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Abstract
We develop a systematic approach for proving the existence of choreographic
solutions in the gravitational n body problem. Our main focus is on spatial torus
knots: that is, periodic motions where the positions of all n bodies follow a sin-
gle closed which winds around a two-torus in R®. After changing to rotating
coordinates and exploiting symmetries, the equation of a choreographic config-
uration is reduced to a delay differential equation (DDE) describing the position
and velocity of a single body. We study periodic solutions of this DDE in a
Banach space of rapidly decaying Fourier coefficients. Imposing appropriate
constraint equations lets us isolate choreographies having prescribed symme-
tries and topological properties. Our argument is constructive and makes exten-
sive use of the digital computer. We provide all the necessary analytic estimates
as well as a working implementation for any number of bodies. We illustrate the

utility of the approach by proving the existence of some spatial choreographies
forn =4,5,7, and 9 bodies.
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1. Introduction

A choreography is a periodic solution of the gravitational n-body problem, where n equal
masses follow the same path. Circular choreographies with masses located at the vertices of a
regular n-gon were already studied by Lagrange in the eighteenth century. The first choreog-
raphy differing from a polygon was discovered by Moore in [1] and has three bodies moving
around the now famous figure-eight. Chenciner and Montgomery in [2] gave a rigorous math-
ematical proof of the existence of this figure eight orbit by minimizing the action for Newton’s
equation. The name choreographies was adopted after the work of Simé [3] on numerical
computation of choreographic solutions.

The variational approach to the existence of choreographies consists of finding critical
points of the classical Newtonian action subject to appropriate symmetry constraints. The
main obstacle to this approach is the existence of paths with collisions. Terracini and Ferrario
in [4] gave conditions on the symmetries which imply that a minimizer is free of collisions
(this is called the rotating circle property). Although a lot of simple choreographies have been
found numerically since Simo [3], rigorous proofs using only analytical methods are difficult.
Notable exceptions include works on: the figure-eight of three bodies [2], the rotating n-gon
[5], the figure-eight type for odd bodies [4] and the super-eight of four bodies [6]. Other vari-
ational approaches related to existence of planar choreographies can be found in [7-12] and
the references therein.

The difficulties just mentioned have led some authors to develop mathematically rigorous
computer assisted proofs (CAPs) for choreographies. This is a natural alternative to pen-and-
paper analysis since both the discovery and many subsequent studies of choreographies employ
numerical methods. The interested reader will want to consult for example the works of Kapela,
Simo, and Zgliczynski [13—15] for both CAPs of existence for planar choreographies and
mathematically rigorous stability analysis. See also remark 2 below.

Recall now that a (p, g)-torus knot is an embedding of S! into a two torus T> C R?, winding
p times around one generating circle of the torus and ¢ times around the other, with p and ¢
coprime and neither equal to zero. The embedding of the two torus is required to be unknotted
in R3. A torus knot may or may not be a trivial when viewed as a knot in R?. Indeed, it is trivial
if and only if either p or ¢ is equal to -1. The idea is illustrated in figure 1.

A difficult problem in this area is to prove the existence of spatial torus knot choreogra-
phies. Indeed when both topological and symmetric constraints are involved, it is difficult to
prove the coercitivity of the action. For this reason few results with topological constraints
are available. A notable exception is a torus knot choreography for three-bodies obtained by
Arioli, Barutello, and Terracini in [16], where the authors localize a mountain pass solution of
the Newtonian action in a rotating frame. Again the result is obtained by means of CAP, not
variational methods. In general it is hard to determine whether a critical point of the action
is a spatial torus-knot choreography. We provide a systematic procedure to obtain countable
families of torus knots for any number of bodies.

Contribution: the main result of the present work is to give mathematically rigorous exis-
tence proofs for (p, q)-torus knot choreographies in the n-body problem for several different
values of n.

Our approach is functional analytic (a choreography is a zero of a nonlinear operator posed
on a Banach space) and computer-assisted. When it succeeds it produces countably many
verified results. For example we establish the existence of the five-body trefoil knot chore-
ography illustrated in figure 2, and the existence of countable many choreographies close to
it. We describe the pen and paper estimates for any number of bodies and, while we illustrate
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Figure 1. Spatial torus knots: given an unknotted two-torus embedded in R3, a (p, g)-
torus knot is a non-contractible curve embedded into the surface of the torus. The
curve then winds p and ¢ times respectively around the generating circles of the torus
(with p and g co-prime). It is a basic result that a (p, g) torus knot is trivial as a knot in R"
if and only if either p or ¢ is 1. The left frame illustrates a torus knot which is a trivial
knot in R?, while the right frame illustrates a non-trivial (3, 2)-knot—in fact a trefoil.

Figure 2. Example of a spatial trefoil choreography for 5 bodies: left frame (rotating
coordinates) the red loop illustrates the periodic orbit of the delay differential equation
whose existence we prove using the methods of the present work. The four remaining
loops are obtained by symmetry, giving a periodic orbit of the full 5 body problem in
rotating coordinates. Right frame (inertial coordinates) the 5 body orbit converted to
rotating coordinates. The result is a spatial torus knot with the topology of a trefoil.

the method for only few explicit examples, our setup and resulting implementation apply (in
principle) to any spatial choreography.

Before describing our approach in detail we recall several related developments. In [17]
it is observed that choreographies appear in dense sets along the vertical Lyapunov families
attached to the relative equilibrium solutions given by the planar n-gon. Existence of vertical
Lyapunov families follows from the Weinstein—Moser theory and, when the frequency varies
continuously, the authors obtain the existence of an infinite number of choreographies along
these vertical families. This hypothesis however has been verified only for some families with
n = 3,4,5,6 and even though similar computations can be carried out for other values of n, it
is an open problem to establish the hypothesis for all n.

The existence of global Lyapunov families arising from the polygonal relative equilibrium
of the rotating problem was established in [18, 19] for all n. By saying that these families are
global what we mean that, in the space of normalized 27 periodic solutions, the families form a
continuum set with at least one of the following properties: either the Sobolev norm of the orbits
in the family goes to infinity, the period of the orbits goes to infinity, the family ends in an orbit
with collision, or the family returns to another equilibrium solution. This fact is proved using
G-equivariant degree theory [20] where G = Z, x Z, x SO(2) x S' acts as permutations, z-
reflection and (x, y)-rotations of bodies, and time shift respectively. In addition the analysis of
[18, 19] concludes that the Lyapunov families have the symmetries of a twisted subgroup of G.

Specifically, let (wj,z;) € C x R represents the planar and spatial coordinates of the jth
body in a rotating coordinate frame with frequency ,/s1, where

IR T o X
Sl—zgm, 4—7 (D
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The n-polygon consisting of n bodies on the unit circle w; = ¢ is an equilibrium solution
of Newton’s equations in a co-rotating frame. After normalizing the period to 27, the planar
Lyapunov families arising from this equilibrium polygon have the planar symmetries,

wi(t) = el w,(t + jkO), ()

and the spatial symmetries

2j(1) = zu(t + jkQ). (3)
For 1 < j < n— 1 the jth body follows an identical path as the nth body, after a rotation in
space and a shift in time. It is proved in [19] that taking k = 2,...,n — 2 in the planar case
gives the n — 3 planar Lyapunov families, and that taking k = 1,...,n — 1 in the spatial case

gives the n — 1 vertical Lyapunov families.

We stress that the G-equivariant degree theory provides only an alternative concerning the
global behavior of the Lyapunov families. Without additional information we do not know
what actually happens along a given branch. This question is considered in [21], where the
authors conduct a numerical exploration of the global behavior of the Lyapunov families using
the software package AUTO (e.g. see [22]).

Let p, g € Z be relatively prime such that kg — p € nZ. It is proved in [21] that an orbit with
the symmetries defined in equations (2) and (3), and frequency

wzﬁg, @)

is a simple choreography when converted back to the inertial reference frame. In the case that
p and g do not satisfy this diophantine equation, the solution in the inertial frame corresponds
to a multiple choreographic solution [8], while the case that w/, /sy is irrational implies that
the solution is quasiperiodic. Since the set of rational numbers p/qg satisfying the diophantine
relation (4) is dense, one has the following: when the frequency w varies continuously along
the Lyapunov family, there are infinitely many orbits in the rotating frame that correspond to
simple choreographies in the inertial frame.

The authors of [21] give compelling numerical evidence which suggests that an axial family
of solutions appears after a symmetry-breaking bifurcation from the vertical Lyapunov family
in the rotating n-body problem. The numerics suggest that this axial family has the symmetries
of equations (2) and (3). It is shown further in the same reference that, if the hypothesized
axial family exists, then orbits in this family correspond to choreographies in the inertial frame
which wind p and ¢ times around the generators of a two-torus. That is, the periodic orbits in
this alleged axial family give rise to (p, g)-torus knot choreographies for the n-body problem.

A more refined description of our contribution is that we prove the existence of this axial
family. Using the symmetries (2, 3) in Newton’s laws we reduced the equations of motion to a
single equation describing the motion of the nth body u, = (w, z) € C x C. The equation is a
delay differential equation (DDE) with multiple constant delays. More explicitly, we have

n—1

_ ik ;
() + 2y/s1ii0) = spw(t) — Y w(t) — e w(t + jkQ) .
Jj=1 (|’LU([) — €ijc’w(t + ]kc)|2 + ‘Z(t) — Z([ + ]kc)‘Z) (5)
n—1

— ik
1) = _Z - 2(1) Zz(t + JjkC) s
= (I = et + kO + |z = 2+ 0P

316



Nonlinearity 34 (2021) 313 R Calleja et al

For any number of bodies, these reduced equations (5) represents a system of six scalar
equations with multiple constant delays.

