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Abstract

We develop a systematic approach for proving the existence of choreographic

solutions in the gravitational n body problem. Our main focus is on spatial torus

knots: that is, periodic motions where the positions of all n bodies follow a sin-

gle closed which winds around a two-torus in R3. After changing to rotating

coordinates and exploiting symmetries, the equation of a choreographic config-

uration is reduced to a delay differential equation (DDE) describing the position

and velocity of a single body. We study periodic solutions of this DDE in a

Banach space of rapidly decaying Fourier coefficients. Imposing appropriate

constraint equations lets us isolate choreographies having prescribed symme-

tries and topological properties. Our argument is constructive and makes exten-

sive use of the digital computer.We provide all the necessary analytic estimates

as well as a working implementation for any number of bodies.We illustrate the

utility of the approach by proving the existence of some spatial choreographies

for n = 4, 5, 7, and 9 bodies.
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1. Introduction

A choreography is a periodic solution of the gravitational n-body problem, where n equal

masses follow the same path. Circular choreographies with masses located at the vertices of a

regular n-gon were already studied by Lagrange in the eighteenth century. The first choreog-

raphy differing from a polygon was discovered by Moore in [1] and has three bodies moving

around the now famous figure-eight. Chenciner and Montgomery in [2] gave a rigorous math-

ematical proof of the existence of this figure eight orbit by minimizing the action for Newton’s

equation. The name choreographies was adopted after the work of Simó [3] on numerical

computation of choreographic solutions.

The variational approach to the existence of choreographies consists of finding critical

points of the classical Newtonian action subject to appropriate symmetry constraints. The

main obstacle to this approach is the existence of paths with collisions. Terracini and Ferrario

in [4] gave conditions on the symmetries which imply that a minimizer is free of collisions

(this is called the rotating circle property). Although a lot of simple choreographies have been

found numerically since Simó [3], rigorous proofs using only analytical methods are difficult.

Notable exceptions include works on: the figure-eight of three bodies [2], the rotating n-gon

[5], the figure-eight type for odd bodies [4] and the super-eight of four bodies [6]. Other vari-

ational approaches related to existence of planar choreographies can be found in [7–12] and

the references therein.

The difficulties just mentioned have led some authors to develop mathematically rigorous

computer assisted proofs (CAPs) for choreographies. This is a natural alternative to pen-and-

paper analysis since both the discovery andmany subsequent studies of choreographies employ

numericalmethods. The interested readerwill want to consult for example theworks of Kapela,

Simó, and Zgliczyński [13–15] for both CAPs of existence for planar choreographies and

mathematically rigorous stability analysis. See also remark 2 below.

Recall now that a (p, q)-torus knot is an embedding of S1 into a two torus T2 ⊂ R3, winding

p times around one generating circle of the torus and q times around the other, with p and q

coprime and neither equal to zero. The embedding of the two torus is required to be unknotted

inR3. A torus knot may or may not be a trivial when viewed as a knot inR3. Indeed, it is trivial

if and only if either p or q is equal to ±1. The idea is illustrated in figure 1.

A difficult problem in this area is to prove the existence of spatial torus knot choreogra-

phies. Indeed when both topological and symmetric constraints are involved, it is difficult to

prove the coercitivity of the action. For this reason few results with topological constraints

are available. A notable exception is a torus knot choreography for three-bodies obtained by

Arioli, Barutello, and Terracini in [16], where the authors localize a mountain pass solution of

the Newtonian action in a rotating frame. Again the result is obtained by means of CAP, not

variational methods. In general it is hard to determine whether a critical point of the action

is a spatial torus-knot choreography. We provide a systematic procedure to obtain countable

families of torus knots for any number of bodies.

Contribution: the main result of the present work is to give mathematically rigorous exis-

tence proofs for (p, q)-torus knot choreographies in the n-body problem for several different

values of n.

Our approach is functional analytic (a choreography is a zero of a nonlinear operator posed

on a Banach space) and computer-assisted. When it succeeds it produces countably many

verified results. For example we establish the existence of the five-body trefoil knot chore-

ography illustrated in figure 2, and the existence of countable many choreographies close to

it. We describe the pen and paper estimates for any number of bodies and, while we illustrate
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Figure 1. Spatial torus knots: given an unknotted two-torus embedded in R3, a (p, q)-
torus knot is a non-contractible curve embedded into the surface of the torus. The
curve then winds p and q times respectively around the generating circles of the torus
(with p and q co-prime). It is a basic result that a (p, q) torus knot is trivial as a knot inRn

if and only if either p or q is ±1. The left frame illustrates a torus knot which is a trivial
knot in R3, while the right frame illustrates a non-trivial (3, 2)-knot—in fact a trefoil.

Figure 2. Example of a spatial trefoil choreography for 5 bodies: left frame (rotating
coordinates) the red loop illustrates the periodic orbit of the delay differential equation
whose existence we prove using the methods of the present work. The four remaining
loops are obtained by symmetry, giving a periodic orbit of the full 5 body problem in
rotating coordinates. Right frame (inertial coordinates) the 5 body orbit converted to
rotating coordinates. The result is a spatial torus knot with the topology of a trefoil.

the method for only few explicit examples, our setup and resulting implementation apply (in

principle) to any spatial choreography.

Before describing our approach in detail we recall several related developments. In [17]

it is observed that choreographies appear in dense sets along the vertical Lyapunov families

attached to the relative equilibrium solutions given by the planar n-gon. Existence of vertical

Lyapunov families follows from the Weinstein–Moser theory and, when the frequency varies

continuously, the authors obtain the existence of an infinite number of choreographies along

these vertical families. This hypothesis however has been verified only for some families with

n = 3, 4, 5, 6 and even though similar computations can be carried out for other values of n, it

is an open problem to establish the hypothesis for all n.

The existence of global Lyapunov families arising from the polygonal relative equilibrium

of the rotating problem was established in [18, 19] for all n. By saying that these families are

global what we mean that, in the space of normalized 2π periodic solutions, the families form a

continuumset with at least one of the following properties: either the Sobolev normof the orbits

in the family goes to infinity, the period of the orbits goes to infinity, the family ends in an orbit

with collision, or the family returns to another equilibrium solution. This fact is proved using

G-equivariant degree theory [20] where G = Zn × Z2 × SO(2)× S1 acts as permutations, z-

reflection and (x, y)-rotations of bodies, and time shift respectively. In addition the analysis of

[18, 19] concludes that the Lyapunov families have the symmetries of a twisted subgroup of G.

Specifically, let (w j, z j) ∈ C× R represents the planar and spatial coordinates of the jth

body in a rotating coordinate frame with frequency
√
s1, where

s1 =
1

4

n−1
∑

j=1

1

sin( jζ/2)
, ζ =

2π

n
. (1)
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The n-polygon consisting of n bodies on the unit circle w j = ei jζ is an equilibrium solution

of Newton’s equations in a co-rotating frame. After normalizing the period to 2π, the planar
Lyapunov families arising from this equilibrium polygon have the planar symmetries,

w j(t) = ei jζwn(t + jkζ), (2)

and the spatial symmetries

z j(t) = zn(t + jkζ). (3)

For 1 � j � n− 1 the jth body follows an identical path as the nth body, after a rotation in

space and a shift in time. It is proved in [19] that taking k = 2, . . . , n− 2 in the planar case

gives the n− 3 planar Lyapunov families, and that taking k = 1, . . . , n− 1 in the spatial case

gives the n− 1 vertical Lyapunov families.

We stress that the G-equivariant degree theory provides only an alternative concerning the

global behavior of the Lyapunov families. Without additional information we do not know

what actually happens along a given branch. This question is considered in [21], where the

authors conduct a numerical exploration of the global behavior of the Lyapunov families using

the software package AUTO (e.g. see [22]).

Let p, q ∈ Z be relatively prime such that kq− p ∈ nZ. It is proved in [21] that an orbit with

the symmetries defined in equations (2) and (3), and frequency

ω =
√
s1
p

q
, (4)

is a simple choreographywhen converted back to the inertial reference frame. In the case that

p and q do not satisfy this diophantine equation, the solution in the inertial frame corresponds

to a multiple choreographic solution [8], while the case that ω/
√
s1 is irrational implies that

the solution is quasiperiodic. Since the set of rational numbers p/q satisfying the diophantine

relation (4) is dense, one has the following: when the frequency ω varies continuously along

the Lyapunov family, there are infinitely many orbits in the rotating frame that correspond to

simple choreographies in the inertial frame.

The authors of [21] give compelling numerical evidence which suggests that an axial family

of solutions appears after a symmetry-breaking bifurcation from the vertical Lyapunov family

in the rotating n-body problem. The numerics suggest that this axial family has the symmetries

of equations (2) and (3). It is shown further in the same reference that, if the hypothesized

axial family exists, then orbits in this family correspond to choreographies in the inertial frame

which wind p and q times around the generators of a two-torus. That is, the periodic orbits in

this alleged axial family give rise to (p, q)-torus knot choreographies for the n-body problem.

A more refined description of our contribution is that we prove the existence of this axial

family. Using the symmetries (2, 3) in Newton’s laws we reduced the equations of motion to a

single equation describing the motion of the nth body un = (w, z) ∈ C× C. The equation is a

delay differential equation (DDE) with multiple constant delays. More explicitly, we have

ẅ(t)+ 2
√
s1iẇ(t)= s1w(t) −

n−1
∑

j=1

w(t)− ei jζw(t + jkζ)
(

|w(t) − ei jζw(t + jkζ)|2 + |z(t)− z(t + jkζ)|2
)3/2

z̈(t) = −
n−1
∑

j=1

z(t)− z(t + jkζ)
(

|w(t)− ei jζw(t + jkζ)|2 + |z(t)− z(t + jkζ)|2
)3/2

.

(5)
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For any number of bodies, these reduced equations (5) represents a system of six scalar

equations with multiple constant delays.

Our computer assisted arguments are in the functional analytic tradition of Lanford, Eck-

mann, Koch, andWittwer [23–26], and build heavily on the earlier work of [27–29] on DDEs.

More precisely, we formulate the existence proofs on a Banach space of Fourier coefficient

sequences. The delay operator acts as a multiplicative (diagonal) operator in Fourier coefficient

space, and the regularity of periodic solutions translates into rapid decay of the Fourier coeffi-

cients. Indeed, as was shown in [30], a periodic solution of a DDE with analytic nonlinearity

is analytic when the delays are constant. Then we know a priori that the Fourier coefficients

of a periodic solution of equation (5) decay exponentially fast.

An important feature of equation (5) is the conservation of energy, which allows us to fix

a desired frequency for the periodic solution a priori. This reduction greatly simplifies the

analysis of the DDE in Fourier space, but requires adding an unfolding parameter to balance

the system. In addition we utilize automatic differentiation as in [31–33], and reformulate (5)

as a problem with polynomial nonlinearities. The polynomial problem is amenable to straight

forward analysis exploiting the Banach algebra properties of the solution space and we use the

FFT algorithm as in [34]. The cost of this simplification is that each additional body augments

the system with a single additional scalar equation and a single additional unfolding parameter.

Finally we validate the existence of solutions by means of a Newton–Kantorovich argument

exploiting the radii polynomial approach as in [35].

We conclude this introduction by mentioning some interesting problems for future study.

The zero finding problem studied in the present work is amenable to validated continuation

techniques as discussed in [29, 36–38]. A follow up study will investigate global properties of

continuous families of spatial choreographies in the n body problem, and study bifurcations

encountered along the branches. In this way we hope to prove for example the conjecture of

Marchal/Chenciner [17] that the Lagrange triangle is connected with the figure-eighth chore-

ography troughMarchal’s P-12 family [39]. We also remark that all the choreographies shown

to exist in the present work are unstable. Actually, the only known stable choreographies are

close to the figure eight for n = 3. Stability of torus knots in the n = 3 is being investigated in

a forthcoming paper.

Let us also mention that the procedure developed in this paper could be adapted to prove

existence of asymmetric planar or spatial choreographies. These choreographies do appear

in dense sets of symmetry-breaking families from planar and spatial Lyapunov families. Fur-

thermore, this procedure could be adapted to study choreography solutions in problems with

other potentials, such as r−α (with α = 1 being the gravitational case, α < 1 the weak force

case, and α > 2 the strong force case). It could also be adapted to Hamiltonian systems with

different radial potentials, as long as the polynomial embedding (see section 2.3) can be done.

An interesting problem would be to adapt the method to validate choreographies in families

that bifurcate from the polygonal equilibrium in DNLS equations [40] or the n-vortex problem

on the plane, disk, or sphere [41].

