Celestial Mechanics and Dynamical Astronomy (2020) 132:38
https://doi.org/10.1007/510569-020-09977-1

ORIGINAL ARTICLE

®

Check for
updates

Homoclinic dynamics in a spatial restricted four-body
problem: blue skies into Smale horseshoes for vertical
Lyapunov families

Maxime Murray'@® - J. D. Mireles James'

Received: 13 January 2020 / Revised: 27 June 2020 / Accepted: 6 July 2020 / Published online: 28 July 2020
© Springer Nature B.V. 2020

Abstract

The set of transverse homoclinic intersections for a saddle-focus equilibrium in the planar
equilateral restricted four-body problem admits certain simple homoclinic orbits which form
the skeleton of the complete homoclinic intersection—or homoclinic web. In the present
work, the planar restricted four-body problem is viewed as an invariant subsystem of the
spatial problem, and the influence of this planar homoclinic skeleton on the spatial dynam-
ics is studied from a numerical point of view. Starting from the vertical Lyapunov families
emanating from saddle-focus equilibria, we compute the stable/unstable manifolds of these
spatial periodic orbits and look for intersections between these manifolds near the fundamen-
tal planar homoclinics. In this way, we are able to continue all of the basic planar homoclinic
motions into the spatial problem as homoclinics for appropriate vertical Lyapunov orbits
which, by the Smale tangle theorem, suggest the existence of chaotic motions in the spatial
problem. While the saddle-focus equilibrium solutions in the planar problems occur only at a
discrete set of energy levels, the cycle-to-cycle homoclinics in the spatial problem are robust
with respect to small changes in energy.
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1 Introduction

Connecting orbits occupy a central place in the qualitative theory of Hamiltonian systems
going back to the groundbreaking work of Poincaré at the dawn of the Twentieth Century
(Poincaré 1993a,b,c). Indeed Poincaré’s argument that the circular restricted three-body
problem (CRTBP) is not integrable relies crucially on the existence of a transverse cycle-
to-cycle homoclinic—that is, an orbit which limits in both forward and backward time to a
periodic solution. Such an orbit is necessarily in the intersection of the stable and unstable
manifolds of the periodic solution, a fact which lends the discussion its distinctively geometric
character. The interested reader is referred to the lecture notes of Chenciner (2015) for a
modern discussion of the theoretical and historical role of invariant manifolds and connecting
orbits in Poincaré’s work on the three-body problem. In more recent times, it has been shown
that the existence of transverse homoclinic orbits/heteroclinic cycles implies the existence of
chaotic motions quite generally, via the mechanism of Smale (1967). The lectures of Jiirgen
(2001) and Siegel et al. (1995) provide a classic reference on chaotic motions in Celestial
Mechanics.

Inspired by the work of Poincaré, a number of early-twentieth-century dynamical
astronomers—in particular the groups led by Darwin, Strémgren, and Moulton—conducted
extensive numerical studies which explored the phase space structure of the CRTBP (Darwin
1897; Stromgren 1934; Moulton et al. 1920). These researchers were especially interested in
one parameter families of periodic orbits (“tubes” parameterized by energy) and developed
numerical continuation methods to study the global embeddings of these tubes. This work
first suggested the importance of saddle-focus libration points, as it was observed that some
families of periodic solutions appear to accumulate to an asymptotic cycle—what would be
called in modern language a homoclinic orbit—for a saddle-focus libration point. This work
provided numerical evidence for the existence of families of periodic orbits in the three-body
problem which remain bounded in amplitude but nevertheless have period tending to infinity,
foreshadowing the canonical work of Chazy in 1922 on the final motions of three-body orbits
(Chazy 1922).

The advent of digital computing in the mid-twentieth century facilitated the more detailed
numerical studies of Szebehely and Nacozy (1967) and Szebehely and Flandern (1967). A
key observation to emerge from this work was that the tubes of periodic orbits mentioned
at the end of the previous paragraph appeared to change stability infinitely many times
while approaching the homoclinic. This result suggested complicated dynamics near the
homoclinic, anticipating the period doubling cascades of Feigenbaum. The interested reader
is referred to the work of Pinotsis (1986), Contopoulos and Pinotsis (1984) and Pinotsis

@ Springer



Homoclinic dynamics in a spatial restricted four-body problem Page3of44 38

(2010), as well as the work of Henrard and Navarro (2004) and Henrard (2001) and the
references therein for more complete discussion.

These developments culminated in 1973 with Henrard’s proof of a theorem which unified
the nearly one hundred years of numerical experiments sketched above, finally settling a
conjecture of Stromgren about tubes of periodic orbits. More precisely, Henrard showed that
the existence of a transverse homoclinic for a saddle-focus equilibrium in a two-degree-of-
freedom Hamiltonian system implies the existence of a tube of periodic orbits parameterized
by energy accumulating to the homoclinic (Henrard 1973). Moreover, the result established
that as the period of the orbits goes to infinity, their stability does indeed change infinitely
many times as earlier numerical work suggested. This phenomenon—the so-called blue sky
catastrophe in the terminology of Abraham (1985)—is studied by a number of authors includ-
ing Shilnikov et al. (2014) and Devaney (1977). Indeed Devaney’s 1976 work established
that the hypotheses of Henrard’s theorem imply also the existence of chaotic motions in
the energy level of the saddle-focus equilibrium (Devaney 1976). We refer to the works of
Lerman (1989) and Lerman (1991) for other theoretical results and discussion, and to the
numerical study (Gomez et al. xxxx)/89 which illuminates saddle-focus homoclinic dynamics
associated with the £4 5 libration points in the CRTBP.

Theorems like the ones mentioned in the previous paragraph are Hamiltonian versions
of the homoclinic bifurcations studied by Shilnikov (1970), Shilnikov (1970) and Shilnikov
(1967), and taken together paint a vivid picture of the rich dynamics near a transverse homo-
clinic connection for a saddle-focus equilibrium in a two degree of freedom Hamiltonian
system. A natural follow-up question is what, if anything, do the results about two freedom
systems just described tell us about Hamiltonian systems with three or more degrees of free-
dom? The question is reasonable as many problems in Celestial Mechanics have an invariant
planar subsystem due to the conservation of angular momentum.

The present work considers this question in the context of a spatial equilateral restricted
four-body problem, hereafter referred to as the circular restricted four-body problem
(CRFBP). The equations of motion, as well as some history and basic properties of the
problem, are reviewed in Sect. 2. The problem is an excellent candidate for the present study
as the homoclinic dynamics in the invariant planar subsystem have recently been studied
in some detail. In particular, the work of Shane Kepley and the second author (Kepley and
Mireles James 2019) provides a detailed numerical study of blue sky catastrophes in the case
of equal masses. The main observation is that the saddle-focus homoclinics appear to be
organized by a small number of simple connections, or homoclinic channels. In fact these
channels are just the “shortest” homoclinics (see Kepley and Mireles James 2019 for the
precise meaning of shortest in this context) and there turn out to be six of them at each
saddle-focus equilibrium in the CRFBP. If one considers these six shortest homoclinic con-
nections as the letters of a symbolic alphabet, then all the other homoclinic connections—of
which there appear to be infinitely many—organize themselves into “words” in this alphabet.
In short the homoclinic web at any saddle focus in the CRFBP appears to be organized by
six fundamental motions. The results of Kepley and Mireles James (2019) are reviewed in
Sect. 2.2.

When the planar CRFBP is viewed as a subsystem of the spatial CRFBP, the spectrum
of a libration point picks up an additional center direction, and there is an out-of-plane
family of periodic orbits associated with each of the planar libration points. These are the
so-called vertical Lyapunov families, and they inherit the stability of the planar librations.
We are particularly interested in the vertical families associated with the saddle-focus equi-
librium solutions, where the stable/unstable manifolds of the vertical periodic orbits are
three-dimensional with complex conjugate stable/unstable Floquet multipliers.
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The system conserves the so-called Jacobi integral, so that any fixed vertical Lyapunov
orbit and its attached three-dimensional stable/unstable manifolds live in a five-dimensional
level set, and the dimension count allows for the possibility of transverse intersections
between the stable/unstable manifolds relative to the integral manifold. If such an inter-
section actually occurs, it follows from the Smale tangle theorem (Smale 1967) that there is
a chaotic subsystem near the connecting orbit.

