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Abstract

The present work studies the continuation class of the regular n-gon solution of the n-body

problem. For odd numbers of bodies between n = 3 and n = 15, we apply one parameter

numerical continuation algorithms to the energy/frequency variable and find that the figure

eight choreography can be reached starting from the regular n-gon. The continuation leaves

the plane of the n-gon and passes through families of spatial choreographies with the topology

of torus knots. Numerical continuation out of the n-gon solution is complicated by the fact

that the kernel of the linearization there is high dimensional. Our work exploits a symmetrized

version of the problem which admits dense sets of choreography solutions and which can

be written as a delay differential equation in terms of one of the bodies. This symmetrized

setup simplifies the problem in several ways. On the one hand, the direction of the kernel is

determined automatically by the symmetry. On the other hand, the set of possible bifurcations

is reduced and the n-gon continues to the eight after a single symmetry breaking bifurcation.

Based on the calculations presented here, we conjecture that the n-gon and the eight are in

the same continuation class for all odd numbers of bodies.
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1 Introduction

The qualitative theory of nonlinear dynamics has deep roots in the pioneering work of

Poincaré (1987a, b, c), where invariant sets—and periodic orbits in particular—play a cen-

tral organizational role. Inspired by the work of Poincaré, a number of late nineteenth and

early twentieth Century astronomers like Darwin, Moulton, and Strömgren conducted thor-

ough numerical studies of periodic motions in gravitational n–body problems long before the

advent of digital computing (Darwin 1897; Moulton 1958; Strömgren 1933). Over the last

century, scientific interest in n-body dynamics has only increased, driving developments in

diverse fields from computational mathematics to algebraic topology. By now the literature

is rich enough to discourage even a terse survey. We refer to the Lecture notes of Chenciner

(2015), as well as the books of Moser (2001), Meyer et al. (2009), and Szebehely (1967)

where the interested reader will find both modern overviews of the theory and thorough

reviews of the literature.

The present work is concerned with a special class of periodic orbits known as chore-

ographies, where n gravitating bodies follow one another around the same closed curve in

R
3. The most basic example of a choreography comes from the classical equilateral triangle

configuration of Lagrange, where three massive bodies are located at the vertices of a rigid

equilateral triangle revolving around the center of mass. If the bodies all have the same mass,

then each goes around the same circle with constant angular velocity. This is an example of

a circular choreography. See the left frame of Fig. 1.

Lagrange published this special solution of the three body problem in Lagrnge (1772). The

result was generalized by Hoppe (1879), giving the existence of a circular choreography for

any number of bodies. In this case, the bodies are arranged at the vertices of a rotating regular

n-gon, and the choreography is the inscribing circle. Perko and Walter (1985) showed that

when n ≥ 4, in contrast to the 3 body case, the n-gon solution exists if and only if the masses

of the n bodies are equal. The right frame of Fig. 1 illustrates a circular n-gon choreography

solution for the case of n = 15 bodies.

The first non-circular choreography solution was discovered numerically by Moore in the

early 1990s (Moore 1993). This solution consists of three bodies of equal mass following

one another around the now famous figure eight orbit. See the left frame of Fig. 2. Chenciner

and Montgomery (2000) gave a rigorous mathematical proof of the existence of the figure

eight choreography by minimizing the Newtonian action functional over paths connecting

collinear and isosceles configurations of the three bodies. Many additional numerical results

for the eight are described by Simó (2002), who also coined the term choreography. Several

animations of n-body choreographies are found at the webpage (Calleja 2020).

It is a fundamental geometric property of conservative systems that periodic orbits occur

in one parameter families, or tubes, smoothly parameterized by energy/frequency. We say

that two periodic orbits are in the same continuation class if one can be reached from the

other by continuous variation of the energy. Note that, because of bifurcations, the global

geometry of a continuation class is not a single tube but rather a “tree,” possibly with many

branches.
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Fig. 1 Circular Choreographies: in this figure green spheres represent masses and the blue curve illustrates

the circular choreography followed by the bodies. The left frame illustrates a “snap shot” of the equilateral

triangle solution of Lagrange. At each instant, the three bodies are located at the vertices of an equilateral

triangle, which rigidly rotates with constant angular velocity. When the masses are equal, the triangle revolves

about the center of mass of the three bodies. The right frame illustrates a 15 body circular choreography, where

at each moment the bodies are located at the vertices of a regular 15-gon. The snapshot rotates the center of

mass with constant angular velocity. Note that if we change to corotating coordinates (rotating coordinate

frame origin at the center of mass and angular velocity matching the angular velocity of the triangle/polygon)

then the triangle/polygon represents an equilibrium configuration in rotating coordinates

Fig. 2 Figure eight choreographies: just as in Fig. 1, green spheres represent the massive bodies and the blue

curve illustrates the path of the choreography orbit. The left frame illustrates a “snap shot” of the three body

eight, and the arrows indicate the motion along the various segments of the curve. The right frame is similar,

illustrating a 15 body eight

The literature discussed in the preceding paragraphs makes it clear that the three body

problem admits at least two distinct choreography solutions: the equilateral triangle and

the eight. Moreover, the symmetry group of the eight choreography is a 12th-order sub-

group of the symmetry group of the equilateral triangle. Then a natural question is: are

these coexisting choreographies are related by continuation? Indeed, one finds in the 2010

Mémoire D’Habilitation of Féjoz (2010) the following recollection regarding Christian Mar-

chal: that “in 1999, when he (Marchal) heard about the choreographic figure eight solution

of Chenciner–Montgomery, he at once imagined that the eight could be the unknown end of

P12.” Here P12 is an out of plane family of periodic orbits related to the equilateral triangle

of Lagrange and discussed in somewhat more detail below. These remarks are formalized as

follows.

