
Celestial Mechanics and Dynamical Astronomy (2021) 133:5

https://doi.org/10.1007/s10569-021-10002-2

ORIG INAL ART ICLE

Critical homoclinics in a restricted four-body problem:
numerical continuation and center manifold computations

Wouter Hetebrij1 · J. D. Mireles James2

Received: 28 July 2020 / Revised: 19 December 2020 / Accepted: 15 January 2021 /
Published online: 15 February 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract

The present work studies the robustness of certain basic homoclinic motions in an equilateral
restricted four-body problem. The problem can be viewed as a two-parameter family of
conservative autonomous vector fields. The main tools are numerical continuation techniques
for homoclinic and periodic orbits, as well as formal series methods for computing normal
forms and center stable/unstable manifold parameterizations. After careful numerical study
of a number of special cases, we formulate several conjectures about the global bifurcations
of the homoclinic families.

Keywords Four-body problem · Homoclinic dynamics · Critical equilibria · Center
manifold parameterization

Mathematics Subject Classification 70K44 · 34C45 · 70F15

1 Introduction

Suppose that three gravitating bodies are arranged in the equilateral triangle configuration
of Lagrange. The circular restricted four-body problem (CRFBP) studies the dynamics of a
fourth massless particle in a co-rotating reference frame. The problem was first introduced
by Pedersen (1944, 1952), and we recall the equations of motion and other basic facts in
Sect. 1.1. A recent work by Kepley and James (2019) studies—in the case of equal masses—
certain “short” or “basic” homoclinic motions at the center of mass of the three bodies. In the
present work, we are interested in the fate of these basic homoclinic motions as the system
is perturbed away from the equal mass case: in particular their robustness, bifurcations, and
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eventual disappearance. In preparation for this discussion, we briefly review what is known
about the structure of the equilibrium set.

The equilibrium solutions—or libration points—of the CRFBP are the main topic of the
study (Simó 1978) by Simó. In that work one finds detailed numerical evidence in support of
the claim that the problem has either 8, 9, or 10 libration points, whose number and location
depend on the mass ratios. This conjecture was eventually settled in the affirmative by Barros
and Leandro using mathematically rigorous computer-assisted methods of proof (Leandro
2006; Barros and Leandro 2011, 2014), and we recount their results after introducing a little
notation and terminology.

Appropriate choice of units results in a unit value of the gravitational constant and total
mass of the system. The massive bodies are labeled according to the convention that m3 ≤
m2 ≤ m1. The parameter space of the CRFBP is then reduced to the 2-simplex

S =
{

(m1, m2, m3) ∈ R
3 : m1 + m2 + m3 = 1, andm3 ≤ m2 ≤ m1

}

,

determined by the vertices v0 = (1/3, 1/3, 1/3), v1 = (1/2, 1/2, 0), and v2 = (1, 0, 0).
We refer to the special system with mass parameters m1 = m2 = m3 = 1/3 as the triple

Copenhagen problem. This is a nod to the traditional name of the equal mass case of the
circular restricted three-body problem (CRTBP), which is called the Copenhagen problem in
honor of the work done at the Copenhagen observatory in the first decades of the twentieth
century during the tenure of Elis Strömgren. See, for example, the review article (Strömgren
1934) by Strömgren, as well as the detailed discussion in Chapter 9 of the book of Szebehely
(1967).

We remark that if m3 = 0, then the CRFBP reduces to the CRTBP, and that if m2 = m3 =
0, then the problem reduces further to the rotating Kepler problem. The CRTBP is treated in
great detail elsewhere, and we will not dwell on it further other than to say that the problem
is well known to have five libration points for all values of the mass ratio μ = m2/m1 �= 0.
For much more thorough discussion, we refer the interested reader again to Chapter 9 of the
book of Szebehely (1967), or to the more modern treatment in the book of Meyer and Offin
(2017).

We refer to an equilibrium solution in the interior of the closed equilateral triangle as an
inner libration point, and an equilibrium in the complement of this triangle as an outer libra-

tion point. A schematic illustrating the phase space is given in Fig. 2. From Leandro (2006),
Barros and Leandro (2011), Barros and Leandro (2014) we have the following complete
description of the equilibrium set:

– (I) For each (m1, m2, m3) ∈ S with m3 > 0, there are six outer libration points. We
denote these by L4,5,6,7,8,9.

– (II) There is an analytic, simple closed curve D ⊂ S from the m1 = m2 edge to the
m2 = m3 edge of the simplex. The number of libration points is constant throughout
S, except on D. We refer to D as the critical parameter curve. D does not contain any
vertex, nor does it intersect the m3 = 0 edge of the simplex.

– (IV) S\D has two components which we denote by SI and SI I . We take SI to be the
component containing the triple Copenhagen vertex v0. For each (m1, m2, m3) ∈ SI ,
the system has 4 inner libration points, making ten in total. For each (m1, m2, m3) ∈ SI I

with m3 > 0, the system has 2 inner libration points, making 8 total.
– (V) If (m1, m2, m3) ∈ D and m1 �= m2, then the system has 3 inner libration points,

making for 9 total. Denote by vpf ∈ S the point where D intersects the m1 = m2 edge
(the reason for the “pf” will be made clear below). When the system has parameters vpf ,
there are 2 inner libration points, for a total of 8.
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Fig. 1 Parameter simplex for the CRFBP: normalizing so that m1 + m2 + m3 = 1 with m3 ≤ m2 ≤ m1 leads
to a parameter space as depicted in the figure. The simplex is formed by the vertices v0 = (1/3, 1/3, 1/3)

corresponding to equal masses (triple Copenhagen problem), v1 = (1/2, 1/2, 0) corresponding to all mass
in two equal primaries (restricted three-body Copenhagen problem), and v2 = (1, 0, 0) where all the mass is
in the largest body (rotating Kepler problem). Observe that m2 = m3 along the edge joining v0 and v2, that
m1 = m2 along the edge joining v0 and v1, and that m3 = 0 along the edge joining v1 and v2. The critical
parameter curve D is depicted as a red arc from the m1 = m2 edge to the m2 = m3 edge, cutting the simplex
in two components denoted SI and SI I . In SI , the system has ten equilibrium solutions and in SI I only
eight. The number changes only on the critical curve D where the inner libration point L0 loses hyperbolicity
and annihilates with L2. See Fig. 2 for the approximate locations of the 8 − 10 libration points

The parameter simplex is illustrated schematically in Fig. 1.
Let us elaborate on statements (I V ) and (V ). With (m1, m2, m3) ∈ SI , denote the 4 inner

libration points by L0,1,2,3 (as in Fig. 2). Since there are no bifurcations in SI , the locations
of the libration points vary continuously (even analytically) throughout this region. In the
triple Copenhagen problem, the libration point L0 is located at the center of mass/origin in
state space. For all parameters in SI , L0 has saddle type stability (two stable and two unstable
eigenvalues) and the libration points L1,2,3 have saddle × centers stability (one stable, one
unstable and a pair of purely imaginary conjugate eigenvalues).

Suppose that parameters are varied continuously from a point in the region SI to a point
in the region SI I . As the parameters cross the critical curve D, the system undergoes a
bifurcation involving L0 and L2. In the general case that m1 �= m2, the bifurcation is a
Hamiltonian saddle node wherein L0 and L2 collide and annihilate. At vpf —where D inter-
sects the m1 = m2 edge—the bifurcation is a Hamiltonian pitchfork bifurcation involving
L0, L2, and L3. Again, L0 and L2 vanish in this pitchfork bifurcation so that in every case
it is only the inner libration points L1 and L3 which remain once (m1, m2, m3) ∈ SI I . We
write Lsn to denote the libration point at saddle node bifurcation, and Lpf for the pitchfork.
We sometimes write Lc to denote a critical libration point without specifying whether we
are at the pitchfork or a saddle node bifurcation.

Given that the equilibrium structure of the CRFBP is completely understood, one natural
line of inquiry is to study orbits homoclinic to the equilibria, and any possible bifurcations
of these homoclinic connecting orbits. For example, bifurcations at L0 when the system
crosses the critical curve D must trigger corresponding bifurcations for orbits homoclinic
to L0. Some studies which consider heteroclinic and homoclinic connections in the CRFBP
are Burgos-García and Delgado (2013), and Baltagiannis and Papadakis (2011). The present

123



5 Page 4 of 48 W. Hetebrij, J. D. Mireles James

Fig. 2 Configuration space for the CRFBP: The three primary bodies with masses m1, m2, and m3 are arranged
in an equilateral triangle configuration of Lagrange, which is a relative equilibrium solution of the three-body
problem. After transforming to a co-rotating frame, we consider the motion of a fourth massless body. The
equations of motion have 8, 9, or 10 equilibrium solutions (libration points) denoted by L j for 0 ≤ j ≤ 9. The
number of libration points and their stability vary depending on m1, m2, and m3. The points L0,4,5,6 have
saddle focus stability for some values of the masses. The other libration points have either saddle × center or
center × center stability type for all values of the masses

work builds on the recent study of homoclinic phenomena in the triple Copenhagen problem
by Kepley and James (2019).

Relevant results from Kepley and James (2019) are reviewed in Sect. 1.3. What is important
for the purposes of the present introduction is that there are six basic homoclinic motions
at triple Copenhagen L0, denoted by γ1,2,3,4,5,6 : R → R

4 (see Fig. 4), and that these
basic connections appear to organize all observed homoclinic phenomena at L0. Given the
importance of γ1,2,3,4,5,6 in the triple Copenhagen problem, it is natural to investigate their
role as parameters vary. This leads to some fairly delicate questions about the global dynamics.
The present work focuses primarily on the “shortest” homoclinics γ1,2,3.

– Question 1 The connections γ1,2,3 are transverse (in the Hamiltonian sense), and hence
persist for parameter values (m1, m2, m3) ≈ v0. What happens to γ1,2,3 as the mass

parameters move throughout S1 toward D? In particular, how robust are the connections?
Do any of the connections survive all the way to D?

– Question 2 With (m1, m2, m3) ∈ D consider the critical libration point Lc. Are there

homoclinic connections to the critical libration point? How are they related to the basic
homoclinic motions γ1,2,3 of the triple Copenhagen problem?

The CRFBP has a conserved, energy-like quantity known as the Jacobi integral (see
Sect. 1.1). Systems with first integrals enjoy an intimate relationship between homoclinic
orbits and one parameter families of periodic orbits. This connection was first studied by
Strömgren in connection with the (CRTBP) (see, for example, (Strömgren 1934)) where
it was observed that some planar families of Lyapunov periodic orbits appear to accumu-
late to “asymptotic periodic orbits”—heteroclinic cycles or homoclinic orbits in modern
terminology. This phenomenon involves a global bifurcation made precise by the “blue
sky catastrophe” of Henrard (1973), Devaney (1977), Burgos-García and Delgado (2013),
Shilnikov et al. (2014).
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It was observed in Kepley and James (2019) that each of the short homoclinics γ1,2,3

participates in a blue sky catastrophe, appearing as the limit of the planar Lyapunov family
associated with the inner libration it winds around. More precisely, the planar family of
periodic orbits attached to L i accumulates to γi , for i = 1, 2, 3. This leads to a third question
concerning the phase space structure of the CRFBP at criticality.

– Question 3 For (m1, m2, m3) ∈ D, What is the asymptotic fate of the planar Lyapunov
families attached to L1 and L3? Do these families participate in blue sky castrophies with
critical homoclinic orbits at Lc? If not, where do they accumulate? (Recall that L2 has
collided with L0 on the critical curve, so that question only makes sense for L1,3.)

These three questions are the main topic of the present study, and are addressed using tools
from computational dynamics. In particular, we apply numerical continuation methods for
periodic/homoclinic orbits, as well as high-order numerical methods for computing invariant
manifolds attached to libration points. These topics are standard and have been discussed
at length in other places, and we provide some references when appropriate below. We
include, for the sake of completeness, a short overview of numerical continuation schemes
in conservative system as Appendix A. We also employ high-order methods for computing
center and center stable/unstable manifolds, as well as normal form calculations, to illuminate
the dynamics at D. We will see that the three questions are interrelated, so that understanding
any one of them provides information about the other two.

More precisely, we are guided by the following qualitative observations, whose judicious
use leads to quantitate information about bifurcations of the homoclinics orbits. For numerical
continuations, we will always consider parameter curves starting at v0 and terminating at the
critical curve D. This leads to one parameter continuation problems, so that bifurcations then
occur at isolated parameter points, and we can talk about what happens before and after such
a bifurcation point.

– Approximating bifurcation parameters from below—robustness of numerical continua-

tion suppose that we vary the mass parameters of the system from v0 toward the critical
curve D, and apply a numerical continuation scheme to one of the homoclinic orbits
γ1,2,3. Then, a breakdown in the numerical continuation scheme indicates a possible
bifurcation of the homoclinic family. Breakdown is indicated by the loss of invertibility
(or poor numerical conditioning) of a certain matrix. The numerical scheme will break-
down before the bifurcation so that the blow up of the condition number provides a useful
lower bound on the approximate location of the bifurcation parameter. This is the topic
of Sect. 2.

– Approximating bifurcation parameters from above—the blue sky test as mentioned above,
the “tubes” of planar Lyapunov periodic orbits originating at L1,2,3 in the triple Copen-
hagen problem accumulate to the interior homoclinic orbits γ1,2,3. This phenomena is
robust, and hence persists for small changes in parameters. Then, studying the limiting
behavior of a Lyapunov tube provides another qualitative feature that can only change
at a bifurcation of the homoclinic orbit. Numerically locating a Lyapunov tube which
no longer accumulates to γ1,2,3 suggests that we have passed a bifurcation of the homo-
clinic, and provides a useful geometric mechanism for obtaining upper bounds on the
bifurcation parameter. This is the topic of Sect. 3.

– Bifurcations on the critical curve—normal form calculations: in some cases the contin-
uation robustness and/or blue sky tests are inconclusive. In particular, the tests have a
difficult time distinguishing bifurcations which occur near, but not on, the critical curve
D. In this case, it is helpful to examine the normal form at the critical equilibrium solu-
tion Lc, as it provides local information about connecting orbits. It can also be useful to
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numerically study intersections of the center stable/center unstable manifolds in the Lc

level set of the Jacobi integral. This is the topic of Sect. 4.

Using these numerical techniques in concert provides a novel approach to the qualitative
study of global continuation and bifurcation properties of connecting orbits in conservative
systems.

The remainder of the paper is organized as follows: In sects. 1.1 to 1.4, we review the
equations of motion, a numerical method for computing critical equilibria/parameter sets,
results about homoclinic motions in the triple Copenhagen problem, as well as the literature
on homoclinic bifurcations. In Sect. 2, we study the γ1,2,3 families via numerical continuation
algorithms, while Sect. 3 is devoted to blue sky catastrophes. In Sect. 4, we study the dynamics
on D using numerically computed center stable/unstable manifolds and normal forms. Our
conclusions are summarized in Sect. 5, and Appendices A and B provide details on multiple
shooting/continuation schemes and computing the center as well as center stable/unstable
manifolds.