The present work provides compelling numerical evidence in support of the claim that the
planar homoclinic orbits studied in Kepley and Mireles James (2019) give rise to transverse
homoclinic orbits, and hence Smale tangles, for the corresponding vertical Lyapunov families
in the spatial CRFBP. That is, we find a six-letter homoclinic alphabet for the spatial cycle-to-
cycle connections, inherited from the planar problem. The out-of-plane connections appear
to persist for fairly large out-of-plane amplitudes.

In all of our computations, we utilize the parameterization method to approximate the
stable/unstable manifolds of the Lyapunov orbits in large region surrounding the periodic
orbit. The parameterization method is reviewed in Sect. 3; in particular, a number of references
to the literature are given there. Connecting orbits are then located as solutions of two-point
boundary value problems with boundary conditions projected onto the parameterization of
the local stable/unstable manifolds. The virtue of using the parameterization method in the
present context is that it stabilizes the numerics, leading to a better condition number in the
two-point boundary value problem. This is especially valuable when, as in the present work,
we are trying to find many connections as the same local parameterizations can be used to
formulate the BVPs for all the connecting orbits.

The remainder of the paper is organized as follows. In Sect. 2, we review the CRFBP
and discuss some basic results from the literature. In particular, we review the findings of
Kepley and Mireles James (2019) on homoclinic channels in the planar problem and also
introduce the vertical Lyapunov families which are the main objects of the present study. In
Sect. 3, we review the parameterization method and derive the homological equations which
determine the Fourier—Taylor coefficients of the local invariant manifold approximations and
discuss our implementations. Section 4 describes briefly the formulation of the two-point
boundary value problems for cycle-to-cycle connections, and in Sect. 5, we present the main
results of the paper—numerical calculations of the homoclinic connections for the the vertical
Lyapunov family in the CRFBP. In Sect. 6, we summarize our conclusions. We provide two
appendices. One is Appendix A describing the “automatic differentiation” framework which
reduces the problem to polynomial, and the other is Appendix B which tabulates for the sake
of reproducibility some of the data produced in the present study.

2 The restricted four-body problem

In this section, we introduce the particular version of the four-body problem studied in the
present work. We postpone to Sect. 2.1 discussion of the equations of motion and give first
a brief overview of the literature surrounding the problem, which originates from the work
of Pedersen (1944) and Pedersen (1952). Detailed numerical studies of the equilibrium set
as well as the planar and spatial Hill’s regions are found in the works of Simé (1978),
Baltagiannis and Papadakis (2011), and Alvarez-Ramirez and Vidal (2009). Mathematically
rigorous theorems about the equilibrium set and its bifurcations are proven with computer
assistance by Leandro and Barros in Leandro (2006), Barros and Leandro (2011) and Barros
and Leandro (2014). The papers just cited establish that for any value of the primary masses
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there are always either 8, 9, or 10 equilibrium solutions (or libration points) with 6 outside
the equilateral triangle formed by the primary bodies (see Fig. 1).

Periodic orbits are studied by Papadakis in Papadakis (2016a) and Papadakis (2016b),
and by Burgos-Garcia, Bengochea, and Delgado in Burgos-Garcia and Delgado (2013b)
and Burgos-Garcia and Bengochea (2017). A computer-assisted study by Burgos-Garcia,
Lessard, and Mireles James proves the existence of some spatial periodic orbits for the
CRFBP (Burgos-Garcia et al. 2018). Regularization of collisions is studied by Alvarez-
Ramirez, Delgado, and Vidal in Alvarez-Ramirez et al. (2014). Chaotic motions were studied
numerically by Gidea and Burgos in Gidea and Burgos (2003) and by Alvarez-Ramirez and
Barrabés in Alvarez-Ramirez and Barrabés (2015).

Perturbative proofs of the existence of chaotic motions are found in the work of She,
Cheng and She (2017), She and Cheng (2014), and She et al. (2013), and also in the work of
Alvarez-Ramirez, Garcia, Palacidn, and Alvarez-Ramirez et al. (2018). A Hill’s problem is
derived from the CRFBP, and its periodic orbits are studied by Burgos-Garcfa and Gidea in
Burgos-Garcia (2016) and Burgos-Garcia and Gidea (2015).

Blue sky catastrophes in the CRFBP are studied by Burgos-Garcia and Delgado in Burgos-
Garcia and Delgado (2013a) and by Kepley and Mireles James in Kepley and Mireles James
(2019). This last reference develops computer-assisted methods of proof for verifying the
hypotheses of the theorems of Henrard and Devaney. The authors of the last reference cited
further study the blue sky catastrophes for the CRFBP in Kepley and Mireles James (2019),
as discussed already in the introduction.

2.1 Equations of motion and libration points for the CRFBP

The problem describes the motion of a massless particle moving under the influence of three
massive bodies called the primaries. The primaries have masses m1, my and ms, and are
constrained to move in the equilateral triangle configuration of Lagrange. The masses of the
primaries are normalized so that 0 < m3 < my < m1, and

my +my +m3 =1,
and the problem is studied in the co-rotating coordinate system. The coordinates are chosen

so that the center of mass of the primaries is at the origin, the largest primary is fixed on the
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x-axis, the x-axis cuts the side of the triangle opposite the largest primary, and the smallest
primary is in the first quadrant.

Under these constraints, the location of the primaries is a function of only the choice of
masses. To see this, let p; denote the position of the i —th primary and write

p1 =1, y1,21), p2=(x2,y2,22), and  p3=(x3,3,23),

then
—|K|1/m% + mpyms —I—m%
X =
K
y1=20
_ K| [(my — m3)m3 + m (2my + m3)]
2K,/m% + moms + m%
—«/§m3\/ m%
Y2 = s
om3? \ m3 4+ mams +m3
_ IK|
X3 =
2, /m% + momsz + m%
ﬁ mg
Y3 = ,
2ma\ m3 + mams + m3
and
21=22=23=0,
where

K =my(m3 — mp) +my(m2 + 2m3).
Define the potential function
mi my m3
+ + ;
rix,y,z2)  n(x,yz) i, y,z)

b s
-Q(x,y,z)-—z(x +y)+

where r; represents the distance between the massless body and the i —th primary, so that

r(x,y,2) = \/(x —x)?+ -y + @ -2

f’z(x» ) Z) = \/(-x - x2)2 + (y - y2)2 + (Z - 22)27

and

r30r 3. 2) = (= 1% 4 (0 — 32 + (2 — 22)°

The equations of motion in the co-rotating coordinates are

-2y = 2,
4+ 2% = 2, )
=0,

The system admits between 8 and 10 equilibrium solutions depending on the value of
mass ratio, all of them lying in the xy— plane. Closed-form formulas for the locations of
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o5+

Fig. 2 Local dynamics for the triple Copenhagen problem: when m|; = my = m3 = 1/3 the libration
points Ej for j = 1,2,3,7,8,9 have center x saddle stability, while for j = 0,4, 5, 6 they are saddle-
focus equilibria. The figure illustrates the two-dimensional center manifold in the former case and the two-
dimensional stable (green) and unstable (red) manifolds in the latter case. The center manifolds are populated
by planar Lyapunov periodic orbits. The saddle-focus equilibria can exhibit blue sky catastrophes and hence
are the starting point for the present work

the equilibrium solutions do not exist, and in practice it is necessary to numerically compute
their locations once the mass ratios are fixed. A schematic describing the locations of the 10
equilibrium points along with our naming conventions in the case when the m; ~ my ~ ms3,
is given in Fig. 1.

