced pseudocuts. Let D’ = ©(D poly log N). A (D’, p)-
pseudocut in cluster C is a collection E’ of its edges, such that,
in graph C \ E’, for every vertex v € V(C), the ball Bcyg/ (v, D’)
contains at most N(C)/p regular vertices. In particular, once all
edges of E’ are deleted from C, if we compute a strong (D, D’)-
neighborhood cover # of C, then we are guaranteed that for all
C’ e ¥/, N(C') < N(C)/p. We note that standard balanced multi-
cuts also achieve this useful property. An advantage of using pseu-
docuts is that we can design a near-linear time algorithm that com-
putes a (D’, p)-pseudocut E” in graph C, for p = N€, and addition-
ally it computes an expander X, whose vertex set is {v, | e € E”’},
where E” C E’ is a large subset of the edges of E’, and an em-
bedding of X into C, via short embedding paths, that causes a low
edge-congestion (see the full version of the paper for details). This
allows us to build on known expander-based techniques in order
to design an efficient algorithm for the MaintainCluster problem.
Consider the following algorithm, that consists of a number of
phases. In every phase, we start by computing a (D’, p)-pseudocut
E’ of C, the corresponding expander X, and its embedding into C.
Let E”” C E’ be the set of edges e, whose corresponding vertex
ve lies in the expander X, so V(X) = {ve | e € E”’}. We then use
two data structures. The first data structure is an ES-Tree 7, whose
root s is a new vertex, that connects to each endpoint of every
edge in E”, and has depth O(D poly log N). This data structure al-
lows us to ensure that every vertex of C is close enough to some
edge of E”’, and to identify when this is no longer the case, so that
flag Fc is raised. Additionally, we use known algorithms for APSP
on expanders, together with the algorithm of [41] for expander
pruning, in order to maintain the expander X (under update opera-
tions performed on the cluster C), and its embedding into C. This
allows us to ensure that all edges in E”” remain sufficiently close
to each other. These two data structures are sufficient in order to
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support the short-path-query(C, v, v”") queries. If the initial pseu-
docut E’ was sufficiently large, then these data structures can be
maintained over a long enough sequence of update operations to
cluster C. Once a large enough number of edges are deleted from
C, expander X can no longer be maintained, and we recompute
the whole data structure from scratch. Therefore, as long as the
pseudocut E’ that our algorithm computes is sufficiently large (for
example, its cardinality is at least (N(C))'~€), we can support the
short-path-query(C, v, v”) queries as needed, with a very efficient
algorithm.

It now remains to deal with the situation where the size of the pseu-
docut E’ is small. One simple way to handle it is to maintain 2|E’|
ES-Tree data structures, each of which is rooted at an endpoint of
a distinct edge of E’, and has depth threshold ©(D poly log N). As
long as the root vertex of an ES-Tree 7 remains in the current cluster
C, we say that the tree 7 survives. As long as at least one of the
ES-Trees rooted at the endpoints of the edges in E” survives, we can
support the short-path-query(C, v, v’) queries using any such tree.
We can also use such a tree in order to detect when the diameter of
the cluster becomes too large, and, when this happens, to identify
a pair x, y of vertices of C with distc(x, y) sufficiently large. Once
every ES-Tree that we maintain is destroyed, we are guaranteed
that all edges of E’ are deleted from C. We can then iteratively apply
Procedure ProcCut in order to further decompose C into a collec-
tion of low-diameter clusters (that is, we compute a collection ¥’
of subgraphs of C, such that ¥ is a (D, D’)-neighborhood cover for
C). Since E” was a (D’, p)-pseudocut for the original cluster C, we
are then guaranteed that every cluster in F is significantly smaller
than C, and contains at most N(C)/p regular vertices. We can then
initialize the algorithm for solving the MaintainCluster problem
on each cluster of . This approach already gives non-trivial guar-
antees (though in order to optimize it, we should choose a different
threshold for the cardinality of E’: if |[E’| > 4/N(C), we should use
the expander-based approach, and otherwise we should maintain
the ES-Tree’s). Our rough estimate is that such an algorithm would
result in total update time O (m1'5+o(€) - (log m)o(l/fz)), but it is
still much higher than our desired update time.

In order to achieve our desired near-linear total update time, we ex-
ploit again the recursive composability properties of the RecDynNC
problem. Specifically, consider the situation where the pseudocut
E’ that we have computed is small, that is, |[E’| < (N(C))!~¢, and
consider the graph H' = C\ E’. For all 1 < i < [log D], we solve
the RecDynNC problem in graph H’ with target distance thresh-
old D; = 2! recursively. Fix some index 1 < i < [log D], and let
¥ be the initial strong (D;, D; - poly log N)-neighborhood cover
that this algorithm computes. The properties of the balanced pseu-
docut ensure that each cluster C’ € ; is significantly smaller
that C: namely, N(C’) < N(C)/p < (N(C))!~€. Therefore, we can
solve the MaintainCluster problem on each such cluster recursively,
and we also do so for every cluster that is later added to 7;. Let
F = \J; Fi be the dynamic collection of clusters that we maintain.