Remark 1 (CAPs in celestial mechanics and dynamics of DDEs). Numerical cal-

culations have been central to the development of celestial mechanics since the late nineteenth

and early twentieth centuries. The reader interested in historical developments before the age

of the digital computer can consult the works of George Darwin, Francis Ray Moulton, and

the group in Copenhagen led by Elis Strömgren [42–44]. Problems in celestial navigation and

orbit design helped drive the explosion of scientific computing during the space race of the mid

twentieth century. A fascinating account and a much more complete bibliography are found in

the book [45].
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As researchers developed computer assisted methods of proof for computational dynamics

it was natural to look for challenging open problems in celestial mechanics. The relevant liter-

ature is rich and we direct the interested reader to the works of [16, 46–49] for a much more

complete view of the literature. Other authors have studied center manifolds [50], transverse

intersections of stable/unstable manifolds [31, 51], Melnikov theory [52], Arnold diffusion and

transport [53–55], and existence/continuation/bifurcationof Halo orbits [32, 56]—all in gravi-

tational n-body problems and all using computer assisted arguments. Especially relevant to the

present work are the computer assisted existence and KAM stability proofs for n-body chore-

ographies in [13–16]. (See also remark 2 below.) Again, the references given in the preceding

paragraph are meant only to point the reader in the direction of the relevant literature. A more

complete view of the literature is found in the references of the cited works.

The present work grows out of the existing literature on CAPs for dynamics of DDEs, the

foundations of which were laid in [27]. The work just cited studied periodic solutions—as

well as branches of periodic solutions—for scalar DDEs with a single delay and polynomial

nonlinearities. Extensions to multiple delays appear in [28], and more recent work considers

systems of DDEs with non-polynomial nonlinearities [33]. The interested reader can consult

the works of [29, 57–59] for more complete discussion of this area. We mention also the recent

PhD Thesis of Jonathan Jaquette, who settled the decades old conjectures of Wright and Jones

about the global dynamics of Wright’s equation [60, 61] using ideas from this field. Another

approach to CAP for periodic orbits of DDEs—based on rigorous integration of the induced

flow in function space—is found in [62].

In spite of the picture painted above, computer assisted methods of proof are regularly

applied outside the boundaries of celestial mechanics and DDEs. For a broader perspective

on the area, still focusing on nonlinear dynamics, we refer to the review articles [63, 64] and

to the book of Tucker [65].

Remark 2 (Phase space and functional analytic approaches). The existence proofs

for planar choreographies in [13, 15], the proof of the spatial mountainpass solution in [16], and

the proof of KAM stability of the figure eight choreography in [14] use a different setup from

that developed in the present work. More precisely, the works just mentioned study directly

the Newtonian equations of motion in phase space. The works of [13–15] exploit the pow-

erful CAPD library for rigorous integration of ODEs to construct mathematically rigorous

arguments in appropriate Poincaré sections. See [66, 67] for more complete discussion and

references to the CAPD library. The work of [16] utilizes a functional analytic method akin to

that of the present work, but applied directly to periodic orbits for the Hamiltonian vector field

rather than reducing to the DDE as in the present work.

In the case of the planar choreography problem the phase space is of dimension 4n, while

the spatial choreography problem scales like 6n. These figures are in some sense conservative,

as applying the topological arguments of [13, 15] require integration of the equations of first

variation (and equations of higher variation in the case of the KAM stability argument).

The setup of the present work considers six scalar equations, independent of the number

of bodies considered. This is a dramatic reduction of the dimension of the problem. This

dimension reduction facilitates consideration of—in principle—choreographies involving any

number of bodies. A technical remark is that our implementation uses automatic differentia-

tion to reduce to a polynomial nonlinearity, adding one additional scalar equation for each body

being considered. This brings our count to 6+ (n− 1) scalar equations. While this quantity

scales with n much better than the 6n mentioned above, we stress that our implementation

could be improved using techniques similar to those discussed in [16, 68, 69] for evaluation of
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non-polynomial nonlinearities on Fourier data.With such an improvement our approachwould

consider only 6 scalar equations no matter the number of bodies.

For the sake of simplicity we do not pursue this option at the present time, as we believe that

the reduction to a polynomial nonlinearity makes both the presentation and implementation of

the method more transparent. We also believe that the polynomial version of the problem is

more amenable to high order branch following methods and bifurcation analysis to be pursued

in a future work. We remark that, since we work in a space of analytic functions, our argument

produces useful by-products such as bounds on coefficient decay rates, and lower bounds on

the domain of analyticity/bounds on the distances to poles in the complex plane. This infor-

mation can be used to obtain a posteriori bounds on derivatives via the usual Cauchy bounds

of complex analysis.

The paper is organized as follows. In section 2, we introduce the Fourier map F : X→ Y

defined on a Banach space X of geometrically decaying Fourier coefficients, whose zeros

are choreographies having prescribed symmetries and topological properties. In section 3,

we introduce the ideas of the a posteriori validation for the Fourier map, that is on how to

demonstrate the existence of true solutions of F(x) = 0 close to numerical approximations.

In section 4, we present explicit formulas for the bounds necessary to apply the a posteriori

validation of section 3. We conclude the paper by presenting the results in section 5, where

we present proofs of existence of some spatial torus knot choreographies for n = 4, 5, 7, and 9

bodies. The computer programs used in the paper are available at [70].

2. Formulation of the problem

Let q j(t) ∈ R
3 be the position in space of the body j ∈ {1, . . . , n} with mass 1 at this t. Define

the matrices

Ī = diag(1, 1, 0) and J̄ = diag(J, 0),

where J is the symplectic matrix in R2. In rotating coordinates and with the period rescaled to

2π,

q j(t) = e
√
s1tJ̄u j(ωt),

the Newton equations for the n bodies are

ω2ü j + 2ω
√
s1J̄u̇ j − s1 Īu j = −

n
∑

i=1(i �= j)

u j − ui

‖u j − ui‖3
, (6)

where ω is the frequency and s1 is defined by (1).

Using that u j = (w j, z j), the symmetries (2) and (3) correspond to the symmetry

u j(t) = e j̄Jζun(t+ jkζ). (7)

Therefore, the solutions of the equation (6) with symmetries (7) are zeros of the map

G(un,ω) def
= ω2ün + 2ω

√
s1J̄u̇n − s1 Īun +

n−1
∑

j=1

un − e j̄Jζun(t + jkζ)

‖un − e j̄Jζun(t+ jkζ)‖3 : X × R→ Y (8)

defined in spaces X and Y of analytic 2π-periodic functions, which we will specify later in

Fourier components. The equation G(un,ω) = 0, with G defined in (8) is a DDE.
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2.1. Choreographies

We say that a solution of G(un,ω) = 0, i.e. a solution of the n-body problem with symmetry

(7), is p : q resonant when it has frequency ω =
√
s1p/q and (a) kq− p= 0 or (b) p and q are

relatively prime and kq− p ∈ nZ. In [21] is proven that p : q resonant orbits are choreographies

in the inertial frame; see also [17]. For sake of completeness, here we reproduce a short version

of this result.

Proposition 3. Let

Q j(t)
def
= q j(t/ω) = etJ̄

√
s1/ωu j(t)

be a reparameterization of a periodic solution in the inertial frame. An p : q resonant solution

un of G(un,ω) = 0 is a choreography in inertial frame, satisfying that Qn(t) is 2πp-periodic
and

Q j(t) = Qn(t + j̃kζ),

where k̃ = k− (kq− p)q̃ with q̃ the p-modular inverse of q. The orbit of the choreography

is symmetric with respect to rotations by an angle 2π/p and the n bodies form groups of

h-polygons, where h is the biggest common divisor of n and k.

Proof. Since un(t) is 2π-periodic and etJ̄
√
s1/ω = etJ̄q/p is 2πp-periodic, then the function

Qn(t) = etJ̄
√
s1/ωun(t) is 2πp-periodic. Furthermore, since

Qn(t− 2π) = e−J̄2πq/pn Qn(t), (9)

the orbit ofQn(t) is invariant under rotations of 2π/p. The fact that the n bodies form h-polygons

follows from symmetry (7) and the definition of Q j(t).

By assumption

r = (kq− p)/n ∈ Z,

then symmetry (7) implies that the solution in inertial frame satisfies

Q j(t) = e−J̄2π j(r/p)Qn(t + jkζ). (10)

In the case (a) that kq− p = 0, the symmetry (9) gives straightforward that Q j(t) = Qn(t +

k jζ). In the case (b) that p and q are relatively prime, we can find q̃ such that qq̃ = 1 mod p. It

follows from the symmetry (9) that

Qn(t− 2π jrq̃) = e−J̄2π j(r/p)Qn(t).

Therefore,

Q j(t) = e−J̄2π j(r/p)Qn(t + jkζ) = Qn(t + j(k− rnq̃)ζ).
�

Corollary 4 ((p,q)-torus knots). In the case that un(t) is a p : q resonant orbit in the axial

family that does not cross the z-axis, then Qn(t) winds (after the period 2πp) around a toroidal
manifold with winding numbers p and q, i.e., the choreography path is a (p, q)-torus knot. In

the case that un(t) is a p : q resonant orbit in the vertical Lyapunov family that does not cross

the z-axis, then the choreography Qn(t) winds p times in a cylindrical surface.
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We conclude that the solution qj(t) = Qj(tω) is a 2πq/
√
s1-periodic choreography satisfying

the properties discussed above for Qj(t). Therefore, by validating solutions of G(un,ω) = 0 in

the axial family we prove rigorously the existence of choreography paths that are (p, q)-torus

knots.

2.2. Symmetries, integrals of movement and Poincaré conditions

Here after we omit the index n that represents the nth body in the map G(u) and denote the

components of u by

u = (u1, u2, u3).

The map G(u) that gives the existence of choreographies is the gradient of the action

A(u) : X→ R of the n-body problem reduced to paths with symmetries (7). The action A(u)

is invariant under the action of the group (θ,ϕ, τ ) ∈ G
def
= T2 × R in u ∈ X given by

(θ,ϕ, τ )u(t) = eJ̄θu(t+ ϕ)+ (0, 0, τ ),

which corresponds to z-translations and (x, y)-rotations of bodies, and time shift.

Given that the gradient G = ∇A is G-equivariant, G((θ,ϕ, τ )u) = (θ,ϕ, τ )G(u), if u0 is a
critical point of A, then (θ,ϕ, τ )u0 is a critical point for all (θ,ϕ, τ ) ∈ G, because

G((θ,ϕ, τ )u0) = (θ,ϕ, τ )G(u0) = 0. (11)

Therefore, if u0 is not fixed by the elements of G, then its orbit under the action of the group

forms a three-dimensional manifold of zeros of G. Taking derivatives respect the parameters

θ, ϕ and τ of equation (11) and evaluating the parameter at 0, we obtain by the chain rule that

dG(u0)A j(u0) = 0, where Aj are the generator fields of the group G,

A1(u) = ∂θ|θ=0(θ, 0, 0)u = J̄u,

A2(u) = ∂ϕ|ϕ=0(0,ϕ, 0)u = u̇,

A3(u) = ∂τ |τ=0(0, 0, τ )u = (0, 0, 1).

Therefore dG(u0) has the zero eigenvalues Aj(u0) for j = 1, 2, 3 corresponding to tangent vec-

tors to the three-dimensional manifold generated by the action of G. This property holds for

any equivariant field even if it is not gradient.

In addition, for gradient maps G = ∇A, we have also conserved quantities generated by the

action of the groupG (Noether theorem). That is, since the action is invariant,A((θ,ϕ, τ )u) =
A(u), deriving respect θ, ϕ and τ and evaluating the parameters at 0, we have by chain rule

that

0 = ∂ jA(u) = ∂ jA((θ,ϕ, τ )u) = 〈∇A(u),A j(u)〉 = 〈G(u),A j(u)〉 , (12)

i.e. the field G is orthogonal to the infinitesimal generators Aj(u) for j = 1, 2, 3.

In summary, we have that the map G has three-dimensional families of zeros and also three-

restrictions given by (12). To prove the existence of solutions, we could take three-restrictions

in the domain and range of G. But given that the range is a non-flat manifold, it is simpler to

augment the DDE G = 0 with the three Lagrangian multipliers λj for j = 1, 2, 3,

G(u,ω)+
3
∑

j=1

λ jA j(u) = 0. (13)
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An important observation is that the solutions of equation (13) are equivalent to the solutions

of the original equations of motion.

Proposition 5. If Aj(u) are linearly independent for j = 1, 2, 3, then a solution u to

G(u,ω) = 0 is a solution to the equation (13) if and only if λj = 0 for j = 1, 2, 3.