2.2 Homoclinic dynamics in the planar problem

In this section, we describe the homoclinic dynamics associated with the saddle-focus equi-
librium solutions in the case that m; = my = m3 = 1/3. We refer to this as the triple
Copenhagen problem, as the case of equal masses in the CRTBP is traditionally referred to
as the Copenhagen problem. The material in this section is discussed in much more detail in
Kepley and Mireles James (2019), on which the present work builds.

The local invariant manifold structure in the triple Copenhagen problem is illustrated in
Fig. 2. The figure depicts the fact that £; for j = 1,2, 3,7, 8,9 have saddle x center type
stability. Because of this, there is a planar family of Lyapunov orbits associated with these
libration points. The periodic orbits foliate the attached center manifolds and are illustrated
by concentric blue circles in Fig. 2.

When j = 0,4,5, 6, the libration points have saddle-focus stability. That is, each of
these libration points has a complex conjugate pair of stable and a complex conjugate pair
of unstable eigenvalues. The attached two-dimensional stable and unstable manifolds are
foliated by orbits which converge exponentially to the libration point in forward and backward
time. The 2D stable/unstable orbits are illustrated by the green (unstable) and red (stable)
curves, respectively, and give a sense of the location of the local stable/unstable manifolds.

The main topic of Kepley and Mireles James (2019) is to describe the geometry of the
homoclinic web—the set of all intersections between the stable and unstable manifolds—
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38 Page8of44 M. Murray, J. D. Mireles James

attached to the saddle-focus equilibrium solutions in the triple Copenhagen problem. The
authors developed and deployed the following search procedure.

— Step 1 Compute high-order polynomial approximations of the local stable/unstable man-
ifolds. Mesh the boundary of the local approximation into a system of one dimensional
arcs.

— Step 2 Extend the local approximations by Taylor integration of the one dimensional
boundary arcs for time +7. Each step of Taylor integration results in a two-dimensional
manifold patch. After integrating the complete system of arcs the result is a larger local
manifold approximation.

— Step 3 Check the stable against the unstable manifold patches produced in Step 2 for
approximate intersections. If none are found, then no intersections exist up to time 2z. If
an approximate intersection is found, it is verified/refined using a boundary value solver.

— Repeat collapse the manifold patches from Step 3 onto their outer boundaries, obtaining
a new system of boundary arcs for the local invariant manifold. Then repeat Steps 2 and
3 as desired. At the end of the Nth step, the original local approximations have been
extended by time Nt thus locating all intersections up to time 2N t.

In practice, the scheme described above is combined with sophisticated step size selection
and remeshing schemes which insure accuracy and efficiency.

As the algorithm runs, all connections it locates are sorted and stored according to the
“time of flight” of the orbit—that is, the time it takes for the orbit to transition from the
boundary of the initial unstable manifold approximation to the boundary of the initial stable
manifold approximation. Comparing times of flight provides a precise notion of “shortest”
connections. Complexity of the homoclinic connections can be quantified by computing
winding numbers with respect to the primary bodies and the libration points.

Step 1 utilizes the parameterization method as described in Cabré et al. (2003a) and Cabré
et al. (2005). See also the book of Haro et al. (2016). The stable/unstable manifolds illustrated
in Fig. 2 were computed using this method.

Step 2 uses the methods of analytic continuation for growing atlases of local stable/unstable
invariant manifolds developed in Kalies et al. (2018). To see an illustration of how the local
invariant manifolds grow in the triple Copenhagen problem at £y and L5, see Figures 7 and 8
of Kepley and Mireles James (2019). Figure 3 illustrates the results of running the algorithm
for T = 4 time units, hence locating all homoclinics with time of flight up to 8 time units. (A
certain velocity constraint which removes a small neighborhood of each of the primaries is
also imposed.)

The search procedure resulted in dozens of distinct homoclinic orbits at the libration
points £ and Ls. In the case of equal masses, it is sufficient to study only these equilibrium
solutions as a rotation by £120 degrees transforms Ls into L4 6, respectively. Similarly, at
Lo rotation of any homoclinic by 120 degrees yields another homoclinic connections.

Further examination of the connecting orbits located using the search procedure just
described reveals the main result of Kepley and Mireles James (2019), which is that the
homoclinic web at each of the libration points appears to be organized by the six shortest
connections. More precisely, each of the six shortest homoclinic orbits can be thought of as a
letter in a symbol alphabet, and all of the homoclinic orbits located in the search shadow some
combination of these fundamental letters. They are “words” built from the basic alphabet.
Put another way, only six fundamental homoclinic motions govern the complete web of
connections. The six fundamental homoclinic motions at Ly and L5 are illustrated in Figs. 4
and 5, respectively.
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Fig. 3 Homoclinic webs at £y and L5 in the triple Copenhagen problem: (Figure 9 from Kepley and
Mireles James 2019. Reproduced with permission of the authors) Left— the first 42 homoclinic connections
at L. Right—the first 23 homoclinics at £5. Local stable/unstable manifolds of the libration points are colored
in red and green, respectively. In both cases, the complicated looking “web” of homoclinic intersections is
organized by the six simple shortest homoclinic motions. See Figs. 4 and 5 for the six fundamental homoclinic
motions at L and Ls, respectively. Those at L4 ¢ are obtained by symmetry

0.8 0.8
0.4 0.4
0 0
ol 04
-0'§0.8 04 0 0.4 0.8 -0'.80,8 -0.4 0 0.4 0.8

Fig.4 Homoclinic alphabet at L: (Figure 10 from Kepley and Mireles James (2019). Reproduced with per-
mission of the authors). Homoclinic motions at £ with shortest times of flight. Green and red arc segments
depict the asymptotic behavior of the homoclinic—portion on the original stable/unstable manifold param-
eterizations. The blue portion of the arc is the part of the orbit located by growing/searching the manifold
atlases. The shortest motion winds once around L1, while the second shortest motion winds once around a
primary body. Four addition basic homoclinics are obtained by +120 degree rotations, yielding the six letter
alphabet. The homoclinic web at Ly, illustrated in the left frame of Fig. 3, is organized by these six basic
motions

2.3 Vertical Lyapunov families

As mentioned briefly above, the spatial CRFBP inherits the libration points of the planar
problem. Moreover, the spatial problem has no out-of-plane equilibrium solutions. In terms
of stability, each planar equilibrium solutions picks up a center direction when embedded
in the spatial problem. That is, each of the spatial libration points has a purely imaginary
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Fig.5 Homoclinic alphabet at L5: (Figure 18 from Kepley and Mireles James (2019). Reproduced with per-
mission of the authors). Homoclinic motions at £5 with shortest times of flight. Green and red arc segments
depict the asymptotic behavior of the homoclinic—portion on the original stable/unstable manifold param-
eterizations. The blue portion of the arc is the part of the orbit located by growing/searching the manifold
atlases. Each basic motion winds once around either a primary body or a libration point. The basic motions
are L4 ¢ are obtained by +120 degree rotations. The homoclinic web at Ls, illustrated in the right frame of
Fig. 3, is organized by these six basic motions

pair of eigenvalues +iw associated with an out-of-plane eigenspace. The Lyapunov center
theorem (Liapounoff 1947; Moser et al. 2005; Moser 1958) is used to prove that there is a
one-parameter family of periodic orbits tangent to the vertical eigenspace of each libration
point. The family can be computed by numerical continuation begun in a small neighborhood
of the libration point.

The vertical family at L5 for the triple Copenhagen problem is illustrated in Fig. 6. Initially,
the orbits have a “figure eight” shape, with the eight pinched at the libration point and one
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Fig.6 Vertical Lyapunov family at £5: spatial family of periodic orbits attached to L5 in the triple Copen-
hagen problem. The “tube” of orbits is parameterized by energy/frequency, so that (locally) the periodic orbits
are isolated in the energy level. Orbits near L5 inherit its stability, so that many of the orbits in the picture
have complex conjugate stable/unstable Floquet multipliers. The families at £4 ¢ are obtained by =120 degree
rotations

lobe above and one below the z = 0 plane. The family is parameterized by energy, and as
energy is increased, the eight opens up and eventually “tips,” returning to the plane. The
union of the £5 family forms a sphere in configuration space enclosing the three primaries.
The vertical families at £4 ¢ are obtained by 120 degree rotations.