Our computer assisted arguments are in the functional analytic tradition of Lanford, Eck-
mann, Koch, and Wittwer [23—26], and build heavily on the earlier work of [27-29] on DDE:s.
More precisely, we formulate the existence proofs on a Banach space of Fourier coefficient
sequences. The delay operator acts as a multiplicative (diagonal) operator in Fourier coefficient
space, and the regularity of periodic solutions translates into rapid decay of the Fourier coeffi-
cients. Indeed, as was shown in [30], a periodic solution of a DDE with analytic nonlinearity
is analytic when the delays are constant. Then we know a priori that the Fourier coefficients
of a periodic solution of equation (5) decay exponentially fast.

An important feature of equation (5) is the conservation of energy, which allows us to fix
a desired frequency for the periodic solution a priori. This reduction greatly simplifies the
analysis of the DDE in Fourier space, but requires adding an unfolding parameter to balance
the system. In addition we utilize automatic differentiation as in [31-33], and reformulate (5)
as a problem with polynomial nonlinearities. The polynomial problem is amenable to straight
forward analysis exploiting the Banach algebra properties of the solution space and we use the
FFT algorithm as in [34]. The cost of this simplification is that each additional body augments
the system with a single additional scalar equation and a single additional unfolding parameter.
Finally we validate the existence of solutions by means of a Newton—Kantorovich argument
exploiting the radii polynomial approach as in [35].

We conclude this introduction by mentioning some interesting problems for future study.
The zero finding problem studied in the present work is amenable to validated continuation
techniques as discussed in [29, 36—38]. A follow up study will investigate global properties of
continuous families of spatial choreographies in the n body problem, and study bifurcations
encountered along the branches. In this way we hope to prove for example the conjecture of
Marchal/Chenciner [17] that the Lagrange triangle is connected with the figure-eighth chore-
ography trough Marchal’s P-12 family [39]. We also remark that all the choreographies shown
to exist in the present work are unstable. Actually, the only known stable choreographies are
close to the figure eight for n = 3. Stability of torus knots in the n = 3 is being investigated in
a forthcoming paper.

Let us also mention that the procedure developed in this paper could be adapted to prove
existence of asymmetric planar or spatial choreographies. These choreographies do appear
in dense sets of symmetry-breaking families from planar and spatial Lyapunov families. Fur-
thermore, this procedure could be adapted to study choreography solutions in problems with
other potentials, such as ¥~ (with oo = 1 being the gravitational case, o < 1 the weak force
case, and o > 2 the strong force case). It could also be adapted to Hamiltonian systems with
different radial potentials, as long as the polynomial embedding (see section 2.3) can be done.
An interesting problem would be to adapt the method to validate choreographies in families
that bifurcate from the polygonal equilibrium in DNLS equations [40] or the n-vortex problem
on the plane, disk, or sphere [41].

Remark 1 (CAPs in celestial mechanics and dynamics of DDEs). Numerical cal-
culations have been central to the development of celestial mechanics since the late nineteenth
and early twentieth centuries. The reader interested in historical developments before the age
of the digital computer can consult the works of George Darwin, Francis Ray Moulton, and
the group in Copenhagen led by Elis Stromgren [42—44]. Problems in celestial navigation and
orbit design helped drive the explosion of scientific computing during the space race of the mid
twentieth century. A fascinating account and a much more complete bibliography are found in
the book [45].
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As researchers developed computer assisted methods of proof for computational dynamics
it was natural to look for challenging open problems in celestial mechanics. The relevant liter-
ature is rich and we direct the interested reader to the works of [16, 46—49] for a much more
complete view of the literature. Other authors have studied center manifolds [50], transverse
intersections of stable/unstable manifolds [31, 51], Melnikov theory [52], Arnold diffusion and
transport [53—55], and existence/continuation/bifurcation of Halo orbits [32, 56]—all in gravi-
tational n-body problems and all using computer assisted arguments. Especially relevant to the
present work are the computer assisted existence and KAM stability proofs for n-body chore-
ographies in [13—16]. (See also remark 2 below.) Again, the references given in the preceding
paragraph are meant only to point the reader in the direction of the relevant literature. A more
complete view of the literature is found in the references of the cited works.

The present work grows out of the existing literature on CAPs for dynamics of DDEs, the
foundations of which were laid in [27]. The work just cited studied periodic solutions—as
well as branches of periodic solutions—for scalar DDEs with a single delay and polynomial
nonlinearities. Extensions to multiple delays appear in [28], and more recent work considers
systems of DDEs with non-polynomial nonlinearities [33]. The interested reader can consult
the works of [29, 57—-59] for more complete discussion of this area. We mention also the recent
PhD Thesis of Jonathan Jaquette, who settled the decades old conjectures of Wright and Jones
about the global dynamics of Wright’s equation [60, 61] using ideas from this field. Another
approach to CAP for periodic orbits of DDEs—based on rigorous integration of the induced
flow in function space—is found in [62].

In spite of the picture painted above, computer assisted methods of proof are regularly
applied outside the boundaries of celestial mechanics and DDEs. For a broader perspective
on the area, still focusing on nonlinear dynamics, we refer to the review articles [63, 64] and
to the book of Tucker [65].

Remark 2 (Phase space and functional analytic approaches). The existence proofs
for planar choreographiesin [13, 15], the proof of the spatial mountain pass solution in [16], and
the proof of KAM stability of the figure eight choreography in [14] use a different setup from
that developed in the present work. More precisely, the works just mentioned study directly
the Newtonian equations of motion in phase space. The works of [13—15] exploit the pow-
erful CAPD library for rigorous integration of ODEs to construct mathematically rigorous
arguments in appropriate Poincaré sections. See [66, 67] for more complete discussion and
references to the CAPD library. The work of [16] utilizes a functional analytic method akin to
that of the present work, but applied directly to periodic orbits for the Hamiltonian vector field
rather than reducing to the DDE as in the present work.

In the case of the planar choreography problem the phase space is of dimension 47, while
the spatial choreography problem scales like 6. These figures are in some sense conservative,
as applying the topological arguments of [13, 15] require integration of the equations of first
variation (and equations of higher variation in the case of the KAM stability argument).

The setup of the present work considers six scalar equations, independent of the number
of bodies considered. This is a dramatic reduction of the dimension of the problem. This
dimension reduction facilitates consideration of—in principle—choreographies involving any
number of bodies. A technical remark is that our implementation uses automatic differentia-
tion to reduce to a polynomial nonlinearity, adding one additional scalar equation for each body
being considered. This brings our count to 6 4 (n — 1) scalar equations. While this quantity
scales with n much better than the 6n mentioned above, we stress that our implementation
could be improved using techniques similar to those discussed in [16, 68, 69] for evaluation of
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non-polynomial nonlinearities on Fourier data. With such an improvement our approach would
consider only 6 scalar equations no matter the number of bodies.

For the sake of simplicity we do not pursue this option at the present time, as we believe that
the reduction to a polynomial nonlinearity makes both the presentation and implementation of
the method more transparent. We also believe that the polynomial version of the problem is
more amenable to high order branch following methods and bifurcation analysis to be pursued
in a future work. We remark that, since we work in a space of analytic functions, our argument
produces useful by-products such as bounds on coefficient decay rates, and lower bounds on
the domain of analyticity/bounds on the distances to poles in the complex plane. This infor-
mation can be used to obtain a posteriori bounds on derivatives via the usual Cauchy bounds
of complex analysis.

The paper is organized as follows. In section 2, we introduce the Fourier map F: X — Y
defined on a Banach space X of geometrically decaying Fourier coefficients, whose zeros
are choreographies having prescribed symmetries and topological properties. In section 3,
we introduce the ideas of the a posteriori validation for the Fourier map, that is on how to
demonstrate the existence of true solutions of F(x) = 0 close to numerical approximations.
In section 4, we present explicit formulas for the bounds necessary to apply the a posteriori
validation of section 3. We conclude the paper by presenting the results in section 5, where
we present proofs of existence of some spatial torus knot choreographies forn = 4,5,7, and 9
bodies. The computer programs used in the paper are available at [70].

2. Formulation of the problem

Letg;(r) € IR? be the position in space of the body j € {1,...,n} with mass 1 at this ¢. Define
the matrices

1= diag(1,1,0) and J = diag(J,0),

where J is the symplectic matrix in R?. In rotating coordinates and with the period rescaled to
2m,

g/ = eV 1 (wi),

the Newton equations for the n bodies are

. - . - uj— u;
wzuj—|—2w\/HJuj—slluj= - Z m, (6)
i=16£) !
where w is the frequency and s, is defined by (1).
Using that u; = (w}, z;), the symmetries (2) and (3) correspond to the symmetry

uity=-e jj(u,,(t + JjkQ). @)

Therefore, the solutions of the equation (6) with symmetries (7) are zeros of the map

n—1

_ _ n — Vus L (t ik
) i, + 2Tty — 1Ty + Y = LI
=1

Uy — e Hu,(t + jkO)|?

XxR—=Y (8)

defined in spaces X and Y of analytic 27-periodic functions, which we will specify later in
Fourier components. The equation G(u,, w) = 0, with G defined in (8) is a DDE.
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2.1. Choreographies

We say that a solution of G(u,,w) = 0, i.e. a solution of the n-body problem with symmetry
(7), is p: q resonant when it has frequency w = /s1p/q and (a) k¢ — p = 0 or (b) p and g are
relatively prime and kg — p € nZ.In[21]is proven that p : g resonant orbits are choreographies
in the inertial frame; see also [17]. For sake of completeness, here we reproduce a short version
of this result.

Proposition 3. Ler
0,0 E qj(t/w) = eV u(n)

be a reparameterization of a periodic solution in the inertial frame. An p : q resonant solution
uy of G(uy,w) = 0 is a choreography in inertial frame, satisfying that Q,(t) is 2wp-periodic
and

Q1) = Qu(t + jkC),

where k = k — (kg — p)q with g the p-modular inverse of q. The orbit of the choreography
is symmetric with respect to rotations by an angle 2w /p and the n bodies form groups of
h-polygons, where h is the biggest common divisor of n and k.