We use the set # of clusters in order to construct a contracted graph
H. The vertex set of H consists of the set S of regular vertices —
all regular vertices that serve as endpoints of the edges of E’ (the
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edges of the pseudo-cut); and the set U’ = {u(C') |C" e 7}} of
supernodes. For every edge e = (u,v) € E/, wherev € Sisa
regular vertex, we add an edge connecting v to every supernode
u(C’), such that cluster C’ contains either v or u. The length of
the edge is D;, where i is the index for which C’ € ¥; holds. It
is not hard to show that the distances between the vertices of §
are approximately preserved in graph H. As cluster C undergoes a
sequence of update operations, the neighborhood covers #; evolve,
which in turn leads to changes in the contracted graph H. However,
we ensure that all changes to the neighborhood covers #; are only
of the types allowed by Theorem 1.2, namely: (i) delete an edge from
a cluster of ¥7; (ii) delete an isolated vertex from a cluster of F; or
(iii) add a new cluster C”" to ¥;, where C’” C C’ for some cluster
C’ € F;. We are then guaranteed that all resulting changes to graph
H can be implemented via allowed update operations: namely edge
deletions, isolated vertex deletions, and supernode splitting.

We then construct two data structures. First, an ES-Tree 7, in the
graph obtained from C by adding a new source vertex s*, that
connects to every vertex in S with a length-1 edge. The depth of
the tree is O(D poly log N). This data structure allows us to ensure
that every vertex of C is sufficiently close to some vertex of S, and,
when this is no longer the case, to raise the flag Fc, and to supply
two vertices x,y € V(C) that are sufficiently far from each other.

The second data structure is obtained by applying the algorithm for
the MaintainCluster problem recursively to the contracted graph
H. This data structure allows us to ensure that all vertices of S are
sufficiently close to each other, and, when this is no longer the case,
it supplies a pair of vertices s, s’ € S, that are sufficiently far from
each other in H, and hence in C. Since we only use this algorithm
in the scenario where |E’| < (N(C))!7¢, we are guaranteed that
IS| < (N(C))'~¢, so graph H is significantly smaller than C.

To summarize, in order to solve the MaintainCluster problem in
graph C, we use an expander-based approach, as long as the size of
the pseudocut E’ that our algorithm computes is above (N(C))1~€.
Once this is no longer the case, we recursively solve the problem
on clusters that are added to the neighborhood covers ¥; of graph
H = C\E for1 < i < [logD]. This allows us to maintain the
neighborhood covers {¥;}, which, in turn, allow us to maintain the
contracted graph H. We then solve the MaintainCluster problem
recursively on the contracted graph H. Once all edges of E are
deleted from C, we start the whole algorithm from scratch. Since we
ensure that the diameter of C is bounded by D’, from the definition
of a balanced pseudocut, we are guaranteed that N(C) has decreased
by at least a factor N€.

Directions for future improvements. A major remaining open ques-
tion is whether we can obtain an algorithm for decremental APSP
with a significantly better approximation factor, while preserving
the near-linear total update time and the near-optimal query time.
While it seems plausible that the new tools presented in this paper
may lead to an improved (log m)P°Y(1/€)_approximation algorithm
with similar running time guarantees, improving the approximation
factor beyond the (log m)P°Y(1/€) barrier seems quite challenging.
A necessary first step toward such an improvement is to obtain
better approximation algorithms for the decremental APSP problem
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on expanders. We believe that this is a very interesting problem
in its own right, and it is likely that better algorithms for this
problem will lead to better deterministic algorithms for basic cut
and flow problems, including Minimum Balanced Cut and Spars-
est Cut, via the techniques of [16]. This, however, is not the only
barrier to obtaining an approximation factor below (log m)Pey(1/€)
for decremental APSP in near-linear time. In order to bring the
running time of the algorithm for the RecDynNC problem down
from O (m”o(e) - poly(D) - (log m)o(l/ez)) to the desired running

time of O (m”o(e) - (log m)o(l/ez)), we recursively compose in-
stances of RecDynNC with each other. This leads to recursion depth
O(1/€), and unfortunately the approximation factor accumulates
with each recursive level. If the running time of our basic algo-
rithm for RecDynNC (see Theorem 3.3) can be improved to depend
linearly instead of cubically on D, it seems conceivable that one
could use the approach of [9, 11], together with Layered Core De-
composition of [18] in order to avoid this recursion (though it is
likely that, in the running time of the resulting algorithm, term
m1*0(€) will be replaced with n?+9(€)). Lastly, our algorithm for
the MaintainCluster problem needs to call to itself recursively on
the contracted graph H, which again leads to a recursion of depth
O(1/€), with the approximation factor accumulating at each recur-
sive level. One possible direction for reducing the number of the
recursive levels is designing an algorithm for computing a pseudo-
cut E’, its corresponding expander X, and an embedding of X into
the cluster C with a better balance parameter p (see the full version
of the paper for details).