Conjecture 1 (Marchal’s Conjecture) The three body equilateral triangle of Lagrange and the

three body figure eight are in the same continuation class.
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The conjecture appeared also in the 2005 paper of Chenciner, Féjoz, and Montgomery.

See also the lecture notes of Chenciner (2008). Careful numerical calculations supporting

Marchal’s conjecture are found in the 2008 work of Wulff and Schebesch (2008) on numerical

continuation of relative periodic orbits in Hamiltonian systems.

We remark that Conjecture 1 should be regarded as something much more than a mathe-

matical curiosity. In the precise sense of global bifurcation theory, the conjecture concerns

the question where does the figure eight choreography come from? We hasten to add that, to

the best of our knowledge, the conjecture remains unproved in a completely mathematically

rigorous sense. Indeed, as is discussed further in Féjoz (2010), it appears to be very difficult

to obtain the estimates necessary for a variational proof of Conjecture 1.

We now describe in somewhat more detail the P12 vertical family of periodic orbits already

alluded to above. The three-body equilateral triangle configuration of Lagrange corresponds

to an equilibrium solution of the rotating three body problem, and the existence of an attached

family of vertical Lyapunov periodic orbits is established by Chenciner and Féjoz (2008).

Chenciner and Féjoz (2008) compute a normal form at the Lagrange relative equilibrium

and deduce that there is a unique (up to symmetries) bifurcating spatial family: the so-called

P12 family. The family is important because, as long as it varies continuously with respect

to the frequency parameter, it provides—upon returning to the inertial frame—a dense set

of choreographic solutions to the three body problem. Continuity with respect to frequency

was further established in Chenciner and Féjoz (2009) for frequencies close to the Lagrange

triangle.

Using an approach based on equivariant bifurcation theory, García-Azpeitia and Ize (2011,

2013) studied in rotating coordinates the global existence of the vertical Lyapunov family

arising from the Lagrange triangle. The term global means here that the family forms a con-

tinuum (“tube”) in an appropriate Sobolev space of normalized 2π periodic solutions. The

continuum is parameterized by frequency and terminates in one of the following alternatives:

the Sobolev norm of the orbits in the family tends to infinity, the period of the orbits tends

to infinity, the family ends in an orbit with collision, or the family returns to another equilib-

rium solution. Without additional information, it is not possible to know which alternative

actually occurs, but this vertical Lyapunov family makes a good candidate for exploring the

continuation from the equilateral triangle to the eight because of the fact that it gives rise to

choreography solutions.

What is more, the geometric picture just described extends naturally to any odd number

of bodies. The regular n-gon solution of Hoppe (1879) (mentioned above) provides a circular

choreography, and hence, a relative equilibrium solution in rotating coordinates, for any

number of bodies. The n-gon equilibrium in the rotating n-body problem has always an

attached vertical family of Lyapunov periodic orbits (García-Azpeitia and Ize 2011, 2013).

For any even number of bodies, the existence of a figure eight choreography can be ruled

out via symmetry considerations (it would result in a finite time collision). Yet for an odd

numbers of bodies, it is physically possible to have a figure eight, and indeed one finds

numerical evidence supporting the existence of 5 and 19 body eights in the classic work of

Simó (2001). See also Ferrario and Terracini (2004), and note that the right frame of Fig. 2

illustrates a numerically computed 15-body eight. Then one can ask: for which odd numbers

n are the n -gon and n-body eight in the same continuation family?

The study by Calleja et al. (2018) casts additional light on the question. In that reference,

the authors explore the behavior of the vertical family for different numbers of bodies using

numerical continuation methods. Of particular importance to the present study, the authors

of Calleja et al. (2018) discovered a numerical continuation leading from the 7-gon to the 7-

body eight. The continuation passes through the vertical Lyapunov (or P12) family, but also
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involves a symmetry breaking bifurcation from this family. The occurrence of bifurcations

helps to explain the difficulty in applying variational methods.

Combining the three-body numerical continuations from Wulff and Schebesch (2008) with

the five body numerical continuations from Calleja et al. (2018) an interesting picture begins

to emerge. These studies suggest the possibility that, for odd numbers of bodies, continuation

from the n-gon to the eight may be the rule rather than the exception. This question motivates

the present work.

We exploit the functional analytic framework for studying n-body choreographies put for-

ward by the authors of the present study in the recent work (Calleja et al. 2021). Our approach

explicitly incorporates the symmetries and reduces the n-body choreography problem to a

system of six scalar delay differential equations (DDE) describing the location of one of the

bodies. The idea is that n-bodies on a choreography swap locations with one another after a

fixed fraction of the period, so that the gravitational force exerted by body j on body k can be

rewritten in terms of a force exerted on body k by itself after an appropriate time shift—hence

the delay. Under explicit number theoretic conditions on the frequency, periodic solutions of

the rotating DDE provide choreography orbits of the Newtonian n-body problem back in the

inertial reference frame.

Another notable component of the present work is that we incorporate the theoretical

insights (García-Azpeitia and Ize 2011, 2013) into our numerical continuation framework.

More precisely, we exploit the first order description of the vertical Lyapunov family given

in the reference just cited to “find our way out” of the high dimensional kernel caused by the

high order resonances at the triangle. In fact the results of García-Azpeitia and Ize (2011,

2013) apply to any number of bodies at relative equilibrium on the n-gon. This leads to a

general numerical procedure for starting the continuation of the vertical Lyapunov family

for any number of bodies and allows us to explore the continuation branch in an automatic

fashion. The numerical explorations to be presented in the remainder of the present work

suggest the following conjecture.

Conjecture 2 (Generalized Marchal’s Conjecture) For any odd number of bodies, the n-gon

choreography and the n-body figure eight are in the same continuation class.