Proof. Since u,(?) is 2m-periodic and eVET/w = etla/p ig 27 p-periodic, then the function
Q,.(t) = e’ V51/“y, (1) is 27 p-periodic. Furthermore, since

0.t — 2m) = &,/ 1/PQ, (1), 9)

the orbit of Q,,(¢) is invariant under rotations of 27 / p. The fact that the n bodies form i-polygons
follows from symmetry (7) and the definition of Q (7).
By assumption

r=(kg—p)/n€Z,
then symmetry (7) implies that the solution in inertial frame satisfies
0)(1) = & PHIPQ, 1 + jKC). (10)

In the case (a) that kg — p = 0, the symmetry (9) gives straightforward that Q (1) = Q,( +
kjC). In the case (b) that p and ¢ are relatively prime, we can find g such that gg = 1 mod p. It
follows from the symmetry (9) that

0.t — 27 jrg) = e 1P Q, (1),
Therefore,

0)(1) = e PP, (1 + JKC) = Qult + jk — rng)(). .

Corollary 4 ((p, g)-torus knots). [Inthe case that u,(t) is a p : q resonant orbit in the axial
family that does not cross the z-axis, then Q,(t) winds (after the period 2mp) around a toroidal
manifold with winding numbers p and q, i.e., the choreography path is a (p, q)-torus knot. In
the case that u,(t) is a p : q resonant orbit in the vertical Lyapunov family that does not cross
the z-axis, then the choreography Q,(t) winds p times in a cylindrical surface.
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We conclude that the solution g,(f) = Q;(tw) is a27q//s1-periodic choreography satisfying
the properties discussed above for Q;(#). Therefore, by validating solutions of G(u,, w) = 0 in
the axial family we prove rigorously the existence of choreography paths that are (p, g)-torus
knots.

2.2. Symmetries, integrals of movement and Poincaré conditions

Here after we omit the index n that represents the nth body in the map G(u) and denote the
components of u by

u = (U, Uz, uz).

The map G(u) that gives the existence of choreographies is the gradient of the action
A(u) : X — R of the n-body problem reduced to paths with symmetries (7). The action A(u)

is invariant under the action of the group (6, ¢, T) € GET>xRinueX given by
0,0, Tu(t) = " u(t + ) + (0,0,7),

which corresponds to z-translations and (x, y)-rotations of bodies, and time shift.
Given that the gradient G = VA is G-equivariant, G((0, ¢, T)u) = (0, ¢, T)G(u), if uy is a
critical point of A, then (6, o, T)uy is a critical point for all (6, p, 7) € G, because

G((0, o, o) = (0, ¢, 7)G(uo) = 0. (11)

Therefore, if ug is not fixed by the elements of G, then its orbit under the action of the group
forms a three-dimensional manifold of zeros of G. Taking derivatives respect the parameters
0, ¢ and T of equation (11) and evaluating the parameter at 0, we obtain by the chain rule that
dG(up)A j(up) = 0, where A; are the generator fields of the group G,

Ai(u) = 0plp=0(0,0,0)u = Ju,
AZ(”) = a&p‘wzo(()’ 80, O)M - it,
A3(u) = 0r]7=0(0,0,7)u = (0,0, 1).

Therefore dG(uo) has the zero eigenvalues A;(uo) for j = 1,2, 3 corresponding to tangent vec-
tors to the three-dimensional manifold generated by the action of G. This property holds for
any equivariant field even if it is not gradient.

In addition, for gradient maps G = VA, we have also conserved quantities generated by the
action of the group G (Noether theorem). That is, since the action is invariant, A((0, @, T)u) =
A(u), deriving respect 6, ¢ and 7 and evaluating the parameters at 0, we have by chain rule
that

0 = 8;Aw) = ;A0 o, ) = (V.A®w), Ajw)) = (G(u), A ), (12)

i.e. the field G is orthogonal to the infinitesimal generators A;(u) forj = 1,2, 3.

In summary, we have that the map G has three-dimensional families of zeros and also three-
restrictions given by (12). To prove the existence of solutions, we could take three-restrictions
in the domain and range of G. But given that the range is a non-flat manifold, it is simpler to
augment the DDE G = 0 with the three Lagrangian multipliers ); forj = 1,2, 3,

3
G, w) + > AA ) = 0. (13)

J=1
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An important observation is that the solutions of equation (13) are equivalent to the solutions
of the original equations of motion.

Proposition 5. If A;(u) are linearly independent for j=1,2,3, then a solution u to
G(u,w) = 0 is a solution to the equation (13) if and only if \j = 0 for j = 1,2,3.

Proof. Taking the product of (13) with respect to a generator A (1) and using the orthogo-

nality we obtain

3
37 A, Aw) = 0.

j=1
The result follows from the linear independence of A j(u), see [21] for details. O

Also the restriction in the domain forms a non-flat manifold, and it is simpler to augment
the equation (13) with three equations that represent the respective Poincaré sections / j(u) = 0.
Each geometric condition / j(u) = 0 with

Ii(u) = (u— i, Aj@) : X — R,

implies that u is in the orthogonal plane to the orbit of & under the action of G, where u is a
reference solution, which typically is the solution in the previous step of the continuation.
Taking as reference u = (1, 0, 0) for the generators A3(it) = (0,0, 1), then

2 2
I(u) = / u(® -(0,0,1)dr = / us(t) de. (14)
0 0
Given a reference solution u, the other geometric conditions are given explicitly by
2 B 2 B
Il(u):/ (u—u)-Ju dt:/ u-Judt (15)
0 0
and
2 2
Lu) = / u—i)- i) = / u(t) - ' (¢) dt. (16)
0 0

The generators A () are linearly independent in the solutions that we are looking. In other
cases the solutions are relative equilibria, which represents a simpler problem than the map G.

2.3. Automatic differentiation: obtaining a polynomial problem

Setting it = v, equation G(u, w) = 0 becomes

Wi + 2wy/s1Jv — s1Tu + Z H

In this section, we turn the non-polynomial DDE (13) into a higher dimensional DDE with
polynomial nonlinearities, using the automatic differentiation technique as in [31-33]. For
this, we define for j = 1,...,n — 1 the variables

1
(|u(t) — e #Cu(t + jkQ)||”
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Then w; satisfy
_ d _ _ ~1/2
W= (Hu(t) —e "u(r + ]kC)Hz)
S <v(t) — e TSt + jkC), u(t) — e Pou(t + jkC)> .

Therefore, the augmented system of equation (13) is

U= (17)
1 n—1 i
0= — —2w+/s1Jv + s1Tu — Z w? (u(t) — e *uit + jkC))
j=1
+A17u+Agv+A3e3 (18)
w; = —w <v(t) — e TSt + jkC), u(t) — e Pou(t + jkC)> + o, (19)
forj=1,...,n— 1, where e3 = (0,0, 1). We supplement these equations with the conditions
1 .

w;(0) = j=1,...,n—1, (20)

[u(0) — e u(jkQ)||"

which are balanced by the unfolding parameters «,...,a,—; (e.g. see [32]), similarly to
the manner in which the phase conditions /,(«) = I,(u) = I3(«) = 0 (given respectively by
(14)—(16)) are balanced by the unfolding parameters \;, A, and A;. Indeed, we can prove
that a solution of this system is necessarily a solution of the n-body problem similarly to
proposition 5.

Proposition 6. A 27-periodic solution (u, v, w) of the system (17)—(19) with the conditions
(20) satisfies that o = 0 for j = 1, ..., n, i.e. wis a 2mw-periodic solution of G(u,w) = 0.

Proof. Dividing the equation for w; by wf and using that v = i, we obtain that

— (—2w;?) = d (—%Hu(t) —e f7<u(r+jko|2> + a;.

dr

Since (u, v, w) is 27-periodic, integrating over the period 27, we obtain that 27rar; = 0, see [32]
for details. Given that o; = 0, the initial condition (20) implies that w;(r) = ||u(t) — e *“u(t +
jk¢)||~!. Therefore, u is a solution to the augmented system (13) and, by proposition 5, to the
equation G(u,w) = 0. O

In the next section, equations (17)—(20) are combined with Fourier expansions to set up the
Fourier map whose zeros corresponds to choreographies having the prescribed symmetry (7)
and the topological property of a torus knot.

2.4. Fourier map for automatic differentiation

The goal of this section is to look for periodic solutions of the delay differential
equations (17)—(19) satisfying the extra conditions (20) using the Fourier series expansions
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uy (1) . (ur)y
Wty = | w@®) | = e, = (w2

u3(1) tez ((Ms)z

vi (1) ) (v1)e
v(@) = | n® | = Ze"’w, ve= | (v2) 21)
v3(1) teZ (v3)¢
wy (1) (wi)e
w(t) = = Zei“wé/, wy = :
wy—1(1) fet (Wn-1)e

Based on the fact that periodic solutions of analytic DDEs are analytic [30], we consider
the following Banach space of geometrically decaying Fourier coefficients

o { = (conez [lelly & e < oo}, (22)

leT

where v > 1. If v > 1 and a = (ay)sez € £}, then the function ¢ — Y ez e"a; defines a 27-
periodic analytic function on the complex strip of width In(~) > 0. Another useful property of
the space /! is that it is a Banach algebra under discrete convolution * : £} x ¢! — ¢! defined
as

(@xby= > axbiy,

ki +ko=k

where a, b € ¢!, More explicitly, |la * b||, < ||a||,||b||,, forall a,b € £} and v > 1.