The situation at Lo in the triple Copenhagen problem is illustrated in Fig. 7. Due to the
symmetry of the problem, the £ vertical family moves entirely on the z-axis. The £, vertical
family is illustrated in the same picture. This family also appears to form a sphere, but in this
case the orbits eventually accumulate on the £y family on the z-axis. The vertical families
at £ 3 are obtained by £120 degree rotation of the £, family, and hence all three families
accumulate at L.

The existence of the spatial periodic orbits illustrated in Figs. 6 and 7, along with many
other such results, is proven with computer assistance in Burgos-Garcia et al. (2019). For
small enough out-of-plane amplitude, orbits in the vertical families inherit their stability
from the stability of the planar libration point. Then at Ly 4 5.6 the vertical Lyapunov orbits
have complex conjugate stable/unstable Floquet exponents for some range of out-of-plane
amplitudes.

3 Parameterization of stable/unstable manifolds

In this section, we review the parameterization method for stable/unstable manifolds attached
to periodic solutions of ordinary differential equations, with an eye toward numerical calcu-
lations. Much of the material has appeared in other places and is included here for the benefit
of the reader not familiar with these developments. Indeed it is our hope that the present
section provides a useful introduction to the ideas in the context of a highly non-trivial appli-
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Fig.7 Vertical Lyapunov families at L and £;: spatial families of periodic orbits at L ». The L family is
coincident with the z-axis and the £ family accumulates on the £ family. Orbits near L inherit its stability,
so that many of the orbits in the picture have complex conjugate stable/unstable Floquet multipliers. The £ 3
families are obtained from the £, family by 120 degree rotations

cation problem. We also stress that a concrete description of the method accompanied by a
complete description of the numerical implementation for a periodic orbit in a gravitational
N-body problem having complex conjugate Floquet exponents—and hence a three dimen-
sional stable/unstable manifold—has not appeared before. Hence our little tutorial has some
novelty. However, the reader familiar with this material may want to skip this section upon
first reading.

The parameterization method is a functional analytic framework for studying invariant
manifolds which is useful in both theoretical and numerical settings. The method has been
successfully applied to the study of stable/unstable manifolds attached to fixed points of
nonlinear maps between Banach spaces (Cabré et al. 2003a,b), invariant circles and their
whiskers in quasi-periodically forced maps, stable/unstable manifolds of normally hyperbolic
invariant tori (Haro and de la Llave 2006a,b, 2007), stable/unstable manifolds attached to
equilibrium and periodic solutions of parabolic PDEs (Figueras et al. 2016; Mireles James
and Reinhardt 2016), and quasi-periodic solutions and invariant tori in infinite-dimensional
systems (Fontich et al. 2009; Li and de la Llave 2009; He and de la Llave 2015a,b). The
parameterization method has also been used to formulate KAM theorems without the use
of action angle variables (de la Llave et al. 2005; de la Llave and Mireles James 2012), and
dissipative KAM theorems (Calleja et al. 2013a,b). Several works focusing on numerical
aspects of the method are (Breden et al. 2016; Van den Berg et al. 2016; Mireles James 2015;
Mireles James and van den Berg 2016; MirelesJames and Mischaikow 2013; de la Llave and
Lomeli 2012; Calleja and de la Llave 2009; Groothedde and Mireles James 2017; Huguet
et al. 2012).

‘We make special mention of the works of (Cabré et al. 2005; Guillamon and Huguet 2009;
Huguet and de la Llave 2013; Castelli et al. 2015, 2016; Murray and Mireles James 2017).
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These papers deal with various aspects of the parameterization method for stable/unstable
manifolds attached to periodic solutions of differential equations and are the basis of the
approach to invariant manifolds employed in the present work. The rest of the section is
devoted to the review of this material.

3.1 Invariance and homological equations

Since the invariant manifolds we consider in the present work have complex Floquet expo-
nents, we describe the method in the context of complex vector fields. So, consider the
analytic vector field f : C™ — C™ and the associated first order system of ordinary differ-
ential equations ¥ = f(x). Suppose that y : R — C™ and T > 0 have

d

ay(t) = fy (),
and

vy +T)=y@),

for all + € R. We say that y is a T-periodic solution of the differential equation.

Assume now that y has n stable (or unstable) Floquet exponents, which we denote by
A1, A2, ..., Ay € C.LetD" C C" denote the n-dimensional unit poly-disk. Then it is natural
to look for a parameterization P: R x D" — C™ —T periodic in the first variable—of the
associated stable (or unstable) manifold.

Let A denote the n x n diagonal matrix of stable exponents. Then an appropriate model
of the stable manifold is the cylinder S' x D" endowed with the linear vector field

K@, 0)= <A10>.

Observe that this field has a 1-periodic solution at ¢ = 0, and that all orbits with o # 0
converge exponentially to this periodic orbit, making this the simplest possible model for the
dynamics on the stable manifold.

The geometric idea behind the parameterization method is to look for a parameterization
P satisfying the infinitesimal conjugacy

DP@®,0)K@,0) = f(P(0,0)).

The equation demands that the push forward of the vector field K by P is equal to the vector
field f restricted to the image of P. If the vector fields are equal, then they generate the same
dynamics (same orbits). But the orbits of K are known explicitly, and we have that any such P
parameterizes a local stable manifold for y. The situation is illustrated schematically in Fig.
8. Expanding the first-order differential operator D P o K on the left leads to the invariance
equation

d " 9
EP(O,G)—I—;A,U[(?—P(G,U) = f(P0,0)), )

Oi
which is a first-order system of PDEs for P. We impose the first-order constraints

P©6,0)=y(9) (3)
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f(=)

S x [-1,1]

Fig. 8 Differential geometry of the parameterization method: the geometric idea behind the parameteri-
zation method for vector fields is that a model vector field K, when pushed forward by the parameterization
P, should match the given vector field f on the image of P. Under this assumption, the map P takes orbits
of K to orbits of f on the image of P. Since the orbits of K are known, we discover the dynamics on the
image of P. If K models stable (respectively unstable) dynamics for a periodic orbit, then P parameterizes
a local stable (respectively unstable) manifold. The relationship just described is quantified in the invariance
Equation (2)

and
ad
——P(0,0) =vi(0)
a0, i
fori = 1,2, ..., n where v; (6)—the stable (or unstable) normal bundle associated with the
Floquet exponent A; — solves the linear differential equation

—vj(0) + Df(y))v;(1) = Ajv;(t), “
for each 1 < j < n. The function v; is either T periodic or 2T periodic depending on
whether the associated bundle is orientable or not.

Let @: C" x R — C™ be the flow generated by f. It can be shown (see any of the
references given at the end of the last section) that if P is a solution of the infinitesimal
invariance Equation (2), then P satisfies the flow conjugacy

D(PO,0),1)=P(0+1,eY0), Q)

forall + > 0 and o € D". Then in fact the parameterization method recovers the dynamics
on the manifold in addition to the embedding.