1.1 CRFBP: equations of motion and basic properties

Define

K = m2(m3 − m2) + m1(m2 + 2m3).

The locations (x1, y1), (x2, y2) and (x3, y3) of the three primary bodies are given by

x1 =
−|K |

√

m2
2 + m2m3 + m2

3

K
, y1 = 0,

x2 = |K | [(m2 − m3)m3 + m1(2m2 + m3)]

2K

√

m2
2 + m2m3 + m2

3

, y2 = −
√

3m3

2m
3/2
2

√

m3
2

m2
2 + m2m3 + m2

3

,

x3 = |K |

2
√

m2
2 + m2m3 + m2

3

, y3 =
√

3

2
√

m2

√

m3
2

m2
2 + m2m3 + m2

3

.

Let

Ω(x, y)
def= 1

2
(x2 + y2) + m1

r1(x, y)
+ m2

r2(x, y)
+ m3

r3(x, y)
, (1)

where

r j (x, y)
def=

√

(x − x j )2 + (y − y j )2, j = 1, 2, 3, (2)

and write x = (x, ẋ, y, ẏ) ∈ R
4 to denote the state of the system. The equations of motion

in the co-rotating frame are given by

x′ = f (x),

where

f (x, ẋ, y, ẏ)
def=

⎛

⎜

⎜

⎝

ẋ

2 ẏ + ∂Ω
∂x

ẏ

−2ẋ + ∂Ω
∂ y

⎞

⎟

⎟

⎠

. (3)
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Observe that Ω and hence f depend in a complicated way on the masses m1, m2, m3 through
the positions (xi , yi ), i = 1, 2, 3 of the primaries.

The system conserves the Jacobi integral

E(x, ẋ, y, ẏ) = −
(

ẋ2 + ẏ2
)

+ 2Ω(x, y). (4)

Assuming that (m1, m2, m3) ∈ SI , the libration points (equilibrium solutions of Eq. (3)) are
arranged as illustrated in the schematic of Fig. 2. If (m1, m2, m3) ∈ SI I , then the equilibrium
solutions are as in the schematic, except that L0 and L2 are not present.

There is a substantial literature on the CRFBP, and in addition to the references cited
above, we refer the interested reader also to the works of Baltagiannis and Papadakis (2011),
and Álvarez-Ramírez and Vidal (2009) where many of the systems basic properties are
discussed in detail. Elementary families of periodic orbits are considered by Papadakis in
Papadakis (2016a, b), and by Burgos–García, Bengochea, and Delgado in Burgos-García and
Delgado (2013), Burgos-Garcia and Bengochea (2017). A study by Burgos-García, Lessard,
and Mireles James proves the existence of a number of spatial periodic orbits for the CRFBP
(Burgos-García et al. 2018) (again with computer assistance). An associated Hill’s problem
is derived, and its periodic orbits are studied by Burgos-García and Gidea in Burgos-García
(2016); Burgos-García and Gidea (2015). Murray and Mireles James study transverse homo-
clinic chaos in the spatial CRFBP, for certain vertical Lyapunov families of periodic orbits
attached to the inner and outer libration points (Murray and James 2020).

Regularization of collisions is studied by Álvarez–Ramírez, Delgado, and Vidal in
Alvarez-Ramírez et al. (2014). Chaotic motions were studied numerically by Gidea and Bur-
gos in Gidea and Burgos (2003), and by Álvarez–Ramírez and Barrabés in Alvarez-Ramírez
and Barrabés (2015). Perturbative proofs of the existence of chaotic motions are found in the
work of Cheng and She (2017), She and Cheng (2014), She et al. (2013), and also in the work
of Alvarez-Ramírez et al. (2018). A computer-assisted method of proof for establishing the
existence of chaotic motions at non-perturbative parameter values was developed by Kepley
and Mireles James in Kepley and James (2019).

1.2 Equilibria: the critical case

In the following discussion we treat m1, m2 as free parameters, eliminating the parameter
m3 via the equation m3 = 1 − m1 − m2. To characterize the critical curve we seek values
of m1 and m2 such that D f is non-invertible at one of its Lagrangian points. The following
proposition tells us in terms of the second derivatives of Ω whether or not D f is invertible,
and is used to (numerically) compute the bifurcation curve D. We also recover that a critical
libration point always has a double zero eigenvalue. See Fig. 3.

Proposition 1 (Bifurcation value) The linearization of f at a libration point L =
(x0, 0, y0, 0) has an eigenvalue 0 iff Ωxx (x0, y0)Ωyy(x0, y0) = Ω2

xy(x0, y0). In particu-

lar,

– If Lc is a critical libration point for the CRFBP, then D f (Lc) has eigenvalue 0 with

algebraic multiplicity 2 and geometric multiplicity 1.

The eigenvector and generalized eigenvector corresponding to the eigenvalue 0 are

v0
def= (Ωyy(x0, y0), 0,−Ωxy(x0, y0), 0),

v1
def= (Ωxy(x0, y0),Ωyy(x0, y0), 2 − Ωxx (x0, y0),−Ωxy(x0, y0)).
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Fig. 3 Critical equilibria: left frame—parameter simplex projected into the m1, m2 plane. The blue curve is
the numerically computed critical arc D. The red dots denote special critical system parameters considered
throughout this work. The lower red dot depicts the intersection of D with the m2 = m3 edge of the simplex.
The upper red dot the intersection of D with the m1 = m2 edge. The middle red dot is an arbitrarily chosen
parameter set on D interior to S. Right frame—the functions Ωyy and 4−Ωxx −Ωyy for the critical libration
point Lc on D

We start with a preliminary claim:

Claim Let x0 = (x0, 0, y0, 0) be a libration point of f . If Ωxx (x0, y0)Ωyy(x0, y0) =
Ω2

xy(x0, y0), then both Ωyy(x0, y0) and 4 − Ωxx (x0, y0) − Ωyy(x0, y0) are nonzero.

Convincing evidence for the claim is obtained by computing the Critical curve as illustrated
in Fig. 3. One then plots Ωyy(x0, y0) and 4−Ωxx (x0, y0)−Ωyy(x0, y0) for all (x0, y0) in the
critical curve and checks that they are numerically indeed far from zero. A complete proof
follows from the results of Leandro (2006), Barros and Leandro (2011), Barros and Leandro
(2014).

Proof of Proposition 1 Writing Ωxx = Ωxx (x0, y0), Ωyy = Ωyy(x0, y0), and Ωxy =
Ωxy(x0, y0), we have

pD f (L)(λ)
def=

∣

∣

∣

∣

∣

∣

∣

∣

−λ 1 0 0
Ωxx −λ Ωxy 2

0 0 −λ 1
Ωxy −2 Ωyy −λ

∣

∣

∣

∣

∣

∣

∣

∣

= λ4 +
(

4 − Ωxx − Ωyy

)

λ2 + ΩxxΩyy − Ω2
xy . (5)

Then, D f (L) has an eigenvalue 0 iff ΩxxΩyy = Ω2
xy . From our claim it follows that 0 is

a double root as Ωxx + Ωyy �= 4. Furthermore, from the same claim it also follows that
Ωyy �= 0 and hence v0 �= 0. Direct calculation shows D f (x0)v0 = 0 and D f (x0)v1 = v0. 
�

In Introduction, we claimed that at vpf there is a Hamiltonian pitchfork bifurcation instead
of a Hamiltonian saddle node bifurcation. That is, we claim that the following bifurcations
occur on D.

Claim Let vc = (m1, m2, m3) ∈ D be a critical parameter set.

– If m1 �= m2, the libration points L0 and L2 undergo a Hamiltonian saddle node bifurca-
tion.

– If m1 = m2, the libration points L0, L2 and L3 undergo a Hamiltonian pitchfork bifur-
cation.

123



Critical homoclinics in a restricted four-body problem Page 9 of 48 5

We sketch the proof of this claim. First, we note that depending on the symmetries of
the problem, both the Hamiltonian saddle node bifurcations and the Hamiltonian pitchfork
bifurcation are co-dimension one. So, for example, one would assume that for v ∈ D with
neither m1 = m2 nor m2 = m3 the bifurcation at v is a saddle node bifurcation thanks to
lack of symmetry. Furthermore, as we will see in Lemma B.2, if the constant

ΩxxxΩ
3
yy − 3ΩxxyΩ

2
yyΩxy + 3ΩxyyΩyyΩ

2
xy − ΩyyyΩ

3
xy �= 0,

at the critical libration point Lc, then the dynamics near the critical libration point resembles
Fig. 17. We will show numerically that for vc = (m1, m2, m3) ∈ D with m1 �= m2, we have

ΩxxxΩ
3
yy − 3ΩxxyΩ

2
yyΩxy + 3ΩxyyΩyyΩ

2
xy − ΩyyyΩ

3
xy < 0,

supporting the first part of the claim.
Moreover, in Sect. 4 we compute the normal form for vc = (m1, m2, m3) ∈ D at the left

end point of D. That is, at the intersection of D with the m2 = m3 edge. We then compute
the normal form for vc = (m1, m2, m3) ∈ D when m1 = 0.4247, a “generic point” in D. In
both cases, we find that the vector field on the center manifold agrees numerically with the
normal form of the saddle node bifurcation. This provides even further support for the first
claim.

For the second part of the claim, we analytically show that

ΩxxxΩ
3
yy − 3ΩxxyΩ

2
yyΩxy + 3ΩxyyΩyyΩ

2
xy − ΩyyyΩ

3
xy = 0

at the libration point Lc for vpf ∈ D. Furthermore, in Sect. 4, we will also compute the vector
field on the center manifold for vpf ∈ D which agrees numerically with the normal form of
the pitchfork bifurcation, supporting the second part of the claim.

1.3 Short homoclinic connections in the triple Copenhagen problems

Homoclinic connecting orbits for the saddle-focus equilibria in the triple Copenhagen prob-
lem were studied in detail in Kepley and James (2019). The main result at L0 is that there
are six basic homoclinic orbits which appear to organize the full web of connections. These
are denoted γi : R → R

4 for i = 1, . . . , 6 and are illustrated in Fig. 4. These orbits are the
shortest homoclinics, both in terms of arc length and time of flight from a local unstable to
a local stable invariant manifold. The shortest orbits γ1, γ2, γ3 each wind once around the
libration point L1, L2 or L3, respectively. Indeed, each appears to participate in a blue sky
catastrophe with the corresponding planar Lyapunov family.

There appear to be infinitely many additional homoclinic orbits “shadowing” the basic
connections in any order we wish. That is, consider a word Γ composed of any combination
of the letters γi , i = 1, . . . , 6. There is a homoclinic orbits which passes close to γi in the
prescribed order. These results and more are discussed in detail in Kepley and James (2019).

An important remark is that the results of Kepley and James (2019) show numerically that
the homoclinics γi , i = 1, . . . , 6 are transverse in the energy level set of L0. Then, each of
the homoclinic orbits persist for a small change in parameter values. While some preliminary
numerical continuations were discussed in Kepley and James (2019), the calculations were
neither systematic nor were they take all the way to the critical curve D.
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Fig. 4 Fundamental homoclinics at L0: Left frame—the three shortest homoclinic orbits at L0, which we
refer to as γ1,2,3 depending on which libration point they wind around. Right frame—the fourth, fifth, and
sixth shortest homoclinics at L0, which we refer to as γ4,5,6. In the triple Copenhagen problem these orbits
are related by rotational symmetry; however, continuation away from equal masses will break this symmetry.
In both frames the red and green part of the homoclinic is the portion described by the parameterized local
unstable and stable manifolds, respectively. The blue portion of the curve is obtained by solving the projected
boundary value problem

1.4 Hamiltonian homoclinic bifurcations: classic results

Homoclinic orbits are fundamental objects of study in dynamical systems theory, and there
exists a vast literature on their properties, numerical calculation, and bifurcations. Even in
the special case of Hamiltonian systems, this is a rich area and we only recall as much of the
theory as pertains directly to the present study. A fantastic overview of this theory with an
in-depth discussion of the literature is found in Champneys (1998). We identify five types
of global bifurcations involving homoclinic connections in Hamiltonian systems. We state
the results for four-dimensional vector fields, though more general results are found in the
references.

– Type I—Hamiltonian bi-focus homoclinics Suppose that f : R
4 → R

4 is a Hamiltonian
vector field and that L ∈ R

4 is an equilibrium solution with complex conjugate eigen-
values ±α ± iβ, α, β > 0. Assume that γ : R → R

4 is a transverse homoclinic orbit
for L . Then, there are infinitely many chaotic horseshoes near γ . See Devaney (1976).
In addition, there is a tube of periodic orbits accumulating to γ . See Henrard (1973),
Shilnikov et al. (2014). This is the “blue sky” catastrophe already mentioned above.

– Type II—Belyakov–Devaney bifurcation Suppose that f (x, μ) is a one-parameter family
of Hamiltonian systems, and that for μ ∈ (μ0 − ε, μ0 + ε), L(μ) is a libration point
for the vector field f (x, μ). Suppose that for μ < μ0 L(μ) is a bi-focus, and that for
μ > μ0 L(μ) has real distinct eigenvalues ±α,±β, α, β > 0. Then, L(μ0) has real
repeated eigenvalues. Assume that the repeated eigenvalues have geometric multiplicity
one, and algebraic multiplicity two, and that γμ(t) is a smooth family of homoclinic
connecting orbits for L(μ). Then, (under some generic non-degeneracy assumptions)
there are infinitely many homoclinic doubling bifurcations of γμ0(t) at μ0. For the precise
statement of the theorem and its proof see Champneys and Toland (1993).

– Type III—Transverse connections to a Hamiltonian saddle node Suppose that f (x, μ)

is a one-parameter family of Hamiltonian systems with a saddle-node bifurcation at μ0.
To be more precise, let L ∈ R

4 denote the critical libration point and suppose that L
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has a double zero eigenvalue with geometric multiplicity one, algebraic multiplicity two,
and two real eigenvalues ±α. Moreover, the normal form at L has nonzero quadratic
term. Then, L has three-dimensional center stable and three-dimensional center unstable
manifolds. The restriction of these three-dimensional center stable/unstable manifolds
to the energy level set of L results in a pair of two dimensional invariant manifolds,
which may intersect transversally in the energy level, giving rise to a non-degenerate
homoclinic orbit γ . In general, there will be two families of transverse homoclinic orbits
which annihilate at γ , and a family of periodic orbits born out of the disappearance of
γ . The precise statement of the theorem and its proof are found in Weihua and Huang
(2003).