We present numerical continuation results for every odd number of bodies from n = 3 to

n = 15, as evidence in support of the conjecture. Again, the three and fifteen body eights at

the end of the continuation are illustrated in Fig. 2. It is also very interesting to report that

in each case the qualitative features of the continuation are the same. In the symmetrized

version of the problem, the n-body figure eight occurs always after a single axial bifurcation

from the vertical Lyapunov family associated with the regular n-gon.

Remark 1 (DDEs versus ODEs) In one sense, passing to a system of DDEs provides a dra-

matic reduction in the dimension of the problem, as we obtain a six scalar equations describing

a single body instead of a system 6n scalar equations for all n bodies. On the other hand,

the appearance of delays in the problem could be viewed as a major technical disadvantage.

This is because initial value problems for DDEs lead to infinite dimensional complications,

while the n-body problem is inherently finite dimensional. Nevertheless, after restricting

ones attention to periodic solutions and projecting into Fourier space, both the delay and

the differential operators are reduced to diagonal operations in the space of complex Fourier

coefficients. Thanks to this observation, it is the case that, after projecting to Fourier space,

studying a periodic orbit of a system of 6 DDEs is in principle no more difficult than studying

a periodic orbit in a system of 6 ODEs. Moreover, explicitly incorporating the choreographic

symmetries into the problem results in fewer bifurcations along the periodic branch than
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would be encountered if we continued the vertical family in the full rotating n-body problem.

To put it another way, in the n-body problem a periodic orbit bifurcating from a choreography

need not be a choreography. While in the DDE, we only see bifurcations that result in new

branches containing dense sets of choreographies.

The remainder of the paper is organized as follows. In Sect. 2, we review the functional

analytic formulation of the n-body choreography problem developed in Calleja et al. (2021).

In Sect. 3, we discuss the results of a number of numerical continuations, where we examine

(in Sect. 3.3) the stability of the orbits. Finally, in Sect. 4 we discuss the prospects for

applying computer-assisted methods of proof to the generalized conjecture for finite numbers

of bodies. The computer codes which execute the calculations described in the manuscript and

generate all the figures are found at the web page: http://cosweb1.fau.edu/~jmirelesjames/

fromLagrangeToEight_numericalResults.html.

2 Functional analytic formulation of the n-body choreography problem

We describe the movement of the n bodies in a rotating frame with frequency
√

s1, where

s1
def= 1

4

n−1
∑

j=1

1

sin( jζ/2)
, ζ

def= 2π

n
. (1)

We assume that the masses of the n bodies are equal to 1. Thus the 2π/ω-periodic solutions

of the n-body problem in the rotating frame are solutions in the inertial frame of the form

q j (t) = e
√

s1t J̄ u j (ωt), j = 1, . . . , n

where u j (t) are 2π -periodic functions and J̄ = J ⊕ 0 with J the usual symplectic matrix in

R
2. Therefore Newton equations in the coordinates u j read as

(

ω∂t + √
s1 J̄

)2
u j = ∇u j

U = −
n

∑

i=1(i �= j)

u j − ui
∥

∥u j − ui

∥

∥

3
, (2)

where U is the potential energy

U =
∑

i< j

1
∥

∥u j − ui

∥

∥

.

Actually, the frequency of rotation is chosen to be
√

s1 such that the n-polygon comprised

of n bodies on the unit circle, a j
def= (cos jζ, sin jζ, 0) for j = 1, . . . , n, is an equilibrium

solution of equations (2), for instance see García-Azpeitia and Ize (2011).

Set u = (u1, . . . , un), a = (a1, . . . , an) and J̄
def= J̄ ⊕ · ⊕ J̄ . The linearization of Eq.

(2) at the polygonal equilibrium a is

(

ω∂t + √
s1J̄

)2
u = D2U (a)u. (3)

As a particular consequence of the results obtained in García-Azpeitia and Ize (2013), we

have that u(t) = Re(ei twk) is a periodic solution of the linearized system (3) with frequency

ω = √
sk for k = 1, . . . , n − 1, where

sk
def= 1

4

n−1
∑

j=1

sin2(k jζ/2)

sin3( jζ/2)
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and wk
def=

(

w1
k , . . . , w

n
k

)

is a complex vector with components w
j
k = (0, 0, e j(ikζ )). This

implies that the linearized system at the polygon (3) has periodic solutions with frequency√
sk . However, since sk = sn−k for k ∈ [1, n/2) ∩ N, then the set of solutions with the

frequency ω = √
sk are in 1 : 1 resonance. Furthermore, for the case ω = √

s1 there are extra

resonances with other frequencies corresponding to planar components, see García-Azpeitia

and Ize (2013) and Chenciner and Féjoz (2009) for details.

Chenciner and Féjoz (2009), it is proven that there are families of periodic solutions that

persist near the polygonal equilibrium for the 1 : 1 resonance frequencies ω = √
sk using

Weinstein–Moser theory. Actually, in García-Azpeitia and Ize (2013) it is proven that these

families form a global continuous branch of solutions (vertical Lyapunov families) with

symmetries

u j (t) = e j J̄ζ un(t + jkζ ). (4)

The existence of a dense set of choreographies in the vertical Lyapunov families was first

pointed out in Chenciner and Féjoz (2009). Later on, in Calleja et al. (2018) was observed

that if p and q are relatively prime such that

kq − p ∈ nZ, (5)

an orbit in the vertical Lyapunov family with the symmetries of (4) having frequency

ω = √
s1 p/q is a simple choreography in the inertial reference frame. Since the set of

number
√

s1 p/q with p and q satisfying the diophantine Eq. (5) is dense, if the frequency ω

varies continuously along the Lyapunov family varies, then there are infinitely many simple

choreographies in the inertial frame.

Remark 2 A consequence of Proposition 3 in Calleja et al. (2021) is that if un(t) is a solution

in the axial family with p and q satisfying (5) and its orbit does not wind around the z-axis,

then the choreography winds on the surface of a toroidal manifold with winding numbers p

and q , i.e., the choreographic path is a (p, q)-torus knot. Since the figure eight is a singular

(2, 1)-torus knot, according to this principle we look for a orbit with (p, q) = (2, 1), i.e.,

our target frequency ω is

ω/
√

s1 = 2.