The unknowns of the DDEs (17)-(19) are given by the unfolding parameters
)\déf()\jﬁ:l € C? and Oéd;f(aj);;} € C"!, and the Fourier coefficients u = (u,)3_, € (£})*,
v= (v, € (£}) andw = (w )'Z1 € (£)""!. The total vector of unknown x and the Banach

j=1
space X are then given by

A

EXEC x O X (£L)} x () x (0! = x (0, (23)

g < =0

The Banach space X is endowed with the norm
def
[l = max {Ikoo, am,jglﬁ;SIIujllu,jr_rlg3llvjIu,j_rlr%%lllellu} )

where

Ao = max [A;| and |o]e = max |ajl.
=123 j= L1

44444

In order to define the Fourier map problem F(x) = 0, we plug the Fourier expansions (21)
in (17)—(20), and solve for the corresponding nonlinear map. First note that

u(t) — e Putt + k) =3 (W e j7CeiijCW) ¢ = 3" Myuge™,
LeL (7,
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where M j, is defined as

) 1— ™ cos(j¢) € sin(j¢) 0
My =1—e M = | _e# gin(j¢) 1 — e cos(j¢) 0 ,
0 0 1 — ke
o . 0 —1
since J = diag(J,0) with J = 1 0

In Fourier space, the phase conditions /,(u) = I,(u) = I3() = 0 (see (14)—(16), respec-
tively) are given by
2w
5Li(u) = / — ui(Nua(1) + uz (D (1) de
0
= —(uy * up)o + (uz x uy)o

=3 = w)elii) ¢ + (i)

leZ
2r
L(u) = / (ur (D} (1) + up (i (1) + uz(0)ity(1)) de
0

= (uyith)o + (uz * ith)o + (uz * ity)o

= > il ()(itn) ¢+ (u2)(itn) ¢ + (us)(itz) )

leT

2
L) = /0 us(®) d = (us)o,

where u, i, and 3 have only finitely many non-zero terms.
Hence, setting 7 : (¢1)* — C3 as

1 (u) " —(uy * U)o + (U2 * 1)
nw) = | m@) | = | (uxi))o + (uz * iy)o + (uz * i) | , (25)
13 (u) (u3)0

we get that n(u) = 0 implies that I1(u) = I,(u) = I3(u) = 0. Given j=1,...,n— 1 andu €
(£})3, denote Mu € (¢!)* component-wise by

wr (Mjur) (1 = ™ cos(jC) )y + €™ sin(jC) )
(Mju)e = Mjug = | (Mjoug), | = | =€ sin(GO e + (1 — €™ cos(j6)) (ua)s
(M jeuc) (1 =€) (uz),

In Fourier space, the extra initial condition (20) (given j = 1,...,n — 1) is simplified as

~i w;) E w0y

ZM jeug

leT

2 —1= (Z(wj)g>2 23: (Z(zwuf),,)2 — 1.

lET p=1 \[(€Z
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Sety: (L) x £y~ — C"!as

1w wy)
Sy | 26)
SRR

Hence, (1, w) = 0 implies that (20) holds.
For sake of simplicity of the presentation, given any N € N, denote the differentiation
operator D acting on u € (¢1)V as

il(uy)e
0

(D), 0w, — l(',”)[ . @7
iE(L;N)/e

Remark 7. The linear operator D is not bounded on (¢£1)V. However, it is bounded when
considering the image to be slightly less regular. More explicitly, letting

e ol
éll/d:t Cc = (Cé’)l’EZ : |Co‘ + Z‘C[‘m <00 2, (28)
40
we can easily verify that D : (¢1) — (¢1)" is a bounded linear operator.
Let £ : (€1)% x (£1)* — (£!) be defined by
Fu, ) Du— 0. (29)

Note that (i, v) = 0 ensures that (17) holds. Let g : C3 x (£1)% x (£1)* x (£1y"~! x C — (£1)
be defined by

n—1
g\ u,v,w,w) & Do + 2wy/s1Jv — silu+ M\ Ju + Mv + Azes + Z (M ju) * w;, (30)
=1

where (M u) x w} € (£})* is given component-wise by
3
(0 w), 2 { (M),
) *w;), = ) wgz ,
J

and where &3 € (£!)? is given component-wise by

0
O )
00

N def
(e3) =

with ¢; ; being the Kronecker delta. Note that g(\, u, v, w,w) = 0 ensures that (18) holds.
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Let;: C x (1)} x (€1)° x £} — [} be defined by
3
hi(aj, u,v,w;)) défD’U]j + w?* Z M), * (M), | + ozjwi (31)
p=1

and let i : C" 1 x (£1)3 x (01)3 x (£))"' — (£!)"~! be defined by

hi(ar, u, v, wy)
def ha(o, u, v, w)
h(a, u, v, w) = . . (32)
hnfl(anfl"ua v, wnfl)

Hence, h(a, u, v, w) = 0 implies that (19) hold.
Defining

def

YEC xC x (00 x (00)3 x @y (33)
the Fourier map F : X x R — Y is defined by

n(u)
def 7, w)
F(x,w)= f(u,v) . (34)
g\ u, v, w,w)
h(a, u, v, w)

For a fixed w > 0, we introduce in section 3 an a posteriori validation method for the
Fourier map, that is we develop a systematic and constructive approach to prove existence of
x € X such that F(x,w) = 0. By construction, the solution x yields a choreography having the
prescribed symmetry (7) and the topological property of a torus knot.

3. A posteriori validation for the Fourier map

The idea of the computer-assisted proof of existence of a spatial torus-knot choreography is
to demonstrate that a certain Newton-like operator is a contraction on a closed ball centered
at a numerical approximation x. To compute X, we consider a finite dimensional projection of
the Fourier map F': X x R — Y. Given a number m € N, and given a vector a = (a)cz € E},,
consider the projection

"l — C!
a— a d;f(ag)‘gkm e Crm 1,
We generalize that projection to get 7rj : (£1)YN — CN®m=1 defined by
™ (a(l), .. ,a(N)) def (Wma(l), e, Wma(N)) e cN@m=D
and II™ : X — C>"+973 defined by

def i
™y = ™\, o, 1, v, w) = ()x, a, T, T3, 7r,',”71w) € Crmnt3-3,
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Often, given x € X, we denote

) L pom o 2mnt5)-3

Moreover, we define the natural inclusion . : C*"~! < (} as follows. For a = (a¢)yj<m €
C?m=1let /"a € ¢! be defined component-wise by

. a, | <m
("a), =
0, [¢] = m.

Similarly, let ¢ : CV@m=D s (¢1)V be the natural inclusion defined as follows. Given a =
(a(l), . ,a(N)) c ((CZm—l)N o (CN(Zm—l),

def
Lya = (Lma(l), e Lma(N)) IS (E;)N.
Finally, let the natural inclusion ¢ : C*""+3=3 - X be defined, for x € C>""*+3 a5
def
(M x = O, oy, v, w) = (/\, a, t5u, 13, Lf_lw) cX.

Finally, let the finite dimensional projection F : C*"+9=3 _ C2m+3)=3 of the Fourier map
be defined, for x € C2+5)-3 ag

F™(x,w) = I™F("™x,w). (35)

Also denote F™ = (77(’"), A ) glm) h(’”)).

Assume that, using Newton’s method, a numerical approximation x € C>""+-3 of (35)
has been obtained at a parameter (frequency) value w, that is F" (¥, w) ~ 0. We slightly abuse
the notation and denote x € C>"*+3-3 and "x € X both using X.

We now fix an wy € R and consider the mapping F : X — Y defined by F(x) = F(x,wy). The
following result is a Newton—Kantorovich theorem with a smoothing approximate inverse. It
provides an a posteriori validation method for proving rigorously the existence of a point X

such that F(¥) = 0 and || X — X||x < r for a small radius r. Recalling the norm on X given in
(24), denote by

def
B.(y) = {xeX:|x—ylx<r}cX

the ball of radius r centered at y € X.

Theorem 8 (Radii polynomial approach). Forx € Xand r > Oassumethat F: X =Y
is Fréchet differentiable on the ball B.(x). Consider bounded linear operators Al e B(X,Y)
and A € B(Y,X), where A" is an approximation of DF(X) and A is an approximate inverse of
DF(X). Observe that

AF:X = X. (36)

Assume that A is injective. Let Yy, Zy, Z1,Z, > 0 be bounds satisfying

[AF(®)[x < Yo, (37)
Il — AAT”B(X) < 2y, (38)
|AIDF(%) — A'||3x) < Z1s (39)
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IAIDF(x + b) — DF(X)]||p0) < Zor, V' b € B,(0). (40)

Define the radii polynomial

N 27 (2 + 7o — Dr + Yo (41)

If there exists 0 < ry < r such that
p(ro) <0, (42)
then there exists a unique X € By (X) such that F(x) = 0.

Proof. Details of the elementary proof are found in appendix A of [71]. The idea is to first
show that T(x) défx — AF(x) satisfies T(B,,(X)) C B,,(x), and then to show the existence of
x < 1 such that ||T(x) — T(y)||x < &|lx —y||x for all x,y € B, (x). These facts follow from
the inequalities of equations (37)—(40), and from the hypothesis that p(ry) < 0. The proof then

follows from the contraction mapping theorem and the injectivity of A. (]
The following corollary provides an additional useful byproduct.

Corollary 9 (Non-degeneracy at the true solution). Given the hypotheses of theorem
8, the linear operator ADF(X) is boundedly invertible with

1
1 — (Zorg+ 24 +Zo).

ITADF())] ™ ||5x) <
Proof. From
p(ro) <0,
we obtain
Zors + (Zy + Zo)ro + Yo < 1o,
or
Yo
Zory + (Z] +Zo) + V_ < 1.
0

Since Y and ry are both positive it follows that
Zorg + (Z) + Zp) < 1.

Since X € B,,(x) we have that x = X + b for some b € B, (0), and by applying the inequalities
of equations (38)—(40) we have that

[1d — ADF(¥)||8x) < |A(DF(x + b) — DF(X)|| + [|AAT — DF(x))|| + |[1d — AAT||
ZQV() + Z1 + Z()

1.