Proof. Taking the product of (13) with respect to a generator A j(u) and using the orthogo-

nality we obtain

3
∑

j=1

λ j 〈A j(u),Ai(u)〉 = 0.

The result follows from the linear independence of A j(u), see [21] for details. �

Also the restriction in the domain forms a non-flat manifold, and it is simpler to augment

the equation (13) with three equations that represent the respective Poincaré sections I j(u) = 0.

Each geometric condition I j(u) = 0 with

I j(u) = 〈u− ũ,A j(ũ)〉 : X → R
3,

implies that u is in the orthogonal plane to the orbit of ũ under the action of G, where ũ is a

reference solution, which typically is the solution in the previous step of the continuation.

Taking as reference ũ = (1, 0, 0) for the generators A3(ũ) = (0, 0, 1), then

I3(u) =

∫ 2π

0

u(t) · (0, 0, 1) dt =
∫ 2π

0

u3(t) dt. (14)

Given a reference solution ũ, the other geometric conditions are given explicitly by

I1(u) =

∫ 2π

0

(u− ũ) · J̄ũ dt =

∫ 2π

0

u · J̄ũ dt (15)

and

I2(u) =

∫ 2π

0

(u− ũ) · ũ′(t) =
∫ 2π

0

u(t) · ũ′(t) dt. (16)

The generators A j(u) are linearly independent in the solutions that we are looking. In other

cases the solutions are relative equilibria, which represents a simpler problem than the map G.

2.3. Automatic differentiation: obtaining a polynomial problem

Setting u̇ = v, equation G(u,ω) = 0 becomes

ω2v̇ + 2ω
√
s1J̄v − s1 Īu+

n−1
∑

j=1

u− e j̄Jζu(t+ jkζ)

‖u− e j̄Jζu(t + jkζ)‖3 = 0.

In this section, we turn the non-polynomial DDE (13) into a higher dimensional DDE with

polynomial nonlinearities, using the automatic differentiation technique as in [31–33]. For

this, we define for j = 1, . . . , n− 1 the variables

w j(t) =
1

‖u(t)− e j̄Jζu(t + jkζ)‖ .
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Then w j satisfy

ẇ j =
d

dt

(

‖u(t)− e j̄Jζu(t + jkζ)‖2
)−1/2

= −w3
j

〈

v(t) − e j̄Jζv(t + jkζ), u(t)− e j̄Jζu(t+ jkζ)
〉

.

Therefore, the augmented system of equation (13) is

u̇ = v (17)

v̇ =
1

ω2

⎛

⎝−2ω
√
s1J̄v + s1 Īu−

n−1
∑

j=1

w3
j

(

u(t)− e j̄Jζu(t + jkζ)
)

⎞

⎠

+ λ1J̄u+ λ2v + λ3e3 (18)

ẇ j = −w3
j

〈

v(t) − e j̄Jζv(t + jkζ), u(t)− e j̄Jζu(t+ jkζ)
〉

+ α jw
3
j , (19)

for j = 1, . . . , n− 1, where e3 = (0, 0, 1). We supplement these equations with the conditions

w j(0) =
1

‖u(0)− e j̄Jζu( jkζ)‖ , j = 1, . . . , n− 1, (20)

which are balanced by the unfolding parameters α1, . . . ,αn−1 (e.g. see [32]), similarly to

the manner in which the phase conditions I1(u) = I2(u) = I3(u) = 0 (given respectively by

(14)–(16)) are balanced by the unfolding parameters λ1, λ2 and λ3. Indeed, we can prove

that a solution of this system is necessarily a solution of the n-body problem similarly to

proposition 5.

Proposition 6. A 2π-periodic solution (u, v,w) of the system (17)–(19) with the conditions

(20) satisfies that αj = 0 for j = 1, . . . , n, i.e. u is a 2π-periodic solution of G(u,ω) = 0.

Proof. Dividing the equation for w j by w
3
j and using that v = u̇, we obtain that

d

dt

(

−2w−2
j

)

=
d

dt

(

−1

2
‖u(t)− e j̄Jζu(t+ jkζ)‖2

)

+ α j.

Since (u, v,w) is 2π-periodic, integrating over the period 2π, we obtain that 2πα j = 0, see [32]

for details. Given that α j = 0, the initial condition (20) implies that w j(t) = ‖u(t)− e j̄Jζu(t+

jkζ)‖−1. Therefore, u is a solution to the augmented system (13) and, by proposition 5, to the

equation G(u,ω) = 0. �

In the next section, equations (17)–(20) are combined with Fourier expansions to set up the

Fourier map whose zeros corresponds to choreographies having the prescribed symmetry (7)

and the topological property of a torus knot.

2.4. Fourier map for automatic differentiation

The goal of this section is to look for periodic solutions of the delay differential

equations (17)–(19) satisfying the extra conditions (20) using the Fourier series expansions
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u(t) =

⎛

⎝

u1(t)

u2(t)

u3(t)

⎞

⎠ =
∑

�∈Z
ei�tu�, u� =

⎛

⎝

(u1)�
(u2)�
(u3)�

⎞

⎠

v(t) =

⎛

⎝

v1(t)
v2(t)
v3(t)

⎞

⎠ =
∑

�∈Z
ei�tv�, v� =

⎛

⎝

(v1)�
(v2)�
(v3)�

⎞

⎠

w(t) =

⎛

⎜

⎝

w1(t)
...

wn−1(t)

⎞

⎟

⎠
=
∑

�∈Z
ei�tw�, w� =

⎛

⎜

⎝

(w1)�
...

(wn−1)�

⎞

⎟

⎠
.

(21)

Based on the fact that periodic solutions of analytic DDEs are analytic [30], we consider

the following Banach space of geometrically decaying Fourier coefficients

�1ν
def
=

{

c = (c�)�∈Z : ‖c‖ν def
=
∑

�∈Z
|c�|ν |�| < ∞

}

, (22)

where ν � 1. If ν > 1 and a = (a�)�∈Z ∈ �1ν , then the function t �→∑

�∈Z e
i�ta� defines a 2π-

periodic analytic function on the complex strip of width ln(ν) > 0. Another useful property of

the space �1ν is that it is a Banach algebra under discrete convolution ∗ : �1ν × �1ν → �1ν defined
as

(a ∗ b)k =
∑

k1+k2=k

ak1bk2 ,

where a, b ∈ �1ν . More explicitly, ‖a ∗ b‖ν � ‖a‖ν‖b‖ν , for all a, b ∈ �1ν and ν � 1.

The unknowns of the DDEs (17)–(19) are given by the unfolding parameters

λ
def
= (λ j)

3
j=1 ∈ C3 and α

def
= (α j)

n−1
j=1 ∈ Cn−1, and the Fourier coefficients u = (u j)

3
j=1 ∈ (�1ν)

3,

v = (v j)
3
j=1 ∈ (�1ν)

3 andw = (w j)
n−1
j=1 ∈ (�1ν)

n−1. The total vector of unknown x and the Banach

space X are then given by

x
def
=

⎛

⎜

⎜

⎜

⎜

⎝

λ
α
u

v
w

⎞

⎟

⎟

⎟

⎟

⎠

∈ X
def
= C

3 × C
n−1 × (�1ν)

3 × (�1ν)
3 × (�1ν)

n−1 ∼= C
n+2 × (�1ν)

n+5. (23)

The Banach space X is endowed with the norm

‖x‖X def
= max

{

|λ|∞, |α|∞, max
j=1,2,3

‖u j‖ν , max
j=1,2,3

‖v j‖ν , max
j=1,...,n−1

‖w j‖ν
}

, (24)

where

|λ|∞ = max
j=1,2,3

|λ j| and |α|∞ = max
j=1,...,n−1

|α j|.

In order to define the Fourier map problem F(x) = 0, we plug the Fourier expansions (21)

in (17)–(20), and solve for the corresponding nonlinear map. First note that

u(t)− e j̄Jζu(t+ jkζ) =
∑

�∈Z

(

u� − e j̄Jζei jk�ζu�

)

ei�t =
∑

�∈Z
M j�u�e

i�t,

324



Nonlinearity 34 (2021) 313 R Calleja et al

whereM j� is defined as

M j� = I − e j̄Jζei jk�ζ =

⎛

⎝

1− ei jk�ζ cos( jζ) ei jk�ζ sin( jζ) 0

−ei jk�ζ sin( jζ) 1− ei jk�ζ cos( jζ) 0

0 0 1− ei jk�ζ

⎞

⎠ ,

since J̄ = diag(J, 0) with J =

(

0 −1

1 0

)

.

In Fourier space, the phase conditions I1(u) = I2(u) = I3(u) = 0 (see (14)–(16), respec-

tively) are given by

I1(u) =

∫ 2π

0

− u1(t)ũ2(t)+ u2(t)ũ1(t) dt

= −(u1 ∗ ũ2)0 + (u2 ∗ ũ1)0

=
∑

�∈Z
− (u1)�(ũ2)−� + (u2)�(ũ1)−�

I2(u) =

∫ 2π

0

(

u1(t)ũ
′
1(t)+ u2(t)ũ

′
2(t)+ u3(t)ũ

′
3(t)
)

dt

= (u1∗ũ′1)0 + (u2 ∗ ũ′2)0 + (u3 ∗ ũ′3)0

=
∑

�∈Z
i� ((u1)�(ũ1)−� + (u2)�(ũ2)−� + (u3)�(ũ3)−�)

I3(u) =

∫ 2π

0

u3(t) dt = (u3)0,

where ũ1, ũ2 and ũ3 have only finitely many non-zero terms.

Hence, setting η : (�1ν)
3 → C3 as

η(u) =

⎛

⎝

η1(u)
η2(u)
η3(u)

⎞

⎠

def
=

⎛

⎝

−(u1 ∗ ũ2)0 + (u2 ∗ ũ1)0
(u1 ∗ ũ′1)0 + (u2 ∗ ũ′2)0 + (u3 ∗ ũ′3)0

(u3)0

⎞

⎠ , (25)

we get that η(u) = 0 implies that I1(u) = I2(u) = I3(u) = 0. Given j = 1, . . . , n− 1 and u ∈
(�1ν)

3, denoteM ju ∈ (�1ν)
3 component-wise by

(M ju)�
def
=M j�u� =

⎛

⎝

(

M j�u�
)

1(

M j�u�
)

2(

M j�u�
)

3

⎞

⎠ =

⎛

⎝

(

1− ei jk�ζ cos( jζ)
)

(u1)� + ei jk�ζ sin( jζ)(u2)�
−ei jk�ζ sin( jζ)(u1)� +

(

1− ei jk�ζ cos( jζ)
)

(u2)�
(

1− ei jk�ζ
)

(u3)�

⎞

⎠ .

In Fourier space, the extra initial condition (20) (given j = 1, . . . , n− 1) is simplified as

γ j(u,w j)
def
= w j(0)

2

∥

∥

∥

∥

∥

∑

�∈Z
M j�u�

∥

∥

∥

∥

∥

2

− 1 =

(

∑

�∈Z
(w j)�

)2
⎡

⎣

3
∑

p=1

(

∑

�∈Z
(M j�u�)p

)2
⎤

⎦− 1.
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Set γ : (�1ν)
3 × (�1ν)

n−1 → Cn−1 as

γ(u,w)
def
=

⎛

⎜

⎜

⎜

⎝

γ1(u,w1)

γ2(u,w2)
...

γn−1(u,wn−1)

⎞

⎟

⎟

⎟

⎠

. (26)

Hence, γ(u,w) = 0 implies that (20) holds.

For sake of simplicity of the presentation, given any N ∈ N, denote the differentiation

operator D acting on u ∈ (�1ν)
N as

(Du)�
def
= i�u� =

⎛

⎜

⎜

⎜

⎝

i�(u1)�
i�(u2)�

...
i�(uN)�

⎞

⎟

⎟

⎟

⎠

. (27)

Remark 7. The linear operator D is not bounded on (�1ν)
N . However, it is bounded when

considering the image to be slightly less regular. More explicitly, letting

�̃1ν
def
=

⎧

⎨

⎩

c = (c�)�∈Z : |c0|+
∑

� �=0

|c�|
ν |�|

|�| < ∞

⎫

⎬

⎭

, (28)

we can easily verify that D : (�1ν)
N → (�̃1ν)

N is a bounded linear operator.