– Type IV—Degenerate homoclinic orbits in conservative systems this co-dimension one
phenomenon is studied in Knobloch (1997), Homburg and Knobloch (2005). A transverse
homoclinic orbit in a one-parameter family of Hamiltonian systems can be continued
until the loss of transversality. In short, the theorem states that before the bifurcation the
generic situation is that there is a pair of transverse homoclinic orbits which collide and
annihilate at criticality. After the bifurcation the homoclinic families are gone.

– Type V—Degenerate connection to a Hamiltonian saddle node In a two-parameter Hamil-
tonian system a type III homoclinic bifurcation can be continued along a one-dimensional
curve in parameter space until the critical homoclinic loses transversality. In short, the
result is that near a non-transverse critical homoclinic orbit there is a pair of critical
transverse homoclinic orbits which collide and annihilate. See Deng (1990), Champneys
et al. (1996) for more complete discussion.

In addition, near a Hamiltonian saddle-node or Hamiltonian pitchfork bifurcation, normal
form analysis provides additional local homoclinic bifurcations. For example, near a Hamil-
tonian saddle node bifurcation there are two families of libration points L1(μ) and L2(μ)

which collide and annihilate at μ0. Without loss of generality, we have that L1(μ) has distinct
real eigenvalues and L2(μ) has saddle-center stability for μ < μ0. Analysis of the normal
form shows that there is a family of “small” homoclinic orbits for L1(μ), which wind around
L2(μ) for μ < μ0. This family of homoclinic orbits shrink and disappear when L1(μ) and
L2(μ) collide and annihilate at μ0. See, for example, Iooss and Kirchgässner (1992), Broer
et al. (1995). Near a Hamiltonian pitch fork a similar normal form analysis shows that near the
pitch fork there are two families (related by symmetry) of “small” homoclinic orbits which
disappear in the pitch fork bifurcation. See again Iooss and Kirchgässner (1992), Broer et al.
(1995).

These classical results inform our intuition throughout the remainder of the paper.

2 Robustness of the short Copenhagen L0 homoclinics

We now consider robustness with respect to parameter perturbations of γ j for j = 1, 2, 3.
Our idea is to use classical numerical continuation algorithms for Hamiltonian homoclinic
connections to study the γ j as the parameters of the system are moved away from v0 =
(1/3, 1/3, 1/3). Numerical continuation algorithms for periodic and connecting orbits are
reviewed briefly in Appendix A for the sake of completeness; however, the reader seeking a
thorough overview is referred to the classic works of Doedel and Friedman (1989), Muñoz
Almaraz et al. (2003), Doedel et al. (2003), Calleja et al. (2012).

We fix three lines in parameter space, each starting at v0 and terminating on D so that we
obtain three one-parameter continuation problems. To begin, we numerically compute three

123



5 Page 12 of 48 W. Hetebrij, J. D. Mireles James

Fig. 5 Three parameter
continuation arcs: consider three
critical parameter sets vc1 , vc2 ,
and vc3 on the curve D and
define the lines from v0 to each
of these. We denote the lines by

1(s), 
2(s), and 
3(s), and study
the one-parameter numerical
continuation problem for γ1, γ2,
and γ3 on these lines

critical parameter sets vc1 , vc2 , vc3 ∈ D with

vc1 ≈

⎛

⎝

0.440201606048930
0.440201606048930
0.119596787902140

⎞

⎠ , vc2 ≈

⎛

⎝

0.4247
0.349370273506504
0.225929726493496

⎞

⎠ , and

vc3 ≈

⎛

⎝

0.423447616433011
0.288276191783495
0.288276191783495

⎞

⎠ .

Here vc1 is on the m1 = m2, and vc3 on the m2 = m3 parameter edges, respectively. The
parameters vc2 are taken near “the middle” of the critical curve, with m1 = 0.4247 fixed
somewhat arbitrarily. Define the parameter lines


k(s) = (1 − s)v0 + svck
,

where k = 1, 2, 3. The critical parameters and parameter curves are illustrated schematically
in Fig. 5.

Since the homoclinic orbits γ j for j = 1, 2, 3 are transverse in the L0 energy level set
of the triple Copenhagen problem, each persists under small changes in the parameters. We
write γ j,k(s) to denote the one-parameter family of homoclinic orbits obtained by parameter
continuation of γ j along the parameter line 
k(s). Following the discussion in Sect. 1.4,
a homoclinic connection can breakdown/disappear only under one of the two following
scenarios:

– (A) loss of transversality, or
– (B) disappearance of the underlying equilibrium solution itself.

Note that in scenario (A) the equilibrium solution may persist after the homoclinic disappears,
and that scenario (B) occurs only at D. So for a given 1 ≤ j, k ≤ 3, the question is: does

that family γ j,k(s) survive all the way to D or does it breakdown before?

The question is made more quantitative as follows: Since transversality is an open con-
dition, there exist 0 < ŝ j,k ≤ 1, j, k = 1, 2, 3 so that the one parameter family γ j,k(s)

exists for all 0 ≤ s < ŝ j,k . If ŝ j,k < 1, then the homoclinic family loses transversality and
disappears at s = ŝ j,k . If ŝ = 1, then the homoclinic survives all the way to D. In any event,
the number ŝ j,k provides a measure of the robustness of γ j,k .

The general principle informing our work in this section is that numerical continuation
algorithms are based on Newton’s method, and Newton’s method must break down near a
bifurcation by the implicit function theorem. So, if ŝ j,k < 1, then the numerical continuation
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Fig. 6 Numerical continuation of γ1: continuations along 
1,2,3(s) are successful roughly 74%, 92%, and
97% of the way to the critical curve D, respectively. The left frame illustrates the homoclinic orbit γ1 (blue
curve) in the triple Copenhagen problem, that is, when the parameters are v0 = (1/3, 1/3, 1/3). The red
curve is the zero velocity curve for the L0 energy level. The three middle frames illustrate the results of
numerical continuation of γ1 along the parameter lines 
1,2,3(s). In each case the initial and final numerically
computer homoclinics are colored green and the intermediate homoclinics are colored blue. The step size in
the continuation algorithm is chosen adaptively, so that the blue homoclinic orbits are not uniformly spaced.
The black dots illustrate the numerical continuation of the libration points L0. The three right frames illustrate
the terminal homoclinic orbits γ1,k (s) for s ≈ ŝ1,k , k = 1, 2, 3 with the corresponding zero velocity curves.
In each of the three frames on the right we see that there are four inner libration points. That is, the numerical
continuation did not reach the critical curve D

of γ j,k must break down before we reach this critical value. On the other hand, homoclinic
orbits can undergo other types of bifurcations, such as homoclinic doubling (Kokubu 1988) or
the Belyakov–Devaney bifurcation discussed in Sect. 1.4. Then, the breakdown of numerical
continuation provides an indicator that the homoclinic is undergoing some kind of bifurcation,
and hence provides a lower bound on the value of ŝ j,k and the disappearance of the homoclinic.
We also remark that numerical continuation breaks down near D because the underlying
equilibrium undergoes a bifurcation.

2.1 Continuation of the �1 family

Applying the strategy of the previous section starting from γ1 leads to the following results.
We find that the continuation algorithm breaks down near s = 0.74 when we continue along
the 
1(s) parameter line, near s = 0.9247 along the 
2(s) parameter line, and near s = 0.974
along the 
3(s) parameter line. The results are illustrated graphically in Fig. 6, and suggest
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Fig. 7 Continuation of the γ2 family: continuations along 
1,2,3(s) are successful almost 100% of the way to
the critical curve D. Objects are colored as described in the caption of Fig. 6. In each of the middle frames one
sees the homoclinic orbits shrinking to zero as L0 approaches L2. Continuation of the L2 family is shown in
the bottom and middle frames (red curves). Since the families continue almost all the way to s = 1 the right
frames show the zero velocity curves at vc1,2,3 when the homoclinics have vanished

that the γ1,1(s) family is the least robust, γ1,3(s) the most robust, and γ1,2(s) is in between.
The results suggest also that none of the γ1 continuations survive all the way to the critical
curve D. Rather, in the terminology of Sect. 1.4, γ1 appears to undergo a type IV bifurcation
along each of the parameter lines. More precisely, we conjecture that the numerical lower
bounds

0.74 < ŝ1,1, 0.9247 < ŝ1,2 and 0.974 < ŝ1,3,

hold along the 
1,23(s) parameter lines.

2.2 Continuation of the �2 family

Continuation of the γ2 family appear to be more straight forward, as in every case the
continuation succeeds until s ≈ 1, breaking down only when L2 approaches L0 and the
homoclinics become very small (distance on the order of 10−4) when they become difficult
to distinguish numerically. The results are illustrated in Fig. 7, and appear to indicate that the
γ2 families are as robust as possible. Based on these observations we conjecture that

ŝ2,1 = ŝ2,2 = ŝ2,3 = 1.
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That is, along the parameter lines 
1,2,3(s), the γ2 families continue all the way to the critical
set D. Indeed, we will see in Sect. 4 that this conjecture is further supported by normal form
calculations at Lc.

2.3 Continuation of the �3 family

In considering the γ3 family it is first useful to exploit the symmetries of the problems, in order
that some of the results already discussed can be recycled. For example, when m2 = m3,
the system is symmetric about the x axis and that γ3,3(s) family is obtained from the γ1,3(s)

family by reflection. Then, based on the results presented in Sect. 2.1, the γ3 family inherit
the conjecture

0.974 < ŝ3,3 = ŝ1,3,

suggesting again a type IV bifurcation in the terminology of Sect. 1.4.
Similarly, when m1 = m2, the system has symmetry about the line through the third

primary bisecting the opposite edge of the Lagrangian triangle in phase space. Thanks to this
symmetry, the γ3,1(s) homoclinic family is obtained by reflection of γ2,1(s) family, and by
the results in Sect. 2.2 we inherit the conjecture that

ŝ3,1 = ŝ2,1 = 1.

Recall also that the critical bifurcation at vc1 is a pitch fork, wherein the libration points
L0, L2 and L3 collide. Then, the γ3,1(s) family shrinks to zero as L3 approaches L0, exactly
as the γ2,1(s) family shrinks as L2 approaches L0. It follows that ŝ3,1 = ŝ2,1 = 1, and the
γ3,1(s) family is as robust as possible. Indeed, this is the picture predicted by the normal
form for the pitch fork bifurcation as discussed in Sect. 1.4.

Finally, we report that numerical continuation of the γ3,2 family succeeds almost 97% of
the way to vc2 along the 
2(s) parameter line. Based on this we have the bound

0.97 < ŝ3,2.

More insight into the fate of the γ3,2 family is obtained by considering the normal form
calculations in Sect. 4. The results of all three numerical continuations are summarized in
Fig. 8.

Remark 1 (Belyakov–Devaney bifurcations) It is worth remarking that each of the continua-
tion families γ j,k(s) undergoes a type II bifurcation before the numerical continuation breaks
down. That is, in each case the underlying equilibrium solution L0(s) changes stability form
a bi-focus to a saddle with real distinct eigenvalues for s < ŝ j,k . This suggests that the
Belyakov–Devaney bifurcation is universal for the γ1,2,3 families. We note that while this
bifurcation effects the computation of the stable/unstable manifolds of L0, the homoclinics
do not break down there, and we can arrange that the numerical continuation “jumps over”
the bifurcation.

Remark 2 (A point of clarification regarding the “false” heteroclinic cycles) Upon close
inspection of the right three frames of Fig. 6 we note that in each of the three cases con-
sidered L2 appears to lie on the critical γ1 curve. This could suggest that γ1 terminates in
a heteroclinic bifurcation, resulting in a connection from L0 to L2 and back. However, the
proposed heteroclinic cycle is impossible, as L0 and L2 are in different energy levels when
γ1 is critical. In fact L0 and L2 are only ever in the same energy level when they collide and
disappear on the critical curve D. By computing the tangent vectors along γ1 we find that it
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Fig. 8 Numerical continuation of the γ3 basic homoclinic: continuations along 
1,2,3(s) are successful roughly
100%, 97%, and 97% of the way to the critical curve D, respectively . Objects are colored as described in
the caption of Fig. 6. The left frame illustrates the homoclinic orbit γ3 (blue curve) when the parameters
are v0 = (1/3, 1/3, 1/3). The black dots in the middle three frames illustrate the numerical continuation of
the libration points L0, while the red dots in the bottom middle frame illustrate the continuation of L2. The
top and middle right frames illustrate the terminal homoclinic orbits γ3,k (s) for s ≈ ŝ3,k , k = 1, 2 with the
corresponding zero velocity curves. Note that in both cases the libration points L0 and L2 have not quite
collided, but that the homoclinics are difficult to continue any further. (In the middle right frame it is difficult
to distinguish L0 and L2 graphically at this resolution.) The bottom right frame, on the other hand, illustrates
the zero velocity curves in the critical energy level for system parameters vc3 , where L0, L2, L3 have collided,
and the homoclinic family appears to have shrunk to zero

“passes over” L2 with nonzero velocity so that the suggestion of a heteroclinic orbit seen in
Fig. 6 is an effect of projecting into the plane.

3 The blue sky test: continuation of the planar Lyapunov families of
L1,2,3

In this section we discuss calculations which can be used to refine the results of Sect. 2.
The idea is based on the fact, already mentioned in the introduction, that γ j , j = 1, 2, 3
appear as limits of the planar Lyapunov families associated with saddle × center libration
points L j , j = 1, 2, 3. Our experience suggests that this relationship is very stable with
respect to parameter perturbations. Indeed, let L j,k(s) denote the continuation of L j along
the parameter line 
k(s). For 0 ≤ s ≤ ŝ j,k we always find that γ j,k(s) is always the limit of
the planar Lyapunov family associated with L j,k(s), j, k = 1, 2, 3. To put it another way,
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the tube of periodic orbits attached to γ j,k(s) appears to change its limit behavior only with
the loss of transversality and disappearance of the homoclinic itself.

In this section we proceeded as if the converse of this statement holds. That is, when
the planar Lyapunov family associated with L j,k(s) does not accumulate to a homoclinic
at L0,k(s), we take this as an indication that the γ j,k(s) homoclinic family has terminated.
Hence, when we numerically locate such an s ∈ (0, 1), we assume that s > ŝ j,k . Since the
continuation-based methods of Sect. 2 provide lower bounds on ŝ j,k , the methods based on
blue sky catastrophes developed in this section provide upper bounds and hence numerical
enclosures of the bifurcation parameter.

Of course this procedure is indicative rather than definitive, as the assumptions are based
on heuristics rather than mathematically rigorous results. A change in the terminal behavior
of a tube indicates only that some bifurcation has occurred in the homoclinic family, not
necessarily that it has disappeared. Nevertheless, when used in conjunction with the contin-
uation methods of Sect. 2 and the normal form/center manifold analysis of Sect. 4, we obtain
a compelling narrative describing the global dynamics. We return to this point in Sect. 5.