1.3 Organization

Due to lack of space, most of the proofs are deferred to the full
version of the paper. We start with preliminaries in Section 2. In
Section 3, we define the Recursive Dynamic Neighborhood Cover
problem, and state our main result for it. We also show that the
proofs of Theorem 1.1 and Theorem 1.2 follow from this result.
Lastly, in Section 4 we provide our algorithm for Maximum Multi-
commodity Flow and Minimum Multicut, proving Theorem 1.3.

2 PRELIMINARIES

All graphs in this paper are undirected. Graphs may have parallel
edges, except for simple graphs, that cannot have them. Through-
out the paper, we use a O(-) notation to hide multiplicative factors
that are polynomial in log m and log n, where m and n are the num-
ber of edges and vertices, respectively, in the initial input graph.

Given a graph G with lengths €(e) on edges e € E(G), for a pair of
vertices u,v € V(G), we denote by distg (u, v) the distance between
u and v in G, that is, the length of the shortest path between u
and v with respect to the edge lengths €(e). For a vertex v €
V(G) and a distance parameter D > 0, we denote by Bg(v,D) =
{u € V(G) | distg(u,v) < D} the ball of radius D around v.

Neighborhood Covers. Neighborhood Cover is a central notion that
we use throughout the paper. We use both a strong and a weak
notion of neighborhood covers, that are defined as follows.
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Definition 2.1 (Neighborhood Cover). Let G be a graph with lengths
f(e) > 0 on edges e € E(G), let S € V(G) be a subset of its
vertices, and let D < D’ be two distance parameters. A weak
(D, D’)-neighborhood cover for vertex set S in G is a collection
F ={C1,...,Cr} of vertex-induced subgraphs of G called clusters,
such that:

e for every vertex v € S, there is some index 1 < i < r with
Bg(v,D) € V(C;); and

e forall 1 < i < r, for every pair s,s” € S N V(C;) of vertices,
distg(s,s’) < D’.

A set F of subgraphs of G is a strong (D, D’)-neighborhood cover for
vertex set S if it is a weak (D, D’)-neighborhood cover for S, and,
additionally, for every cluster C € ¥, for every pairs,s’ € SNV(C)
of vertices, distc(s,s”) < D’.

If the vertex set S is not specified, then we assume that S = V(G).

3 VALID INPUT STRUCTURE, VALID UPDATE
OPERATIONS, AND THE RECURSIVE
DYNAMIC NEIGHBORHOOD COVER
PROBLEM

Throughout this paper, we will work with inputs that have a specific
structure. The structure is designed in a way that will allow us to
naturally compose different instances recursively, by exploiting
the notion of neighborhood covers. In this section, we define such
inputs and the types of update operations that we allow for them.
We also formally define the Recursive Dynamic Neighborhood
Cover problem (RecDynNC) and state our main result for this
problem. Lastly, we show that this result immediately implies the
proofs of Theorems 1.1 and 1.2.

3.1 Valid Input Structure and Valid Update
Operations

We start by defining a valid input structure.

Definition 3.1 (Valid Input Structure). A valid input structure con-
sists of a bipartite graph H = (V, U, E), a distance threshold D > 0,
and integral lengths 1 < £(e) < D for edges e € E. The ver-
tices in set V are called regular vertices and the vertices in set
U are called supernodes. We denote a valid input structure by
I = (H = (V,U,E), {¢(€e)}ecE(n) ,D). If the distance threshold D
is not explicitly defined, then we set it to co.

Intuitively, supernodes in set U correspond to clusters in a Neigh-
borhood Cover ¥ of the vertices in V with some (smaller) distance
threshold, that is computed and maintained recursively. Given
a valid input structure 7 = (H {l(e)ecr(m) ,D), we will allow
the following types of update operations, that we refer to as valid
update operations:

o Edge Deletion. Given an edge e € E(H), delete e from H.
e Isolated Vertex Deletion. Given a vertex x € V(H) that is an
isolated vertex, delete x from H; and
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o Supernode Splitting. The input to this update operation is a
supernode u € U and a non-empty subset E’ C &5y (u) of edges
incident to u. The update operation creates a new supernode
u’, and, for every edge e = (u,v) € E’, it adds a new edge
e’ = (u’,v) of length ¢(e) to the graph H. We will sometimes
refer to e’ as a copy of edge e.