NN

A

Then

ADF(x) =1d — (Id — ADF(x)),
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is invertible by the Neumann theorem and

1

ADF(®]7'|| < ,
ITADF()] || 1= (Zoro + 71 + Z0)

as desired. O

Returning to the parameter dependent problem, suppose that X is a zero of F(x) = F(x, wy)
and that ADF(x) = AD,F (X, wy) is boundedly invertible as above. Notice that F(x, w) is differ-
entiable with respect to w near wy. Define the mapping G(x, w) = AF(x,w) and observe that
G and F have the same zero set as A is injective. Observe also that D, G(x,w) = AD,F(x,w).
So (X, wp) is a zero of G with D, G(X, wy) an isomorphism, it follows from the implicit function
theorem that G has a smooth branch of zeros through x. More precisely there exists an € > 0
and a smooth function x : (wg — €, wy + €) = X with x(wp) = X and

Gx(w),w) =0,

for all w € (wy — €, wp + €). It follows again from the injectivity of A that F(x(w),w) = 0 for
all w € (wy — €, wp + €). Finally, as discussed in the introduction, we obtain that for any ratio-
nal number /51p/q € (wo — €, wo + €), the solution x(,/s1p/g) produces spatial torus knot
choreography orbit near x. Taken together the results of this section show that our method pro-
duces the existence of countably many spatial torus knot choreographies as soon as theorem 8
succeeds at a given wy.

3.1. Isolated solutions yield real periodic solutions

In this short section, we show how the output X € B, (x) of theorem 8 (if any) yields a real
periodic solution, provided the numerical approximation is chosen to represent a real periodic
solution.

Define the operator o : £} — ¢! by (o(a)), &g ,» forl € Z, where z* denotes the complex
conjugate of z € C. Define the symmetry subspace /.7 C ¢! by

g}l,reald;f {C c E}/ co(c) = C} :

. . def g L .
Note that if (u/)scz € €17, then the function u(f) = >, ,use'’ is a real 27-periodic function.
Define the operator 3 : X — X acting on x = (\, @, u, v, w) € X as

() = (N, o, o(uy), o(ua), 0(u3), 0(v1), 0(02), 0(v3), o (wi), . . ., o(Wy-1)) ,

where \* € C? and o* € C"! denote the component-wise complex conjugate of A € C* and
aeCrl, respectively. Define the subspace Xyea C X as

def

Xreal = {Xx € X:X(x) = x}. (43)
It follows by definition that Xyes = R"+2 x (¢Lrealyr+5,

Proposition 10. Fix a frequency w > 0 and assume that the numerical approximation
denoted X = (\, @, u, v, w) satisfies X € Xyea and that the reference solution u = (iy, tty, it3)
satisfies u € (le;real)3. Assume that there exists a unique x € B,(x) such that F(x,w) = 0. Then
X € Xreal-

Proof. Denote the solution x = (\, o, u, v, w) € B,(x). The proof is twofold: (1) show that
F(X(x),w) = 0; and (2) show that ¥(x) € B,(x). The conclusion X(x) = x (that is x € Xyea))
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then follows by unicity of the solution. First, we have that F(3(x), w) = X (F(x,w)), since the
operator F' corresponds to the complex extension of a real equation. Since F(x,w) = 0, then
F(3(x),w) = X (F(x,w)) = ¥ (0) = 0. Second, to prove that ¥(x) € B,(X), it is sufficient to
realize that |z*| = |z| and that given any ¢ € £},

lo@lly =Y lo@dp! ="l " =" ferp = ], (44)

e e e

which shows that for any £ € X, [|X(€)||x = ||£]|x- Hence, since 3(x) = X, we conclude that

120 = x[[x = [[E0) = E®)x =[x = D)lx = [[x = X[x <7 0

3.2. Definition of the operators A" and A

To apply the radii polynomial approach of theorem 8, we need to define the approximate
derivative A" and the smoothing approximate inverse A. Consider the finite dimensional projec-
tion F" ; C¥n+3)=3 _y C2mn+5)-3 and assume that at a fixed frequency w > 0 we computed
x € C¥n+9=3 guch that F™(x,w) ~ 0. Denote by DF™ (X, w) € Mau+5-3(C) the Jacobian
matrix of F' at (X, w). Given x € X, define

Alx = L TIAT Y 4+ (1 — L TT)ATx, 45)
where II"™Afx = DF™ (%, w)x™ and

0
0
I = "TI"NATx = | (I — 4'7)Du
W — D
=yt )Dw

Recalling the definition of the Banach space Y in (33), we can verify that the operator
A" : X — Y is a bounded linear operator, that is At e B(X,Y). For m large enough, it acts as
an approximation of the true Fréchet derivative D, F(x, w). Its action on the finite dimensional
projection is the Jacobian matrix (the derivative) of F™ at (¥,w) while its action on the tail
keeps only keep the unbounded terms involving the differentiation D as defined in (27).
Consider now a matrix A™ € M, ,+5)-3(C) computed so that A™ ~ DF™(x,w)!. In
other words, this means that ||l — A™DF®™(x,w)|| < 1. This step is performed using a
numerical software (MATLAB in our case). We decompose the matrix A™ block-wise as
AT AT AT AT AT
Ag"; A A A AGm)

& a,o o, v a,w
(m) _ m (m) (m) (m) (m)
A "= AI(,)S Aur,’;y Au’,’; Au’:’i/ Au,,";,r
m (m) (m) (m) (m)

Au,)\ A'U’,r:y AU’ZA Au’f:) A’I}’ﬁﬂ

Agﬂj\ A Agm) Al A

w, o 0,U w,v w,w
so that it acts on x™ = (\, v, u™, v, w™) € C?"*+3-3 Thus we define A as

Ay Axa Avu A Arw
Aa,)\ Aa,a Aa,u Aa,v Aa,w
A= Au,)\ A Au,u A Au,w s (46)
A'u,)\ Au,a A'z;,u A'z;,'u A'z;,'u,r
Ay A A A A

w,u w,w



Nonlinearity 34 (2021) 313 R Calleja et al

where the action of each block of A is finite (that is they act on x" = II"x only) except for
the three diagonal blocks A,,,, A, , and A,, ,, which have infinite tails. More explicitly, for each
P - 15 2, 35

((A,(A’?L)W?u)p)g for |[¢| < m,

((Au,uu) ) = 1
! ) for [¢] > m,
o) ((A%w?v)p)é for |£] < m,
vU)p)t = 1
W(’Up)g for |¢| = m,
and foreach j=1,...,n—1,

(AL w);), for (] < m,

o W) for [¢] > m.

Having defined the operators A and A, we are ready to define the bounds Yy, Zy, Z, and Z,
(satisfying (37)—(40), respectively), required to build the radii polynomial defined on (41).

4. The technical estimates for the Fourier map

In this section, we introduce explicit formulas for the theoretical bounds (37)—(40). While
most of the work is analytical, the actual definition of the bounds still requires computing and
verifying inequalities. In particular, there are many occasions in which the most practical means
of obtaining necessary explicit inequalities is by using the computer. However, as floating point
arithmetic is only capable of representing a finite set of rational numbers, round off errors in
the computation of the bounds can be dealt with by using interval arithmetic [72] where real
numbers are represented by intervals bounded by rational numbers that have floating point
representation. Furthermore, there is software that performs interval arithmetic (e.g. INTLAB
[73]) which we use for completing our computer-assisted proofs. With this in mind, in this
section, when using phrases of the form we can compute the following bounds, this should be
interpreted as shorthand for the statement using the interval arithmetic software INTLAB we
can compute the following bounds.

4.1. Yq bound

Denote the numerical approximation X = (5\, a, i, v,w) € X with u = (uy, up, u3) € (é},)3, U=
(01, 02,03) € (é},)3 and w = (wy,...,w,_1) € (6},)"*1. Recalling (29)—(31), one has that

(I — B f,0) =0 € @)’
(I — 5"y D\ i, v, w,w) = 0 € (6,)°
(I — " a3 Hh(a, v, @) = 0 € (L),
since the product of p trigonometric functions of degree m — 1 is a trigonometric function of

degree p(m — 1). For instance, recalling (30), the highest degree terms in g(j\, u,v,w,w) are
of the form (M ;1) * wj! which are convolutions of degree four, and therefore have zero Fourier
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coefficients for all frequencies ¢ such that |¢| > 4m — 4. This implies that F(X,w) has only a
finite number of nonzero terms. Hence, we can compute Y satisfying (37).

4.2. Zy bound

Let B¥'J — AAT, which we denote block-wise by

B)\,)\ B)\,(y B)\,u B)\,U B)\,'u,r
Ba,)\ Ba,(y Ba,u B(m) Ba,w
B = Bu,)\ Bu,(v Bu,u Bu,u Bu,w
Bv,)\ Bv,a Bv,u B’U,’U Bv,w
Bw,/\ Bw,a Bw,u Bw,v Bwu

Note that by definition of the diagonal tails of A and A, the tails of B vanish, that is all B 55
(0, €{u, v, w}) are represented by 2m — 1 x 2m — 1 matrices. We can compute the bound

de{A A s,
max

> ’35,5‘ + D

] P
] ] lt<m vl Qs Ot )
©) def de{A 10003, de{uy uguzvq,
ZO = Aty } 0 W3] sty } .
152,13,
g < {UNJZ,’UL

> () X A
Se{A Mg, [l <m )
ap ety }

1
max —— E (B.~)
0,0
- :<ml/‘s‘ s Wie o W1t
de{uguguz vps Il ||<m 1 > n 1}

VU3 o1 }

By construction, letting

def

2% max {zg”} : (47)
Se{A1 A3,
it
V1,029,035
W Wy 1 }
we get that
17 = AAT [y < Zo-
4.3. Z1 bound
Recall from (39) that the Z; bound satisfy
|A[D,F (%, w) — ATl o) < Zi.
For the computation of this bound, it is convenient to define, given any & € B1(0) € X
2= ) €D, F(x,w) — Allh. (48)

Denote
b= (hys hos s By ) € CF x C7 1 (00) x (0 x ey,
2= (20 Zas Zur 2 Zw) € €3 x C 1 (00)3 % (£0)% < (1.