3.1 Blue skies for the �1 family

Recall from Sect. 2 that the γ1,1(s) family enjoys the lower bound 0.74 < ŝ1,1. In other words,
we are fairly confident that family exists along more than 74 percent of the 
1(s) parameter
line. We apply numerical continuation (with respect to the energy) to the planar Lyapunov
family associated with L1,1(0.74), and recover the homoclinic connection to L0,1(0.74)

already computed by mass parameter continuation in the previous section.
Now, taking s = 0.78 we numerically continue the planar Lyapunov family associated

with L1,1(0.78) and find that the periodic orbits do not accumulate to an orbit homoclinic
to L0,1(0.78). Instead, we find that we can continue the periodic orbits up to and beyond
the energy level of L0,1(0.78). The Lyapunov family appears to eventually accumulate on
an orbit which collides with the third primary. This another piece of evidence supporting
the claim that the γ1,1(s) family terminates nearby. Indeed, we appear to have the bound
ŝ1,1 < 0.78. Combining this with the results discussed in Sect. 2.1, we conjecture that

ŝ1,1 ∈ (0.74, 0.78).

The results of the calculation just discussed are illustrated in Fig. 9. When we perform
similar calculations for the γ1,2(s) and γ1,3(s) families of homoclinic orbits, and combine
these with the lower bounds already obtained Sect. 2, we obtain the enclosures

ŝ1,2 ∈ (0.9, 0.95)

ŝ1,3 ∈ (0.97, 1).

The results are illustrated in Figs. 10 and 11.

3.2 Blue skies for the �2 family

Since the γ2 family appears to disappear with L2 in the saddle node bifurcation, the kind
of blue sky analysis discussed above is not available here. Indeed, for s near one the L2

Lyapunov families do converge to the small homoclinics seen in Sect. 2, and at the critical
energy L2 is gone so that there are no planar Lyapunov families to study. The γ2 family is
much more amenable to the local analysis performed in Sect. 4.
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Fig. 9 Blue sky catastrophes along the 
1(s) parameter curve: The left frame illustrates the CRFBP with
parameter values 
1(0.74). We study the blue sky catastrophe for the planar Lyapunov family of L1,1(0.74),
and see that the periodic orbits accumulate to an orbit homoclinic to L0,1(0.74)—in fact the same homoclinic
orbit depicted in the bottom right frame of Fig. 6, computed by numerical continuation along the 
1(s)

parameter curve starting from γ1. The homoclinic orbit is represented by the green curve, periodic orbits on
the center manifold of L1,1(0.74) are represented by the magenta curves, and periodic orbits obtained by
numerical continuation from the center manifold are represented by blue curves. The calculation suggests
that ŝ1,1 > 0.74. The right frame illustrates the planar Lyapunov family of L1,1(0.78), again computed
by numerical continuation from the center manifold. The planar Lyapunov family appears to terminate at a
collision with the small primary body. The fact that the Lyapunov family does not accumulate to an orbit
homoclinic to L0,1(0.78) suggests that ŝ1,1 < 0.78

Fig. 10 Blue sky catastrophes on the 
2(s) parameter curve: The left frame illustrates the CRFBP with
parameter values 
2(0.9). We study the blue sky catastrophe for the planar Lyapunov family of L1,2(0.9) and
reasoning just as in the caption of Fig. 9 conclude that ŝ1,2 > 0.9. Similarly, the right frame illustrates the
planar Lyapunov family of L1,2(0.95), and suggests that ŝ1,2 < 0.95

3.3 Blue skies for the �3 family

As already noted in Sect. 2, the γ3 family exhibits somewhat more complicated behavior
than the γ1 family—which never persists to D, and the γ2 family—which always does. The
behavior of the γ3 family on the 
1(s) and 
3(s) parameter lines is forced by symmetry.
So γ3,3(s) has the same terminal behavior as γ1,3(s), as one is obtained from the other by
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Fig. 11 Blue sky catastrophes on the 
3(s) parameter curve: The left frame illustrates the CRFBP with
parameter values 
3(0.97). We study the blue sky catastrophe for the planar Lyapunov family of L1,3(0.97)

and reasoning just as in the caption of Fig. 9 conclude that ŝ1,3 > 0.97. Similarly, the right frame illustrates
the planar Lyapunov family of L1,3(1), and suggests that ŝ1,3 < 1

reflection about the x axis. From this we have that

ŝ3,3 = ŝ1,3 ∈ (0.97, 1),

thanks to the results for γ1 already reported. Similarly, the γ3,1 family is related to the γ2,1

family by a reflection. Then, the study of the γ3,1 family is amenable to normal form analysis,
as already remarked for the γ2 family.

Finally, recall from Sect. 2 that the γ3,2(s) family continued 97 percent of the way to D.
We remark that the blue sky test for γ3,2(s) is inconclusive, in the sense that for s values
near one on the 
2(s) parameter curve the numerical continuation of the periodic family
breaks down near the Lc energy level. It is unclear what this breakdown indicates—Does the
periodic family accumulate to a homoclinic at Lc? Or would a more computational effort
show that the periodic family continues past the Lc energy level? Again, since the problem
occurs near D, the normal form analysis in Sect. 4 is seen to resolve the issue.

4 Results of center manifold/normal form calculations

Instead of numerically following homoclinic orbits or Lyapunov families from the triple
Copenhagen problem to the bifurcation curve, we can start our calculations at the bifurca-
tion point itself. That is, we compute the normal form r of the center dynamics along the
parameter lines 
1,2,3(s). As we start at the bifurcation point instead of at the triple Copen-
hagen problem, we reverse the orientation on the curves, and consider the parameter lines

̂1,2,3(s) = 
1,2,3(1 − s) instead. For the saddle node bifurcation, we have the normal form

r : R × R
2 → R

2, (s, x, y) �→ (y, s + α1x2),

for the conjugate vector field r on the center manifold. With the normal form, we can confirm
that ŝ2,k = 1 for k = 2, 3, see Fig. 12. By calculating higher-order terms of the conjugate
vector field, we can determine whether the γ3 orbit lies on the center manifold. The calculated
vector fields are given in Table 1. If we truncate the vector field r to third order, its phase
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Fig. 12 Small orbits near the saddle node bifurcation: In the left figure, we plotted several orbits for the normal
form at 
̂2(10−13), with the blue line the approximation for γ2,2(1 − 10−13). All orbits on the left side of L0

decrease to x = −∞. In the right figure, we plotted several orbits for the normal form at 
̂3(10−13), with the
blue line the approximation for γ2,3(1 − 10−13). Both frames illustrate the conjugate 2 dimensional vector
field on the center manifold

Table 1 Normal forms: the calculated constants in the normal forms at vck
for k = 1, 2, 3

Masses α1 α2 Third-order terms in the y-derivative

Pitchfork vc1 co-dimension 1 6.93442 −5441.04 –

vc1 co-dimension 2 6.93442 −5441.04 –

Saddle node vc2 −196.451 – 20818.5x3

vc3 −211.138 – 24498.1x3

portrait does contain two fixed points, but does not contain a homoclinic orbit for small values
of s. This suggest that if γ3,2 persists until D, it does not lie on the local center manifold.

For 
̂1(s), the normal form of the conjugate vector field is given by

r : R × R
2 → R

2, (s, x, y) �→ (y, α1sx + α2x3),

which will confirm that ŝ2,1 = 1 and ŝ3,1 = 1, see Fig. 13. Instead of computing the normal
form of the co-dimension one pitchfork bifurcation at vc1 , we can compute the normal form
of the co-dimension two bifurcation at vc1 . Then, the normal form would be, for instance
(Buono et al. 2005),

r : R
2 × R

2 → R
2, (s, t, x, y) �→ (y, t + α1sx + α2x3).

With this normal form, we can recover part of D near vc1 , and show the persistence of γ3

until D for vc near vc1 , see Fig. 14. The calculated normal forms for both the co-dimension
1 and the co-dimension 2 bifurcation at vc1 are found in Table 1.

4.1 Separation ofDDD and the �3 family

Following our work in Sects. 2 and 3, we want to better understand the robustness of the
γ3 family. This is especially delicate off the m1 = m2 and m2 = m3 edges of the param-
eter simplex. Symmetry considerations—combined with the local analysis of the previous
section—show that at and near the m1 = m2 edge the γ3 family is completely robust,
surviving all the way to the critical curve D. On the other hand, symmetry considerations
combined with the continuation and blue sky tests of Sect. 2 and 3 suggest that along and
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Fig. 13 Small orbits near the
Pitchfork bifurcation: Several
orbits for the normal form at

̂1(10−13). The red and blue line
are approximations for
γ2,1(1 − 10−13) and
γ3,1(1 − 10−13). The frame
illustrates the conjugate
two-dimensional vector field on
the center manifold

Fig. 14 Persistence of γ3: We show the persistence of γ3 until the saddle node bifurcation for vc near vpf . In
the left frame, we have (m1, m2, m3) ∈ SI near vpf but away from the m1 = m2 edge. We see the small
homoclinic orbit γ2 and the large homoclinic orbit γ3 illustrated by blue and red curves, respectively. In the
middle frame we have (m1, m2, m3) ∈ D near vpf . Here L0 and L2 have collided at Lc , yet we still see γ3,
which is illustrated by the red curve. In the right frame, we have (m1, m2, m3) ∈ SI I near vpf but away from
the m1 = m2 edge. As Lc has disappeared, γ3 has become a periodic orbit around L3. All frames illustrate
the conjugate two-dimensional vector field on the center manifold

near the m2 = m3 edge, the γ3 family terminates before the D curve. Taken together, this
suggests that γ3 must exhibit some transitional behavior, some co-dimension two bifurcation,
along D.

We attempt to resolve this picture as follows:

1. We use Newton’s method to find m2, x0 and y0 for fixed m1 such that (m1, m2, 1−m1 −
m3) ∈ D, with corresponding libration point is Lc = (x0, 0, y0, 0).,

2. We choose Kc(x, y) = (x, y) and find the Taylor polynomials for the center manifold,
the center stable/unstable manifolds, and the (un)stable branch on the center manifold,
as shown in Lemmas B.1 to B.3 up to order 15 using radial derivatives,

3. We numerically find the region where the conjugacy Eq. (15) for the center stable/unstable
manifold has an error of order 10−15 and the stable and unstable branches hs and hu are
numerically correct for the Taylor polynomials of step 2,

123



5 Page 22 of 48 W. Hetebrij, J. D. Mireles James

4. We take ts and tu such that hs(ts) and hu(tu) are in the region of step 3. We then find
homoclinic orbits by numerically integrating part of the unstable fiber of hu(tu) until
the stable fiber of hs(ts) is reached. We check numerically that the manifolds have a
transverse intersection, indicating that we are at a type III global bifurcation.

Here the function kc is a choice we have to make to find the center manifold at vc ∈ D. We
refer the reader to Appendix B for background on the center manifold, and Lemma B.1 in
particular to see why we have to choose kc. Furthermore, the branches hs and hu parameterize
the (un)stable orbit on the center manifold, see Fig. 17.

For m1 ∈ {0.426, 0.427, 0.428, 0.429, 0.430}, we compute the homoclinic for Lc around
L3. See Fig. 15. For all five values of m1, we find that the homoclinic orbit exists, and it leaves
the unstable manifold close to the center unstable branch. On the other hand, the homoclinic
orbits enter the stable manifold further away from the stable branch on the center manifold
when we decrease m1. To be more precise, for all values of m1 we look where on the stable
fiber of hs(ts) the homoclinic orbit enters the stable manifold. As m1 decreases, we see that
the orbit enters the stable manifold further away from hs(ts) on its stable fiber. Equivalent,
the homoclinic orbit enters the stable fiber of hs(t) at fixed distance from hs(t) for decreasing
values of t as m1 decreases. We conjecture that the γ3 family split from the critical curve D

when the homoclinic orbit around L3 enters the stable manifold along the stable direction.
In the right frame of Fig. 16, we integrated points on the boundary of the stable manifold

for m1 = 0.426, and we see three different kinds of behavior. The single blue orbit in the
lower half of the figure is the backward integration of the stable branch on the center manifold,
and all other orbits lie on a stable fiber. Near the equilibrium, the orbits on the stable fibers
decay exponentially fast toward the stable branch on the center manifold. In other words, in
backward time the orbits on the stable fibers diverge exponentially fast away from the stable
branch. This explains why the stable branch on the center manifold lies isolated from the
orbits on the stable fibers. The orbits ending on the stable fibers exhibit two different kinds of
behavior. The black orbits all come toward L3 from the right, make a bend before L3, and end
up in the stable manifold of Lc. The blue orbits all come from the left of L3, passing above
L3 before making a bend toward the stable manifold. Due to this dichotomy, in particular the
blue orbits passing above L3, we might find a homoclinic orbit around L3 when m1 = 0.426.
In fact, we find such a homoclinic orbit which is shown in Fig. 15. In particular, in Fig. 15
we only plot a small region of the stable manifold in which the homoclinic orbit lies.

On the contrary, in the left figure of Fig. 16, we integrated several points on the boundary of
the stable manifold for the parameter set vc2 . Here the black line is the backward integration
of the stable branch of the center manifold. All other orbits end up on a stable fiber and exhibit
the same qualitative behavior. They come toward L3 from the left, but pass underneath L3

and finally end up in the stable manifold.
Since we do not see the dichotomy nor orbits passing above L3 for the parameters vc2 that

we did see for m1 = 0.426, we qualitatively rule out that there is a short homoclinic orbit
around L3 for the parameter values vc2 . Any homoclinic around L3 will occur on longer time
scales than the short homoclinics in the γ3 family. This shows that ŝ3,2 < 1.

4.2 Additional homoclinic atDDD

We now expand on the ideas of the previous section, to study longer homoclinic orbits at Lc.
Again we consider symmetric and non-symmetric cases. In the symmetric case step 1 will
be modified, as for vc3 we want to impose that m2 = m3, instead of fixing m1 a priori. For
vc1 , we have shown at the beginning of Sect. 4 that the bifurcation is a supercritical pitchfork
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m1 = 0.430 m1 = 0.429

m1 = 0.428 m1 = 0.427

m1 = 0.426

Fig. 15 Short homoclinics around L3 on D: For different values of m1 we find a short homoclinic orbit for
Lc at parameter values (m1, m2, 1 − m1 − m2) ∈ D. The red surface is the backward flow of part of the edge
of stable manifold, and the blue surface is the forward flow of part of the edge of the unstable manifold. In
all 5 cases, there is a transverse intersection between the stable and unstable manifold on the y = constant
level set with ẏ positive, and each of the orbits has a shape suggesting they are continuations of γ3 in the triple
Copenhagen problem

bifurcation: Thus, there will be no (un)stable solution branch on the center manifold. In fact,
we show that the constant E from Lemma B.2 is zero at vc1 . As a consequence, the stable and
unstable manifold of Lpf are both of dimension 1, and we expect no transverse intersection
between them. Therefore, we only look for homoclinics for Lc at parameter values vc2 and
vc3 .