Let f : (�1ν)
3 × (�1ν)

3 → (�̃1ν)
3 be defined by

f (u, v)
def
= Du− v. (29)

Note that f(u, v) = 0 ensures that (17) holds. Let g : C3 × (�1ν)
3 × (�1ν)

3 × (�1ν)
n−1 × C→ (�̃1ν)

3

be defined by

g(λ, u, v,w,ω)
def
= ω2Dv + 2ω

√
s1J̄v − s1 Īu+ λ1J̄u+ λ2v + λ3ê3 +

n−1
∑

j=1

(M ju) ∗w3
j , (30)

where (M ju) ∗w3
j ∈ (�1ν)

3 is given component-wise by

(

(M ju) ∗w3
j

)

�

def
=

⎛

⎝

(

(M ju)1 ∗w3
j

)

�
(

(M ju)2 ∗w3
j

)

�
(

(M ju)3 ∗w3
j

)

�

⎞

⎠ ,

and where ê3 ∈ (�1ν)
3 is given component-wise by

(ê3)�
def
=

⎛

⎝

0

0

δ�,0

⎞

⎠ ,

with δi, j being the Kronecker delta. Note that g(λ, u, v,w,ω) = 0 ensures that (18) holds.
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Let h j : C× (�1ν)
3 × (�1ν)

3 × �1ν → �̃1ν be defined by

h j(α j, u, v,w j)
def
=Dw j + w3

j∗

⎛

⎝

3
∑

p=1

(M ju)p ∗ (M jv)p

⎞

⎠+ α jw
3
j (31)

and let h : Cn−1 × (�1ν)
3 × (�1ν)

3 × (�1ν)
n−1 → (�̃1ν)

n−1 be defined by

h(α, u, v,w)
def
=

⎛

⎜

⎜

⎜

⎝

h1(α1, u, v,w1)

h2(α2, u, v,w2)
...

hn−1(αn−1, u, v,wn−1)

⎞

⎟

⎟

⎟

⎠

. (32)

Hence, h(α, u, v,w) = 0 implies that (19) hold.

Defining

Y
def
= C

3 × C
n−1 × (�̃1ν)

3 × (�̃1ν)
3 × (�̃1ν)

n−1 (33)

the Fourier map F : X × R→ Y is defined by

F(x,ω)
def
=

⎛

⎜

⎜

⎜

⎜

⎝

η(u)
γ(u,w)
f (u, v)

g(λ, u, v,w,ω)
h(α, u, v,w)

⎞

⎟

⎟

⎟

⎟

⎠

. (34)

For a fixed ω > 0, we introduce in section 3 an a posteriori validation method for the

Fourier map, that is we develop a systematic and constructive approach to prove existence of

x ∈ X such that F(x,ω) = 0. By construction, the solution x yields a choreography having the

prescribed symmetry (7) and the topological property of a torus knot.

3. A posteriori validation for the Fourier map

The idea of the computer-assisted proof of existence of a spatial torus-knot choreography is

to demonstrate that a certain Newton-like operator is a contraction on a closed ball centered

at a numerical approximation x̄. To compute x̄, we consider a finite dimensional projection of

the Fourier map F : X × R→ Y. Given a number m ∈ N, and given a vector a = (a�)�∈Z ∈ �1ν ,
consider the projection

πm : �1ν → C
2m−1

a �→ πma
def
= (a�)|�|<m ∈ C

2m−1.

We generalize that projection to get πmN : (�1ν)
N → CN(2m−1) defined by

πmN
(

a(1), . . . , a(N)
) def
=
(

πma(1), . . . , πma(N)
)

∈ C
N(2m−1)

and Π(m) : X → C
2m(n+5)−3 defined by

Π
(m)x = Π

(m)(λ,α, u, v,w)
def
=
(

λ,α, πm3 u, π
m
3 v, π

m
n−1w

)

∈ C
2m(n+5)−3.
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Often, given x ∈ X, we denote

x(m)
def
=Π

(m)x ∈ C
2m(n+5)−3.

Moreover, we define the natural inclusion ιm : C2m−1 ↪→ �1ν as follows. For a = (a�)|�|<m ∈
C2m−1 let ιma ∈ �1ν be defined component-wise by

(ιma)� =

{

a�, |�| < m

0, |�| � m.

Similarly, let ιmN :CN(2m−1) ↪→ (�1ν)
N be the natural inclusion defined as follows. Given a =

(a(1), . . . , a(N)) ∈ (C2m−1)N ∼= CN(2m−1),

ιmNa
def
=
(

ιma(1), . . . , ιma(N)
)

∈ (�1ν)
N .

Finally, let the natural inclusion ι(m) : C2m(n+5)−3 ↪→ X be defined, for x ∈ C
2m(n+5)−3 as

ι
(m)x = ι

(m)(λ,α, u, v,w)
def
=
(

λ,α, ιm3 u, ι
m
3 v, ι

m
n−1w

)

∈ X.

Finally, let the finite dimensional projection F(m) :C2m(n+5)−3 → C2m(n+5)−3 of the Fourier map

be defined, for x ∈ C2m(n+5)−3, as

F(m)(x,ω) = Π
(m)F(ι(m)x,ω). (35)

Also denote F(m) =
(

η(m), γ(m), f (m), g(m), h(m)
)

.

Assume that, using Newton’s method, a numerical approximation x̄ ∈ C2m(n+5)−3 of (35)

has been obtained at a parameter (frequency) value ω, that is F(m)(x̄,ω) ≈ 0. We slightly abuse

the notation and denote x̄ ∈ C2m(n+5)−3 and ι(m) x̄ ∈ X both using x̄.

We nowfix anω0 ∈ R and consider themappingF : X→ Y defined byF(x) = F(x,ω0). The

following result is a Newton–Kantorovich theorem with a smoothing approximate inverse. It

provides an a posteriori validation method for proving rigorously the existence of a point x̃

such that F(x̃) = 0 and ‖x̃ − x̄‖X � r for a small radius r. Recalling the norm on X given in

(24), denote by

Br(y)
def
= {x ∈ X : ‖x − y‖X � r} ⊂ X

the ball of radius r centered at y ∈ X.

Theorem 8 (Radii polynomial approach). For x̄ ∈ X and r > 0 assume that F : X→ Y

is Fréchet differentiable on the ball Br(x̄). Consider bounded linear operators A
† ∈ B(X, Y)

and A ∈ B(Y,X), where A† is an approximation of DF(x̄) and A is an approximate inverse of
DF(x̄). Observe that

AF : X → X. (36)

Assume that A is injective. Let Y0, Z0, Z1, Z2 � 0 be bounds satisfying

‖AF(x̄)‖X � Y0, (37)

‖I − AA†‖B(X) � Z0, (38)

‖A[DF(x̄)− A†]‖B(X) � Z1, (39)
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‖A[DF(x̄+ b)− DF(x̄)]‖B(X) � Z2r, ∀ b ∈ Br(0). (40)

Define the radii polynomial

p(r)
def
= Z2r

2
+ (Z1 + Z0 − 1)r + Y0. (41)

If there exists 0 < r0 � r such that

p(r0) < 0, (42)

then there exists a unique x̃ ∈ Br0(x̄) such that F(x̃) = 0.

Proof. Details of the elementary proof are found in appendix A of [71]. The idea is to first

show that T(x)
def
= x − AF(x) satisfies T(Br0(x̄)) ⊂ Br0(x̄), and then to show the existence of

κ < 1 such that ‖T(x)− T(y)‖X � κ‖x − y‖X for all x, y ∈ Br0 (x̄). These facts follow from

the inequalities of equations (37)–(40), and from the hypothesis that p(r0) < 0. The proof then

follows from the contraction mapping theorem and the injectivity of A. �

The following corollary provides an additional useful byproduct.

Corollary 9 (Non-degeneracy at the true solution). Given the hypotheses of theorem

8, the linear operator ADF(x̃) is boundedly invertible with

‖[ADF(x̃)]−1‖B(X) �
1

1− (Z2r0 + Z1 + Z0)
.

Proof. From

p(r0) < 0,

we obtain

Z2r
2
0 + (Z1 + Z0)r0 + Y0 < r0,

or

Z2r0 + (Z1 + Z0)+
Y0

r0
< 1.

Since Y0 and r0 are both positive it follows that

Z2r0 + (Z1 + Z0) < 1.

Since x̃ ∈ Br0(x̄) we have that x̃ = x̄ + b for some b ∈ Br0(0), and by applying the inequalities

of equations (38)–(40) we have that

‖Id− ADF(x̃)‖B(X) � ‖A(DF(x̄+ b)− DF(x̄))‖+ ‖A(A† − DF(x̄))‖+ ‖Id− AA†‖
� Z2r0 + Z1 + Z0

< 1.

Then

ADF(x̃) = Id− (Id− ADF(x̃)) ,

329



Nonlinearity 34 (2021) 313 R Calleja et al

is invertible by the Neumann theorem and

‖[ADF(x̃)]−1‖ �
1

1− (Z2r0 + Z1 + Z0)
,

as desired. �

Returning to the parameter dependent problem, suppose that x̃ is a zero of F(x) = F(x,ω0)

and that ADF(x̃) = ADxF(x̃,ω0) is boundedly invertible as above. Notice that F(x,ω) is differ-
entiable with respect to ω near ω0. Define the mapping G(x,ω) = AF(x,ω) and observe that

G and F have the same zero set as A is injective. Observe also that DxG(x,ω) = ADxF(x,ω).
So (x̃,ω0) is a zero ofG with DxG(x̃,ω0) an isomorphism, it follows from the implicit function

theorem that G has a smooth branch of zeros through x̃. More precisely there exists an ε > 0

and a smooth function x : (ω0 − ε,ω0 + ε)→ X with x(ω0) = x̃ and

G(x(ω),ω) = 0,

for all ω ∈ (ω0 − ε,ω0 + ε). It follows again from the injectivity of A that F(x(ω),ω) = 0 for

all ω ∈ (ω0 − ε,ω0 + ε). Finally, as discussed in the introduction, we obtain that for any ratio-
nal number

√
s1p/q ∈ (ω0 − ε,ω0 + ε), the solution x(

√
s1p/q) produces spatial torus knot

choreography orbit near x̃. Taken together the results of this section show that our method pro-

duces the existence of countably many spatial torus knot choreographies as soon as theorem 8

succeeds at a given ω0.

3.1. Isolated solutions yield real periodic solutions

In this short section, we show how the output x̃ ∈ Br0(x̄) of theorem 8 (if any) yields a real

periodic solution, provided the numerical approximation is chosen to represent a real periodic

solution.

Define the operator σ : �1ν → �1ν by (σ(a))�
def
= a∗−�, for � ∈ Z, where z∗ denotes the complex

conjugate of z ∈ C. Define the symmetry subspace �1,realν ⊂ �1ν by

�1,realν
def
=
{

c ∈ �1ν : σ(c) = c
}

.

Note that if (u�)�∈Z ∈ �1,realν , then the function u(t)
def
=
∑

�∈Zu�e
i�t is a real 2π-periodic function.

Define the operator Σ : X→ X acting on x = (λ,α, u, v,w) ∈ X as

Σ(x) =
(

λ∗,α∗, σ(u1), σ(u2), σ(u3), σ(v1), σ(v2), σ(v3), σ(w1), . . . , σ(wn−1)
)

,

where λ∗ ∈ C3 and α∗ ∈ Cn−1 denote the component-wise complex conjugate of λ ∈ C3 and

α ∈ Cn−1, respectively. Define the subspace Xreal ⊂ X as

Xreal
def
= {x ∈ X : Σ(x) = x} . (43)

It follows by definition that Xreal = R
n+2 × (�1,realν )n+5.

Proposition 10. Fix a frequency ω > 0 and assume that the numerical approximation

denoted x̄ = (λ̄, ᾱ, ū, v̄, w̄) satisfies x̄ ∈ Xreal and that the reference solution ũ = (ũ1, ũ2, ũ3)

satisfies ũ ∈ (�1,realν )3. Assume that there exists a unique x ∈ Br(x̄) such that F(x,ω) = 0. Then

x ∈ Xreal.