The condition (5) becomes that k − 2 ∈ nZ. Thus the only natural match to find the (2, 1)-

torus knot (figure eight) is the branch with k = 2. We confirm numerically that branches with

k = 2 effectively contain the figure eight choreographies.

2.1 The system reduced by symmetries

The purpose of this section is to build a self-contained setting to present a systematical

approach to obtain numerical computations of the periodic solutions arising from the polyg-

onal relative equilibrium of the n-body problem. In a subsequent paper, we plan to present

rigorous validations of these families. We proceed by imposing the symmetries (4) in the

system of Eq. (2), i.e., the system of equations is reduced to the following single equation

with multiple delays for the n-th body

G(u;ω)
def=

(

ω∂t + √
s1 J̄

)2
u + G(u) = 0, (6)
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where u(t) ∈ R
3 is the position of the n-th body and G is the nonlinearity

G(u) =
n−1
∑

j=1

u − e j J̄ζ u(t + jkζ )
∥

∥

∥
u − e j J̄ζ u(t + jkζ )

∥

∥

∥

3
.

The polygonal equilibrium a has the n-th body in the position

u0 = (1, 0, 0) ,

i.e., u0 is an equilibrium of Eq. (6). The linearization of G at u0 is

DG(u0;ω) =
(

ω∂t + √
s1 J̄

)2
u + DG(u0).

Based on the previous discussion, we see that the n-th component of u(t) = Im(ei twk),

denoted by

u1 = (0, 0, sin t) ,

is in the kernel of DG(u0;
√

sk). Actually, to conclude that

DG(u0;
√

sk)u1 =
(

sk∂
2
t + DG(u0)

)

u1 = 0,

we only need to compute that DG(u0) u1 = sku1. In the following proposition, we present

a self-contained proof of this fact,

Lemma 1 It holds that

DG(u0) u1 = sku1.

Proof We start by considering the nonlinear function G(u0 + σ1u∗
1), where u1 = I m u∗

1 =
(0, 0, sin t)T , and u0 = (1, 0, 0) and u∗

1 = (0, 0, ei t ). We compute the derivative using the

formula DG(u0)u1 = Im
(

∂σ1 G(u0 + σ1u∗
1)|σ1=0

)

. Set

c = − (1 − ei jkζ )2

2 − 2 cos( jζ )
= ei jkζ sin2( jkζ/2)

sin2( jζ/2)
∈ C.

We use the Taylor expansion

(1 − x)−3/2 = 1 + 3

2
x + 15

8
x2 + 35

16
x3 + · · · ,

to compute

G

⎛

⎝

1

0

σ1ei t

⎞

⎠ =
n−1
∑

j=1

⎛

⎝

1

23 sin3( jζ/2)
(

1 − cσ 2
1 e2i t

)3/2

⎛

⎝

1 − cos( jζ )

− sin( jζ )

σ1ei t (1 − ei jkζ )

⎞

⎠

⎞

⎠

=
n−1
∑

j=1

1

23 sin3( jζ/2)

(

1 + 3

2
σ 2

1

(

ce2i t
)

+ ...

)

⎛

⎝

1 − cos( jζ )

− sin( jζ )

σ1ei t (1 − ei jkζ )

⎞

⎠ .

Therefore, we have that

∂σ1 G(u0 + σ1u∗
1)

∣

∣

σ1=0
=

⎛

⎝

n−1
∑

j=1

1 − ei jkζ

23 sin3( jζ/2)

⎞

⎠

⎛

⎝

0

0

ei t

⎞

⎠ .
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Since

n−1
∑

j=1

1 − ei( jkζ )

23 sin3( jζ/2)
=

n−1
∑

j=1

1 − cos k jζ

23 sin3( jζ/2)
= 1

4

n−1
∑

j=1

sin2( jkζ/2)

sin3( jζ/2)
= sk

we obtain that

DG(u0) u1 = Im
(

∂σ1 G(u0 + σ1u∗
1)|σ1=0

)

= sku1.


�

By imposing the symmetries (4), the linear operator DuG(u0;
√

sk) for k ∈ [2, n/2] ∩ N

has only half of the kernel of the 1 : 1 resonance of the linearized system (3). It is important

to mention that the kernel of DG(u;√
sk) still has a high dimension; the dimension of the

kernel of DG(u;ω) is at least 3 for the periodic solutions. This is due to the existence of a

3-dimensional group of symmetries corresponding to xy-rotations, z-translations and time

shift. In the following section, we use an augmented system that reduces the dimension of

the kernel generated by these symmetries.

2.2 The augmented system

The problem with the kernel of DG(u0, ω) generated by the symmetries by xy-rotations,

z-translations and time shift is solved by augmenting the map in order to isolate the orbits

of solutions. Calleja et al. (2021) we present the augmented map that also turns the non-

polynomial DDE into a higher-dimensional DDE with polynomial nonlinearities.

The augmented system with polynomial nonlinearities is given by

f (u, v)
def= ∂t u − v (7)

g(λ, u, v, w;ω)
def= ω2∂tv + 2ω

√
s1 J̄v − s1 Ī u + P(u, w) + λ1 J̄ u + λ2v + λ3e3 (8)

h(α, u, v, w)
def=

{

∂tw j + w3
j

〈

v(t) − e j J̄ζ v(t + jkζ ), u(t) − e j J̄ζ u(t + jkζ )
〉

+ α j w
3
j

}n−1

j=1
,

(9)

where w =
{

w j

}n−1

j=1
, e3 = (0, 0, 1) and P is the polynomial nonlinearity with delays

P(u, w)
def=

n−1
∑

j=1

w3
j

(

u(t) − e j J̄ζ u(t + jkζ )

)

. (10)

These equations are supplemented by the Poincaré sections η(u)
def= (I1, I2, I3) = 0, where

I1(u)
def=

∫ 2π

0

u(t) · J̄ ũ(t) dt, I2(u)
def=

∫ 2π

0

u(t) · ũ′(t) dt, I3(u)
def=

∫ 2π

0

u3(t) dt,

where ũ is a reference function, and the initial conditions

γ (u, w)
def=

{

w j (0)2
∥

∥

∥
u(0) − e j J̄ζ u( jkζ )

∥

∥

∥

2
− 1

}n−1

j=1

= 0.