123



5 Page 24 of 48 W. Hetebrij, J. D. Mireles James

Fig. 16 Qualitative behavior of the stable manifold: left frame plots the backward integration of the edge of
the stable manifold for parameter values vc2 ∈ D. Right frame plots the backward integration of the edge of
the stable manifold for the parameter values (m1, m2, 1 − m1 − m2) ∈ D for m1 = 0.426

4.3 The pitchfork bifurcation at vc1

To show that the constant E from Lemma B.2 is 0, we find the symmetry of f . For notational
convenience, we apply the translation T (x, y) = (x − (x1 + x2)/2, y − (y1 + y2)/2) to our
dynamical system and hence, the positions of the planets become

x̂1 = −1

4M
, ŷ1 =

√
3(1 − 2m1)

4M
,

x̂2 = 1

4M
, ŷ2 = −

√
3(1 − 2m1)

4M
,

x̂3 = 3 − 6m1

4M
, ŷ3 =

√
3

4M
.

Here M =
√

m2
2 + m2m3 + m3

3 =
√

1 − 3m1 + 3m2
1 when m1 = m2. Now we see that when

m1 = m2 we have that (x̂1, ŷ1), and therefore, also (x̂2, ŷ2), is perpendicular to (x̂3, ŷ3). Let
Θ be the rotation matrix such that the positive ŷ-axis is rotated onto the normalized vector
(x̂3, ŷ3). Then, Θ is given by the formula

Θ(x, y) = 2x x̂2 + 2y√
3

x̂3.

Note that x̂1 = −x̂2 and that x̂2 and x̂3 are perpendicular. Then, the term −(1−2m1)x̂3 in the
first norm is due to the fact that the translation T can be written as T (x) = x + (1 − 2m1)x̂3,

Ω(T −1(Θ(−s, t))) = 1

2
‖ − 2sx̂2 + 2t√

3
x̂3 − (1 − 2m1)x̂3‖2

2

+
3

∑

i=1

mi

‖ − 2sx̂2 + 2t√
3

x̂3 − x̂i‖2

= 1

2
‖2sx̂2 + 2t√

3
x̂3 − (1 − 2m1)x̂3‖2

2 + m3

‖ − 2sx̂2 + 2t√
3

x̂3 − x̂3‖2

+ m1

‖ − 2sx̂2 + 2t√
3

x̂3 − x̂1‖2
+ m2

‖ − 2sx̂2 + 2t√
3

x̂3 − x̂2‖2
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= 1

2
‖2sx̂2 + 2t√

3
x̂3 − (1 − 2m1)x̂3‖2

2 + m3

‖2sx̂2 + 2t√
3

x̂3 − x̂3‖2

+ m2

‖2sx̂2 + 2t√
3

x̂3 − x̂2‖2
+ m1

‖2sx̂2 + 2t√
3

x̂3 − x̂1‖2

= Ω(T −1(Θ(s, t))).

We define Φ(s, t)
def= Ω(T −1(Θ(s, t))), and our bifurcation point lies in translated coor-

dinates on the line x̂3, i.e., Ω(x0, y0) = Φ(0, t) for some t ∈ R. From the symmetry
Φ(−s, t) = Φ(s, t) we obtain

Φs(0, t) = −Φs(0, t) = 0,

Φst (0, t) = −Φst (0, t) = 0,

Φsss(0, t) = −Φsss(0, t) = 0.

Let λ =
√

3(1 − 2m1) =
√

3m3. Using the chain rule we have

2MΦs(0, t) = Ωx − λΩy = 0, (6)

4M2Φst (0, t) = λΩxx + (1 − λ2)Ωxy − λΩyy = 0, (7)

8M3Φsss(0, t) = Ωxxx − 3λΩxxy + 3λ2Ωxyy − λ3Ωyyy = 0. (8)

Furthermore, since we are at a bifurcation point, we also have ΩxxΩyy = Ω2
xy ; hence, Eq.

(7) becomes

λΩ2
xx + (1 − λ2)ΩxyΩxx − λΩ2

xy = 0.

Therefore, we either have Ωxx = λΩxy , thus also Ωxy = λΩyy , or Ωxx = −λ−1Ωxy , and
also Ωxy = −λ−1Ωyy . To establish that we have Ωxx = λΩxy instead of Ωxx = −λ−1Ωxy ,
we use Newton’s method to find the root of

(Ωx (Θ(0, t)),Ωxx (Θ(0, t)) − λΩxy(Θ(0, t))),

which defines the bifurcation parametersvc1 —and libration point Lc1 = (Θ(0, t)1, 0,Θ(0, t)2, 0).
To see this, from Eq. (6) it follows that Ωy = 0, i.e., Θ((0, t)) is indeed a fixed point. Fur-
thermore, from Eq. (7) it also follows that Ωxy = λΩyy , and hence ΩxxΩyy = Ω2

xy ; thus,
Θ((0, t)) is not only a fixed point, but the linearization of the vector field at Θ((0, t)) has a
double eigenvalue 0.

Exploiting again that Ωxx = λΩxy = λ2Ωyy , the constant E becomes

E = ΩxxxΩ
3
yy − 3ΩxxyΩ

2
yyΩxy + 3ΩxyyΩyyΩ

2
xy − ΩyyyΩ

3
xy

=
(

Ωxxx − 3λΩxxy + 3λ2Ωxyy − λ3Ωyyy

)

Ω3
yy

=
Ω3

yy

8M3
Φsss(0, t)

= 0.

Hence, Lemma B.2 cannot be applied to find (un)stable solution branches on the center
manifold, which further supports the claim that Lc undergoes a pitchfork bifurcation at vc1 .
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Fig. 17 The approximation of the
solution branches on the center
manifold for the parameters vc2
on the bifurcation curve

4.4 Generic saddle node bifurcation at vc2

In our numerical scheme, we use Newton’s method to find a root of

(Ωx ,Ωy,ΩxxΩyy − Ω2
xy),

where we fix m1 = 0.4247, and consider m2 as the only parameter. This results in the
bifurcation parameters vc2 . In Fig. 17 we plot the Taylor polynomials of the stable and
unstable branch, together with two orbits starting close to the stable branch. This allows us
to check the branches and take ts and tu in step 4 as large as possible. The results of the
numerical integration done in step 4 are illustrated in Fig. 18 .

4.5 The non-generic saddle node bifurcation at vc3

To obtain the bifurcation parameters vc3 , we will exploit that the planar circular restricted four-
body problem has symmetry on the edge m2 = m3. We have Ω(x, y) = Ω(x,−y), and thus
also Ωx (x,−y) = Ωx (x, y), Ωy(x,−y) = −Ωy(x, y), and Ωxy(x,−y) = −Ωxy(x, y). In
particular, we have Ωy(x, 0) = 0 and Ωxy(x, 0) = 0. We can therefore in step 1 use Newton’
method to find the root of

(Ωx (x, 0),Ωxx (x, 0))

along 
3(s) to obtain the bifurcation parameters vc3 and bifurcation point Lc = (x0, 0, 0, 0).
The symmetry also motivates us to define the linear map A : (x, ẋ, y, ẏ) �→

(x,−ẋ,−y, ẏ), yielding the symmetry f (Ax) = −A f (x). So, any orbit that starts on the
plane (x, 0, 0, ẏ) has its backward orbit given by x(−t) = Ax(t). In other words, an orbit
that connects the unstable boundary and the plane (x, 0, 0, ẏ) is a symmetric homoclinic
orbit for the critical equilibrium: We do not have to integrate the stable boundary backwards.
We show that the unstable manifold has an intersection with (x, 0, 0, ẏ), and we obtain the
homoclinic orbits in Fig. 19 by flipping the orbits along the symmetry axis.
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Fig. 18 Numerical integration of the stable and unstable manifold at vc2 : We found two ”large” homoclinic
orbits of Lc by numerically integrating the (un)stable manifold. The red surface is the backward flow of part
of the edge of stable manifold, and the blue surface is the forward flow of part of the edge of the unstable
manifold. In the top left figure, we plot the intersection of the forward and backward flow and the line
x = −0.05 with positive x-derivative. As there is a transverse connection in the (y, ẏ)-plane, we find the
enclosure of a homoclinic orbit, which is the top right figure. In the bottom left figure, we plot the intersection
of the forward and backward flow and the line x = −0.2 with positive x-derivative. As there is a transverse
connection in the (y, ẏ)-plane, we find the enclosure of a homoclinic orbit, which is the bottom right figure

These results suggest a rich transverse homoclinic orbit structure at D. Not all of the
homoclinic orbits found at the critical curve have shapes reminiscent of the basic triple
Copenhagen homoclinics γ1,2,3,4,5,6. For example, the middle right frame of Fig. 19 illustrates
a homoclinic orbit with no apparent analogue in the triple Copenhagen problem.

5 Conclusions

Informed by the numerical explorations discussed in the main text of the paper, we propose
the following conjectures concerning the global dynamics of the CRFBP. First, and based
on the observation in Remark 1, we conjecture that each of the short triple Copenhagen
homoclinic orbits undergoes a type II bifurcation.

Conjecture 1 Any parameter continuation of the triple Copenhagen homoclinic orbits γ1,2,3

toward the critical curve D results in a Belyakov–Devaney bifurcation before the termination
of the family.

Recall that when the γ1 family of homoclinic orbits is continued along one of the three
parameter lines 
1,2,3(s), the numerical continuation breaks down before the critical curve.
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Fig. 19 Numerical integration of the stable and unstable manifold at vc3 : We found three ”large” homoclinic
orbits of Lc by numerically integrating the unstable manifold. In the left figures, we plot the intersection of
forward flow of part of the edge of the unstable manifold and the line y = 0. In all three figures we see that in
the (x, ẋ)-plane we have a transverse intersection with the line ẋ = 0. Hence, due to symmetry, we obtained
a region in which a homoclinic orbit lies. In the right figures we plotted the corresponding region in which a
homoclinic orbit lies

The γ1 family exhibits the least robustness with respect to parameter continuation along these
three parameter lines, and we conjecture that this behavior is general.

Conjecture 2 The γ1 family never continues to the critical curve D.

The γ2 family, on the other hand, exhibits the most robustness, and we find that we are
able to continue along each of the three parameter lines almost until the homoclinic orbits
shrink to points. Moreover, we confirmed by considering the normal form that when L2 is
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Fig. 20 Conjectured critical
curves for the γ1,2,3 families:
conjectured critical lines for the
γ1,2,3 families of homoclinic
orbits

close to L0, there is a short homoclinic orbit for L0 which winds around L2. We conjecture
that this is the general picture.

Conjecture 3 The γ2 family always continues to the critical curve D, where it vanishes with
L0 and L2 in the saddle node bifurcation.

The behavior of the γ3 family is the most complicated. For parameters on the m2 = m3

edge of the parameter simplex, the problem has symmetry about the x-axis. Then, the behavior
of γ3 on the 
3(s) line mirrors the behavior of γ1, which breaks down before D. Similarly, for
parameters on the m1 = m2 edge of the parameter simplex the problem has symmetry about
the line through the third primary bisecting the edge of the triangle connecting the first to
the second primary. In this case the behavior of γ3 on the 
1(s) line mirrors the behavior γ2,
which continues all the way to D where it disappears. Moreover, the normal form calculation
suggests that there is a “short” homoclinic around L3 for parameter values near the pitch-
fork bifurcation, and our numerics confirm this, with a shape suggestive of the γ3 family. We
conjecture that the discussion above tells the full story.

Conjecture 4 The γ3 family of homoclinics continues to the critical curve D when m2 ≈ m3

and does not reach D when m1 ≈ m2. There is a single parameter value on D separating
these behaviors.

Indeed, we propose a little more. Let D
′ denote the curve in parameter space where the

stability of L0 changes from bi-focus to a saddle with real distinct eigenvalues. Let D1 denote
the set of points in S where the γ1 family loses transversality and breaks down in a type
IV bifurcation. We claim that D1 is an analytic simple closed curve from the m1 = m2

edge to the m2 = m3 edge which does not intersect D. Define D2 and D3 analogously. We
claim that D2 = D and that D3 coincides with D near the m1 = m2 edge, separates at a
single parameter value where there is a type V bifurcation, and then intersects with D1 only
at the m2 = m3 parameter edge. We conjecture that the separation of D and D3 occurs at
vc = (m1, m2, m3) ∈ D with m1 ∈ (0.425, 0.426). We also claim that D

′ lies entirely to the
left of D1, so that each of the γ1,2,3 families undergoes a Belyakov–Devaney bifurcation on
D

′. A graphical depiction of the conjectures is given in Fig. 20.
Resolving these conjectures would seem to require substantial additional work. Moreover,

since the mathematically rigorous characterization of the equilibrium set given in Leandro
(2006), Barros and Leandro (2011), Barros and Leandro (2014) required the use of computer-
assisted methods of proof, it seems likely resolution of the conjectures would require similar
methods. We remark that one-parameter families of connecting orbits have been studied using
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computer-assisted methods of proof, see, for example, van den Berg et al. (2018). Computer-
assisted proofs of bifurcations of connecting orbits for maps were studied in Adams and
James (2019), and there is reason to believe that these techniques could be extended to
differential equations. We further mention that computer-assisted methods of proof have been
devised for studying center manifolds (Capiński and Roldán 2011) in celestial mechanics
problems. Finally, note that validated numerical methods for infinite dimensional multi-
parameter continuation problems have been developed (Gameiro et al. 2016) so that many of
the techniques needed for establishing the conjectures above exist. Combining and extending
existing methods to resolve the proposed conjectures would represent a substantial leap in
the state of the art of computer-assisted methods of proof for global analysis of nonlinear
systems.

There exists a substantial literature on numerical methods for studying degenerate connect-
ing orbits. We refer, for example, to works of Oldeman et al. (2003), Doedel et al. (1997),
Friedman and Doedel (1993), Beyn (1994), Champneys et al. (1996), Beyn et al. (2002),
Champneys and Kuznetsov (1994), Oldeman et al. (2001). Since these works are based on
implicit function theory/Newton’s method applied to appropriate systems of constraints, it
is reasonable to suppose that such methods are amenable to the kind of a-posteriori anal-
ysis that underlies the papers discussed in the previous paragraph exploit. In other words,
the theoretical framework needed for framing computer-assisted proofs of the critical and
degenerate connecting orbits already exists.