The construction of Z; hence requires computing an upper bound for ||Az||y for all & €
B1(0) € X. This is done by splitting Az as
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0
0

m,__myy—1
Az = LTI AZ 4 (1 — LTI Az = (A m | (= 5m5)D 2, (49)
E(I L3y "Dz,
(I - Ln—lﬂ—n—l)D Zw
and by handling each term separately.

Remark 11. We choose the Galerkin projection number m greater than the number m;
of nonzero Fourier coefficients of the previous orbit (i, it,, 3). Then z, =0 € C3. This is
because the phase conditions 7(u) defined in (25) only depend on the modes of the finite
dimensional approximation and therefore A" contains all contribution from Dr(@)h.

As TI"™Az = A™ 7™ we compute a uniform component-wise upper bound

2 = (0,20, 20,5, 5) € R2+9)-3
for the complex modulus of each component of
H(m)Z — Z(m) — (O ZasZ (m) Z(m) Z(m)) c C2mn+5-3
s sy 2y

(m - 20m and 7™ is done in sections 4.3.1-4.3.4, respec-
tively. Using these uniform bounds (i.e. for all & € B;(0)), let

The computation of the bounds Zz,, 2/

def A —
£ = (&07.60. g, e, € ) E A € RYH, (50)

where the entries of the matrix A | are the component-wise complex magnitudes of the entries
of A™. By construction, the bound £ of (50) provides a uniform component-wise upper
bound for the first term ¢TI Az of the splitting (49) of Az. To handle the second term (I —
("TI")Az of (49), we compute the uniform (i.e. for all 2 € B(0)) tail bounds (4,),, (8,,), (for
p=1,2,3)and (0,,); (for j = 1,...,n — 1) satistying

>

1
(@ <@, p=1,2,3

|| >m
1 1
> i@V <@y p=1,23
1€[=m
1 1 :
D @ v <Gy d=1 =1
=

The computation of the bounds d,, §,, and d,, is presented in sections 4.3.2—4.3.4, respectively.
Combining the above bounds, we get that

def m m
Az]lx < 21 = max{g(’")|oo, €87 oo max, (&l + @)p) -

max ("€l + @) _max (1€ + (6@,»)} : (51)

334



Nonlinearity 34 (2021) 313 R Calleja et al

4.3.1. Computation of the bound z,. Recalling (48) and the definition of A" in (45), one can
verify that forany j=1,...,n — 1,

3 2
(za)j=2(2<w,~>f> Z(Z(Mjgu/e)p) > W

LETL p=1 leZ [0|=m
203
+2 <Z<w ,n) > (Z(Mﬂw)p> > M),
L€ p=1 \(eZ [e|=m

Straightforward calculations (e.g. using lemma 2.1 in [35]) involving bounding linear func-
tionals on ¢}, and using that (h,), € B1(0) C ¢}, for p=1,2,3 yield that

1 i cdef )3, p=12
D < s | D M| < B iy = {

(> (> ! 2. p=3
We therefore get the component-wise bound (given j = 1,...,n— 1)
def 2 : ’
@)l < @)y =0 (%Z}wj)z) ; (%(Mﬂw)p>

23
+ (Z(w,n) > (Z(M,w») ip - (52)

leZ p=1 LEZ

4.3.2. Computation of the bounds 2™ and 5,. From (45) and (48), on can verify that for each
p = la 27 3a

0, [0 < m
((Zu)p)f -
_((hu)p)f, |€| = m.

Hence, since z,, only has a tail and since the blocks Ay ,, Aqu, Ay, and Ay, only acts on the
finite part, then A;,z, = 0 for d = A\, a, v, w and for p = 1,2, 3

1
((Au,uZu)p)Z - _%((hu)p)f-

Now,
ST = e 1 < 23T 1 v < Sl < -
il ul)p)l \m ul)p)l \m Llpl/\m
€] >m [¢|=m
‘We can then set
2E¢nl)g0 c R3@m=1) (53)
of 1
Gop= =, p=12,3. (54)
m
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4.3.3. Computation of the bound 2™ and 6,. The following technical lemma (which is a
slight modification of corollary 3 in [35]) is the key to the truncation error analysis of " and

2m.
Lemma 12. Fix a truncation Fourier mode to be m. Given h € (!, set

RO — ™ = bty e Oy, 0, s By, - ) € L1

Let Ne Nand let & = (...,0,0,a_y,...,ay,0,0,...) € KL. Then, for all h € EL such that
llhll, < 1, and for |€] < m,

X
(—N<s<—m vhsl ’m<s<[+N sl

(@ h"),| < U@ max ( max | ma |aé§> . (55)

Now, from (45) and (48), on can verify that foreachp = 1,2, 3,

n—1
D MDY« @+ 3M ), « @} < ) | 0 <m
=1 .
(@p)e = § ((2wv/ETTh, = 51Ty + T+ MThy + Db, + (1)20) )
n—1
+ Z (Mjhu)P * ’Uji + 3(Mju)p * 1113 * h'u,rj > w‘ 2 ni.
j=1

¢
Using lemma 12, we obtain that for |[¢| < mand p = 1,2, 3,

n—1

(@] < (@),), 2D ipWu@?) + 3U(M ), +w?), (56)

=1

which provides a component-wise definition of the vector 2™ € Rfﬁzm*l). Finally, one can
verify using the fact that ¢! is a Banach algebra, that

1 1 _ _
D | @] < Gon pg | 2evsr ol + Dl + Pl + ol
n—1
+3> w3+ M )1 (57)
j=1
S o 1 < 602 (2t s+l ]+ Dl + 2l
s ilw? ' mw?
n—1
+3) @Il + [yl || (58)
j=1
1 1 n—1
def N _ _ _ _
3 ‘w«zv)g)g < @RE o | Pl [Tl + Y 2015 + 3l as 1w
o ilw mw =

(59)
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4.3.4. Computation of the bound 2™ and 6,. From (45) and (48), on can verify that for each
j=1...,n—1,

3 1
(3a_,-wj * hfﬁ)f

3
| D0 3@7 A« (M), + (M), + 07 5 (MGhD), + (M0), + (Mji), + (M ,,)) e <m
p=1 )

((zw)j)e =
(@] + 36,07  hy)),

3
+ (Z 300%  huy, * (M), * (Mj0), + 03 # (M) * (MD), + (M), (M.,-hv)p)> . =m.
l

p=I1

Using lemma 12, we obtain that for [¢{| <mandj=1,...,n— 1,

3
(@] < (EM),),Z 3las [ Wu@?) + Y 30 (w2 (M), * (M;D),)
p=1
3
+ ) iU 5 (M0),) + iy V(] % (MiD) ). (60)
p=1
Moreover, forj=1,...,n— 1,
1 aer 1 >
C] _ — — _ — —
> | e < 0wy = — | sl + 3laslllas 5 + Y 3wl @yl [ ),
[¢[=m p=1
3
+ 3 ipla M, | + [, | - (61)
p=1

Combining (52), (53), (56) and (60), we define the uniform bound 2" which is then used
to compute E(’") in (50). Moreover, combining (54), (57)—(59) and (61) provides the explicit
bounds 9, J, and ,,. All of these uniform bounds combined are finally used to compute the
bound Z; in (51) which by construction satisfy (39).

4.4. Z> bound

Recall that we look for a bound Z, satisfying (40). Consider Z, satisfying

Allsxy  sup | DIF(Ew)V, )| x < Zo.

EEBy(X)
1D a2 eB)0)

Then, for any b € B,(0), applying the mean value inequality yields

|AIDF(X + b,w) — D.F(X,w)]||poy <7 sup  [|[ADIF(&, w) (hV,h?) ||x < Zor.
£EBr(X
h(l),h€(2>és)1(0)

Given ¢ € B.(x) and h'V, h® € By(0), we aim at bounding || D?F (&, w)(h", h®)|x. Let

E D2, w) (KO, 1),

337



Nonlinearity 34 (2021) 313

R Calleja et al

which we denote by z = (zx, Za» Zus Zv> Zw) = (0, 24, 0, 2y, Zww), Where z, and z, are both zero

since 77 and f are linear. Denote

WO = (W) KB D D) = 126= (60, 60r6ur ).

Then, forj=1,...,n—1,

(za); =2 [Z (n

leT

e
leT
leZ

p=1
Consider r, > 0 such that r <

> (),

LEZ

> (&),

LEZ

> (M0,

el

> My,

el

Then, forj=1,...,n—1,

def
(Za); =

|(Za)1‘

One verifies that
2o = WTHY + TR +

n—1

+3Y (MAD) * (€0) % M) + (MED) % (Eu,)) 5 ) + 2M ) + £,

j=1

@

wj

x (Z(Mﬂ(h?))z)p) +4

r..Forj=1,.

My
hJRS +

leT p=1 \(eZ

4 Z(@U,)[] [Z( ) ] 3 (Z( /@u»),,)

e p=1 e

s[5

leT LEZ

LEZ leZ

X Z (Z( Ah@))f),,) (Z(Mmhﬁ,”)f)p).

LEZ

leT

.,n—landi=1,2,

4= ”h(l) ”u X

<> (hﬁf?) v
(€T

< N&ully < lwjlly +r < ;= @yl + 7.