We refer to edge deletion, isolated vertex deletion, and supernode
splitting operations as valid update operations. Notice that the
update operations may not create new regular vertices, so vertices
may be deleted from the vertex set V, but never added to it. A
supernode splitting operation, however, adds a new supernode to
the graph H, and also inserts edges into H. Unfortunately, this
means that the number of edges in H may grow as the result of
the update operations, which makes it challenging to analyze the
running times of various algorithms that we run on subgraphs C
of H in terms of |E(C)|. In order to overcome this difficulty, we use
the notion of the dynamic degree bound.

Definition 3.2 (Dynamic Degree Bound). We say that a valid input
structure J = (H = (V,U,E), {€(e)}ecE(m) ,D), undergoing a se-
quence 3 of valid update operations, has dynamic degree bound p
iff for every regular vertex v € V, the total number of edges inci-
dent to v that are ever present in H over the course of the update
sequence ¥ is at most .

We will usually denote by N°(H) the total number of regular ver-
tices in the initial graph H. If (I, X) have dynamic degree bound
11, then we are guaranteed that the number of edges that are ever
present in H is bounded by N°(H) - .

In general, we will always ensure that the dynamic degree bound
4 is quite low. It may be convenient to think of it as m°) | where
m is the initial number of edges in the input graph G for the APSP
problem. Intuitively, every supernode of graph H represents some
cluster C in a (D, D’)-neighborhood cover F of G, for some pa-
rameters D, D’ < D. Typically, each regular vertex of H represents
some actual vertex of graph G, and an edge (v,u) is present in
H iff vertex v belongs to the cluster C that vertex u represents.
We will generally ensure that the neighborhood cover  of G is
constructed and maintained in such a way that the total number
of clusters of ¥ to which a given regular vertex v ever belongs over
the course of the algorithm is very small. This will ensure that the
dynamic degree bound for graph H is small as well.

Note that we can assume without loss of generality that every
vertex in the initial graph H? has at least one edge incident to it,
as otherwise it is an isolated vertex, and will remain so as long as
it lies in H. Moreover, from the definition of a supernode splitting
operation, it may not be applied to an isolated vertex (as we require
that the edge set E” is non-empty). Therefore, any isolated vertex
of HY can be ignored. We will therefore assume from now on that
every supernode in the original graph H has degree at least 1. (This
assumption is only used for convenience, so that we can bound the
total number of vertices in H by O(|E(H?)]).)
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3.2 The Recursive Dynamic Neighborhood
Cover (RecDynNC) Problem

In this subsection we define the Recursive Dynamic Neighbor-
hood Cover problem. The input to the Recursive Dynamic Neigh-
borhood Cover (RecDynNC) problem is a valid input structure
I = (H = (V.U,E), {€(e)}ecE(m) ,D), where graph H undergoes
a sequence X of valid update operations with some given dynamic
degree bound p. Additionally, we are given a desired approximation
factor a. We assume that we are also given some arbitrary fixed
ordering O of the vertices of H, and that any new vertex that is
inserted into H as the result of supernode-splitting updates ap-
pears at the end of the current ordering. The goal is to maintain
the following data structures:

e a collection U of subsets of vertices of graph H, together with
a collection F = {H[S] | S € U} of clusters of H, such that
is a weak (D, a - D) neighborhood cover for the set V of regular
vertices in graph H. For every set S € U, the vertices of S must
be maintained in a list, sorted according to the ordering O;

o forevery regular vertexv € V, acluster C = CoveringCluster(v)
in ¥, with By (v, D) C V(C);

e for every vertex x € V(H), a list ClusterList(x) € ¥ of all
clusters containing x, and for every edge e € E(H), a list
ClusterList(e) € F of all clusters containing e.

The set U of vertex subsets must be maintained as follows. Initially,
U = {V(HO)}, where H is the initial input graph H. After that,
the only allowed changes to vertex sets in U are:

o DeleteVertex(S, x): given a vertex set S € U, and a vertex x € S,
such that x is an isolated vertex in H[S], delete x from S;

e AddSuperNode(S, u): if u is a supernode that is lying in S that
just underwent supernode splitting update, add the newly cre-
ated supernode u’ to S; and

e ClusterSplit(S, S’): given a vertex set S € U, and a subset
S’ C S of its vertices, add S’ to U.