Another concrete open question is suggested by the γ1 family, which appears to always
terminates in a type I V global bifurcation. If this is indeed the case, then the γ1 family must
collide with another homoclinic family and disappear at D1, begging the question: What is

the other homoclinic family participating in this bifurcation? Or, if our guess is mistaken and
γ1 does not terminate in a type I V bifurcation so that there is no second family of homoclinics
terminating at D1, then what is happening there? Put another way, if D1 is not a type I V

bifurcation curve then what is it? We have not yet begun to explore this very natural question.
Before concluding, we remark that another interesting project would be to generalize the

current study to the γ4,5,6 families. We did not undertake this work for two reasons: First,
our work on the γ1,2,3 family already requires a substantial number of pages to describe.
But more importantly, the γ4,5,6 families do not participate in blue sky catastrophes with
any Lyapunov families of periodic orbits. Rather, they are related to certain periodic orbits
around the primaries coming from the rotating Kepler problem. This complicates the use of
the blue sky tests conducted in Sect. 3. Nevertheless, a follow-up study on the robustness of
the γ4,5,6 families could be an interesting project.
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A Numerical continuation of periodic and connecting orbits in
conservative systems

Before discussing continuation schemes for two point boundary value problems, we first
introduce a little notation, and review some basic concepts from the elementary theory of
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differential equations. A comprehensive reference for the material discussed in this section
is the book of Chicone (2006).

Suppose that for each s ∈ [a, b] ⊂ R the set Ωs is an open subset of R
d , and let

fs : Ωs×[a, b] → R
d be a one-parameter family of smooth vector fields, depending smoothly

on the parameter s. Suppose further that for each s ∈ [a, b] there is a smooth function
Es : Ωs → R having that

∇Es(x) · fs(x) = 0,

for all x ∈ Ωs . It follows that the function Es is a conserved quantity for the vector field fs ,
in the sense that if γ : [0, T ] → Ωs is a solution of the differential equation

γ ′(t) = fs(γ (t)),

then

Es(γ (t)) = Es(γ (0)),

for all t ∈ [0, T ]. To see this, simply differentiate to obtain

d

dt
Es(γ (t)) = ∇Es(γ (t)) · γ ′(t)

= ∇Es(γ (t)) · f (γ (t))

= 0,

as γ (t) ∈ Ωs for t ∈ [0, T ], and Es is constant on solution curves as desired.
Next we introduce the notion of the flow map generated by fs . Indeed, suppose that

x0 ∈ Ωs . Since fs is differentiable (and hence locally Lipschitz), there exists a maximal
−∞ ≤ ωx0 < 0 < τx0 ≤ ∞ so that the solution of the initial value problem

x ′(t) = fs(x(t)), x(0) = x0

exists and is unique for all t ∈ [ωx0 , τx0 ]. We write

x(t) = φ(x0, t, s),

for t ∈ [ωx0 , τx0 ] to denote the local flow map. The map has the property that

φ(x0, t1 + t2) = φ(φ(x0, t1), t2),

for all t1, t2 ∈ [ωx0 , τx0 ] which have that t1 + t2 ∈ [ωx0 , τx0 ].
It is a classic theorem of differential equations that φ is a smooth function of s ∈ (a, b),

and of x0 ∈ Ωs and of t ∈ (ωx0 , τx0), and we would like to compute the partial derivatives.
Since x(t) = φ(x0, t, s) is a solution curve for the differential equation, we have that

∂

∂t
φ(x0, t, s) = f (φ(x0, t, s)), t ∈ (ωx0 , τx0). (9)

The derivatives with respect to x0 and s are more involved, but satisfy the so-called variational

equations. More precisely, let

M(t) = Dxφ(x0, t, s).

Then, M(t) satisfies the non-autonomous, homogeneous, linear matrix differential equation

M ′(t) = Dx fs(φ(x0, t, s))M(t), M(0) = Id,
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the equation of first variation with respect to initial conditions. Similarly, let

η(t) = ∂

∂s
φ(x0, t, s).

Then, η(t) satisfies the non-autonomous, inhomogeneous, linear differential equation

η′(t) = Dx fs(φ(x0, t, s))η(t) + ∂

∂s
fs(φ(x0, t, s)) η(0) = 0,

the equation of first variation with respect to the parameter s. Of course, if f has other
parameters, then partial derivatives of φ with respect to these parameters are found the same
way.

Suppose now that s ∈ [a, b] and x0 ∈ Ωs are fixed and that 0 < τ ≤ τx0 is a fixed “step
size.” In practice the quantities φ(x0, τ, s), M(τ ), and η(τ) are computed simultaneously by
numerically integrating the system of equations

x ′(t) = fs(x(t))

M ′(t) = Dx fs(x(t))M(t)

η′(t) = Dx fs(x(t))η(t) + ∂
∂s

fs(x(t))

(10)

with initial data x(0) = x0, M(0) = Id, and η(0) = 0 up to time τ . The computations carried
out in the present work we exploit the standard “off the shelf” MATLAB integration scheme
known as rk45 to numerically solve these initial value problems when necessary.

A.1 Periodic orbits of conservative systems

In this section we work at a fixed parameter value in s ∈ [a, b] and hence suppress the
dependence of f and φ on s all together. So, let f = fs : Ω → R

d denote our conservative
vector field with Ω ⊂ R

d open and E = Es : Ω → R the conserved quantity.
It is well known (and much exploited in the present work) that periodic orbits of a conser-

vative vector field appear in one parameter “tubes” parameterized by the conserved quantity,
or equivalently—by period. See, for example, the discussion of periodic orbits in the book
of Meyer and Offin (2017). So, one locally isolates a particular periodic orbit in the “tube”
by fixing a target period T > 0 as a problem parameter. Let τ1, . . . , τK > 0 have that
τ1 + . . .+ τK = 1. A periodic orbit is equivalent to a solution x1, . . . , xK ∈ Ω of the system
of equations

φ(x1, τ1T ) = x2

φ(x2, τ2T ) = x3

...

φ(xK , τK T ) = x1.

Our strategy is to solve the system of equations using a Newton method, in which case it
is important to consider only systems with isolated zeros. Yet this system of equations cannot
have a unique solution, as any phase shift of a periodic orbit is again a periodic orbit. To
isolate, we introduce a Poincare phase condition. That is, we require that the periodic orbit
crosses a fixed co-dimension one affine subspace (or “plane”) P ⊂ R

d at time zero. Let
y0 ∈ R

d be a point in the desired plane P and v ∈ R
d be the direction vector of the plane.

Then, x1 ∈ R
d ∈ P if and only if

(x1 − y0)
T · v = 0.
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When we append this equation to the system the resulting augmented system has one
more equation than unknowns. The system needs to be balanced by either eliminating an
equation (which can be done using the conserved quantity) or by introducing an “unfolding
parameter” α ∈ R—the approach taken in the present work. An unfolding parameter is an
artificial variable which balances the system, and which should have the special property that
it must be zero at a periodic solution (this will be made precise below).

Deciding how to insert a new parameter into the problem is a delicate question, yet for
conservative vector fields there is a canonical choice. We describe the classic approach, as
developed in references (Doedel et al. 2003; Muñoz Almaraz et al. 2003), and define the
unfolded family of vector fields by

fα(x) = f (x) + α∇E(x)T ,

where α ∈ R is the new unfolding parameter. Suppose now that γ : [0, T ] → Ω is a periodic
solution of

γ ′(t) = fα(γ (t)).

If ∇E(γ (t)) not identically zero on [0, T ], then α = 0, and—in fact—γ is a period T solution
of γ ′ = f (γ ).

To see this, consider the real-valued function

g(t) = E(γ (t)).

We have that

g′(t) = ∇E(γ (t))γ ′(t)

= ∇E(γ (t)) fα(γ (t))

= ∇E(γ (t)) f (γ (t)) + α∇E(γ (t))∇E(γ (t))T

= α‖∇E(γ (t))‖2,

as f conserves E . Since γ has period T , we have that γ (0) = γ (T ) and hence

0 = E(γ (T )) − E(γ (0)) = g(T ) − g(0).

But

g(T ) − g(0) = α

∫ T

0
‖∇E(γ (t))‖2 dt

= 0

if and only if α = 0, as ‖∇E(γ (t))‖ is not identically zero.
Now, denote byφ(x, t, α) the local flow generated by fα , and note that the partial derivative

of φ with respect to α is computed by solving the equation of first variation with respect to
α as discussed in the previous section. Define the map F : ΩK × R ⊂ R

d K+1 → R
d K+1 by

FT (x1, x2, x3, . . . , xK−1, xK , α) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

φ(x1, τ1T , α) − x2

φ(x2, τ2T , α) − x3
...

φ(xK−1, τK−1T , α) − xK

φ(xK , τK T , α) − x1

(x1 − y0)
T · v

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(11)
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and note that a zero of FT is an orbit of period T for f . Let x = (x1, . . . , xK , α) ∈ R
d K+1.

The number of equations matches the number of unknowns, and the system is amenable to
the Newton method

x j+1 = x j + Δ j ,

where Δ j is a solution of the linear system

DFT (x j )Δ j = FT (x j ).

The derivative involves only partial derivatives of the local flow, which are computed by
solving variational equations (10). This is referred to as a multiple shooting scheme for the
periodic orbit.

Remark 3 Some mechanical systems have the property that ∇E(x) = 0 if and only if f (x) =
0. This happens, for example, when f is a Hamiltonian vector field and E is the Hamiltonian.
In this case, ∇E(γ (t)) is not identically zero if and only if γ (t) is not constant, making
this non-degeneracy hypothesis especially easy to check. We also remark that for some
mechanical systems it is possible to simplify the unfolded vector field fα . For example, if f

is a conservative system derived from Newton’s laws, then one gets the same result by adding
α times a linear dissipative term to the system rather than using the canonical gradient term.
See Muñoz Almaraz et al. (2003).

A.2 Continuation with respect to period in conservative systems

Note that the period T > 0 appears as a continuation parameter in the map FT defined in Eq.
(11). Then, supposing that x0 has FT (x0) = 0 and that DFT (x0) is non-singular, we have by
the implicit function theorem that there is a smooth branch of solutions of x(β) defined for
β ∈ (T − ε, T + ε), with x(T ) = x0. Moreover, since

Fβ(x(β)) = 0, forβ ∈ (T − ε, T + ε),

we have, after taking the derivative with respect to β, that

DFβ(x(β))
d

dβ
x(β) + ∂

∂β
Fβ(x(β)) = 0.

Let x′(T ) = v. Then, v solves the equation

DFT (x0)v = − ∂

∂β
FT (x0),

giving the linear approximation of the branch through x0. We note that the right-hand side
consists of terms of the form

∂

∂β
φ(x j , τ j T , α) = τ j fα(φ(x j , τ j T , α),

see Eq. (9). These expressions depend only on the unfolded vector field.
Choosing a β �= T , we take

x1 = x0 + (β − T )v,

as the first-order approximation of x(β), corresponding to the periodic orbit with period
β ∈ (T − ε, T + ε) in a nearby energy level. Letting x1 serve as the initial guess for a zero
of Fβ , we run Newton’s method and converge to a new solution—for |β − T | small enough.
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The process can be continued until the curve x(β) undergoes a bifurcation. Such bifurca-
tions are indicated by the singularity of the derivative DFT , and are used to detect interesting
phenomena in the main body of the paper. We remark that the appearance of a saddle node
bifurcation is not dynamically important in this context, as it indicates only that frequency
does not vary monotonically within the “energy tube”. The tube itself is the object of interest.

We continue through such saddle node bifurcations using “pseudo-arclength continu-
ation,” a small modification of the algorithm just discussed. More complete discussion
of numerical algorithms based on pseudo-arclength continuation is found in the book of
Kuznetsov (2004). See also Kuznetsov and Meijer (2019), Dhooge et al. (2006), Beyn et al.
(2002).

A.3 Homoclinic orbits in conservative systems

Suppose that for s0 ∈ [a, b], p0 ∈ Ωs0 is a hyperbolic equilibrium solution of fs0 . Suppose
in addition that du, ds are, respectively, the dimension of the unstable/stable eigenspaces and
that du + ds = d . Since p0 is a hyperbolic equilibrium solution, there exists an δ > 0 and
ps : (s0 − δ, s0 + δ) → R

d so that p(0) = p0 and

fs(p(s)) = 0 for alls ∈ (s0 − δ, s0 + δ).

Moreover, we can choose δ > 0 so that the dimension of the unstable/stable eigenspaces
attached to p(s) is du and ds , respectively, for s ∈ (s0 − δ, s0 + δ). Since fs depends
smoothly on s ∈ [a, b], the parameterizations of the local unstable and stable manifolds
depend smoothly on s as well. Let Du,s be, respectively, the unit balls in R

du,s and suppose
that Ps : Du × (s0 − δ, s0 + δ) → R

d and Qs : Ds × (s0 − δ, s0 + δ) → R
d are smooth

parameterizations of the local unstable and stable manifolds attached to p(s). In particular,
assume that for s ∈ (s0 − δ, s0 + δ), w ∈ Du ⊂ R

du , and z ∈ Ds ⊂ R
ds we have that

lim
t→−∞

φ(P(w, s), t, s) = p(s) and lim
t→∞

φ(Q(z, s), t, s) = Q(s).

Much like the case of a periodic orbit discussed above, we have that an infinitesimal
shift of a homoclinic orbit segment is itself a homoclinic orbit segment. Then, a phase
condition is required if we want to isolate a solution of the system. We proceeded as follows,
and define appropriate sections in the domains of P and Q, respectively. That is, we take
w : [−1, 1]du−1 → Du and z : [−1, 1]ds−1 → Ds parameterizations of co-dimension one
surfaces in Du and Ds . We refer to the parameterized surfaces as “phase surfaces” in Du and
Ds , and define

P̂(σ, s) = P(w(σ), s)

and

Q̂(θ, s) = Q(z(θ), s).

Let s ∈ (s0 − δ, s0 + δ), K ∈ N and τ1, . . . , τK > 0 have τ1 + . . . + τK = 1. We seek
x1, . . . , xK ∈ Ωs , σ ∈ [−1, 1]du−1, θ ∈ [−1, 1]ds−1, and T > 0 so that

P̂(σ, s) = x1

φ(x1, τ1T , s) = x2

φ(x2, τ2T , s) = x3

...
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φ(xK−1, τK−1T , s) = xK

φ(xK , τK T , s) = Q̂(θ, s).

A solution of this system of equations has that each of the points P̂(σ, s), x1, . . ., xK , and
Q̂(θ, s) lies on the same homoclinic orbit to p(s). That is, the homoclinic orbit is generated
by flowing forward or backward any of these points. It is worth noting that T > 0 is the
“time of flight” from the unstable to the stable phase surface.

Noting that (σ, θ) ∈ R
du+ds−2 = R

d−2 and counting variables, we see that
(σ, θ, x1, . . . , xK , T ) ∈ R

d K+d−1, while the system of equations takes values in R
d K+d .

Again—and in direct analogy with the situation encountered when discussing periodic
orbits—we have one too few unknowns. Just as in the periodic orbit case the system can
be balanced by either adding an “unfolding parameter,” or by exploiting the conserved quan-
tity to eliminate an equation.