Since f is analytic, we look for an analytic P. To this end, suppose that P has the power
series expansion

oo
P@0,0)= Y Au0)0, 6)
|or|=0
where for each multi-index o = (¢, o2, ..., ®,) € N¥,

el =1 +ox+---+ay

and given o € D" we denote

a _ oy e
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Moreover, each of the coefficients Ay,: R — C™ is the T—periodic complex function.
Plugging the expansion (6) in (2) and matching power of o leads to the homological equation
for Ay () given by

d

79 4a(0) + (@, A)Aa(0) = f (P, 0))a: )
where
(o, A) = A1 + - -+ ok
Remark 1 (Non-resonance criteria) We say that the Floquet exponents A, ..., A, are reso-

nant at order k if there exist « € N" so that || = k and
(o, A) = A

for some A; a Floquet exponent of y. We recall (see again any of the references cited in the last
paragraph of the previous section) that the homological equations are uniquely solvable to all
orders if and only if there are no resonances for |«| > 2. In this case, we say that the Floquet
exponents are non-resonant. For the examples considered in the remainder of the paper, the
periodic orbits had a single complex conjugate pair of stable/unstable Floquet exponents
and all the other exponents are purely imaginary. In such a case, there is no possibility of
resonances for |o| > 2, and the parameterization coefficients A, (6) are guaranteed to be
defined to all orders.

Since solutions of the homological equations are 7 periodic for all «, it is natural to expand
it using Fourier series. Letting w = 27” where T is the period of y, we look for A, expressed
as

Ag(0) = g ™.
keZ

Then, one can plug the expansion in (7) and rewrite the problem as the zero of a nonlinear
operator defined on the space of Fourier coefficients. The focus of next section is to solve
(7) up to some finite order using a finite-dimensional Fourier expansion. The process will be
explicitly presented in the case of the CRFBP.

3.2 Parameterized manifolds in the CRFBP

Our goal is to solve Eq. (7) for the CRFBP. In fact, we use the idea discussed in Appendix A
and first pass to an equivalent polynomial vector field f: R — R?. Having polynomial
nonlinearities greatly simplifies the formal series calculations, as Fourier—Taylor series are
multiplied as follows.

Suppose that g, 1 : [0, T] x D" — C are given by

o0
g0y = 3 agrd o,
la|=0 keZ
and

h(t,o) = i > byt o,

loe|=0 keZ
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We refer to g and & as Fourier—Taylor series and to

a={agr €C:aecN"andk € Z},
and

b={byr € C:aeN"andk € Z},

as the Fourier—Taylor coefficients of g and &, respectively. Observe that g, i are T periodic
inf.

Definition 1 [Convolution product] The Fourier-Taylor series of the point-wise product g -
h(t,o)is

e}

(¢ -Mt.o)= Y Y (axbyre o,

lo|=0 keZ
where the Fourier—Taylor coefficients are given by the Cauchy-convolution products

(@a*xb)gr = Z Z Aoy ky * bas ks -

a1+or=a kj+ky=k
ay,00€N" ki koeZ

We refer to * as the Cauchy-convolution product of @ and b.

The definition extends also to higher-order powers. For example

o0
g3(t, o) = Z Z(a *a * a)a,ke"k“”ao‘,

l|=0 keZ
where

(axax*xa)gr = E E Aoy ki~ Qas,ky * Qag ks -

a1ty +o3=a ky+ky+kz=k
ay,02,036€N" &y ky,k3€Z

Quartic and quintic powers are defined in the analogous way.
We now look for the Fourier-Taylor coefficients of the stable (or unstable) manifold
parameterization, which we write as

P(0,0) = i Y e o,

la|=0 keZ

where

Aok = aa,k (S (Cg,
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foreacho € N" and k € Z. Observe that {ao i }xez and {aej,k}kez are the Fourier coefficients
of the periodic orbit and the jth normal bundle, respectively.

After rewriting the CRFBP as a polynomial system (see again Appendix A) and projecting
Eq. (7) for the resulting polynomial field into Fourier—Taylor coefficient space, we obtain for
each || > 2 an equivalent Fy (a) = 0 problem, where Fy is the map given by

Fj (@) =(iwk + (o, \))ag , — az .

3
FJ () =(wk + (o, A))ag , —2ag4  —ay + »_mi ((al — ) % a® ke aST aw) -
B .
i=1

F (@) =(iwk + (o, \))ag  — ay .

3
Flf_k(a) =(iwk + (o, A))ai,k + Zaiyk - ai,k + Zm,- ((a3 —yi) % a7 a®t a(’“) R
B .

i=1

FJ (@) =k + (o, A)a ;. — a .

FS (@) =Gk + (o, ADal, + Y m; ((a5 —zi) % a xa® « a6+")

s
y ak
i=1

F (@) =Gk + (@, 2))al , + (((a‘ —xD ka4 @@=y xat @ -z *a6> wal xd’ *a7)ak,
Ff,k(a) =(iwk + (« A))aa ¢+ (((al —x2) * a*+ (a3 —y) % at+ (a5 —22) % aﬁ) xad % a® x a8>ak s

Ff,k(a) =(iwk + A))aa ¢t (((al —Xx3) * a*+ (a3 — y3) % at+ (a5 —23) % a6> xa’ *a’ *ag) .
o,

Here (x;, yi, z;) fori =1, 2, 3 denote the coordinates of the primaries.
Choose a Taylor truncation order N > 2 and recursively solve the equations F,(A) = 0

for each 2 < |a| < N using Newton’s method. Let {Eék] ,1 < j < 9denote
Fla<N Ik <k
the resulting numerically computed approximate solutions. This results in the polynomial

approximation

N
P(N’K)(H,O') — Z Z aa’keikaUa

lor|=0 [k| <K

of the desired stable (unstable) manifold parameterization.

Remark 2 (Symmetry in the case of complex conjugate eigenvalues) We are interested in the
case n = 2 with A1 » = a £ ib. The parameterization will have complex coefficients/image;
however, one can check that the Taylor coefficients have the symmetry

Agy.ar(0) = Agy .y (0), V(ap, @2) € N2

Indeed this follows directly from the complex conjugate symmetry of Eq. (7). So, for o =
(o1, 02) € R? we define ﬁ(@, o) = P(0,01 + i02, 01 — i07) and have that the image of
P is real thanks to the symmetry above. Since we are studying a real vector field, we are
ultimately interested in only real image of the parameterization, and in future applications
of the method we always use the complex conjugate variables just discussed. We also note
that the symmetry is further inherited by the Fourier coefficients. That is, for all kK € Z and
for any multi-index o = (a1, a2) we define f = (a2, «1). It follows that

Ak = c_lﬁ,_k.
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Fig. 9 Parameterization of the local stable manifold of a vertical Lyapunov orbit at L:(left)

top and (right) side views when m; = 0.4 and mp; = 0.35. The parameterization is com-
puted to Taylor order 5 with 20 Fourier nodes per Taylor coefficient. The image displays the
boundary torus of the parameterization P(6,0,0) where |o| = R for R = 0.3,0.5,0.7,1. We

remark that in each case the torus is very thin, so that in the image each torus looks essen-
tially like a cylinder. This is an effect of the choice of the projection as only the position component (x, y, z)
are displayed, while the true image of the parameterization lies in a six-dimensional space. The largest torus
in the present figure is roughly the same size as the one shown in Fig. 11; however, that figure illustrates the
unstable parameterization. This nevertheless gives a sense of the scale of the local parameterizations, namely
where are the primaries located

In particular, the coefficients are real when k = 0. One can use this fact to reduce the
computation time as it follows that one needs only to compute half of the coefficients to
determine the parameterization.