Proof. Denote the solution x = (λ,α, u, v,w) ∈ Br(x̄). The proof is twofold: (1) show that

F(Σ(x),ω) = 0; and (2) show that Σ(x) ∈ Br(x̄). The conclusion Σ(x) = x (that is x ∈ Xreal)
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then follows by unicity of the solution. First, we have that F(Σ(x),ω) = Σ (F(x,ω)), since the
operator F corresponds to the complex extension of a real equation. Since F(x,ω) = 0, then

F(Σ(x),ω) = Σ (F(x,ω)) = Σ (0) = 0. Second, to prove that Σ(x) ∈ Br(x̄), it is sufficient to

realize that |z∗| = |z| and that given any c ∈ �1ν ,

‖σ(c)‖ν =
∑

�∈Z
|σ(c)�|ν |�| =

∑

�∈Z
|c∗−�|ν |�| =

∑

�∈Z
|c�|ν |�| = ‖c‖ν , (44)

which shows that for any ξ ∈ X, ‖Σ(ξ)‖X = ‖ξ‖X. Hence, since Σ(x̄) = x̄, we conclude that

‖Σ(x)− x̄‖X = ‖Σ(x)− Σ(x̄)‖X = ‖Σ(x − x̄)‖X = ‖x − x̄‖X � r. �

3.2. Definition of the operators A† and A

To apply the radii polynomial approach of theorem 8, we need to define the approximate

derivativeA† and the smoothing approximate inverseA. Consider the finite dimensional projec-

tion F(m) :C2m(n+5)−3 → C2m(n+5)−3 and assume that at a fixed frequency ω > 0 we computed

x̄ ∈ C2m(n+5)−3 such that F(m)(x̄,ω) ≈ 0. Denote byDF(m)(x̄,ω) ∈ M2m(n+5)−3(C) the Jacobian

matrix of F(m) at (x̄,ω). Given x ∈ X, define

A†x = ι
(m)

Π
(m)A†x + (I − ι

(m)
Π

(m))A†x, (45)

where Π(m)A†x = DF(m)(x̄,ω)x(m) and

(I − ι
(m)

Π
(m))A†x =

⎛

⎜

⎜

⎜

⎜

⎝

0

0

(I − ιm3 π
m
3 )Du

ω2(I − ιm3 π
m
3 )Dv

(I − ιmn−1π
m
n−1)Dw

⎞

⎟

⎟

⎟

⎟

⎠

.

Recalling the definition of the Banach space Y in (33), we can verify that the operator

A† : X → Y is a bounded linear operator, that is A† ∈ B(X, Y). For m large enough, it acts as

an approximation of the true Fréchet derivativeDxF(x̄,ω). Its action on the finite dimensional

projection is the Jacobian matrix (the derivative) of F(m) at (x̄,ω) while its action on the tail

keeps only keep the unbounded terms involving the differentiation D as defined in (27).

Consider now a matrix A(m) ∈ M2m(n+5)−3(C) computed so that A(m) ≈ DF(m)(x̄,ω)−1. In

other words, this means that ‖I − A(m)DF(m)(x̄,ω)‖ � 1. This step is performed using a

numerical software (MATLAB in our case). We decompose the matrix A(m) block-wise as

A(m)
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A
(m)
λ,λ A

(m)
λ,α A

(m)
λ,u A

(m)
λ,v A

(m)
λ,w

A
(m)
α,λ A(m)

α,α A(m)
α,u A(m)

α,v A(m)
α,w

A
(m)
u,λ A(m)

u,α A(m)
u,u A(m)

u,v A(m)
u,w

A
(m)
v,λ A(m)

v,α A(m)
v,u A(m)

v,v A(m)
v,w

A
(m)
w,λ A(m)

w,α A(m)
w,u A(m)

w,v A(m)
w,w

⎞

⎟

⎟

⎟

⎟

⎟

⎠

so that it acts on x(m) = (λ,α, u(m), v(m),w(m)) ∈ C2m(n+5)−3. Thus we define A as

A =

⎛

⎜

⎜

⎜

⎜

⎝

Aλ,λ Aλ,α Aλ,u Aλ,v Aλ,w

Aα,λ Aα,α Aα,u Aα,v Aα,w

Au,λ Au,α Au,u Au,v Au,w
Av,λ Av,α Av,u Av,v Av,w

Aw,λ Aw,α Aw,u Aw,v Aw,w

⎞

⎟

⎟

⎟

⎟

⎠

, (46)
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where the action of each block of A is finite (that is they act on x(m) = Π
(m)x only) except for

the three diagonal blocks Au,u, Av,v and Aw,w which have infinite tails. More explicitly, for each

p= 1, 2, 3,

((Au,uu)p)� =

⎧

⎨

⎩

(

(A(m)
u,uπ

m
3 u)p

)

�
for |�| < m,

1

i�
(up)� for |�| � m,

((Av,vv)p)� =

⎧

⎨

⎩

(

(A(m)
v,vπ

m
3 v)p

)

�
for |�| < m,

1

i�ω2
(vp)� for |�| � m,

and for each j = 1, . . . , n− 1,

((Aw,ww) j)� =

⎧

⎨

⎩

(

(A(m)
w,wπ

m
n−1w) j

)

�
for |�| < m,

1

i�
(w j)� for |�| � m.

Having defined the operators A and A†, we are ready to define the bounds Y0, Z0, Z1 and Z2

(satisfying (37)–(40), respectively), required to build the radii polynomial defined on (41).

4. The technical estimates for the Fourier map

In this section, we introduce explicit formulas for the theoretical bounds (37)–(40). While

most of the work is analytical, the actual definition of the bounds still requires computing and

verifying inequalities. In particular, there aremanyoccasions in which themost practicalmeans

of obtaining necessary explicit inequalities is by using the computer. However, as floating point

arithmetic is only capable of representing a finite set of rational numbers, round off errors in

the computation of the bounds can be dealt with by using interval arithmetic [72] where real

numbers are represented by intervals bounded by rational numbers that have floating point

representation. Furthermore, there is software that performs interval arithmetic (e.g. INTLAB

[73]) which we use for completing our computer-assisted proofs. With this in mind, in this

section, when using phrases of the form we can compute the following bounds, this should be

interpreted as shorthand for the statement using the interval arithmetic software INTLAB we

can compute the following bounds.

4.1. Y0 bound

Denote the numerical approximation x̄ = (λ̄, ᾱ, ū, v̄, w̄) ∈ X with ū = (ū1, ū2, ū3) ∈ (�1ν)
3, v̄ =

(v̄1, v̄2, v̄3) ∈ (�1ν)
3 and w̄ = (w̄1, . . . , w̄n−1) ∈ (�1ν)

n−1. Recalling (29)–(31), one has that

(I − ιm3 π
m
3 ) f (ū, v̄) = 0 ∈ (�1ν)

3

(I − ι4m−4
3 π4m−4

3 )g(λ̄, ū, v̄, w̄,ω) = 0 ∈ (�1ν)
3

(I − ι5m−5
n−1 π5m−5

n−1 )h(ᾱ, ū, v̄, w̄) = 0 ∈ (�1ν)
n−1,

since the product of p trigonometric functions of degree m− 1 is a trigonometric function of

degree p(m− 1). For instance, recalling (30), the highest degree terms in g(λ̄, ū, v̄, w̄,ω) are
of the form (M jū) ∗ w̄3

j which are convolutions of degree four, and therefore have zero Fourier
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coefficients for all frequencies � such that |�| > 4m− 4. This implies that F(x̄,ω) has only a

finite number of nonzero terms. Hence, we can compute Y0 satisfying (37).

4.2. Z0 bound

Let B
def
= I − AA†, which we denote block-wise by

B =

⎛

⎜

⎜

⎜

⎜

⎝

Bλ,λ Bλ,α Bλ,u Bλ,v Bλ,w

Bα,λ Bα,α Bα,u Bα,v Bα,w

Bu,λ Bu,α Bu,u Bu,v Bu,w
Bv,λ Bv,α Bv,u Bv,v Bv,w

Bw,λ Bw,α Bw,u Bw,v Bw,w

⎞

⎟

⎟

⎟

⎟

⎠

.

Note that by definition of the diagonal tails of A and A†, the tails of B vanish, that is all Bδ,δ̃

(δ, ∈̃{u, v,w}) are represented by 2m− 1× 2m− 1 matrices. We can compute the bound

Z
(δ)
0

def
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

δ̃∈{λ1,λ2,λ3,
α1,...,αn−1}

∣

∣

∣
Bδ,δ̃

∣

∣

∣
+

∑

δ̃∈{u1,u2,u3,v1,
v2,v3,w1,...,wn−1}

max
|�|<m

∣

∣

∣

(

Bδ,δ̃

)

�

∣

∣

∣

ν |�|
,

δ ∈ {λ1,λ2,λ3,

α1, . . . ,αn−1},

∑

δ̃∈{λ1,λ2,λ3,
α1,...,αn−1}

∑

|�|<m

∣

∣

∣

(

Bδ,δ̃

)

�

∣

∣

∣
ν |�| +

∑

δ̃∈{u1,u2,u3,v1,
v2,v3,w1,...,wn−1}

max
|s|<m

1

ν |s|

∑

|�|<m

∣

∣

∣

∣

(

Bδ,δ̃

)

�,s

∣

∣

∣

∣

ν |�|,
δ ∈ { u1 ,u2,u3,

v1,v2 ,v3,

w1, . . . ,wn−1}.

By construction, letting

Z0
def
= max

δ∈{λ1,λ2,λ3,
α1,...,αn−1,
u1,u2,u3,
v1,v2,v3,
w1,...,wn−1}

{

Z
(δ)
0

}

, (47)

we get that

‖I − AA†‖B(X) � Z0.

4.3. Z1 bound

Recall from (39) that the Z1 bound satisfy

‖A[DxF(x̄,ω)− A†]‖B(X) � Z1.

For the computation of this bound, it is convenient to define, given any h ∈ B1(0) ∈ X

z = z(h)
def
= [DxF(x̄,ω)− A†]h. (48)

Denote

h = (hλ, hα, hu, hv, hw) ∈ C
3 × C

n−1 × (�1ν)
3 × (�1ν)

3 × (�1ν)
n−1,

z = (zλ, zα, zu, zv , zw) ∈ C
3 × C

n−1 × (�̃1ν)
3 × (�̃1ν)

3 × (�̃1ν)
n−1.

The construction of Z1 hence requires computing an upper bound for ‖Az‖X for all h ∈
B1(0) ∈ X. This is done by splitting Az as
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Az = ι
(m)

Π
(m)Az+ (I − ι

(m)
Π

(m))Az = ι
(m)A(m)z(m) +

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0

0

(I − ιm3 π
m
3 )D

−1zu
1

ω2
(I − ιm3 π

m
3 )D

−1zv

(I − ιmn−1π
m
n−1)D

−1zw

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(49)

and by handling each term separately.

Remark 11. We choose the Galerkin projection number m greater than the number m1

of nonzero Fourier coefficients of the previous orbit (ũ1, ũ2, ũ3). Then zλ = 0 ∈ C3. This is

because the phase conditions η(u) defined in (25) only depend on the modes of the finite

dimensional approximation and therefore A† contains all contribution from Dη(ū)h.

As Π(m)Az = A(m)z(m), we compute a uniform component-wise upper bound

ẑ(m) =
(

0, ẑα, ẑ
(m)
u , ẑ(m)v , ẑ(m)w

)

∈ R
2m(n+5)−3
+

for the complex modulus of each component of

Π
(m)z = z(m) =

(

0, zα, z
(m)
u , z(m)v , z(m)w

)

∈ C
2m(n+5)−3.

The computation of the bounds ẑα, ẑ
(m)
u , ẑ(m)v and ẑ(m)w is done in sections 4.3.1–4.3.4, respec-

tively. Using these uniform bounds (i.e. for all h ∈ B1(0)), let

ξ(m) =
(

ξ(m)λ , ξ(m)α , ξ(m)u , ξ(m)v , ξ(m)w

)

def
= |A(m) |̂z(m) ∈ R

2m(n+5)−3
+ , (50)

where the entries of thematrix |A(m)| are the component-wisecomplexmagnitudes of the entries

of A(m). By construction, the bound ξ(m) of (50) provides a uniform component-wise upper

bound for the first term ι
(m)Π

(m)Az of the splitting (49) of Az. To handle the second term (I −
ι
(m)Π

(m))Az of (49), we compute the uniform (i.e. for all h ∈ B1(0)) tail bounds (δu)p, (δv)p (for
p= 1, 2, 3) and (δw) j (for j = 1, . . . , n− 1) satisfying

∑

|�|�m

∣

∣

∣

∣

1

i�
((zu)p)�

∣

∣

∣

∣

ν |�| � (δu)p, p= 1, 2, 3

∑

|�|�m

∣

∣

∣

∣

1

i�ω2
((zv)p)�

∣

∣

∣

∣

ν |�| � (δv)p, p= 1, 2, 3

∑

|�|�m

∣

∣

∣

∣

1

i�
((zw) j)�

∣

∣

∣

∣

ν |�| � (δw) j, j = 1, . . . , n− 1.

The computation of the bounds δu, δv and δw is presented in sections 4.3.2–4.3.4, respectively.