2Hﬁl‘|y+||ﬁ2”y+3r*, p=
2 def
g(sp(u)é ‘Iﬁl‘ly+2||a2‘ly+3r*a pP=
2|, + 2rs, p=
<ipe

3
2> " 0p(u)* + 40 () + Wi

p=1

2),(1
AR

338

)] [Z (hEP)J 5 (Z(Mﬂ@)g)p)z

>

p=1

2
x (Z(Mﬂ(@,)g)p) (Z(M,»Ahﬁ,”)z)p) +2<Z(£w,.)g>

[ R S R

h(l)

(62)
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and hence using the Banach algebra structure of £}, we get that (forp = 1,2, 3)

n—1
446 il + 6,(uyid;. (63)

J=1

~ def
H(Zu)p”y < (Zv)p =

Forj=1,...,n—1,

3
Zuy = 68u; ¥ BE) ¥ )+~ (M€, * (M),
p=1

3
+ 36w+ h) x Y (M), % (M), + (M€, * (MGAT),)

=1

3
+ 36w+ hD =Y ((MGBD), % (M), + (M€, * (MGA(D),)

p=1
3
+ G 1Y (MDY« MG, + (MED), « (MGRD),)
p=1

1) 2. h@ () 2 M @) o (D
+ 3R W2+ 3wy L) + 60 &, 4 W2 5 Y,

and hence,

def

3
20,3 (35,,(@5,,@) 34 (8 () + 5,p(0)) + 10 ,ii)

HijHl/ < 2wj:
p=1
+ 6w (W, + |a| + 7). (64)
Combining (62)—(64), set
def ~ ~ ~
ZZ - HA”B(X) j_:IPﬁEiI {(Za)ja (Zv)pa ij} (65)
=123

and therefore, for all b € B,(0),

|A[D F (X + b,w) — D F(X,w)]||px) < Zor.

5. Results

In this section, we present several computer-assisted proofs of existence of spatial torus-knot
choreographies. First fix the number of bodies n, a prescribed symmetry (7) (determined by the
integer k), a resonance (p, q), the frequency w given in (4), and a Galerkin projection number
m. Then compute a real numerical approximation X € Xyeq of the finite dimensional projec-
tion F defined in (35), where Xyea is defined in (43). Define the operators A and A as in
section 3.2. Since the fail of the diagonal blocks of the approximate inverse A (which is defined
in (46)) involves the operator D!, we can easily show (using that ¢! is a Banach algebra under
discrete convolutions) that the hypothesis (36) of theorem 8 holds, that is AF : X x R — X.
Having described how to compute the bounds Y in section 4.1, Zj in (47), Z; in (51) and Z; in
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(65), we have all the ingredients to compute the radii polynomial defined in (41). The proof of
existence then reduces to verify rigorously the hypothesis (42) of theorem 8. This is done with
a computer program in MATLAB implemented with the interval arithmetic package INTLAB,
and available at [70]. All computations are performed with 16 decimal digits’ precision.

Let us present in details the computer-assisted proof resulting in the constructive existence
of the torus-knot choreography of figure 2.

Theorem 13. Fixn = 5 and consider the symmetry (7) with k = 3. Let (p, q) = (3, 1) be the
resonance. Let 5| = %Zj’»zl m be given by (1) and the frequency w = 3./s; be as in (4).
Fix the Galerkin projection number m = 25 and the decay rate parameter v = 1.03. Consider
the numerical approximation

()= (@) @) @) e, @) = (@),

|0]<25

where the real and the imaginary part of the Fourier coefficients (ii;); can be found in the
appendix A in table 1. Then there exist sequences uy, i, i3 € E}, such that

)" (@) @)e. @))€, G- = ((@))e) (66)

leZ
with
& —itjl|c2 < 4.7 x 107", for each j=1,2,3,

and such that G(it,w) = 0, with G defined in (8). Then {Q; ?:1 defined in the inertial frame
by

Os = e’ Pam),  QE0s(t+3jC), j=1,23.4 (67)

is a (renormalized) 67-periodic choreography that is symmetric by 27 / 3-rotations. Moreover,
there exist countably many choreographies with frequencies near w = 3./sj.

Proof. First denote by ¥ = (\, &, &1, v, w) € C¥""*+9=3 = C*7 a numerical approximation
of the finite dimensional reduction F#7 : C*7 — C*7 defined in (35). The approximation
satisfies X € Xrea1 and can be found in the file pt five bodies.mat available at [70].
Note that i € C3@"~D = C!¥ is recovered from the coefficients in table 1 of the appendix A.
Fix v = 1.03. The MATLAB computer program proof five bodies.mavailable at [70]
computes Y asin section4.1, Zyin (47),Z; in(51) and Z; in (65), and verifies rigorously (using
INTLAB) the hypothesis (42) of theorem 8 with ry = 4.7 x 107!, Combining theorem 8 and
proposition 10, there exists X = (5\, Q, U, D, W) € Xyear such that F(X,w) = 0 and ||Xx — X||x <
ro = 4.7 x 107'°. Hence, for a given j € {1,2,3},

litj — itjll 2 = iy — ], < ||X = X[x < ro=4.7x107".

By construction of the Fourier map F introduced in section 2.4, the solution x yields a 27-
periodic solution (i, v,w) of the delay equations (17)—(19), which also satisfies the extra
condition (20). By proposition 6, i satisfies G(i1, w) = 0. The result follows from proposition
3. The existence of countably many choreographies with frequencies near w = 3,/s; follows
from corollary 9 and the discussion thereafter. ([

In the two left subfigures of figure 3, we can visualize (in red) the 27-periodic solution &
satisfying the reduced delay equation (5). The initial condition #(0) = (x¢, Yo, z0) of that red
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.. , &\

Figure 3. Example result: a choreography in the axial family for the five body problem
(n = 5) with k = 3 and resonance p: g = 3: 1. Curves from left to right have the same
meaning as described in the caption of figure 4. Due to the nontrivial winding of the red
curve around the z axis, the choreography is a (nontrivial) (3, 2)-torus knot: the trefoil
knot mentioned in the introduction. See also remark 14.

orbit can be found in table 2 of the appendix A. This orbit is in the rotating frame. Still in the
rotating frame, the position of the other bodies (in blue) can be recovered via the symmetry (7).
In the two right subfigures of figure 3, we can visualize the position of the bodies O, . . ., Os,
which are now in the inertial frame. Since 3 and 5 are relative prime, the factor 3 in the equality
Q(1) = Q,(t + 3jC) is just a re-ordering of the numbering of the bodies j = 1,2,3,4.

Remark 14 (Resonance numbers versus torus winding). When u,(?) is a p: g res-
onant orbit in the axial family with zero winding with respect to the z-axis, the choreography
0, (1) is a (p, g)-torus knot. See corollary 4. In this case the resonance order p : ¢ in our func-
tional analytic set-up corresponds exactly to the windings in the definition of a (p, g)-torus
knot.

If on the other hand u,(f) has winding number one with respect to the z-axis—as in the case
of the orbit u(7) in figure 3 (see the far left frame of that figure)—then the choreography Q,,(7)
(whose normalized period is 67) has toroidal winding in the second component one more than
the g value of the resonance. So even though the choreography illustrated in figure 3 is reso-
nant with order p = 3 and ¢ = 1, the corresponding choreography is a (3, 2)-torus knot after
taking into account the non-trivial winding about the z-axis. We conclude that the choreogra-
phy—illustrated in the center right and far right frames of figure 3—is a (3, 2)-torus knot: that
is, a trefoil knot.

Following exactly the same approach as in theorem 13, we prove the existence of sev-
eral choreographies for n = 4, n =7 and n = 9 bodies. Results from several of our proofs
are illustrated in figures 4, 5, and 6 for four, seven, and nine bodies respectively. The
computer-assisted proofs are obtained by running the codes proofs four bodies.m,
proofs seven bodies.mand proofs nine bodies.m. The approximations can
be found in the data files pts four bodies.mat, pts seven bodies.mat and
pts nine bodies.mat. All files are available at [70]. In table 2 of the appendix A, the
initial conditions #(0) = (xo, yo, zo) for the nth body of each proven choreography is available.
In table 3 of the appendix A, some data for the proofs are given. For each of these proofs,
the existence of countably many choreographies with near frequencies follows from corollary
9 and the discussion thereafter. The reader interested in reproducing the choreographies via
numerical integration will find at [70] the data files containing initial conditions—in inertial
coordinates—for each of the 4,7, and 9 body choreographies illustrated in the figures.
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Figure 4. Example result: a choreography in the axial family for the four body problem
(n = 4) with k = 2 and resonance p: g = 14 : 9. The bodies are shown green. The orbit
in the rotating frame is illustrated by the left two curves. Far left is top down view of the
orbit projected into the xy plane. Second from left is a spatial projection, that is a side
view of the torus. The red loop is the segment whose existence is proven by studying
the DDE. The remaining three loops are obtained by symmetry. Since the red curve
has trivial winding with respect to the z-axis, the choreography is a (14, 9)-torus knot. In
particular, since p, ¢ # %1 the knot is nontrivial in R3. The right two curves are the same
orbit transformed back to inertial coordinates so that we see the torus knot choreography.
The center right frame is a top down view and the far right is a spatial projection of the
choreography.

Figure 5. Example result: a choreography in the axial family for the seven body problem
(n = 7T) withk = 2 and resonance p : ¢ = 15 : 11. Curves from left to right have the same
meaning as described in the caption of figure 4. Since the red curve has trivial winding
with respect to the z-axis, the choreography is a (15, 11)-torus knot. In particular, since
p.q # %1 the knot is nontrivial.

Figure 6. Example result: a choreography along the Lyapunov branch for the nine body
problem (n = 9) with k = 7 and resonance p:q = 10: 13. Curves from left to right
have the same meaning as described in the caption of figure 4. In this case the solution
occurs before the bifurcation to the axial family, hence the orbit shown here is not a
torus knot. Rather, the choreography resembles a spatial Lissajous figure and illustrates
the complexity of the vertical Lyapunov family as the number of bodies increases.
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Appendix A

Tables A1-3 in this appendix contain numerical data needed in the proofs discussed in the
main body of the present work.
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Table A1. Fourier coefficients of the trefoil choreography of theorem 13.