3.3 Numerical examples

We now return to the vertical Lyapunov families of periodic orbits at £y and L4 5,6, Which
for small out-of-plane amplitudes are insured to have complex conjugate Floquet exponents.
Indeed, we find that the orbits have the desired stability for fairly substantial out-of-plane
amplitudes as well, see the tables in “Appendix B.” For example, Fig. 9 illustrates a periodic
orbit at £y with nonzero Floquet exponents of approximately =1.2744 £0.83561, so that it is
possible to compute a three-dimensional manifold attached to the orbit. This manifold satisfies
the symmetries previously stated, and we focus on its real image. To simplify the MATLAB
codes, we did not exploit the symmetries of the problem to reduce the dimension and thus
solved the homological equations for all « up to order 5. This results in an approximate
parameterization with 7, 371 nonzero Fourier—Taylor coefficients. To test the accuracy of the
approximation, we exploit the conjugacy relation as follows. We use numerical integration
to evaluate

E(PY0, by, 00,1) = | @(PN )@y, 00), 1) — PO (0 + 1, o)

where
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Fig. 10 Example: Parameterization of the stable manifold of a vertical Lyapunov orbit at L5: (top
frame) top and (bottom frame) side views in the case of equal masses. The boundary torus of the parameterized
stable manifold is displayed in green, while the periodic orbit itself is in blue (torus is very thin). We use
the conjugacy relation to generate sixteen forward asymptotic trajectories with initial data on the boundary,
giving a sense of the dynamics on the three-dimensional stable manifold. The initial values are equally
distributed, and the resulting trajectories are displayed in red. The manifold was computed with 20 Fourier
modes per Taylor coefficient, taking the Taylor expansion to polynomial order 5. Observe that the image of the
parameterization is “‘macroscopic”—i.e., its size is of the same order as the sides of the equilateral triangle,
which has been included in the bottom picture for scale. The same local manifold parameterization is used
to find homoclinic connections for the periodic orbit, see Fig. 18. The cylinder has the same amplitude in the z
component as the connecting orbit displayed, that is about two-fifth of the distance between any two primaries

and @ is the flow generated by the polynomial vector field derived in Appendix A. That
is, the trajectory defined by x(#) = @ (xo, t) satisfies x(r) = F(x(¢)) with the initial value
condition x(0) = x¢. The function F : R — R? is given by Eq. (20).

To obtain the best possible accuracy, we first fix the scale of the eigenvector and then
choose the Taylor order so that the last coefficients have norm close to machine precision.
For the manifold previously described and displayed in Fig. 15, we sample points on the
boundary of the parameterization and approximate the error E at those points using various
integration time. We take initial values evenly distributed on the boundary of the domain of the
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Fig. 11 Example: Parameterization of the unstable manifold of a vertical Lyapunov orbit at Lq: Top
and side views of the local unstable manifold attached to a vertical Lyapunov orbit at L in the CRTBP with
m1 = 0.4 and my = 0.35. The boundary torus of the parameterized manifold is displayed in green (torus
is very thin). We use the conjugacy relation to simulate forward trajectory for initial data on the boundary,
giving a sense of the dynamics on the manifold. The initial value are equally distributed on the domain of
the parameterization, and the resulting trajectories are displayed in red. The manifold was computed with 20
Fourier modes per Taylor coefficient, taking the Taylor expansion to polynomial order 5. The periodic orbit
itself is not visible, but we note that every trajectory in red accumulates to the orbit in backward time. The
same local manifold parameterization is used to find homoclinic connections for the periodic orbit, see Fig.
14. For the side view, at the bottom, the primaries are displayed to show scale. The height of the cylinder is
similar to the z component’s amplitude for the connecting orbits displayed in Fig. 14

parameterization, writing (6, €9, ¢~ with (0, o) € [0, ] x [0, 27]. We approximated the
error with the given stable manifold for 100 points in this domain and obtained the following
error approximation:

1 maiiooE(P(S’ZO), 6;,0:,10719) = 9.6467 - 1071,
<i<

1 maiiooE(P(S’zo), 6;,0:,107%) =9.6475 . 10711,
=i=<
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Fig. 12 Cycle-to-cycle Rn
connection: y; and y; are A
periodic orbits with P and Q P(0,0) I(r)

parameterizations of their local Q(é,p)
unstable and stable manifolds, 71(0)

respectively. A homoclinic
connection is equivalent to an
orbit segment /" (t) beginning on
the image of P and terminating
after time 7" on the image of Q.
The equivalence is formalized as Y2 (¢)
a two-point boundary value
problem in Eq. (8)

max E(P®2 0, 0,,107% =9.7219. 107!,

1<i<100

1 ma%oE(P(S’Z"), 6;, 04, 107%) =2.3987 - 1077,
=<

| max E(PO2 9, 6;,107%) =2.3055-107".
==

See also Figs. 18 and 11 for other graphical illustrations of the results obtained using the
parameterization method for vertical Lyapunov orbits in the CRFBP.

4 Cycle-to-cycle connections

To find the connection, we use the stable and unstable manifold parameterizations developed
in the previous section to formulate a two-point boundary value problem for a hetero-
clinic/homoclinic connecting orbit asymptotic to a periodic solution of the spatial CRFBP.
In the applications, we consider the periodic orbit will be a member of one of the vertical
Lyapunov families discussed in Sect. 2.3.

For a connection to exist, the manifolds do not need to intersect transversely in the full
phase space, but rather in the energy manifold. Recall that the spatial CRFBP conserves the
Jacobi integral, so that a trajectory u(t) € R® solving &t = f'(u), with f asin Eq. (15), must
lie in a level set of the function

mj mj m3

nw W Rw

J(u)=u%+u%+2< )—(u%—{—ui—i—ué).

So, for a given periodic orbit y (¢) there isa K € R so that K = J(y(¢)) for all ¢. In fact we
can find K by choosing any #p € R and evaluating
J(y()) =K.
Define
K={ueR®:Jw =K},

and note that K is locally a five-dimensional manifold.
Consider the case where y has two stable and two unstable Floquet exponents, so that
W*H(y) are three-dimensional invariant manifolds. From the continuity of J, it follows
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that W*(y), W¥(y) C K. Since K is five-dimensional, it is possible that a pair of three-
dimensional submanifolds can intersect transversely relative to . It is highly unlikely that
the images of the local stable/unstable manifold parameterizations intersect except at y, and
it is necessary to look for a point on the local unstable manifold which is on local stable
manifold at some later time.

To formalize the discussionlet yy, y2: R — RO be periodic orbits with periods 71, 75 > 0,
respectively. Suppose that J(y1(t)) = J(y2(¢)) (note that this condition is automatically
satisfied if y; = y»—the case of a homoclinic connection). Let P, Q: R x B — R® denote
local unstable and stable manifold parameterizations, respectively, where B is the unit disk
in the plane. We seek T > 0, 6y, ¢o € R, 00, po € B, and a function I": [0, T] — R so
that

I'(t)y= f('@), VYie©,T)
I'(0) = P(6o,00), 6o,€[0,T1],00 € B (8
I'(T) = O(¢o, po), ¢o € [0, T2], po € B.

That is, we seek an orbit segment I” starting in the image of the local unstable manifold
parameterization and ending at a point in the image of the local stable manifold. The boundary
conditions ensure that the orbit accumulates to the periodic orbit(s) in forward and backward
time thanks to the conjugacy relation (5). We observe, however, that solutions of the above
system are not isolated, as if I": [0, T] — RS is one solution we obtain a continuous family
of other solutions I, : [0, T] — R® by

I3 (1) = &I (1), 1),

forany |7| < 1.