Combining the above bounds, we get that

‖Az‖X � Z1
def
= max

{

|ξ(m)λ |∞, |ξ(m)α |∞, max
p=1,2,3

(

‖ιm(ξ(m)u )p‖ν + (δu)p
)

,

max
p=1,2,3

(

‖ιm(ξ(m)v )p‖ν + (δv)p
)

, max
j=1,...,n−1

(

‖ιm(ξ(m)w ) j‖ν + (δw) j
)

}

. (51)
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4.3.1. Computation of the bound ẑα. Recalling (48) and the definition of A† in (45), one can

verify that for any j = 1, . . . , n− 1,

(zα) j = 2

(

∑

�∈Z
(w̄ j)�

)

⎡

⎣

3
∑

p=1

(

∑

�∈Z
(M j�ū�)p

)2
⎤

⎦

⎛

⎝

∑

|�|�m

((hu) j)�

⎞

⎠

+ 2

(

∑

�∈Z
(w̄ j)�

)2
⎡

⎣

3
∑

p=1

(

∑

�∈Z
(M j�ū�)p

)

⎛

⎝

∑

|�|�m

(M j�(hu)�)p

⎞

⎠

⎤

⎦ .

Straightforward calculations (e.g. using lemma 2.1 in [35]) involving bounding linear func-

tionals on �1ν and using that (hu)p ∈ B1(0) ⊂ �1ν for p= 1, 2, 3 yield that

∣

∣

∣

∣

∣

∣

∑

|�|�m

((hu) j)�

∣

∣

∣

∣

∣

∣

�
1

νm
,

∣

∣

∣

∣

∣

∣

∑

|�|�m

(M j�(hu)�)p

∣

∣

∣

∣

∣

∣

�
ip

νm
, ip

def
=

{

3, p= 1, 2

2, p= 3.

We therefore get the component-wise bound (given j = 1, . . . , n− 1)

|(zα) j| � (̂zα) j
def
=

2

νm

⎡

⎣

(

∑

�∈Z
(w̄ j)�

)

3
∑

p=1

(

∑

�∈Z
(M j�ū�)p

)2

+

(

∑

�∈Z
(w̄ j)�

)2 3
∑

p=1

(

∑

�∈Z
(M j�ū�)p

)

ip

⎤

⎦ . (52)

4.3.2. Computation of the bounds ẑ
(m)
u and δu. From (45) and (48), on can verify that for each

p= 1, 2, 3,

((zu)p)� =

{

0, |�| < m

−((hu)p)�, |�| � m.

Hence, since zu only has a tail and since the blocks Aλ,u, Aα,u, Av,u and Aw,u only acts on the

finite part, then Aδ,uzu = 0 for δ = λ,α, v,w and for p= 1, 2, 3

((Au,uzu)p)� = − 1

i�
((hu)p)�.

Now,

∑

|�|�m

∣

∣

∣

∣

− 1

i�
((hu)p)�

∣

∣

∣

∣

ν |�| �
1

m

∑

|�|�m

|((hu)p)�| ν |�| �
1

m
‖(hu)p‖ν �

1

m
.

We can then set

ẑ(m)u

def
= 0 ∈ R

3(2m−1) (53)

(δu)p
def
=

1

m
, p= 1, 2, 3. (54)
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4.3.3. Computation of the bound ẑ
(m)
v and δv. The following technical lemma (which is a

slight modification of corollary 3 in [35]) is the key to the truncation error analysis of ẑ(m)v and

ẑ(m)w .

Lemma 12. Fix a truncation Fourier mode to be m. Given h ∈ �1ν , set

h(I)
def
= (I − ιmπm)h = (. . . , h−m−1, h−m, 0, . . . , 0, hm, hm+1, . . .) ∈ �1ν.

Let N ∈ N and let ᾱ = (. . . , 0, 0, ᾱ−N , . . . , ᾱN , 0, 0, . . .) ∈ �1ν . Then, for all h ∈ �1ν such that
‖h‖ν � 1, and for |�| < m,

∣

∣(ᾱ ∗ h(I))�
∣

∣ � Ψ�(ᾱ)
def
= max

(

max
�−N�s�−m

|ᾱ�−s|
ν |s|

, max
m�s��+N

|ᾱ�−s|
ν |s|

)

. (55)

Now, from (45) and (48), on can verify that for each p = 1, 2, 3,

((zv)p)� =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎛

⎝

n−1
∑

j=1

(M jh
(I)
u )p ∗ w̄3

j + 3(M jū)p ∗ w̄2
j ∗ h(I)w j

⎞

⎠

�

, |�| < m

(

(

2ω
√
s1J̄hv − s1 Īhu + (hλ)1J̄ū+ λ̄1J̄hu + λ̄2hv + (hλ)2v̄

)

p

)

�

+

⎛

⎝

n−1
∑

j=1

(M jhu)p ∗ w̄3
j + 3(M jū)p ∗ w̄2

j ∗ hw j

⎞

⎠

�

, |�| � m.

Using lemma 12, we obtain that for |�| < m and p = 1, 2, 3,

∣

∣((z(m)v )p)�
∣

∣ �
(

(̂z(m)v )p
)

�

def
=

n−1
∑

j=1

ipΨ�(w̄
3
j)+ 3Ψ�((M jū)p ∗ w̄2

j), (56)

which provides a component-wise definition of the vector ẑ(m)v ∈ R
3(2m−1)
+ . Finally, one can

verify using the fact that �1ν is a Banach algebra, that

∑

|�|�m

∣

∣

∣

∣

1

i�ω2
((zv)1)�

∣

∣

∣

∣

ν |�| � (δv)1
def
=

1

mω2

⎛

⎝2ω
√
s1 + s1 + ‖ū2‖ν + |λ̄1|+ |λ̄2|+ ‖v̄1‖ν

+ 3

n−1
∑

j=1

‖w̄ j‖3ν + ‖(M jū)1‖ν‖w̄ j‖2ν

⎞

⎠ (57)

∑

|�|�m

∣

∣

∣

∣

1

i�ω2
((zv)2)�

∣

∣

∣

∣

ν |�| � (δv)2
def
=

1

mω2

⎛

⎝2ω
√
s1 + s1 + ‖ū1‖ν + |λ̄1|+ |λ̄2|+ ‖v̄2‖ν

+ 3

n−1
∑

j=1

‖w̄ j‖3ν + ‖(M jū)2‖ν‖w̄ j‖2ν

⎞

⎠ (58)

∑

|�|�m

∣

∣

∣

∣

1

i�ω2
((zv)3)�

∣

∣

∣

∣

ν |�| � (δv)3
def
=

1

mω2

⎛

⎝|λ̄2|+ ‖v̄3‖ν +
n−1
∑

j=1

2‖w̄ j‖3ν + 3‖(M jū)3‖ν‖w̄ j‖2ν

⎞

⎠

(59)
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4.3.4. Computation of the bound ẑ
(m)
w and δw. From (45) and (48), on can verify that for each

j = 1, . . . , n− 1,

((zw) j)� =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

3ᾱ jw̄
2
j ∗ h(I)w j

)

�

+

⎛

⎝

3
∑

p=1

3w̄2
j ∗ h(I)w j

∗ (M jū)p ∗ (M jv̄)p + w̄3
j ∗

(

(M jh
(I)
u )p ∗ (M jv̄)p + (M jū)p ∗ (M jh

(I)
v )p

)

⎞

⎠

�

, |�| < m

(

hα j
w̄3
j + 3ᾱ jw̄

2
j ∗ hw j

)

�

+

⎛

⎝

3
∑

p=1

3w̄2
j ∗ hw j

∗ (M jū)p ∗ (M jv̄)p + w̄3
j ∗

(

(M jhu)p ∗ (M jv̄)p + (M jū)p ∗ (M jhv)p
)

⎞

⎠

�

, |�| � m.

Using lemma 12, we obtain that for |�| < m and j = 1, . . . , n− 1,

∣

∣((z(m)w ) j)�
∣

∣ �
(

(̂z(m)w )p
)

�

def
= 3|ᾱ j|Ψ�(w̄

2
j)+

3
∑

p=1

3Ψ�(w̄
2
j ∗ (M jū)p ∗ (M jv̄)p)

+

3
∑

p=1

ipΨ�(w̄
3
j ∗ (M jv̄)p)+ ipΨ�(w̄

3
j ∗ (M jū)p). (60)

Moreover, for j = 1, . . . , n− 1,

∑

|�|�m

∣

∣

∣

∣

1

i�
(((zw) j)�

∣

∣

∣

∣

ν |�| � (δw) j
def
=

1

m

⎛

⎝‖w̄ j‖3ν + 3|ᾱ j|‖w̄ j‖2ν +
3
∑

p=1

3‖w̄ j‖2ν‖(M jū)p‖ν‖(M jv̄)p‖ν

+

3
∑

p=1

ip‖w̄ j‖3ν(‖(M jū)p‖ν + ‖(M jv̄)p‖ν)

⎞

⎠ . (61)

Combining (52), (53), (56) and (60), we define the uniform bound ẑ(m) which is then used

to compute ξ(m) in (50). Moreover, combining (54), (57)–(59) and (61) provides the explicit

bounds δu, δv and δw. All of these uniform bounds combined are finally used to compute the

bound Z1 in (51) which by construction satisfy (39).

4.4. Z2 bound

Recall that we look for a bound Z2 satisfying (40). Consider Z2 satisfying

‖A‖B(X) sup
ξ∈Br (̄x)

h(1),h(2)∈B1(0)

‖D2
xF(ξ,ω)(h

(1), h(2))‖X � Z2.

Then, for any b ∈ Br(0), applying the mean value inequality yields

‖A[DxF(x̄ + b,ω)− DxF(x̄,ω)]‖B(X) � r sup
ξ∈Br (̄x)

h(1),h(2)∈B1(0)

‖AD2
xF(ξ,ω)

(

h(1), h(2)
)

‖X � Z2r.

Given ξ ∈ Br(x̄) and h
(1), h(2) ∈ B1(0), we aim at bounding ‖D2

xF(ξ,ω)(h
(1), h(2))‖X. Let

z
def
= D2

xF(ξ,ω)
(

h(1), h(2)
)

,
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which we denote by z = (zλ, zα, zu, zv , zw) = (0, zα, 0, zv , zw), where zλ and zu are both zero

since η and f are linear. Denote

h(i) =
(

h
(i)
λ , h

(i)
α , h

(i)
u , h

(i)
v , h

(i)
w

)

, i = 1, 2 ξ= (ξλ, ξα, ξu, ξv , ξw) .

Then, for j = 1, . . . , n− 1,

(zα) j = 2

[

∑

�∈Z

(

h(2)w j

)

�

][

∑

�∈Z

(

h(1)w j

)

�

]

3
∑

p=1

(

∑

�∈Z
(M j�(ξu)�)p

)2

+ 4

[

∑

�∈Z

(

ξw j

)

�

][

∑

�∈Z

(

h(1)w j

)

�

]

3
∑

p=1

(

∑

�∈Z
(M j�(ξu)�)p

)

×
(

∑

�∈Z
(M j�(h

(2)
u )�)p

)

+ 4

[

∑

�∈Z

(

ξw j

)

�

][

∑

�∈Z

(

h(2)w j

)

�

]

3
∑

p=1

×
(

∑

�∈Z
(M j�(ξu)�)p

)(

∑

�∈Z
(M j�(h

(1)
u )�)p

)

+ 2

(

∑

�∈Z

(

ξw j

)

�

)2

×
3
∑

p=1

(

∑

�∈Z
(M j�(h

(2)
u )�)p

)(

∑

�∈Z
(M j�(h

(1)
u )�)p

)

.

Consider r∗ > 0 such that r � r∗. For j = 1, . . . , n− 1 and i = 1, 2,
∣

∣

∣

∣

∣

∑

�∈Z

(

h(i)w j

)

�

∣

∣

∣

∣

∣

�
∑

�∈Z

∣

∣

∣

(

h(i)w j

)

�

∣

∣

∣ ν |�| = ‖h(i)w j
‖ν � 1

∣

∣

∣

∣

∣

∑

�∈Z

(

ξw j

)

�

∣

∣

∣

∣

∣

� ‖ξw j
‖ν � ‖w̄ j‖ν + r � ŵ j

def
= ‖w̄ j‖ν + r∗

∣

∣

∣

∣

∣

∑

�∈Z
(M j�(ξu)�)p

∣

∣

∣

∣

∣

� δ̂p(u)
def
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2‖ū1‖ν + ‖ū2‖ν + 3r∗, p= 1

‖ū1‖ν + 2‖ū2‖ν + 3r∗, p= 2

2‖ū3‖ν + 2r∗, p= 3

∣

∣

∣

∣

∣

∑

�∈Z
(M j�(h

(i)
u )�)p

∣

∣

∣

∣

∣

� ip.