We refer to the above operations as allowed changes to U. In other
words, if we consider the sequence of changes that clusters in
¥ undergo over the course of the algorithm, the corresponding
sequence of changes to vertex sets of {U(C) | C € ¥} must obey
the above rules.

In addition to maintaining the above data structures, an algorithm
for the RecDynNC problem must support short-path-query(C, v, v")
queries: given two regular vertices v,v’ € V, and a cluster C € ¥
with v,v’” € C, return a path P in the current graph H, of length at
most a-D connecting v to v’ in H, in time O(|E(P)|). This completes
the definition of the RecDynNC problem.

3.3 Statement of Main Technical Result and
Proofs of Theorem 1.2 and Theorem 1.1

Our main technical result is a dynamic algorithm for the RecDynNC
problem, that is summarized in the following theorem.
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THEOREM 3.3. There is a deterministic algorithm for the RecDynNC
problem, that, on input I = (H = (V.U,E), {€()}ecE(m) ,D) un-
dergoing a sequence of valid update operations with dynamic degree
bound u, and a parameter c/loglogW < € < 1, for some large
enough constant c, where W is the number of regular vertices in H
at the beginning of the algorithm, achieves approximation factor

a = (log(Wp))2”"'

o (W1+O(e) L y2*0(&) . p3 . (log(Wp))O(l/ez)).

, and has total update time:

Moreover, the algorithm ensures that, for every regular vertexv € V,
the total number of clusters in the neighborhood cover ¥ that the
algorithm maintains, to which vertex v ever belonged. is bounded by
wO/loglog W) It 450 ensures that the neighborhood cover F that
it maintains is a strong (D, a - D)-neighborhood cover for the set V of
regular vertices of H.

The proof of the theorem is deferred to the full version of the paper
due to lack of space. By using recursive composition properties
of the RecDynNC problem, we then obtain a deterministic algo-
rithm Alg that has similar properties to those of the algorithm
from Theorem 3.3, except that it requires that the dynamic degree
bound of the input graph is 2, it achieves approximation factor a =
(log W)ZOWE) ,and total update time O (WHO(G) - (log W)O(l/ez)).
Additionally, it only provdies a weak Neighborhood Cover.

Algorithm Alg in turn implies the proof of Theorem 1.2. Indeed,
assume that we are given an m-edge graph G with integral length
f(e) > 1 on its edges, that undergoes an online sequence of edge
deletions, together with parameters ¢’/ loglogm < e < 1 for some
large enough constant ¢/, and D > 1. Note that we can assume that
G is a connected graph, as otherwise we can run the algorithm on
each of its connected components separately, so |[V(G)| < m holds.
We construct a bipartite graph H = (V, U, E) as follows. We start
with the graph G, and we let U = V(G). We then subdivide every
edge e € E(G) with a new regular vertex v, and we set the lengths
of both new edges to be £(e). The set V of regular vertices consists
of two subsets: a set {v, | e € E(G)} of vertices corresponding to
edges of G, and another subset S = {x’ | x € V(G)} of vertices
corresponding to vertices of G. Every vertex x’ € S connects to
the corresponding vertex x € V(G) with a length-1 edge. Once
we delete all edges of length greater than 3D, we obtain a valid
input structure 7 = (H = (V,U,E), {f(e)}eeE(H) ,3D). Given an
online sequence ¥ of edge deletions for graph G, we can produce a
corresponding online sequence X’ of edge deletions and isolated
vertex deletions for graph H, as follows: whenever an edge e € E(G)
is deleted from G, we delete its two corresponding edges (that
are incident to v.) from graph H, and we then delete vertex v,
that becomes an isolated vertex. We have therefore obtained an
instance of the RecDynNC problem, on valid input structure I
that undergoes a sequence of edge-deletion and isolated vertex-
deletion operations. Since the degree of every regular vertex in H
is at most 2, it is easy to see that H has dynamic degree bound
2. We let W = |V| < 2m be the number of regular vertices in
H. We run Algorithm Alg for the RecDynNC problem on input 1
undergoing the sequence X’ of update operations. Let # be the
neighborhood cover that the algorithm maintains. We then define
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a neighborhood cover F” for graph G as follows. For every cluster
C € ¥ ,thereisacluster C’ € ¥, which is a subgraph of G induced
by vertex set {x € V(G) | x” € V(C)}. Recall that cluster set F is
initially defined to be ¥ = {H}, so initially, ¥’ = {G} holds. After
that, the only changes to vertex sets in U = {U(C) | C € ¥} are
the allowed changes, that include the following three types of
operations: (i) DeleteVertex(R, x): given a vertex set R € U, and
a vertex x € R, such that x is an isolated vertex in H[R], delete x
from R; if x = y’ for some vertex y € V(G), then we also delete y
from C; (ii) AddSuperNode(R, u): since we do not allow supernode
splitting operations, no such updates will be performed; and (iii)
ClusterSplit(R, R): given a vertex set R € U, and a subset R C R of
its vertices, add RtoU. In this case, we create a new cluster in F’
that is a subgraph of G, induced by the set {x € V(G) | x” € R’} of
vertices. Additionally, when an edge e is deleted from G, we need
to delete it from every cluster of ¥ that contains it. The time that
is needed to make all these updates to cluster set ¥ is subsumed
by the time required to maintain cluster set .