Extending the ideas described in the previous section, we once again employ the classic
unfolding parameter technique of Doedel et al. (2003), Muñoz Almaraz et al. (2003), and
define

fs,α(x) = fs(x) + α∇Es(x)T .

Let φ(x, t, s, α) denote the associated flow. Arguing exactly as in the periodic case, we have
that if γ : [0, T ] → R

d is an orbit with initial conditions γ (0) = P(σ, s) and terminal
conditions γ (T ) = Q(σ, s), then α = 0. This relies on the fact that P and Q parameterize
unstable/stable manifolds for the conservative vector field fs , hence lie in the level set of the
equilibrium solution. That is,

Es(P(θ, s)) = Es(Q(σ, s)) = Es(P(s)),

for all σ ∈ [−1, 1]du−1, θ ∈ [−1, 1]ds−1.
Then, for fixed s ∈ (s0 − δ, s0 + δ) a zero of the map Fs : [−1, 1]du−1 × [−1, 1]ds−1 ×

ΩK
s × R × R ⊂ R

d K+d → R
d K+d defined by

Fs(σ, θ, x1, . . . , xK , T , α) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

P̂(σ, s) − x1

φ(x1, τ1T , s, α) − x2

φ(x2, τ2T , s, α) − x3
...

φ(xK−1, τK−1T , s, α) − xK

φ(xK , τK T , s, α) − Q̂(θ, s)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (12)

has α = 0 and that the orbit of any of the points x1, . . . , xK is homoclinic for p(s).
Let x = (σ, θ, x1, . . . , xK , T , α) denote the independent variable for Fs . If Fs(x0) ≈ 0,

then we define the Newton sequence

xn+1 = xn + Δn,

where Δn is the solution of the linear equation

DFs(xn)Δn = −Fs(xn).

This approach is a multiple shooting scheme for homoclinic orbits in conservative systems.
The iteration converges if x0 is close enough to a homoclinic orbit segment. Again, the
derivative of Fs involves derivatives of P, Q, and φ where the derivatives of φ with respect
to x , α are computed by solving variational Eq. (10). The derivative of φ with respect to T

is as given in Eq. (9), and depends only on the unfolded vector field.
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Remark 4 (Approximating the parameterizations P and Q) In practice, it is very common to
exploit the first-order approximations of P and Q by their eigenspaces, and indeed this is the
approach taken in many of the classic references (Doedel and Friedman 1989; Champneys
et al. 1996; Friedman and Doedel 1993; Oldeman et al. 2003; Champneys and Kuznetsov
1994; Oldeman et al. 2001; Calleja et al. 2012; Friedman and Doedel 1993). On the other
hand, there exist well-developed methods for numerically computing higher-order approx-
imations of P and Q. We exploit such methods in the present work as they (A) provide
improved numerical stability/condition numbers in the boundary value problems defining
the homoclinic orbits (just as higher-order numerical integration schemes provide improve-
ments over the standard Euler method), and (B) higher-order methods are necessary for the
center manifold calculations exploited in the critical calculations. Using higher-order meth-
ods throughout represents a more unified approach. For the high-order approximation of P

and Q in the present work, we utilize numerical implementations, based on the parameter-
ization method (Cabré et al. 2003a, b, 2005), and developed in Kepley and James (2019),
Kepley and James (2019), Kepley and James (2019).

A.4 Continuation of a conservative homoclinic with respect to a parameter

Suppose that x0 has Fs0(x0) = 0, and that DFs0(x0) is non-singular. Then, by the implicit
function theorem there exists an ε > 0 and a smooth branch of zeros x(s) so that Fs(x(s)) = 0
for s ∈ (s0 − ε, s0 + ε), and x(s0) = x0. Differentiating with respect to s leads to

DFs(x(s))
d

ds
x(s) + ∂

∂s
Fs(x(s)) = 0.

Letting x′(s0) = v, we see that v solves the linear equation

DFs(x0)v = − ∂

∂s
Fs(x0).

Note that the right-hand side consists of partial derivatives of the flow with respect to α, and
that these are found by solving variational equations.

For s ∈ (s0 − ε, s0 + ε) with |s − s0| � 1, define

x1 = x0 + (s − s0)v,

as the first-order approximation of x(s) at s0. Then, x1 is the first-order approximation of a
homoclinic orbit segment to p(s). We take x1 as our initial guess for a zero of Fs(x) and once
again iterate the Newton scheme. Again, this process can be iterated until x(s) undergoes a
bifurcation.

One technical difficulty is that this procedure requires the computations of derivatives of
P and Q with respect to the parameter s. If P and Q are found using the parameterization
method as discussed in Remark 4, then the partial derivatives with respect to parameter can
be computed using the variational equations developed in James (2015). On the other hand,
it is also possible to compute the partial derivatives using finite differencing schemes. For
example, if we know P(σ, s0) and P(σ, s1), then we have

∂

∂s
P(σ, s0) ≈ P(σ, s1) − P(σ, s0)

s1 − s0
.

Since the parameterizations at the new parameter s1 have to be computed in order to define
the map Fs1 , this differencing does not incur any additional cost. In the present work, we find
that this differencing scheme is sufficient for our purposes.
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B Formal series calculation of the center stable/unstable manifolds

The calculations discussed in Sect. 3 provide supporting evidence for the claims made in
Sect. 2 in cases when the homoclinic orbits do not shrink in size to zero. In these cases,
failure of the numerical continuation algorithms is taken as an indication that the homoclinic
orbits undergo a bifurcation. On the other hand, when the connecting orbit shrinks to zero
size, the continuation algorithm eventually fails for other reasons: Essentially, it becomes
increasingly difficult to distinguish the homoclinic orbit form the equilibrium solution itself.
This is the case for the γ2,k(s), k = 1, 2, 3 and the γ3,1(s) homoclinic families, which we
conjectured survive all the way to the critical curve D.

Fortunately, small amplitude homoclinic orbits can be studied by completely different—
and much more local—center manifold methods. We now turn to a method for computing
the center manifold of a critical libration point when the system has parameter values on (or
near) the critical curve D. We employ a novel parameterization method recently developed
by van den Berg, Rink, and the first author (van den Berg et al. 2020).

The parameterization method is a functional analytic framework for studying invariant
manifolds developed by Cabré et al. (2003a, b, 2005). We refer the interested reader also to
the comprehensive recent book on the subject by Haro et al. (2016). The parameterization
method was used extensively in the work of Kepley and James (2019), Kepley and James
(2019), and also in the recent work of Murray and the second author on homoclinic dynamics
for planar and spatial periodic orbits in the CRTBP (Murray and James 2017, 2020).

Of course, computational methods for center manifolds, and related methods for numer-
ical calculation of normal forms, have a long history in the celestial mechanics literature.
Other method than those we choose could have been used here. The literature is substan-
tial, and a thorough review of the literature is beyond the scope of the present work. We
refer the interested reader to the works of Simó (1988), Cobos and Simó (1998), Jorba and
Masdemont (1999), Jorba (1999), Jorba et al. (1999), Jorba and Villanueva (1998), Canalias
et al. (2006), Farrés and Jorba (2010). We also refer to the books (Gómez et al. 2001, a, b, c)
for extensive computational treatment of invariant manifolds and their use in space mission
design. Much more detail on center manifolds for parabolic equilibria with applications to
celestial mechanics is found in Baldomá et al. (2017), Baldomá et al. (2007), Baldomá and
Fontich (2004). This interested reader may want to consult the lecture notes (Simo 1990).

Turning to the parameterization method, let us establish some notation. We focus here
on the case that the phase space is four-dimensional, as this is the only case encountered in
the present work; however, most of the results reported here generalize as discussed in the
references above. Let Ω ⊂ R

4 be an open subset and suppose that f : Ω → R
4 is a smooth

and conservative vector field. Consider a connected open set U ⊂ R
d with d = 1, 2, 3, a

one-to-one map K : U → R
4, and a vector field r : R

d → R
d . If K satisfies the infinitesimal

invariance equation
DK (y)r(y) = f (K (y)), y ∈ U , (13)

then the image of K is locally invariant under the flow generated by f . In fact, K lifts orbits of
y′ = r(y) to orbits of f . If the vector field f is inflowing/outflowing on the boundary of K (U ),
then the image of K is forward/backward invariant. The main idea of the parameterization
method is to study appropriate versions of Eq. (13) in various important situations of interest.
The geometric meaning of Eq. (13) is illustrated in Fig. 21.

We now describe a version of the parameterization method for parabolic equilibrium
solutions. That is, we consider situations where D f (x0) has one or more zero eigenvalues.
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Fig. 21 The geometric meaning of Eq. (13): We are interested in a chart map K parameterizing an invariant
manifold patch. The parameterization method singles out special charts satisfying an infinitesimal conjugacy.
The idea is that K functions in two complementary ways. On the one hand, K embeds U into the phase space,
hence is a chart for a manifold patch. On the other hand, DK maps a vector field r defined in U into the
tangent space of this manifold. If the two vector fields— f restricted to the image of K , and the push forward
of r by DK are equal (as required by Eq. (13)), then K maps orbits of r to orbits of f and the manifold patch
is locally invariant

In the present paper we are primarily interested in the fold bifurcation, though the pitchfork
is considered briefly as well.

The technique used here is developed in van den Berg et al. (2020), and has not been
applied in the context of celestial mechanics until now. Because of this novelty we discuss
the method in somewhat more detail than in the previous two sections, where we reviewed
material appearing already in the literature. Returning to Eq. (13), the idea is that we must
now solve simultaneously for the embedding K of the center manifold and the model/inner
dynamics r .

As seen in Sect. 4, at the saddle-node bifurcation there exists a solution branch which is
nonlinear stable, as well as a solution branch which is nonlinear unstable. After we compute
the embedding K , we exploit the Jacobi integral E to find those branches. If h(t) is a
characterization of the stable solution branch for the conjugate vector field r on the center
subspace, we have that K (h(t)) is a solution branch of the original differential equation
ẋ(t) = f (x(t)) by the construction of K . Thus, the energy E is constant along K (h(t)).
Furthermore, we have limt→∞ K (h(t)) = x0; hence,

E0
def= E(x0) = E( lim

t→∞
K (h(t))) = lim

t→∞
E(K (h(t))) = E(K (h(t))) for all t ∈ R.

If h(t) is a characterization of the unstable branch, we consider the limit of t going to −∞
to again find that

E0
def= E(x0) = E( lim

t→−∞
K (h(t))) = lim

t→−∞
E(K (h(t))) = E(K (h(t))) for all t ∈ R.
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Hence, the (un)stable branch is found by solving the energy equation

E ◦ K ◦ h − E0 = 0, (14)

using a power matching scheme.

B.1 Center stable/unstable manifolds

After finding the stable and unstable branches in the center manifold, we want to construct
the center (un)stable manifolds. For convenience, we consider only the center stable manifold
in the following sections. The center unstable manifold is similar. We consider connected
open sets Xc ⊂ R

2 and Xcs ⊂ R
3 for the role of U in the invariance Eq. (13) for the center

manifold and center stable manifold, respectively. So, for the center stable manifold we seek
a solution of the conjugacy equation

DKcs(y, z)r ′(x, y, z) = f ◦ Kcs(x, y, z) for all (x, y, z) ∈ Xcs .

We know again from van den Berg et al. (2020) that such a conjugacy and conjugate dynamical
system exists. In this case, the conjugacy Kcs is between the center stable subspace and the
center stable manifold, and the vector field r ′ is the conjugate vector field on the center
stable manifold. The center subspace and manifold are naturally embedded in the center
stable subspace and manifold, respectively. Hence, we require that Kcs(y, 0) = K (y) for
all y = (x, y) ∈ Xc. It is too much to ask that the conjugate dynamics on the center stable
subspace are uncoupled, i.e., r ′(y, z) = (r(y), qs(z)) cannot hold to all orders. Instead, as
we will see in Lemma B.3, we impose that the conjugate vector field in the center direction
is uncoupled and the vector field on the stable fibers is given by qs(x)z, where x is the first
coordinate on the center subspace, up to arbitrary order. Consider then the conjugacy equation

DKcs(y, z)(r(y), qs(x)z) = f ◦ Kcs(y, z) for all (y, z) ∈ Xcs and y = (x, y), (15)

subject to the constraint Kcs(y, 0) = K (y).

B.2 Formal series calculations

Since center manifolds are in general not analytic, we search for solutions in the space of
Cn . Nevertheless, we use formal power series for computational convenience. For notational
convenience, we apply a translation and coordinate transformation to move Lc to the origin
and have D f (Lc) in Jordan normal form. To find the solution branches h(t), we will need to
know the explicit coordinate transformation. In Proposition 1 we found the eigenvectors v0

and v1 of the center subspace. The stable and unstable eigenvectors are given by

v±
def=

(

Ωxy + 2λ±, λ±
(

Ωxy + 2λ±
)

,Ωyy − 4, λ±
(

Ωyy − 4
))

,

where λ±
def= ∓

√

−4 + Ωxx + Ωyy are the stable and unstable eigenvalues. We define the
coordinate transformation C

def= (v0, v1, v+, v−), and redefine f (x)
def= C

−1 f (Cx + x0).

Lemma B.1 For every formal series Kc : R
2 → R

2 given by

Kc

(

x

y

)

def=
(

x

y

)

+
∞
∑

n=2

∑

(i, j)∈N
2

i+ j=n

(

ai, j x i y j

bi, j x i yi

)

, (16)
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there exist formal series Kh : R
2 → R

2 and r : R
2 → R

2 given by

Kh

(

x

y

)

def=
∞
∑

n=2

∑

(i, j)∈N
2

i+ j=n

(

αi, j x i y j

βi, j x i yi

)

, (17)

r

(

x

y

)

def=
(

y

0

)

+
∞
∑

n=2

∑

(i, j)∈N
2

i+ j=n

(

γi, j x i y j

εi, j x i yi

)

, (18)

such that K
def= (Kc, Kh) and r solve Eq. (13). Furthermore, instead of fixing the constants

(bi, j )(i, j)∈N2 and solving for the constants (γi, j )(i, j)∈N2 among others, we could fix the

constants (γi, j )(i, j)∈N2 and solve for (bi, j )(i, j)∈N2 .