To isolate a solution, we fix o9, po to have length Ry, R» < 1, respectively. This is equiv-
alent to asking that the connecting orbit segment starts and finishes on a particular boundary
torus of the local stable/unstable manifold, and this constraint removes the infinitesimal shift
so that we have isolation. To make this restriction explicit, we write

I = f(Ir@). Vi € (0,T)
') = P@©, Ry cos(@), Ry sin(@)), 6,€[0,T1],a € [0,27] )
I'(T) = Q(¢, Rycos(B), Rasin(B)), ¢ €[0,T>], B €0, 27],

where we remark that R, R, are not variables but fixed constants. This is rewritten as a zero
finding problem for G: R> — RS,

G(T.0,¢,a,p)=P(P(O, R cos(e), Rysin(a)), T) — Q(¢, Ry cos(B), Ry sin(p)),
(10)
where @ is the flow generated by f. While a zero of the system is isolated, we do not have
a balanced system of equations and hence cannot apply Newton’s method. To balance the
system, we drop any of the three components of the velocity. The choice depends on the
trajectory of interest. Denote by @ and Q the flow and the local stable manifold parameteri-

zation each with (for example) the sixth component omitted. Then we define G:R5 > RS
by

G(T,0,¢,a, B) = D(P(O, cos(a), sin(e)), T) — O(¢, cos(B), sin(B)), (1)

and note that the resulting system is balanced.
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Of course the flow @ is only implicitly defined by the vector field f. We obtain an explicit
zero finding problem as follows. In anticipation of the discretization of the function spaces
to follow, we rescale time so that the orbit segment is on the image of P at time t = —1 and
on the image of Q at time t = 1. Define F: C([—1, 1], R3 - C(—1,1],RY) by

(1) = P, cos(a), sin(@) — & 1 f(F(s))ds) (12)
') — Q(6, cos(B), sin(B)) '

In practice, we apply Newton’s method to F after discretizing I" using Chebyshev series as
discussed in the next section. This choice of discretization of the problem is not the only
possible one. This decision was guided by Remark 3 in addition to the fact that this approach
allows to find solutions of the CRFBP while also guaranteeing that both boundary conditions
are satisfied. Newton’s method is later used to obtain an approximate solution in the space
of Chebyshev coefficients and therefore does not require to compute a derivative of the flow.
Another technical detail is that since multiplication of Chebyshev series can be thought of
as multiplication of cosine series, it is once again advantageous to work with the polynomial
field discussed in Appendix.

F(I,T,0,¢,a,B)(t) = (

4.1 Chebyshev discretization of the BVP

After a translation and a rescaling of time, the solution of (12) is defined on [—1, 1] and
therefore can be expressed using Chebyshev series for all nine components. As previously
mentioned, the use of Chebyshev expansion is well detailed in the literature and will lead
to an operator defined on infinite sequences of coefficients which is similar to the definition
from Sect. 3.2.

Remark 3 This approach, based on Chebyshev approximation, allows the use of a contraction
mapping argument to validate the approximation. Such approach is already well known and
had been the object of several studies. The interested reader can see, for example, Gameiro
etal. (2016); Lessard et al. (2014); Lessard and Reinhardt (2014); van den Berg et al. (2015);
van den Berg et al. (2018); van den Berg and Sheombarsing (2016).

Definition2 Let 7T : [—1, 1] — R denote the Chebyshev polynomials. They satisfy the
recurrence relation To(t) = 1, T} (t) =t and

Ti1 (1) = 21T (t) — Ti—1 (1), Vk = 1.

An analytic function f : [—1, 1] — R can be expressed uniquely as

oo
f@) =ao+2) aTi(t),
k=1
and it follows that the decay of the coefficients is exponential. Thus, the function f is
represented uniquely as an infinite sequence representing the coefficients of a Chebyshev
expansion.

It is possible to rewrite the solution as the zero of a well-chosen infinite-dimensional
operator defined on the space of Chebyshev coefficients equivalent to the functional operator
given by (12). More detail about the rewriting of the problem can be found in the literature
listed in Remark 3. Let

y=(L,0,a,¢,B.a',...,d7%,
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where L is the half-period (L = g), the pairs 0, @ and ¢, § are coordinates for the unstable
and stable parameterization of the boundary tori, respectively, and a’ are the coefficients of
the Chebyshev expansion of each component of the solution. So that y denotes the set of
unknowns of the problem. We set

Fo) = (10 0.6 0, ), (13)

where each 7' is a scalar equation arising from the rewriting the second line in (12). We stress
that each G' is an infinite-dimensional equation to solve for the Chebyshev coefficients. The
maps are explicitly defined as

ni(x) = <a6 +2 Za,i) — P'(0, Ry cos(a), R sin()),
k=1

and

(ah +2 X2 (-Dial) — @', Rycos(B). Rasin(p)), k =0,

Gi(y) = [ : .
kaj, — L(F(a))}4,. k>1,

where (F(a))},, = (F(a))j,, — (F(a))}_,. Each F' is similar to the case of the Fourier—
Taylor parameterization of the manifold and is explicitly given by
Fl(a) =a,
3

sz(a) =2a,f + a,l — Zmi ((al _ x,-)*a6+i*a6+i*a6+i)k .
i=1

F(a) =a},
3
F,f(a) =— 2a,§ + a,? — Zmi ((a3 - y,~)*a6+’*a6+’*a6+’>k ,
i=1

F(a) =ap,

3
F,f(a) —_ Zmi <(as _ Zi)*a6+i*a6+i*a6+i)k’
i=1

F,Z(a) =— (((011 — xl)w2 + (a3 — yl)*a4 + (a5 — zl)*aé) *a7*a7*a7)k ,

Fa)=— ( (@' —x2)xa® + (@® — yo)a* + (@° — zz)*aﬁ) *as*ag*ag)k :

Fkg(a) = (((011 — x3)*a2 + (a3 — y3)*a4 + (a5 — 23)*06) *ag*ag*ag)k ,

where * denotes the convolution product. That is for b = {bx}72, and ¢ = {ci}pe,, two
sequence of Chebyshev coefficients

b= Y bikCpol-

ky+ko=k
kl,kzeZ

Again, the coordinates of the primaries are written as Chebyshev series to simplify the
presentation, the Chebyshev expansion of a constant being the constant itself as the first term
and zeros for all the remaining coefficients.
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Remark 4 (Rewriting of the problem) Note that both sums in the definition of F arises from
the evaluation of the trajectory I" at its endpoint as well as the fact that for all k > 0

Te(—1) = (—=DK, and Tp(1) = 1.
Moreover, the tridiagonal structure of each operator G arises from the fact that for all k > 2
1 /T, t Tr—1(t
/Tk(l)dt=f 1) T
2\ k+1 k—1

To obtain the desired operator, one must use the integration formula for Chebyshev polyno-
mials, simplify and then regroup matching coefficients. For more details, we refer again to
the literature in Remark 3.

Remark 5 (domain subdivision) For large values of T, the Chebyshev coefficients will decay
slower and the finite-dimensional approximation can lose accuracy. While one can use a
higher dimensional approximation, it is often more efficient to divide the domain. We will
exhibit how one can split the domain in half, this process can be repeated to divide the domain
into as many pieces as desired. Recall that the original problem is to find I" : [0, T] — R®
satisfying (9). This problem is completely equivalent to the following two boundary problems.
LetO < T < T and seek a pair of function I7 : [0, T] — RO Iy [T, T] — R® satisfying

INGENINION Vi € (0, T)
I7(0) = PO, Ry cos(a), Ry sin(a)), 0,€ [0, T1],a € [0, 2]
N(T) = Iy (T),

and
fz(@ = (1)), Vi e (T, T)
n(T) = N(T),
D(T) = Q(¢, Ry cos(B), Rysin(B)), ¢ € [0, T, B € [0, 27].

Note that 7,7 are restriction of the original trajectory to smaller time. In order to construct
a two-point boundary value problem for each piece, we use the fact that I” is continuous so
that the restrictions must match at the transition point. A natural choice of transition point
is to set T = %; however, the accuracy of the solution can sometime be improved using a
non-uniform mesh.

Both subdomains are then transformed into [—1, 1] and expanded using Chebyshev series.
Using two Chebyshev expansions would double the total number of variables in the problem,
although the gain in the decay rate of each sequence often allows to reduce the projection of
the individual Chebyshev expansion, resulting in the use of fewer total modes.

To find a connection, we apply Newton’s method to a finite-dimensional projection of the
problem. Given a pair of manifolds, one can compute an approximate zero of the operator
and then use Definition 2 to display the approximate connection. Below is a sketch of the
procedure.

1. Pick two periodic orbits y; (), y»(¢) and verify that J(y;(¢t)) = J (y2(¢)) if the orbits are
distinct.

2. Verify that both periodic orbits have the desired stability. Fix a scale for the tangent
bundles as well as the desired dimension for the finite-dimensional approximation in both
the Fourier and Taylor directions. Note that greater values for the scale of the bundle will
require a higher choice for the Taylor direction to maintain sufficient accuracy, but it will
also reduce the integration time required to find connecting orbits.
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3. Compute P(0, o) the parameterization of the local unstable manifold attached to y(¢)
and Q(¢, p) the parameterization of the local stable manifold attached to y»(¢).