Consider now some vertex x € V(G). Recall that the algorithm
for the RecDynNC problem maintains a cluster C € F, with
B (x’,3D) € V(C). It is easy to verify that By (x’, 3D) contains ev-
ery vertex y’ with y € Bg(x, D). We then set CoveringCluster(x) =
C’, where C’ € F is the cluster corresponding to C. Our algorithm
can support queries short-path-query(C’, x, y) by invoking a query
short-path-query(C, x”,y’) in the data structure maintained by Al-
gorithm Alg; we omit the details and the remainder of the analysis
due to lack of space.

Lastly, we note that the proof of Theorem 1.1 easily follows from
the proof of Theorem 1.2, by using the standard technique of con-
sidering each distance scale D; = 2!, for 1 < i < [log L] separately,
and using the algorithm from Theorem 1.2 in order to maintain
a neighborhood cover for each such distance scale; see the full
version of the paper for a formal proof.

4 APPLICATION: FAST ALGORITHM FOR
MAXIMUM MULTICOMMODITY FLOW AND
MINIMUM MULTICUT

In this section, we provide an algorithm for Minimum Multicut
and Maximum Multicommodity Flow, proving Theorem 1.3. Recall
that in both problems, the input is an undirected n-vertex m-edge
graph G, and a collection M = {(s1,t1), ..., (s, tx)} of pairs of its
vertices, called demand pairs. In the Maximum Multicommodity
Flow problem, the goal is to send maximum amount of flow be-
tween the demand pairs, such that the total amount of flow travers-
ing any edge is at most 1. We denote by OPTpcr the value of the
optimal solution to this problem. In the Minimum Multicut prob-
lem, the goal is to select a minimum-cardinality subset E C E(G)
of edges, such that, forall 1 < i < k, vertices s; and ¢; lie in different
connected components of G \ E’. We denote by OPTpm the value
of the optimal solution to Minimum Multicut. We use standard
primal-dual technique-based algorithm of [22, 28] (see also [38]).

Forall 1 <i <k, let P; be the set of all paths in G connecting s;
to t;, and let # = |J; Pi. We assume that graph G is connected (as
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otherwise we can solve both problems on each of its connected com-
ponents separately), so in particular # # 0. Below is the standard
LP-relaxation of the Maximum Multicommodity Flow problem (de-
noted by LP;), and its dual (denoted by LP2), which is a relaxation
of the Minimum Multicut problem.

LPy
Max 3 Y pep, f(P)
s.t.
Siy Zrer f(P)<1 Ve €E
=0 Vi<i<kPe®:
LP,
Min 3 cE xe
s.t.
Secpxe=21 Vi<i<kPe®P
Xe 20 Ve € E

We now show an algorithm that approximately solves both LP;
and LPy. Over the course of the algorithm, we maintain lengths x,
for edges e € E, where at the beginning, for every edge e € E(G),
we set x, = 1/m. As the algorithm progresses, we may raise the
lengths of the edges. We also set f(P) = 0 for every path P € P.
So far we have obtained a feasible solution to LP; of value 0, and a
(possibly infeasible) solution to LPy, of value 1. The remainder of
the algorithm consists of a number of iterations.

Assume for now, that we are given an oracle O, that, in every
iteration, either provides a simple path P € $, whose length (with
respect to current edge lengths x.) is at most 1, or certifies that
every path P € P has length at least 1/, for some approximation
factor a > 1.

The iterations continue as long as the oracle provides a simple
path P € P of length at most 1. The jth iteration is executed
as follows. Let P; € P be the path provided by the oracle. Then
we set f(Pj) = 1, and we double the length x. of every edge
e € E(Pj). Notice that this increases the value of the primal solution
by (additive) 1, and it increases the value of the dual solution by
at most (additive) 1. Therefore, if we denote by c¢; the cost of the
current solution to LP1, and by ¢ the cost of the current solution
to LPy, then, throughout the algorithm, ¢; > ¢z — 1 always holds.
Since we have assumed that |P| # 0, after the first iteration, ¢ > 1,
and so ¢z < 2¢1 holds for the remainder of the algorithm.