Actually, in Proposition 4 and 5 of Calleja et al. (2021) it is proved that the solutions of

G(u, ω) = 0 are equivalent to the solution of the augmented system of equations

F(x;ω) = (η, γ, f , g, h) (x;ω) = 0, x
def= (λ, α, u, v, w).
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We set the equilibrium for the augmented system as

x0 = (0, 0, u0, 0, w0) , (11)

where w0 =
{

w j,0

}n−1

j=1
with

w j,0 = 1

‖(1, 0, 0) − (cos jζ,− sin jζ, 0)‖ = 1

2 sin jζ/2
.

Using that u0 is a steady solution of G it is not difficult to see that x0 is a steady solution of

the augmented system F(x0;ω) = 0 for all ω.

Set

x1
def= (0, 0, u1, v1, 0) (12)

with u1 = (0, 0, sin t) and v1 = (0, 0, cos t). In the following proposition, we prove that x1

is the natural extension of the element of the kernel of the augmented map F . Notice that

from the definition of P(u, w) in (10), we have that,

∂u P(u0, w0)u1 =
n−1
∑

j=1

w3
j,0

(

u1(t) − e j J̄ζ u1(t + jkζ )

)

=
n−1
∑

j=1

sin2( jkζ/2)

sin3( jζ/2)
u1

= DG(u0)u1. (13)

Proposition 1 It holds that

DF(x0;
√

sk)x1 = 0.

Proof We have that

DF(x0)x1 =

⎛

⎜

⎜

⎜

⎜

⎝

∂uη(x0)u1

∂uγ (x0)u1

∂u f (x0)u1 + ∂v f (x0)v1

∂u g(x0)u1 + ∂vg(x0)v1

∂uh(x0)u1 + ∂vh(x0)v1

⎞

⎟

⎟

⎟

⎟

⎠

.

At the n-gon, we set as reference functions ũ = u1 and ũ′ = u′
1 = v1, so

∂uη(u0)u1 =
∫ 2π

0

(

u1 · J̄ u1, u1(t) · v1(t), sin t
)

= 0.

For the derivative of γ , we have,

∂uγ (x0)u1 =
{

2w j,0(0)2
〈

u0(0) − e j J̄ζ u0( jkζ ), u1(0) − e j J̄ζ u1( jkζ )

〉}n−1

j=1
= 0.

The derivative of h is,

∂uh(x0)u1 =
{

w3
j,0(t)

〈

v0(t) − e j J̄ζ v0(t + jkζ ), u1(t) − e j J̄ζ u1(t + jkζ )
〉}n−1

j=1
= 0,

since v0 = 0. Now, v1 = (0, 0, cos t) implies that

∂vh(x0)v1 =
{

w3
j,0(t)

〈

v1(t) − e j J̄ζ v1(t + jkζ ), u0(t) − e j J̄ζ u0(t + jkζ )

〉}n−1

j=1
= 0.
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Finally, ∂u f (x0)u1 + ∂v f (x)v1 = ∂t u1 − v1, and from (13) it follows that

∂u g(x0)u1 + ∂vg(x0)v1 = ω2∂tv1 + 2ω
√

s1 J̄v1 − s1 Ī u1

+∂u P(u0, w0)u1 = DuG(u0;
√

sk)u1 = 0.


�

3 Numerical continuation from the polygon to the eight

As mentioned in the introduction (e.g., see Remark 1), our computational approach to chore-

ographies is based on Fourier expansions of the functions u(t), v(t) and w(t) appearing in

(7), (8) and (9). To compute choreographies, we plug the Fourier expansions

u(t) =

⎛

⎝

u1(t)

u2(t)

u3(t)

⎞

⎠ =
∑

�∈Z

ei�t u�, u� =

⎛

⎝

(u1)�
(u2)�
(u3)�

⎞

⎠

v(t) =

⎛

⎝

v1(t)

v2(t)

v3(t)

⎞

⎠ =
∑

�∈Z

ei�tv�, v� =

⎛

⎝

(v1)�
(v2)�
(v3)�

⎞

⎠

w(t) =

⎛

⎜

⎝

w1(t)
...

wn−1(t)

⎞

⎟

⎠
=

∑

�∈Z

ei�tw�, w� =

⎛

⎜

⎝

(w1)�
...

(wn−1)�

⎞

⎟

⎠
(14)

in Eqs. (7)–(9), the Poincaré sections η(u) and the initial conditions γ (u, w), which leads

to a zero finding problem F(x, ω) = 0 (still denoted using F and x) posed on a Banach

product space of geometrically decaying Fourier sequences [see Calleja et al. (2021) for

more details].

To perform computations, we fix a truncation order m > 0 and truncate the Fourier series

of each component of u, v and w to trigonometric polynomials of order m−1. For instance, the

function u1 is only represented by the 2m −1 Fourier coefficients ((u1)�)|�|<m . Similarly for

the other components. After truncation, the functions u, v and w are represented, respectively,

by 3(2m − 1), 3(2m − 1) and (n − 1)(2m − 1) Fourier coefficients. Adding the unfolding

parameters λ ∈ C
3 and α ∈ C

n−1 to the set of unknowns yields a total number of (n+5)(2m−
1)+3+n −1 = 2m(n +5)−3 of variables. Performing a similar truncation to the functions

f , g and h defined in (7)–(9) leads to the finite dimensional projection F (m) : C
2m(n+5)−3 →

C
2m(n+5)−3 which we use to compute numerical approximations of the choreographies. To

simplify the presentation, we denote F = F (m) and N
def= 2m(n + 5) − 3 so that computing

a choreography is equivalent to compute (x, ω) ∈ C
N+1 such that F(x, ω) ≈ 0.