Then, for j = 1, . . . , n− 1,

|(zα) j| � (̂zα) j
def
= 2

3
∑

p=1

δ̂p(u)
2
+ 4ŵ jipδ̂p(u)+ ŵ2

j i
2
p. (62)

One verifies that

zv = h
(1)
λ1
J̄h(2)u + h

(2)
λ1
J̄h(1)u + h

(1)
λ2
h(2)v + h

(2)
λ2
h(1)v

+ 3

n−1
∑

j=1

(M jh
(1)
u ) ∗ (ξw j

)2 ∗ h(2)w j
+ (M jh

(2)
u ) ∗ (ξw j

)2 ∗ h(1)w j
+ 2(M jξu) ∗ ξw j

∗ h(2)w j
∗ h(1)w j

,

338



Nonlinearity 34 (2021) 313 R Calleja et al

and hence using the Banach algebra structure of �1ν , we get that (for p = 1, 2, 3)

‖(zv)p‖ν � (̂zv)p
def
= 4+ 6

n−1
∑

j=1

ipŵ
2
j + δ̂p(u)ŵ j. (63)

For j = 1, . . . , n− 1,

zw j
= 6ξw j

∗ h(2)w j
∗ h(1)w j

∗
3
∑

p=1

(M jξu)p ∗ (M jξv)p

+ 3(ξw j
)2 ∗ h(1)w j

∗
3
∑

p=1

(

(M jh
(2)
u )p ∗ (M jξv)p + (M jξu)p ∗ (M jh

(2)
v )p
)

+ 3(ξw j
)2 ∗ h(2)w j

∗
3
∑

p=1

(

(M jh
(1)
u )p ∗ (M jξv)p + (M jξu)p ∗ (M jh

(1)
v )p
)

+ (ξw j
)3 ∗

3
∑

p=1

(

(M jh
(1)
u )p ∗ (M jh

(2)
v )p + (M jh

(2)
u )p ∗ (M jh

(1)
v )p
)

+ 3h(1)α j
(ξw j

)2 ∗ h(2)w j
+ 3h(2)α j

(ξw j
)2 ∗ h(1)w j

+ 6ξα j
ξw j

∗ h(2)w j
∗ h(1)w j

,

and hence,

‖zw j
‖ν � ẑw j

def
= 2ŵ j

3
∑

p=1

(

3δ̂p(u)δ̂p(v)+ 3ŵ jip(δ̂p(u)+ δ̂p(v))+ ŵ ji
2
p

)

+ 6ŵ j(ŵ j + |ᾱ j|+ r∗). (64)

Combining (62)–(64), set

Z2
def
= ‖A‖B(X) max

j=1,...,n−1
p=1,2,3

{(̂zα) j, (̂zv)p, ẑw j
} (65)

and therefore, for all b ∈ Br(0),

‖A[DxF(x̄ + b,ω)− DxF(x̄,ω)]‖B(X) � Z2r.

5. Results

In this section, we present several computer-assisted proofs of existence of spatial torus-knot

choreographies. First fix the number of bodies n, a prescribed symmetry (7) (determined by the

integer k), a resonance (p, q), the frequency ω given in (4), and a Galerkin projection number

m. Then compute a real numerical approximation x̄ ∈ Xreal of the finite dimensional projec-

tion F(m) defined in (35), where Xreal is defined in (43). Define the operators A† and A as in

section 3.2. Since the tail of the diagonal blocks of the approximate inverseA (which is defined

in (46)) involves the operatorD−1, we can easily show (using that �1ν is a Banach algebra under
discrete convolutions) that the hypothesis (36) of theorem 8 holds, that is AF : X × R→ X.

Having described how to compute the bounds Y0 in section 4.1, Z0 in (47), Z1 in (51) and Z2 in
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(65), we have all the ingredients to compute the radii polynomial defined in (41). The proof of

existence then reduces to verify rigorously the hypothesis (42) of theorem 8. This is done with

a computer program in MATLAB implemented with the interval arithmetic package INTLAB,

and available at [70]. All computations are performed with 16 decimal digits’ precision.

Let us present in details the computer-assisted proof resulting in the constructive existence

of the torus-knot choreography of figure 2.

Theorem 13. Fix n = 5 and consider the symmetry (7)with k = 3. Let (p, q) = (3, 1) be the

resonance. Let s1 =
1
4

∑4
j=1

1
sin( jπ/5) be given by (1) and the frequency ω = 3

√
s1 be as in (4).

Fix the Galerkin projection number m = 25 and the decay rate parameter ν = 1.03. Consider
the numerical approximation

ū(t) =
∑

|�|<25

((ū1)�, (ū2)�, (ū3)�) e
i�t, (ū j)−� =

(

(ū j)�
)∗,

where the real and the imaginary part of the Fourier coefficients (ū j)� can be found in the

appendix A in table 1. Then there exist sequences ũ1, ũ2, ũ3 ∈ �1ν such that

ũ(t)
def
=
∑

�∈Z
((ũ1)�, (ũ2)�, (ũ3)�) e

i�t, (ũ j)−� =
(

(ũ j)�
)∗ (66)

with

‖ū j − ũ j‖C2 � 4.7× 10−10, for each j = 1, 2, 3,

and such that G(ũ,ω) = 0, with G defined in (8). Then {Q j}5j=1 defined in the inertial frame

by

Q5(t)
def
= etJ̄/3ũ(t), Q j(t)

def
= Q5(t + 3 jζ), j = 1, 2, 3, 4 (67)

is a (renormalized) 6π-periodic choreography that is symmetric by 2π/3-rotations. Moreover,
there exist countably many choreographies with frequencies near ω = 3

√
s1.

Proof. First denote by x̄ = (λ̄, ᾱ, ū, v̄, w̄) ∈ C2m(n+5)−3 = C497 a numerical approximation

of the finite dimensional reduction F(497) : C497 → C497 defined in (35). The approximation

satisfies x̄ ∈ Xreal and can be found in the file pt_five_bodies.mat available at [70].

Note that ū ∈ C3(2m−1) = C147 is recovered from the coefficients in table 1 of the appendix A.

Fix ν = 1.03. The MATLAB computer program proof_five_bodies.m available at [70]

computesY0 as in section 4.1, Z0 in (47),Z1 in (51) andZ2 in (65), and verifies rigorously (using

INTLAB) the hypothesis (42) of theorem 8 with r0 = 4.7× 10−10. Combining theorem 8 and

proposition 10, there exists x̃ = (λ̃, α̃, ũ, ṽ, w̃) ∈ Xreal such that F(x̃,ω) = 0 and ‖x̃ − x̄‖X �

r0 = 4.7× 10−10. Hence, for a given j ∈ {1, 2, 3},

‖ũ j − ū j‖C2 = ‖ũ j − ū j‖ν � ‖x̃ − x̄‖X � r0 = 4.7× 10−10.

By construction of the Fourier map F introduced in section 2.4, the solution x̃ yields a 2π-
periodic solution (ũ, ṽ, w̃) of the delay equations (17)–(19), which also satisfies the extra

condition (20). By proposition 6, ũ satisfies G(ũ,ω) = 0. The result follows from proposition

3. The existence of countably many choreographies with frequencies near ω = 3
√
s1 follows

from corollary 9 and the discussion thereafter. �

In the two left subfigures of figure 3, we can visualize (in red) the 2π-periodic solution ũ
satisfying the reduced delay equation (5). The initial condition ũ(0) = (x0, y0, z0) of that red
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Figure 3. Example result: a choreography in the axial family for the five body problem
(n = 5) with k = 3 and resonance p : q = 3 : 1. Curves from left to right have the same
meaning as described in the caption of figure 4. Due to the nontrivial winding of the red
curve around the z axis, the choreography is a (nontrivial) (3, 2)-torus knot: the trefoil
knot mentioned in the introduction. See also remark 14.

orbit can be found in table 2 of the appendix A. This orbit is in the rotating frame. Still in the

rotating frame, the position of the other bodies (in blue) can be recovered via the symmetry (7).

In the two right subfigures of figure 3, we can visualize the position of the bodies Q1, . . . ,Q5,

which are now in the inertial frame. Since 3 and 5 are relative prime, the factor 3 in the equality

Q j(t) = Qn(t + 3 jζ) is just a re-ordering of the numbering of the bodies j = 1, 2, 3, 4.

Remark 14 (Resonance numbers versus torus winding). When un(t) is a p : q res-

onant orbit in the axial family with zero winding with respect to the z-axis, the choreography

Qn(t) is a (p, q)-torus knot. See corollary 4. In this case the resonance order p : q in our func-

tional analytic set-up corresponds exactly to the windings in the definition of a (p, q)-torus

knot.

If on the other hand un(t) has winding number one with respect to the z-axis—as in the case

of the orbit ũ(t) in figure 3 (see the far left frame of that figure)—then the choreographyQn(t)

(whose normalized period is 6π) has toroidal winding in the second component one more than

the q value of the resonance. So even though the choreography illustrated in figure 3 is reso-

nant with order p= 3 and q = 1, the corresponding choreography is a (3, 2)-torus knot after

taking into account the non-trivial winding about the z-axis. We conclude that the choreogra-

phy—illustrated in the center right and far right frames of figure 3—is a (3, 2)-torus knot: that

is, a trefoil knot.

Following exactly the same approach as in theorem 13, we prove the existence of sev-

eral choreographies for n = 4, n = 7 and n = 9 bodies. Results from several of our proofs

are illustrated in figures 4, 5, and 6 for four, seven, and nine bodies respectively. The

computer-assisted proofs are obtained by running the codes proofs_four_bodies.m,

proofs_seven_bodies.m and proofs_nine_bodies.m. The approximations can

be found in the data files pts_four_bodies.mat, pts_seven_bodies.mat and

pts_nine_bodies.mat. All files are available at [70]. In table 2 of the appendix A, the

initial conditions ũ(0) = (x0, y0, z0) for the nth body of each proven choreography is available.

In table 3 of the appendix A, some data for the proofs are given. For each of these proofs,

the existence of countably many choreographies with near frequencies follows from corollary

9 and the discussion thereafter. The reader interested in reproducing the choreographies via

numerical integration will find at [70] the data files containing initial conditions—in inertial

coordinates—for each of the 4, 7, and 9 body choreographies illustrated in the figures.
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Figure 4. Example result: a choreography in the axial family for the four body problem
(n = 4) with k = 2 and resonance p : q = 14 : 9. The bodies are shown green. The orbit
in the rotating frame is illustrated by the left two curves. Far left is top down view of the
orbit projected into the xy plane. Second from left is a spatial projection, that is a side
view of the torus. The red loop is the segment whose existence is proven by studying
the DDE. The remaining three loops are obtained by symmetry. Since the red curve
has trivial winding with respect to the z-axis, the choreography is a (14, 9)-torus knot. In
particular, since p, q �= ±1 the knot is nontrivial inR3. The right two curves are the same
orbit transformed back to inertial coordinates so that we see the torus knot choreography.
The center right frame is a top down view and the far right is a spatial projection of the
choreography.

Figure 5. Example result: a choreography in the axial family for the seven body problem
(n = 7) with k = 2 and resonance p : q = 15 : 11. Curves from left to right have the same
meaning as described in the caption of figure 4. Since the red curve has trivial winding
with respect to the z-axis, the choreography is a (15, 11)-torus knot. In particular, since
p, q �= ±1 the knot is nontrivial.

Figure 6. Example result: a choreography along the Lyapunov branch for the nine body
problem (n = 9) with k = 7 and resonance p : q = 10 : 13. Curves from left to right
have the same meaning as described in the caption of figure 4. In this case the solution
occurs before the bifurcation to the axial family, hence the orbit shown here is not a
torus knot. Rather, the choreography resembles a spatial Lissajous figure and illustrates
the complexity of the vertical Lyapunov family as the number of bodies increases.
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Appendix A

Tables A1–3 in this appendix contain numerical data needed in the proofs discussed in the

main body of the present work.
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Table A1. Fourier coefficients of the trefoil choreography of theorem 13.