The algorithm terminates when the oracle O certifies that the
length of every path in ¥ is at least 1/a. Note that, by setting
X, = X¢ - @, we obtain a feasible solution to LP2, of value at most
acy < 2acy.

The flow values {f(P)} pcp also provide a solution to LPy, but that
solution may be infeasible, since some edges may carry more than
one flow unit. However, since we set, at the beginning, for every
edge e € E(G), x, = 1/m, and since, whenever a path containing
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e is added to P, we double the length of the edge xe, it is easy
to verify that the total flow that any edge e € E(G) carries is
bounded by [log m]. Let f’ be the multicommodity flow obtained
by scaling the flow f down by factor 1/ [logm]. Then f” is a feasible
fractional solution to Maximum Multicommodity Flow, of value

¢; = c1/ [log m]. From the above discussion, ¢z < 2¢1 < 4c] logm.

Recall that, from LP-duality, ¢{ < OPTmcr = OPT| p, = OPT|p, <
acz. Therefore, OPTycF < acz < O(alogm)c], and OPTym =
OPTp, = ¢; = Q(c2/log m). We conclude that we have obtained a
solution to the Maximum Multicommodity Flow problem, of value
Q(OPTmcE/(a log m)).

Additionally, we have obtained a fractional solution {x¢},c(g) to
LP2, of value acy < O(arlog m)OPTpm. Our last step is to trans-
form this fractional solution to the Minimum Multicut instance
(G, M) into an integral one, using the standard ball-growing tech-
nique of [27, 37]. The resulting deterministic algorithm (that is
very similar in nature to our Procedure ProcCut (see the full ver-
sion of the paper), which in fact was inspired by the algorithm
of [27, 37]), obtains an integral solution to the Minimum Multicut
problem instance (G, M), in time O(|E(G)|), of cost O(logm) - c,
where ¢ < O(alogm)OPTpmm is the cost of the fractional solution
to LPs.

We conclude that the above algorithm provides an O(alogm)-
approximate solution for the Maximum Multicommodity Flow prob-
lem, and an O(a log? m)-approximate solution for Minimum Multicut,
where « is the approximation factor of the oracle O.

Implementing the Oracle. We now show an algorithm to efficiently
implement the oracle O. One difficulty in implementing it via the al-
gorithm from Theorem 1.2 in a straightforward way is that the algo-
rithm from Theorem 1.2, in response to short-path-query(C, s;, t;)
may return an s;-t; path P that is non-simple, and moreover, if we
let P’ be a simple path obtained from P by removing all cycles, then
it is possible that |E(P)| > |E(P’)|. This is a problem because the
algorithm spends time O(|P|) in order to process the query, but we
will only double the lengths of the edges lying on the path P’. This
may result in a running time that is too high overall. Ideally, we
would like to ensure that, if the algorithm from Theorem 1.2 re-
turns an s;-t; path P that is non-simple, and P’ is the corresponding
simple path, then |[E(P’)| is close to |E(P)|. We overcome this diffi-
culty as follows. Our algorithm consists of O(1/€) phases. Denote

m’ = [2mlogm]. Leta* = O ((log m)zo(l/e)

) be the approximation
factor that the algorithm from Theorem 1.2 achieves on a graph
with m’ edges. For j > 0, let aj = (a*)%, and let Lj = m/€. We will

ensure that the following invariant holds:

(11) For all j > 0, at the beginning of Phase (j + 1), every path
P € P whose length is at most 1/a; contains at least L; edges.

Notice that the invariant clearly holds at the beginning of the first
phase. We now describe the execution of the (j + 1)th phase, for
some j > 0.

We construct a graph Gj, whose vertex set is V(G;j) = V(G). For
every edge e = (v,v’) € E(G), let ie be the integer such that the
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length of e in G is 2 /m. For every integer ie < i < [logm], we add

an edge e; = (v,v’) to Gj, of length % + . We call edge

1
2a*-aj-Ljy
e; the ith copy of e. Throughout the algorithm, whenever the length
of edge e in graph G doubles, we delete from G; the lowest-length

copy of the edge e. This ensures that, if the length of e in G is
We the initialize the data structure from Theorem 1.2 on this new
graph Gj, with target distance threshold D = 1/(a* - «}), and
we denote by 7 the weak (D, a™ - D)-neighborhood cover of G;
that the algorithm maintains. (Recall that the definition of the
Neighborhood Cover problem requires that the length of every
edge is at least 1. In order to achieve this, we need to scale all edge
lengths so they become integral, and we need to do the same with
the parameter D. As this does not change the problem in any way,
we ignore this minor technicality).