3.1 Pseudo-arclength continuation

The numerical continuation from the polygon to the figure eight exploits the pseudo-arclength

continuation algorithm [e.g., see Keller (1987)], and we briefly recall the main idea behind

this approach, which is that the pseudo-arclength is taken as the continuation parameter.

Then the original continuation parameter, in our case the frequency ω, is not fixed and

instead is left as a variable. That is the vector of variables becomes X
def= (x, ω) ∈ C

N+1.

Denote by S
def= {X ∈ C

N+1 : F(X) = 0} the solution set. We aim to compute one-
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Fig. 3 Pseudo-arclength

continuation. By following the

tangent vector to the solution

branch and projecting into a

suitable perpendicular plane,

pseudo-arclength continuation is

indifferent to fold bifurcations

and allows for the following of

more complicated solution curves
S

x

X1

X0

Ẋ0 ∆s

X̂1

ω

dimensional solution curves in S. The process begins with a solution X0 given within a

prescribed tolerance. To produce a predictor (that is a good numerical approximation to feed

to Newton’s method), we compute first a unit tangent vector to the curve at X0, that we denote

Ẋ0, which can be computed using the formula

DX F(X0)Ẋ0 =
[

Dx F(X0)
∂ F

∂ω
(X0)

]

Ẋ0 = 0 ∈ C
N .

Next fix a pseudo-arclength parameter �s > 0, and set the predictor to be

X̂1
def= X̄0 + �s Ẋ0 ∈ C

N+1.

Once the predictor is fixed, we correct toward the set S on the hyperplane perpendicular to

the tangent vector Ẋ0 which contains the predictor X̂1. The equation of this plan is given by

E(X)
def= (X − X̂1) · Ẋ0 = 0.

Then, we apply Newton’s method to the new function

X �→
(

E(X)

F(X)

)

(15)

with the initial condition X̂1 in order to obtain a new solution X1 given again within a pre-

scribed tolerance. We reset X1 �→ X0 and start over. See Fig. 3 for a geometric interpretation

of one step of the pseudo-arclength continuation algorithm. At each step of the algorithm,

the function defined in (15) changes since the plane E(X) = 0 changes. With this method,

it is possible to continue past folds. Repeating this procedure iteratively produces a branch

of solutions.

3.2 From the polygon to the figure eight

Having introduced the pseudo-arclength continuation, we describe a numerical procedure

to bifurcate away from the polygon equilibrium onto an off (x, y)-plane spatial family of

choreographies, to detect a secondary bifurcation, to perform a branch switching, and finally

to reach the figure eight choreography. This process requires a starting point X0 (the polygon

equilibrium) and a tangent vector Ẋ0 at the polygon.
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3.2.1 Initiating the continuation at the polygon

Recall the definition of x0 the polygon equilibrium (11) and x1 the vector given by

(12). Abusing slightly the notation, denote x0, x1 ∈ C
N the corresponding vectors of

Fourier coefficients. More explicitly, x0 = (0, 0, u0, 0, w0) ∈ C
N is defined by u0 =

(

(δ�,0)|�|<m, 0, 0
)

∈ C
3(2m−1) and for j = 1, . . . , n−1, (w0) j =

(

δ�,0

2 sin jπ/n

)

|�|<m
∈ C

2m−1.

Here, δ�,k denotes the Kronecker delta symbol. Moreover, x1 = (0, 0, u1, v1, 0) is defined

by u1 = (0, 0, u
(3)
1 ) ∈ C

3(2m−1) and v1 = (0, 0, v
(3)
1 ) ∈ C

3(2m−1) with u
(3)
1 , v

(3)
1 ∈ C

2m−1

given component-wise by

(

u
(3)
1

)

�
=

⎧

⎪

⎨

⎪

⎩

i/2, � = −1

−i/2, � = 1

0, otherwise

and
(

v
(3)
1

)

�
=

⎧

⎪

⎨

⎪

⎩

1/2, � = −1

1/2, � = 1

0, otherwise.

Denote ω0
def= √

sk , X0
def= (x0, ω0), and recall Proposition 1. Then F(X0) = 0 ∈ C

N and

Dx F(X0)x1 = 0 ∈ C
N . Denote Ẋ0

def= (x1, 0) ∈ C
N+1 and consider the N × (N + 1)

dimensional matrix DX F(X0) = [Dx F(X0) Dω F(X0)]. Hence, at the polygon X0,

F(X0) = 0 and DX F(X0)Ẋ0 = 0,

which provide with the data required to initiate the numerical pseudo-arclength continuation

on the problem F : C
N+1 → C

N as presented in Sect. 3.1. We fix the pseudo-arclength

parameter (the continuation step size) to be �s = 10−3 and initiate the continuation.

3.2.2 Switching branches at the secondary bifurcation

Along the continuation, we monitor two quantities, namely the sign of the determinant of

the derivative of the pseudo-arclength map given in (15) and the condition number of the

derivative. If there is a change of sign in the determinant and if the condition number is above

a certain threshold (in our case 103), we declare having detected a secondary bifurcation and

begin a bisection algorithm to converge to a (bifurcation) point Xbif at which the determinant

of the derivative of pseudo-arclength map is approximatively zero. In this case, we numer-

ically verify that dim ker(DX F(Xbif )) = 2, and we call Xbif a simple branching point. At

Xbif , there are two solution branches intersecting. Denote by X
(1)
bif , X

(2)
bif ∈ C

N+1 the two

tangent vectors. See Fig. 4 for a graphical representation of the situation.