Proof We define the homogeneous polynomials

Pn
Kc

(

x

y

)

def=
∑

(i, j)∈N
2

i+ j=n

(

ai, j x i y j

bi, j x i yi

)

,

Pn
Kh

(

x

y

)

def=
∑

(i, j)∈N
2

i+ j=n

(

αi, j x i y j

βi, j x i yi

)

,

Pn
r

(

x

y

)

def=
∑

(i, j)∈N
2

i+ j=n

(

γi, j x i y j

εi, j x i yi

)

,

and we will prove that we can recursively define Pn
Kh

and Pn
r in terms of Pm

Kc
, Pm

Kh
, and

Pm
r for m < n. It is clear that Kh and r satisfy Eq. (13) up to first order. Now, assume that

Pm
Kh

and Pm
r for m < n are such that K and r satisfy Eq. (13) up to order n − 1. Then, the

n-th-order terms of the difference between the right- and left-hand side of Eq. (13) are given
by

∑

(i, j)∈N
2

i+ j=n

⎛

⎜

⎜

⎝

bi, j x i y j − γi, j x i y j − iai, j x i−1 y j+1

−εi, j x i y j − ibi, j x i−1 y j+1

λ+αi, j x i y j − iαi, j x i−1 y j+1

λ−βi, j x i y j − iβi, j x i−1 y j+1

⎞

⎟

⎟

⎠

− P
n

(

x

y

)

=

⎛

⎜

⎜

⎝

(

bn,0 − γn,0
)

xn

−εn,0xn

λ+αn,0xn

λ−βn,0xn

⎞

⎟

⎟

⎠

+
∑

(i, j)∈N
2

i+ j=n
(i, j)�=(n,0)

⎛

⎜

⎜

⎝

(

bi, j − γi, j − (i + 1)ai+1, j−1
)

x i y j
(

−εi, j − (i + 1)bi+1, j−1
)

x i y j
(

λ+αi, j − (i + 1)αi+1, j−1
)

x i y j
(

λ−βi, j − (i + 1)βi+1, j−1
)

x i y j

⎞

⎟

⎟

⎠

− P
n

(

x

y

)

.

(19)

Here P
n consists of the n-th-order terms of f (K <n(y)) − DK <n(y)r<n(y) where K <n =

∑n−1
m=1

(

Pm
Kc

, Pm
Kh

)

and r<n =
∑n−1

m=1 Pm
r . For part of the computational implementation

of obtaining P
n , we refer to Appendix C. In particular, P

n is an expression in terms of the
constants ai, j , bi, j , αi, j , βi, j , γi, j and εi, j for i + j < n. Hence, we find unique αi, j , βi, j ,
γi, j and εi, j such that (19) vanishes starting from (i, j) = (n, 0). In particular, we see that
if γi, j is fixed instead of bi, j , we can make (19) vanish for αi, j , βi, j , bi, j and εi, j instead. 
�
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Now that we have a solution to Eq. (13) and we want to find the stable branch in the center
subspace. Recall that we have applied the coordinate transformation

C =

⎛

⎜

⎜

⎝

Ωyy Ωxy

v+ v−
0 Ωyy

−Ωxy 2 − Ωxx

0 −Ωxy

⎞

⎟

⎟

⎠

,

and a translation by x0 on f . Hence, the conserved quantity becomes E = E(Cx + x0), with
the Jacobi integral E(x, ẋ, y, ẏ) = −

(

ẋ2 + ẏ2
)

+ 2Ω(x, y).

Lemma B.2 There exists a formal series h : R → R
2 given by

h(t)
def=

(

0
t3

)

+
∞
∑

n=2

(

cn tn

0

)

(20)

which solves Eq. (14) if the constant

E
def= ΩxxxΩ

3
yy − 3ΩxxyΩ

2
yyΩxy + 3ΩxyyΩyyΩ

2
xy − ΩyyyΩ

3
xy

is nonzero.

Proof We first note that

E0
def= E(0) = E(K (0)) = E(K (h(0))) = E ◦ K ◦ h(0);

thus, the constant term of Eq. (14) vanishes. For the higher-order terms we want to find the
Taylor expansion of E . Since both Ωx and Ωy vanish, we see that E has no linear terms
in its Taylor expansion. We assume that h(t) = (O(t2), t3); hence, we have K (h(t)) =
(O(t2), O(t3), O(t4), O(t4)). Thus, we must show that the coefficient of x2

1 in the expansion
of E is 0. We have by the chain rule, we write Ei1,...,im to denote the partial derivative of E

with respect to xi1 ,…, xim ,

E1,1 = 2ΩxxΩ
2
yy + 4ΩxyΩyy

(

−Ωxy

)

+ 2Ωyy

(

−Ωxy

)2 = 0.

Therefore, the expansion of E ◦ K ◦ h − E0 is at least of order 5. To rule out terms of order
5, we must show that the coefficient of x1x2 in the expansion of E is 0. In fact, we have the
more general result

E1,i = 2ΩxxΩyyC1,i + 2Ωxy

(

ΩyyC3,i − ΩxyC1,i

)

+ 2Ωyy

(

−Ωxy

)

C3,i = 0,

for i = 2, 3, 4. Thus, the leading term of E ◦ K ◦ h − E0 is of order 6, and its coefficient is
determined by the coefficients of x2

2 and x3
1 in the expansion of E . We have

E2,2 = 2ΩxxΩ
2
xy + 4ΩxyΩxy (2 − Ωxx ) + 2Ωyy (2 − Ωxx )

2 − 2
(

Ω2
yy +

(

−Ωxy

)2
)

= 2Ωyy

(

4 − Ωxx − Ωyy

)

,

E1,1,1 = 2
(

ΩxxxΩ
3
yy − 3ΩxxyΩ

2
yyΩxy + 3ΩxyyΩyyΩ

2
xy − ΩyyyΩ

3
xy

)

.

From the proof of Proposition 1, it follows that both Ωyy and 4 − Ωxx − Ωyy are nonzero,
hence E2,2 �= 0. By assumption, 1

2 E1,1,1 = E �= 0. Hence, the leading order of the expansion
of E ◦ K ◦ h − E0 is

1

2
E2,2t6 + 1

6
E1,1,1c3

2t6.
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Since we want that E ◦ K ◦h −E0 = 0, we must have 1
2 E2,2 + 1

6 E1,1,1c3
2 = 0, which uniquely

determines c2 = 3
√

−3E2,2/E1,1,1 �= 0, with the convention 3
√

−x = − 3
√

x for x ≥ 0. We can
now recursively find cn for n ≥ 3. If we have found cm for m ≤ n such that E ◦ K ◦ h − E0

vanishes for all order up to tn+4, the n + 5-th order is given by

1

2
E1,1,1c2

2cn+1tn+5 + Pn+5.

Here Pn+5 is the n + 5-th order term of E(K (h<n(t))) − E0 where h<n(t) =
(

0
t3

)

+
∑n−1

m=2

(

cm tm

0

)

. Hence, Pn+5 only depends cm for m ≤ n. Hence, cn+1 is uniquely determined

and E ◦ K ◦ h − E0 vanishes for all order up to tn+5. Thus, h : R → R
2 solves Eq. (14). 
�

Depending on the sign of t , h(t) is part of the unstable or stable solution branch. We will
see that the stable branch is given by hs

def= h|t>0 and the unstable branch is hu
def= h|t<0.

Finally, we show that we can find a unique expansion for the center stable manifold.

Lemma B.3 There exists formal series Kcs : R
3 → R

4 and qs : R → R given by

Kcs

⎛

⎝

x

y

z

⎞

⎠ =

⎛

⎜

⎜

⎝

x

y

z

0

⎞

⎟

⎟

⎠

+
∑

n=2

∑

(i, j,k)∈N
3

i+ j+k=n

⎛

⎜

⎜

⎝

ai, j,k x i y j zk

bi, j,k x i y j zk

αi, j,k x i y j zk

βi, j,k x i y j zk

⎞

⎟

⎟

⎠

, (21)

qs(x) = λ+ +
∞
∑

n=2

ζn xn−1, (22)

which solve Eq. (15). Furthermore, we demand that ai, j,0, bi, j,0, αi, j,0 and βi, j,0 are given by

the constants ai, j , bi, j , αi, j and βi, j from Lemma B.1, respectively. This uniquely determines

Kcs and qs except for α0,k−1,1 for k ≥ 1.

Proof We define the homogeneous polynomial

P
n
Kcs

⎛

⎝

x

y

z

⎞

⎠

def=
(

P
n
Kc

P
n
Kh

) (

x

y

)

+
∑

(i, j,k)∈N
3

k �=0
i+ j+k=n

⎛

⎜

⎜

⎝

ai, j,k x i y j zk

bi, j,k x i y j zk

αi, j,k x i y j zk

βi, j,k x i y j zk

⎞

⎟

⎟

⎠

,

with P
n
Kc

and P
n
Kh

defined in Lemma B.1. We want to recursively find P
n
Kcs

together with
ζn . Thus, suppose we have found P

m
Kcs

together with ζm for m ≤ n − 1 such that Eq. (15)
vanishes up order n − 1. Then, the n-th order of Eq. (15) is given by

∑

(i, j,k)∈N
3

i+ j+k=n

⎛

⎜

⎜

⎝

bi, j,k x i y j zk − γi, jδk,0x i y j − iai, j,k x i−1 y j+1zk − kλ+ai, j,k x i y j zk

−εi, jδk,0x i y j − ibi, j,k x i−1 y j+1zk − kλ+bi, j,k x i y j zk

λ+αi, j,k x i y j zk − δ j,0δk,1ζn xn−1z − iαi, j,k x i−1 y j+1zk − kλ+αi, j,k x i y j zk

λ−βi, j,k x i y j zk − iβi, j,k x i−1 y j+1zk − kλ+βi, j,k x i y j zk

⎞

⎟

⎟

⎠

− P
n

⎛

⎝

x

y

z

⎞

⎠ . (23)

Here P
n consists of the n-th-order terms of f (K <n

cs (y, z)) − DK <n
cs (y, z)

(

r(y), q<n
s (x)z

)

where K <n
cs =

∑n−1
m=1 Pm

Kcs
and q<n

s (x) = λ++
∑n−1

m=2 ζm xm−1. For part of the computational
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implementation of obtaining P
n , we refer to Appendix C. Hence, P

n depends on P
m
Kcs

and
ζm for m < n. We will show that we can recursively make (23) vanish, starting from k = 0
up to k = n.

When k = 0, (23) reduces to

∑

(i, j)∈N
2

i+ j=n

⎛

⎜

⎜

⎝

bi, j,0x i y j − γi, j x i y j − iai, j,0x i−1 y j+1

−εi, j x i y j − ibi, j,0x i−1 y j+1

λ+αi, j,0x i y j − iαi, j,0x i−1 y j+1

λ−βi, j,0x i y j − iβi, j,0x i−1 y j+1

⎞

⎟

⎟

⎠

− P
n

⎛

⎝

x

y

0

⎞

⎠ . (24)

We can show that P
n(x, y, 0) and P

n(x, y) from (19) coincide as we assumed that ai, j,0,
bi, j,0, αi, j,0, and βi, j,0 coincide with ai, j , bi, j , αi, j , and βi, j for i + j < n. Hence, (19) and
(24) coincide, and thus demanding ai, j,0 = ai, j , bi, j,0 = bi, j , αi, j,0 = αi, j , and βi, j,0 = βi, j

ensures that (24) vanishes.
When k = 1, (23) reduces to

∑

(i, j)∈N
2

i+ j=n−1

z

⎛

⎜

⎜

⎝

bi, j,1x i y j − iai, j,1x i−1 y j+1 − λ+ai, j,1x i y j

−ibi, j,1x i−1 y j+1 − λ+bi, j,1x i y j

−δ j,0ζn xn−1 − iαi, j,1x i−1 y j+1

2λ−βi, j,1x i y j − iβi, j,1x i−1 y j+1

⎞

⎟

⎟

⎠

− P
n,1

⎛

⎝

x

y

z

⎞

⎠ . (25)

Here we used in the fourth coordinate that λ+ = −λ−. The polynomial P
n,1 consists of

the terms linear in z in P
n . We can find unique bi, j,1, ai, j,1, ζn , αi, j,1, βi, j,1 such that (25)

vanishes. To do so, we first find bn−1,0,1, which determines bi, j,1 and ai, j,1 for i + j = n −1.
Secondly, we find ζn and αi, j,1 independently of each other. Finally, we find βn−1,0,1 which
determines βi, j,1 for i + j = n − 1.

When k ≥ 2, (23) reduces to

∑

(i, j)∈N
2

i+ j=n−k

zk

⎛

⎜

⎜

⎝

bi, j,k x i y j − iai, j,k x i−1 y j+1 − kλ+ai, j,k x i y j

−ibi, j,k x i−1 y j+1 − kλ+bi, j,k x i y j

(1 − k)λ+αi, j,k x i y j − iαi, j,k x i−1 y j+1

(k + 1)λ−βi, j,k x i y j − iβi, j,k x i−1 y j+1

⎞

⎟

⎟

⎠

− P
n,k

⎛

⎝

x

y

z

⎞

⎠ . (26)

We again used that λ+ = λ−, and the polynomial P
n,k consists of the terms which are of

order zk in P
n . Similar to what we did for (25), we can make (26) vanish. The only difference

is that we first find αn−k,0,k instead of ζn , and that this uniquely determines αi, j,k .
Thus, we can recursively make (23) vanish, and we see that only α0,n−1,1 is not uniquely

determined. 
�

C Numerical calculation of the center manifold

In Lemmas B.1 to B.3 we show that there exists formal series for the center manifold, a stable
branch on the center manifold, and the center-stable manifold. To compute, for example, the
center manifold, we have to calculate some homogeneous polynomials P

n(x, y). In this case,
P

n(x, y) is the homogeneous polynomial of degree n of the expression f ◦K <n−DK n<·r<n ,
where K <n and r<n are the Taylor polynomial up to order n − 1 of K and r , respectively. If
we also replace f by its Taylor polynomials, we have to find the homogeneous polynomials
of degree n in the expressions (K <n)α and (r<n)α for |α|1 ≤ n.

In Haro et al. (2016), radial derivatives are used to find expressions for those homogeneous
polynomials, provided that their constant term is nonzero. However, we constructed K and r
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in such a way that their constant terms vanish. We can still use the described method to find
an expression for gN in the case that g(0) does vanish. Here g is a multivariate polynomial,
which consists of the homogeneous polynomials g j , and N is a scalar. Let R denote the
radial derivative of g, that is R(g)(x)

def= Dg(x) · x. Then, we find

R(gN )(x) =
∑

i

∂

∂xi

gN (x) · xi = NgN−1(x)R(g)(x).

Let h = gN , then we find gR(h) = NhR(g). Since R(P) = m P for homogeneous
polynomials of degree m, we find that the m-th-order term of gR(h) − NhR(g) is given by

m
∑

j=0

((m − j) − N j) g j hm− j .

Since g0 vanishes, the first nonzero term of h is hN
def= gN

1 , and for higher-order terms we
have the recurrence relation

g1hm = 1

N − m

m+1−N
∑

j=2

g j hm+1− j (m + 1 − j − N j).

We use this to find homogeneous terms of order N in compositions g1 ◦ g2, by replacing
g1 with its Taylor polynomial of order N , and finding the homogeneous terms of gi

1(g2) for
1 ≤ i ≤ N using the previous recurrence relation.
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