2! /m, then every copy of e in Gj has length at least

We mark every demand pair (s;,t;) € M as unexplored. As the
algorithm progresses, we will mark some demand pairs as explored.
For each such demand pair (s;, ¢;), we will ensure that the distance,
in the current graph Gj, between s; and t;, is at least 1/(a” - ;).
We now describe a single iteration.

If every demand pair is marked as explored, then the phase ter-
minates. We are then guaranteed that every path in the current
graph Gj, connecting any demand pair (s;,t;) € M has length
at least 1/(a* - ) in Gj. We claim that in this case, every path
P € P whose length is at most 1/aj4+1 (in graph G), contains at
least Lj+1 edges. Indeed, assume otherwise, and let P € # be a
path connecting some demand pair (s;, t;) € M, that has length
t < 1/aj41 in graph G, and contains fewer than Lj,1 edges. Let
P’ be an s;-t; path in graph Gj, obtained by taking, for every edge
e € E(P), a copy that has shortest length. Then the length of path
P’ in graph G;j is bounded by:

1 1 1 1 1 1
* < <

SQj %+l

< + < ,
2a 20 - a; T aj-(a¥)? 20" -  a*-aj
a contradiction to the fact that demand pair s;-t; is marked as

explored. Therfore, when the phase terminates, lvariant 11 holds.

Assume now that not every demand pair in M is marked as ex-
plored, and let (s;, t;) € M be any demand pair that is not marked
as explored. Let C = CoveringCluster(s;) be the cluster of ¥ con-
taining Bg; (s, D), that the algorithm from Theorem 1.2 maintains.
We start by checking, in time é(l), whether t; € C. If this is not the
case, then we are guaranteed that distg(s;, ;) > D = 1/(a” - aj).
We then mark demand pair (s;,t;) as explored, and continue to
another unexplored demand pair. Otherwise, if t; € C, then we
run query short-path-query(C, s;, t;) in the data structure main-
tained by the algorithm from Theorem 1.2. The algorithm is then
guaranteed to return a path connecting s; to t; in graph Gj, of
length at most 1/a;. We denote this path by P. From the way we
set the lengths of the edges in graph Gj, we are guaranteed that
|E(P)| < 2a™ - Lj+1. Path P immediately gives us the correspond-
ing (possibly non-simple) path P’ in graph G, whose length is at
most 1/a;. Let P” be a simple path that is obtained from P’, after
removing all cycles from it. Note that we can compute P”" in time
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O(IE(P)]), and the query time short-path-query(C, s;, t;) also took
time O(|E(P)[). Then the length of path P’ is bounded by 1/a;,
and, from Invariant |1, path P’ contains at least L; edges. We then
return the path P’’ and terminate the iteration.

The algorithm terminates after t = [1/€e] phases, at which time we
are guaranteed, from Invariant 11, that every path in # has length

at least 1/ay, for a; = (a*)91/€) = 0 ((log m)zo(l/e)). We denote

a = a;, the approximation factor of the oracle O. We now analyze
the running time of a single phase.

The time required to maintain the data structure from Theorem 1.2
is O (m”o(e) - (log m)o(l/ez)). The time needed to process every
query short-path-query(C, s, t;) is O(|E(P)|), where P is the re-
turned path. Recall that we have established that P contains at
most 2a* - Lj,1 edges, while its corresponding simple path P”
contains at least Lj edges. Therefore, |[E(P)| < 2a* - m€|E(P")|.
We charge every edge on path P’ for at most 2a* - m€ edges on
path P. Since we double the length of every edge on path P” in
graph G, and since the length of every edge may only be doubled
O(log m) times, an edge of G may be charged at most O(log m)
times over the course of a single phase. Therefore, the total time for
processing all queries short-path-query(C, s;, ;) over the course of
the phase, and also for computing the corresponding simple paths,

is bounded by O (m1+e(log m)zo(l/e)). Lastly, for every demand
pair (s;, t;), we may spend additional O(1) time in the iteration in
which the pair is marked as explored. Therefore, the total running
time of a single phase is bounded by O (m1*9(€) (log m)zo(l/e) + k).
Since the total number of phases is bounded by O(1/e¢), the total
running time of the algorithm implementing the oracle is:

20(01/¢)

) (m“O(e)(log m) + k/e) .

The time required in order to implement the remainder of the
algorithm (that is, updating the flow f and the edge lengths) is
subsumed by this running time. Therefore, the total running time
of the algorithm is O (m“o(e) (log m)zo(l/e) + k/e). Since this im-
plementation of the oracle achieves approximation factor a =
o ((log m)zo(l/e) ), the final approximation factor that we achieve
for both Maximum Multicommodity Flow and Minimum Multicut
is O ((log m)ZO“/e)).
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