� Re((u1)�) Im((u1)�) Re((u2)�) Im((u2)�) Re((u3)�) Im((u3)�)

0 2.365 605 595 111 259 × 10−1 0 −2.586 486 484 802 218 × 10−11 0 0 0

1 2.730 238 208 518 935 × 10−1 −8.574 371 389 918 268 × 10−4 9.594 366 126 621 117 × 10−4 3.055 023 346 756 821 × 10−1 3.183 998 216 275 582 × 10−4 1.013 843 797 046 923 × 10−1

2 2.685 276 027 891 537 × 10−3 −1.686 650 070 612 183 × 10−5 −1.686 650 070 615 572 × 10−5 −2.685 276 027 891 251 × 10−3 −1.623 160 460 830 562 × 10−4 −2.584 195 753 881 417 × 10−2

3 −4.758 502 906 990 690 × 10−3 4.483 372 035 078 380 × 10−5 −4.483 372 035 075 908 × 10−5 −4.758 502 906 990 715 × 10−3 6.528 204 100 190 321 × 10−5 6.928 820 000 785 788 × 10−3

4 1.883 378 890 295 841 × 10−3 −2.366 033 392 747 678 × 10−5 3.143 172 370 973 051 × 10−5 2.501 986 861 440 681 × 10−3 −1.766 651 472 817 732 × 10−5 −1.406 266 734 076 041 × 10−3

5 −5.999 006 965 280 112 × 10−4 9.420 748 338 183 218 × 10−6 −1.393 289 282 442 757 × 10−5 −8.872 280 378 635 012 × 10−4 6.028 392 369 542 407 × 10−18 −5.065 555 035 359 391 × 10−18

6 8.811 248 455 572 393 × 10−5 −1.660 505 953 485 738 × 10−6 3.309 334 986 825 996 × 10−6 1.756 053 477 440 146 × 10−4 2.212 344 038 166 846 × 10−6 1.173 950 188 081 502 × 10−4

7 8.498 774 137 771 074 × 10−6 −1.868 635 687 922 962 × 10−7 −1.868 635 687 932 195 × 10−7 −8.498 774 137 767 349 × 10−6 −1.286 693 928 996 992 × 10−6 −5.852 034 835 941 615 × 10−5

8 −1.218 752 697 705 919 × 10−5 3.062 649 564 066 910 × 10−7 −3.062 649 564 072 555 × 10−7 −1.218 752 697 706 007 × 10−5 4.623 904 740 337 318 × 10−7 1.840 039 558 482 767 × 10−5

9 5.555 183 124 075 654 × 10−6 −1.570 568 558 997 190 × 10−7 1.997 034 024 758 708 × 10−7 7.063 613 764 706 126 × 10−6 −9.561 467 803 603 867 × 10−8 −3.381 941 146 020 149 × 10−6

10 −1.507 114 521 228 540 × 10−6 4.734 666 605 843 514 × 10−8 −7.071 044 766 269 389 × 10−8 −2.250 818 294 936 407 × 10−6 3.032 901 443 588 402 × 10−19 1.295 911 152 109 998 × 10−19

11 2.335 200 664 238 406 × 10−7 −8.070 306 668 417 385 × 10−9 1.593 213 943 378 485 × 10−8 4.610 077 899 825 280 × 10−7 1.073 253 754 609 784 × 10−8 3.105 536 094 276 917 × 10−7

12 2.104 244 568 410 417 × 10−8 −7.933 840 614 338 345 × 10−10 −7.933 840 610 780 110 × 10−10 −2.104 244 568 485 882 × 10−8 −5.811 254 007 216 032 × 10−9 −1.541 283 763 438 269 × 10−7

13 −3.290 905 327 417 571 × 10−8 1.344 313 219 810 082 × 10−9 −1.344 313 219 942 516 × 10−9 −3.290 905 327 451 859 × 10−8 1.877 957 666 662 263 × 10−9 4.597 277 465 765 067 × 10−8

14 1.395 325 137 847 766 × 10−8 −6.138 803 968 764 976 × 10−10 7.771 252 183 448 973 × 10−10 1.766 373 966 056 443 × 10−8 −3.685 236 237 414 536 × 10−10 −8.376 391 836 754 665 × 10−9

15 −3.732 874 395 549 102 × 10−9 1.759 771 959 433 038 × 10−10 −2.610 270 876 784 223 × 10−10 −5.536 974 981 491 839 × 10−9 7.195 923 927 456 951 × 10−20 7.183 652 045 118 199 × 10−20

16 5.929 064 335 140 302 × 10−10 −2.981 756 749 601 868 × 10−11 5.665 698 400 826 084 × 10−11 1.126 593 914 301 232 × 10−9 3.809 015 322 039 982 × 10−11 7.574 023 856 816 297 × 10−10

17 4.804 400 016 695 753 × 10−11 −2.567 445 994 432 811 × 10−12 −2.567 446 178 131 416 × 10−12 −4.804 399 996 475 025 × 10−11 −1.932 234 422 136 176 × 10−11 −3.615 743 781 797 638 × 10−10

18 −7.591 409 192 695 278 × 10−11 4.295 939 763 834 585 × 10−12 −4.295 939 829 539 944 × 10−12 −7.591 409 223 386 180 × 10−11 5.943 004 126 841 669 × 10−12 1.050 195 703 792 485 × 10−10

19 3.114 187 654 313 435 × 10−11 −1.860 435 538 023 476 × 10−12 2.361 958 845 379 412 × 10−12 3.953 689 255 216 923 × 10−11 −1.143 913 421 869 850 × 10−12 −1.914 799 688 503 148 × 10−11

20 −8.409 739 529 661 349 × 10−12 5.289 131 681 837 649 × 10−13 −7.792 542 267 774 140 × 10−13 −1.239 017 293 452 956 × 10−11 1.543 621 735 017 767 × 10−19 7.884 177 072 944 098 × 10−21

21 1.333 788 472 823 494 × 10−12 −8.809 217 097 487 679 × 10−14 1.640 470 271 719 594 × 10−13 2.483 807 275 096 231 × 10−12 1.097 557 417 499 826 × 10−13 1.661 794 417 444 211 × 10−12

22 1.036 015 543 763 710 × 10−13 −7.169 318 194 234 388 × 10−15 −7.169 447 461 203 913 × 10−15 −1.036 016 587 196 382 × 10−13 −5.347 398 762 479 633 × 10−14 −7.727 301 224 303 588 × 10−13

23 −1.573 324 226 886 791 × 10−13 1.138 423 940 937 104 × 10−14 −1.138 425 538 834 881 × 10−14 −1.573 324 586 440 305 × 10−13 1.631 244 902 296 707 × 10−14 2.254 425 161 892 293 × 10−13

24 6.514 968 598 200 342 × 10−14 −4.919 794 693 209 673 × 10−15 6.284 792 512 394 748 × 10−15 8.322 595 890 650 579 × 10−14 −3.120 164 368 146 607 × 10−15 −4.131 838 042 098 719 × 10−14
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Table A2. Initial conditions for the body un used in the computer-assisted proofs of the torus knot choreographies for different resonances p : q in
the n-body problem, for n = 4, 5, 7, 9.

n = 4, k = 2

p : q x0 y0 z0 ẋ0 ẏ0 ż0

10 : 9 1.084581210 262 490 0.269095117967146 −0.400810670225760 0.389692393529414 −0.222026147390220 0.422 912 633683090

6 : 5 1.188 423 380 831 879 0.396 938 948 763 056 −0.389 381 587 037 265 0.556 815 395 497 009 −0.399 232 075 676 175 0.462 209 587 632 568
14 : 11 1.238 763 513 470 937 0.472 974 975 708 732 −0.376 434 682 859 180 0.671 427 135 322 320 −0.523 882 170 109 271 0.485 529 706 955 392
18 : 13 1.282 136 229 445 568 0.569 016 024 076 380 −0.350 476 579 202 572 0.840 303 451 206 103 −0.707 131 207 512 588 0.504 911 385 776 339
10 : 7 1.289 649 221 019 265 0.602 140 964 327 029 −0.337 606 815 998 459 0.906 273 456 937 495 −0.778 064 369 372 037 0.505 617 404 253 052
14 : 9 1.283 423 571 908 586 0.686 295 696 005 838 −0.287 166 965 555 756 1.096 549 119 253 133 −0.980 065 341 494 167 0.475 381 865 946 370

n = 5, k = 3

p : q x0 y0 z0 ẋ0 ẏ0 ż0

3 : 1 0.781 206 112 370 790 0.001 836 389 542 086 0.000 409 996 364 153 0.005 730 260 732 297 −2.058 041 218 487 896 −0.459 483 910 447 517

n = 7, k = 2

p : q x0 y0 z0 ẋ0 ẏ0 ż0

15 : 11 0.640 762 081 428 200 0.304 226 148 803 711 −0.474 444 652 515 547 0.561 266 315 985 831 0.527 487 897 552 293 −0.391 865 391 782 611
17 : 12 0.579 026 084 137 708 0.405 193 913 712 767 −0.483 263 936 271 178 0.751 751 082 063 471 0.635 217 619 217 003 −0.389 409 004 841 267
19 : 13 0.542 163 973 849 064 0.463 250 571 295 820 −0.484 847 294 002 918 0.876 087 261 468 306 0.693 625 834 061 019 −0.375 630 471 181 662
23 : 15 0.501 902 078 466 474 0.521 778 491 863 104 −0.481 735 430 423 762 1.042 108 767 392 087 0.739 986 909 755 284 −0.348 083 591 542 181
25 : 16 0.490 096 168 583 210 0.536 730 950 829 510 −0.479 345 448 717 921 1.101 770 886 821 142 0.747 057 526 841 343 −0.337 802 168 545 392
2 : 1 0.388 010 210 558 313 0.551 393 376 179 951 −0.422 655 405 682 646 1.718 638 435 158 988 0.663 687 207 742 979 −0.293 252 731 479 080

n = 9, k = 7

p : q x0 y0 z0 ẋ0 ẏ0 ż0

10 : 13 0.649 289 870 115 096 0.307 019 901 740 609 −0.696 068 546 706 640 0.621 827 399 858 452 0.185 756 061 650 385 −1.139 929 982 269 243
7 : 10 0.625 045 716 429 457 0.335 012 846 089 124 −0.779 750 789 678 175 0.591 061 134 121 929 0.198 381 812 020 731 −1.161 246 560 979 217

3
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Table A3. Data for the proofs of the torus knot choreographies for different resonances
p : q and for n = 4, 5, 7, 9, in the n-body problem.

n = 4, k = 2

p : q T m ν r

10 : 9 5.780 190 889 966 491 30 1.1 2.50 × 10−12

6 : 5 5.352 028 601 820 825 30 1.1 1.1 × 10−11

14 : 11 5.046 198 396 002 492 30 1.1 5.3 × 10−11

18 : 13 4.638 424 788 244 715 50 1.1 7.1 × 10−11

10 : 7 4.495 704 025 529 494 50 1.1 1.2 × 10−9

14 : 9 4.128 707 778 547 495 60 1.04 8.9 × 10−8

n = 5, k = 3

p : q T m ν r

3 : 1 1.785 209 272 759 583 25 1.03 4.70 × 10−10

n = 7, k = 2

p : q T m ν r

15 : 11 3.035 064 895 370 178 20 1.15 4.40 × 10−9

17 : 12 2.921 452 840 463 272 20 1.11 2.60 × 10−8

19 : 13 2.831 759 112 905 190 40 1.07 8.70 × 10−11

23 : 15 2.699 168 385 210 632 40 1.05 7.50 × 10−11

25 : 16 2.648 783 908 686 700 40 1.04 5.90 × 10−11

2 : 1 2.069 362 428 661 484 50 1.04 2.80 × 10−10

n = 9, k = 7

p : q T m ν r

10 : 13 4.479 593 949 184 486 70 1.05 4.50 × 10−8

7 : 10 4.922 630 713 389 546 150 1.04 1.90 × 10−9
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[4] Ferrario D L and Terracini S 2004 On the existence of collisionless equivariant minimizers for the

classical n-body problem Inventiones Math. 155 305–62
[5] Barutello V and Terracini S 2004 Action minimizing orbits in the n-body problem with simple

choreography constraint Nonlinearity 17 2015–39
[6] Shibayama M 2014 Variational proof of the existence of the super-eight orbit in the four-body

problem Arch. Ration. Mech. Anal. 214 77–98
[7] Barutello V, Ferrario D L and Terracini S 2008 Symmetry groups of the planar three-body problem

and action-minimizing trajectories Arch. Ration. Mech. Anal. 190 189–226
[8] Chen K-C 2003 Binary decompositions for planar N-body problems and symmetric periodic

solutions Arch. Ration. Mech. Anal. 170 247–76
[9] Ferrario D L 2006 Symmetry groups and non-planar collisionless action-minimizing solutions of

the three-body problem in three-dimensional space Arch. Ration. Mech. Anal. 179 389–412

346



Nonlinearity 34 (2021) 313 R Calleja et al

[10] Ferrario D L and Portaluri A 2008 On the dihedral n-body problem Nonlinearity 21 1307–21
[11] Terracini S and Venturelli A 2007 Symmetric trajectories for the 2N-body problem with equal

masses Arch. Ration. Mech. Anal. 184 465–93
[12] Wang Z and Zhang S 2016 New periodic solutions for Newtonian n-body problems with dihedral

group symmetry and topological constraints Arch. Ration. Mech. Anal. 219 1185–206
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