Note that the exact tangent vectors X
(1)
bif and X

(2)
bif are not readily available and computing

them accurately would require solving an algebraic bifurcation equation [e.g., see Doedel

et al. (1991)], which we do not perform here. Instead consider φ1, φ2 ∈ C
N+1 by any two

vectors computed numerically (we use the singular value decomposition of DX F(Xbif ) to

do that) such that ker(DX F(Xbif )) = 〈φ1, φ2〉. Since we expect this secondary bifurcation

to be a generic pitchfork bifurcation with respect to the parameter ω, we numerically set

X̂
(2)
bif

def= (φ2)N+1φ1 − (φ1)N+1φ2 ∈ ker(DX F(Xbif )) ≈ X
(2)
bif

so that it has a zero tangent contribution in the parameter ω. We then set X0 = Xbif and

Ẋ0 = X̂
(2)
bif and initiate the numerical pseudo-arclength continuation on the problem F :

C
N+1 → C

N as presented in Sect. 3.1.
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Fig. 4 Intersection of two

solution branches at a simple

branching point. Analyzing the

kernel at the bifurcation

facilitates the branch switching

X1

∆s

X̂1

ω

Xbif

Ẋ
(2)
bif

Ẋ
(1)
bif

Since the figure eight is expected to occur (according to Remark 2) at

ω = 2
√

s1 = 1

2

n−1
∑

j=1

1

sin(π j/n)
,

we monitor the sign of the function ω �→ 2
√

s1 − ω along the continuation on the second

branch. When it changes sign, we fix ω = 2
√

s1 and run Newton’s method to obtain the

figure eight.

3.3 Stability

An important question is to consider the stability of choreographic solutions, and for this

we put aside the symmetrized DDE formulation and return to the original rotating n-body

problem. That is, we start with the second-order problem defined in Eq. (2). Let f : R
6n →

R
6n denote the corresponding first order vector field obtained by appending the velocity

variables to the equation and suppose that γ : [0, T ] → R
6n is a periodic solution of the

problem. That is, assume that T > 0 and that γ (t) solves the ordinary differential equation

γ ′(t) = f (γ (t)) for t ∈ (0, T ) with γ (0) = γ (T ).

The equation of first variation is the non-autonomous linear matrix initial value problem

defined by

M ′(t) = Df(γ (t))M(t), M(0) = Id.

The stability of the periodic orbit is determined by the eigenvalues of the monodromy matrix

M(T ). We refer to the number of unstable eigenvalues of M(T ) as the Morse index of γ .

To compute the Monodromy matrix, we numerically integrate the system of equations

γ ′ = f (γ )

M ′ = D f (γ )M

over the time interval [0, T ], where T > 0 is the period of the orbit. We use a standard Runge–

Kutta scheme built into MatLab (the standard rk45). The initial conditions are γ (0) = γ0

and M(0) = Id, where γ0 is a point on the periodic orbit. The initial conditions γ0 are

obtained exploiting the fact that we have already computed the Fourier coefficients of the

trajectory of the n-th body using the DDE formulation. The Fourier series of the trajectories
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Fig. 5 Continuation from the triangle (the black dot) to the figure eight (the green dot) for N = 3 (left) and

N = 5 (right) bodies. The different Morse indices are portrayed along the branches
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Fig. 6 Continuation from the triangle (the black dot) to the figure eight (the green dot) for N = 7 (left) and

N = 9 (right) bodies. The different Morse indices are portrayed along the branches

for the other n − 1 bodies are recovered from the symmetries, and by evaluating the Fourier

series we obtain an appropriate initial condition γ0 ∈ R
6n on the periodic orbit.

3.4 Numerical results

We applied successfully the numerical approach of Sect. 3.2 to the cases N = 3, 5, 7, 9, 11, 13

and 15 bodies. Stability is computed as discussed in Sect. 3.3. Figure 5, illustrates the numer-

ical continuation from the equilateral triangle to the figure eight for N = 3 bodies and

illustrates also the analogous computation for N = 5 bodies. The Morse indices are also

reported along the branches. Similarly, see Fig. 6 for the continuations for N = 7 and N = 9

bodies. In the case of N = 11, N = 13 and N = 15 bodies, we do not report the Morse

indices, as the stability of the orbits change too frequently along the continuation branch.

But the bifurcation diagrams are given in Fig. 7.

We remark that bifurcation diagrams in the cases N = 3, 5, 7, 9 exhibit some qualitative

differences. Most notably the angle between the Lyapunov family and the axial family changes

dramatically in these cases. The diagrams in the cases of N = 9, 11, 13, 15 on the other hand

are very similar and exhibit a kind of convergence to a universal profile. Again, the existence

of such a profile is pure conjecture at this point. But the numerics seem to bear it out.
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Fig. 7 Continuation from the triangle (the black dot) to the figure eight (the green dot) for N = 11 (left),

N = 13 (center) and N = 15 (right) bodies

Fig. 8 A stable spatial three body choreography: a spatial choreography in the three body axial family near

the three body eight. The orbit is linearly stable in the sense of Hamiltonian systems: that is, all of it’s Floquet

multipliers are on the unit circle. This choreography is a (p, q)-torus knot with p = 19 and q = 41. See

Calleja (2020) for an interactive animation

It was observed early on that the three body figure eight choreography is linearly stable

(Morse index zero). Indeed, the KAM stability of the three body eight was established by

Kapela and Simó (2007, 2017) using computer-assisted methods. For five or more bodies

no stable eights have ever been reported, and indeed we observe quite large Morse indices

along the axial continuation branch in all but the three body case.