¢ Re((u1)e) Im((u1)e) Re((u2)e) Im((u2)e) Re((u3)e) Im((u3)e)

0 2.365605595 111259 x 107! 0 —2.586486484 802218 x 10~!! 0 0 0

1 2.730238208 518935 x 107! —8.574371389918268 x 107*  9.594366 126621 117 x 10™*  3.055 023346756 821 x 10! 3.183998216275582 x 107 1.013 843797046923 x 10!
2 2.685276027891537 x 1073 —1.686650070612183 x 107> —1.686650070615572 x 107> —2.685276027891251 x 1073 —1.623 160460830562 x 10~* —2.584 195753881417 x 1072
3 —4.758502906 990690 x 1073 4.483372035078380 x 1075 —4.483372035075908 x 107> —4.758 502906990715 x 1073  6.528204 100190321 x 107>  6.928 820000785788 x 103
4 1.883378 890295841 x 1073 —2.366033392747678 x 107> 3.143 172370973051 x 107> 2.501986861440681 x 1073 —1.766651472817732 x 107> —1.406 266734076041 x 103
5 —5.999006965280 112 x 10™*  9.420748338 183218 x 107° —1.393289282442757 x 1075 —8.872280378635012 x 107*  6.028392369 542407 x 1078 —5.065555035359391 x 10~'8
6 8.811248455572393 x 107> —1.660505953485738 x 107°  3.309 334986 825996 x 10~° 1.756 053477440 146 x 10~*  2.212344 038 166 846 x 10~° 1.173950 188081502 x 10~
7 8.498774 137771074 x 107° —1.868 635687922962 x 1077 —1.868635687932195 x 1077 —8.498 774137767349 x 107® —1.286693 928996992 x 107® —5.852034 835941615 x 1073
8 —1.218752697705919 x 1075 3.062649564 066910 x 10~7 —3.062 649564072555 x 107 —1.218752697706007 x 107> 4.623904740337318 x 1077 1.840039 558482767 x 107>

9  5.555183124075654 x 10°°
10 —1.507 114 521228 540 x 10~°
11 2.335200 664238406 x 1077
12 2.104244568410417 x 1078
13 —3.290905327417571 x 1078
14 1.395325137847766 x 10~%
15 —3.732874395549102 x 10~
16 5.929064 335140302 x 1010
17 4.804400016695753 x 107!
18 —7.591409 192695278 x 10!
19 3.114187654313435 x 107!
20 —8.409 739529 661 349 x 10~ 12
21 1.333788472823494 x 10712
22 1.036015543763710 x 10~ 13
23 —1.573324226886791 x 10~ 13
24 6.514968598200342 x 10~

—1.570568 558997 190 x 1077
4.734 666 605 843 514 x 1078
—8.070306 668 417 385 x 10~°
—7.933840614 338345 x 1010
1.344313219810082 x 107°
—6.138 803 968 764 976 x 1010
1.759771 959433038 x 10~1°
—2.981756749 601 868 x 107!
—2.567 445994432811 x 10712
4.295939763 834585 x 10712
—1.860435538023476 x 1012
5.289 131681837649 x 10~ 13
—8.809217097 487 679 x 1014
—7.169318 194234388 x 101
1.138423940937 104 x 10~
—4.919794 693209 673 x 101

1.997 034024758 708 x 107
—7.071 044766269389 x 108
1.593213943378485 x 108
—7.933840610780 110 x 1010
—1.344313219942516 x 10~°
7.771252 183448973 x 10710
—2.610270876784 223 x 1070
5.665 698 400 826 084 x 107!
—2.567446 178 131416 x 1072
—4.295939 829539944 x 10~ 12
2.361958 845379412 x 102
—7.792542267 774 140 x 10713
1.640470271719594 x 10~13
—7.169 447461203913 x 10713
—1.138425538 834881 x 1074
6.284792512394748 x 10~

7.063 613764706 126 x 107°
—2.250818294 936407 x 107°
4.610077899 825280 x 1077
—2.104 244568 485882 x 1078
—3.290905 327451 859 x 108
1.766 373966 056 443 x 10~%
—5.536 974981491 839 x 10~
1.126593914 301232 x 1077
—4.804399 996 475025 x 107!
—7.591409223386 180 x 10!
3.953689255216923 x 107!
—1.239017293452956 x 10!
2.483807275096231 x 10~12
—1.036016 587196382 x 10~ '3
—1.573324 586440305 x 1013
8.322595890 650579 x 1014

—9.561467 803 603 867 x 108
3.032901443 588402 x 1071
1.073253 754609 784 x 108

—5.811254007216032 x 107°
1.877957 666 662263 x 1077

—3.685236237414536 x 10710
7.195923 927456951 x 10720
3.809015322039982 x 107!

—1.932234422136 176 x 107!
5.943 004 126 841 669 x 10712

—1.143913 421869850 x 10712
1.543621 735017767 x 109
1.097 557 417499 826 x 10~13

—5.347398 762479 633 x 104
1.631244902296707 x 10~'4

—3.120 164 368 146 607 x 1075

—3.381941 146020 149 x 10~°
1.295911 152109998 x 1017
3.105536 094276917 x 1077

—1.541283763438269 x 1077
4.597277465765067 x 103

—8.376391 836754 665 x 10~°
7.183652045118199 x 10720
7.574023 856 816297 x 10710

—3.615743 781797638 x 1010
1.050 195703 792485 x 10710

—1.914799 688 503 148 x 10~
7.884 177072944098 x 102!
1.661794417444211 x 10712

—7.727301 224303 588 x 1013
2.254425161892293 x 10~13

—4.131838042098719 x 10714
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Table A2. Initial conditions for the body u, used in the computer-assisted proofs of the torus knot choreographies for different resonances p : ¢ in

the n-body problem, for n = 4,5,7,9.

n=4k=2

Pq X0 Yo 20 Xo Yo 20

10:9 1.084581210 262490 0.269095117967146  —0.400810670225760  0.389692393529414  —0.222026147390220 0.422 912 633683090
6:5 1.188423 380831879 0.396938 948763056 —0.389 381587037265 0.556815395497009 —0.399232075676175 0.462209 587 632568
14:11 1.238763513470937 0.472974975708 732 —0.376434682859180 0.671427135322320 —0.523 882170109271 0.485529 706955392
18:13 1.282136229445568 0.569016024076380 —0.350476579202572 0.840303451206103 —0.707 131207512588 0.504911 385776339
10:7 1.289649221019265 0.602 140964327029 —0.337606815998459 0.906273456937495 —0.778 064 369372037 0.505617 404 253052
14:9 1.283423571908 586 0.686295 696005838 —0.287 166965555756 1.096549 119253133 —0.980065 341494167 0.475381 865946370

n=5k=3
piq Xo Yo 20 Xo Yo 20

3:1 0.781206112370790 0.001 836389 542086 0.000409 996364 153 0.005730260732297 —2.058041218487896 —0.459483910447517

n=T7k=2

piq X0 Yo 20 Xo Yo 20

15:11 0.640762081428200 0.304226 148803711 —0.474 444652515547 0.561266315985831 0.527 487897552293 —0.391 865391782611
17:12 0.579026 084 137 708 0.405193913712767 —0.483263936271178 0.751751082063471 0.635217619217003 —0.389 409 004 841267
19:13 0.542163973 849064 0.463250571295820 —0.484847294002918 0.876087261468306 0.693 625834061019 —0.375630471 181 662
23:15 0.501902078466474 0.521778491863 104 —0.481735430423762 1.042 108767392087 0.739986909 755284 —0.348 083 591 542 181
25:16 0.490096 168583210 0.536730950829510 —0.479345448717921 1.101770886 821142 0.747057 526 841343 —0.337 802 168 545392
2:1  0.388010210558313 0.551393376179951 —0.422655405682646 1.718 638435158988 0.663 687207 742979 —0.293 252731479 080

n=9k=17

piq X0 Yo 20 Xo Yo 20

10: 13 0.649289870115096 0.307019901 740609 —0.696 068 546706 640 0.621 827399 858452 0.185756 061 650385 —1.139929 982269 243
7:10 0.625045716429457 0.335012846089124 —0.779750789678 175 0.591061 134121929 0.198381812020731 —1.161 246560979 217
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Table A3. Data for the proofs of the torus knot choreographies for different resonances
p:qgandforn =4,5,7,9, in the n-body problem.

n=4k=2

pP:q T m v r

10:9 5.780 190889966491 30 1.1 2.50 x 102
6:5 5.352028 601820825 30 1.1 1.1 x 10711
14:11 5.046198396002492 30 1.1 53 x 107!
18:13 4.638424788244715 50 1.1 7.1 x 1071
10:7 4.495704025529494 50 1.1 1.2 x 107°
14:9 4.128707778547495 60 1.04 8.9 x 1078

n=>5k=3

pP:q T m v r

3:1 1.785209272759583 25 1.03 4.70 x 107'°

n="7k=2

p:q T m v r

15:11 3.035064895370178 20 1.15 4.40 x 107°
17:12  2.921452840463272 20 1.11  2.60 x 107*
19:13  2.831759112905190 40 1.07 8.70 x 10~
23:15 2.699168385210632 40 1.05 7.50 x 10!
25:16 2.648783908686700 40 1.04 5.90 x 10~
2:1 2.069362428661484 50 1.04 2.80 x 1077

n=9k=17

pq T m v r

10: 13 4.479593949 184486 70 1.05 4.50 x 1078
7:10  4.922630713389546 150 1.04 1.90 x 107°
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