Remark 3 (A stable spatial three body choreography) A periodic orbit is linearly stable in

the sense of Hamiltonian systems if all of its Floquet multipliers are on the unit circle in C. It

was observed early on, based on numerical evidence, that the three body figure eight seemed

to be linearly stable in the sense of Hamiltonian systems. This observation was eventually

proven by Kapela and Simó (2007) using computer-assisted methods of proof. Indeed, the

same authors prove KAM stability in Kapela and Simó (2017), again using computer-assisted

methods.

It is an open question as to wether or not there exist other stable eights for higher numbers

of bodies, and our numerical experiments seem to suggest that the answer to this question is

“no.” On the other hand, linear stability is a robust property, so that nearby periodic orbits in

the continuation class of the three body eight are also stable. By numerically exploring the

continuation class, we have been able to find many spatial choreographies which are linearly

stable. One such orbit is illustrated in Fig. 9.

123



From the Lagrange polygon to the figure eight I Page 17 of 20 10

Fig. 9 A spatial fifteen body choreography: a spatial choreography in the fifteen body axial family along the

branch that contains the fifteen body eight. The orbit is a (p, q)-torus knot choreography with p = 31 and

q = 47

4 Conclusion

Building on previous numerical studies of n-body eights (Moore 1993; Simó 2001; Chenciner

et al. 2002) and in particular numerical continuation results for choreographies found in Wulff

and Schebesch (2008) and Calleja et al. (2018), we applied classical numerical continuation

methods to the periodic solutions of a delay differential equation (DDE) describing choreo-

graphic motion in the gravitational n-body problem. The DDE formulation is given Calleja

et al. (2021) and has two distinct advantages over working directly with the standard n-body

equations of motion derived from Newton’s Laws. In the first place, periodic solutions of

the DDE satisfying a certain number theoretic condition correspond to choreographies rather

than to arbitrary n-body periodic motions. Second, the DDE reduces to a system of six scalar

equations (with delays), regardless of the number of bodies under consideration: adding more

bodies introduces new terms to the nonlinearity rather than increasing the dimension of the

system.

The n-gon appears as a constant/equilibrium solution of the DDE, and a linear stabil-

ity analysis shows that there is a single vertical Lyapunov family of periodic orbits in the

center manifold. Using the explicit first-order formulas for the vertical family derived in

García-Azpeitia and Ize (2011) and Burgos-García (2016), we are able to start the numerical

continuation of the vertical family in an automatic way for any desired number of bod-

ies. For every odd n between 3 and 15, we continue the vertical family with respect to

energy/frequency, checking for the eight as we move along the branch. Note that we recover

the earlier three and seven body results from Wulff and Schebesch (2008) and Calleja et al.

(2018) and also obtain new examples connecting the n-gon to the eight.

In each case, we find that the n-body eight appears shortly after a symmetry breaking

bifurcation from the n-gon’s branch. Moreover, after leaving the n-gon using the formulas

developed in García-Azpeitia and Ize (2011) and Burgos-García (2016), there appears to be

one and only one bifurcation between the n-gon and the eight. We stress that this is another

advantage of performing the continuation in the DDE rather than using the n-body equations

of motion: Continuation of choreographies in the full n-body problem can result in additional

bifurcations, as non-choreography periodic solutions may bifurcate from choreographies. The

fact that, in the symmetrized setting, a single dynamical mechanism appears to organize the
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transition from n-gon to eight leads us to generalize Marchal’s conjecture (described in Féjoz

(2010) and again in the introduction of the present work) to any odd number of bodies.

We remark that—even in the case of three bodies—there appears as of yet to be no

mathematically rigorous proof of Marchal’s conjecture, much less any of it’s generalizations

to more bodies. A very interesting avenue of future research would be to develop such proofs.

Mathematically rigorous results about n-body choreographies come in two main varieties:

variational methods and computer-assisted proofs. We refer the interested reader to the works

of Chenciner and Montgomery (2000), Barutello et al. (2008), Terracini and Venturelli (2007),

Ferrario and Terracini (2004) and Barutello and Terracini (2004) for a much more complete

discussion of the literature on variational methods for choreography problems. Computer-

assisted methods of proof for n-body choreographies which apply constructive geometric

arguments in the full n-body state space are found in the works of Kapela and Zgliczyński

(2003), Kapela (2005), and Kapela and Simó (2007, 2017). A very interesting work which

uses both variational and computer-assisted approaches is Arioli et al. (2006). The author’s

aforementioned work in Calleja et al. (2021) uses a posteriori analysis for Fourier spectral

methods to prove the existence of spatial torus knot choreographies using the delay differential

equation set up exploited in the present work.

As is well known and already mentioned in the introduction, there are technical difficulties

applying variational methods to continuation branches which encounter bifurcations. On the

other hand, mathematically rigorous computer-assisted methods for studying continuous

branches of periodic orbits are by now quite advanced. This is true even in the case of DDEs,

and we refer for example to the work of Gameiro et al. (2008), Lessard (2007),Jaquette

et al. (2017), van den Berg et al. (2010), Lessard (2018) and van den Berg and Queirolo

(2021). Moreover, methods of computer-assisted proof have been developed for proving the

existence of, and continuing through, a number of infinite dimensional bifurcations. See for

example the work of van den Berg and Jaquette (2018), Jaquette (2019), Arioli and Koch

(2010), Wanner (2018), and Lessard et al. (2017).

While existing methods from the works just cited do not cover the symmetry breaking

bifurcations needed to prove instances of the generalized Marchal’s conjecture, we believe an

appropriate framework for the envisioned proofs can be obtained by extending/adapting these

works. Moreover, the out-of-plane bifurcation from the Lagrangian n-gon can be handled

using the results of García-Azpeitia and Ize (2011, 2013), as in the present work. Computer-

assisted proofs of several cases of the generalized Marchal’s conjecture, the ones for which

we have presented numerical evidence in the present manuscript, are the subject of a work

in preparation by the authors.
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