4. Define the following positive constants dmax, Af, Tmax and construct a triangulation
of the boundary of both manifolds such that the average length of the edges of every
triangle is less than dmax. Note that the boundary of the manifold is given by the case
Ry = Ry = 1. Denote by 7' = {P(6;, cos(«;), sin(e;)) : i € Z} the set of vertex of the
triangulation. Similarly, 7; will denote the case associated with the stable manifold.

5. Forevery p € 7', use numerical integration to obtain @ (p, At) and use the resulting point
to define 7;), where t; = 1o + At = 0+ At. Refine the mesh by subdividing triangle with
average edge length greater than dmax . To subdivide an edge, note that at this step the two
vertices are given by @ (P (01, cos(ay), sin(a)), t1) and @ (P (62, cos(az), sin(a)), t1),
and we approximate the midpoint of the edge by taking the image of the midpoint in
parameter space. That is, we take @ (P (63, cos(a3), sin(«3)), t1) with 63 = w and
a3 = %ﬂ We compute the set 7] following the same approach but with backward
numerical integration.

6. Find the pair minimizing the distance between the two sets. That is (6, «) and (¢, 8) such
that

@ (P((6, Ry cos(a), sin(a), 11) — P(Q((¢, Rz cos(B), sin(B)), —11)l

is minimal. If the minimum distance is sufficiently small, then set L = #; and the algorithm
provides an initial guess for the use of Newton’s method to obtain an approximate zero
of the operator F given in (13).

7. Whilet, < Tmax, repeat Step 5 to define ZZ‘H and ’Z;}fﬂ . Then, repeat Step 6 to obtain the
candidate and test the existence of a nearby approximate zero using Newton’s method.

Remark 6 (The case of collision) It is possible for some points in the triangulation to reach
a collision, such occurrence makes the size of the sets 7," and 7,7 grow considerably. In
the present work, we reject such occurrences by adding the following constraint to Step 5
of the algorithm. Let vmax and dj;}, be positive constants, and let £; denote the libration
point shadowed by the periodic orbit y;(¢). Reject all points p of 7 and 7, such that

\/ p% + p% + pg > vmax or ||p — L;|| > d}jp- The first condition rejects collisions since
one can easily notice that any trajectory approaching one of the primaries will have large
velocity. The second condition rejects trajectories escaping a chosen neighborhood of the
libration points; with such a criteria, we note that the algorithm cannot find connecting orbit
with really large flying time. The choice of vmax and dj;p, is guided by a priori simulation
of the system and the intent to speed up the algorithm as much as possible.

Remark 7 The algorithm is useful to determine the length of the shortest existing connection
in a specific case, but its accuracy is highly dependent on the values of the constants dmax, At
as well as the accuracy of the ODE solver used to numerically integrate the problem. For our
study, all numerical integrations were executed using a variable-step Runge—Kutta method
with relative and absolute tolerance set to 10~!2. This choice allowed enough accuracy to find
potential connections with the use of a limited computing power and time. A more thorough
study could be provided by a generalization of the approach used in the planar case. That
work is explained with more details in Kepley and Mireles James (2019). The generalization
requires to change the basis for the periodic direction from Fourier to Chebyshev approx-
imation, and this choice of basis is the object of Murray and Mireles James (2017). This
extension is the subject of work in preparation by the authors.
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4.2 Numerical example

An example of the results obtained in the spatial CRFBP using this procedure is illustrated
in Fig. 13. Here, we computed the local stable/unstable manifold parameterizations to poly-
nomial order 5 taking 20 Fourier coefficients to represent each of the Taylor coefficients
(including the periodic orbit and normal bundles). The trajectory I"(¢) is represented using
two distinct Chebyshev expansions; each expansion has 50 coefficients for a total number of
905 unknowns to use the Newton’s method. The total time of flight of the connecting orbit
is
T =3.4698

and both Chebyshev problems have equal time, that is T = usmg the technique from
Remark 5. Let F denote the finite-dimensional projection of _7-' with dimension 905 in this
case, and y denotes the numerical approximation. Newton’s method provided an approxima-
tion with defect close to machine precision, that is

F@G)~ 1071,

For the computation, the fourth component was dropped, and after a posteriori verification,
it was validated that both components are equal. The flying time depends on the scale of the
manifolds, in that specific case the scale chosen is 0.1, so that the tangent bundle at initial
time has length of approximatively 0.1. This condition is not applied exactly and instead
approximated in Fourier coefficients by

22(0))N

i=1 |k|<ko

where o = (1, 0) or (0, 1). This condition was applied with kyp = 5. We remark that this spe-
cific connecting orbit reached a maximum velocity of approximatively 1.81 and a maximum
distance from L5 of 1.1. The connecting orbits in the remainder of the paper are computed
using the procedure just discussed, and the numerical details are similar.

5 Results: homoclinic connections for the vertical Lyapunov families in
the CRFBP

We now return to the main goal of the present work, and apply the numerical algorithms
developed in the previous sections to the homoclinic connection problem at Lo 5 in the
CRFBP for mass ratios at or near the triple Copenhagen problem.

See for example the results illustrated in Fig. 14. Here we have taken the masses of the
primaries to be m; = 0.4, my = 0.35, and m3 = 0.25, so that the 120 degree symmetry
is broken. We consider the vertical Lyapunov family at £ which lies near, but not on the
z-axis thanks to the broken symmetry. As expected, we find that the three shortest homoclinic
orbits have the shape predicted by the planar problem. See for example the orbit in the left
frame of Fig. 4 in the present work. See also the top right frame of Figure 21 in Kepley and
Mireles James (2019), which illustrates the shortest planar homoclinics at almost the same
parameter values as used here. Note, however, that when we view the orbits from the side
in the x, y, z spatial coordinate frame we see that the orbits have substantial out-of-plane
amplitude (5-10 percent of the xy amplitudes), despite the fact that the xy projection fits well
with the planar case.
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Fig. 13 Example—BVP for a vertical Lyapunov homoclinic in practice: (Left) Representation of the
boundary value problem for the case of a homoclinic connection to a periodic orbit at £5. The boundary
torus of the stable manifold is represented in green, with the boundary torus of the unstable mani-
fold in red. The Chebyshev arc in blue. Both surface are displayed using the same map as in Fig. 9,
this time with Ry = 1 for the unstable case and R = 1 for the stable. We remark that the appar-
ent intersection of the local parameterizations in the right side of the left frame is due to projection
distortions which arise when projecting from the six-dimensional phase space to the three-dimensional
configuration space. (Right) The full connecting orbit is recovered using the flow conjugacy relation on
the local parameterizations; that is, the asymptotic behavior is obtained without integrating the CRFBP.
A more accurate portrait of the connecting orbit can be found in Fig. (16)

0

L N L L -0.2 0.4 -0.2
-0.4 -0.2 0 0.2 t -0.4 s
() v x(®)

Fig. 14 Homoclinic connections to a spatial periodic orbit from the vertical Lyapunov family at L:
Mass values of m| = 0.4 and mp = 0.35. J = 3.15 are the Jacobi constant of the periodic orbit. Compare
the shapes of the orbits in the left frame with the planar homoclinic orbits in the top right frame of Figure 21
in Kepley and Mireles James (2019), or (more loosely) with the shapes of the planar homoclinics in the left
frame of Fig. 4 of the present work. While the shape of the cycle-to-cycle homoclinics is clearly inherited
from the shapes of the planar homoclinics, the right frame illustrates the out-of-plane dynamics of the spatial
homoclinic tangle

The story is much the same for the fourth, fifth, and sixth shortest connections as illustrated
in Fig. 15. Again the homoclinic orbits have the shape predicted in the planar problem, as
seen by considering the right frame of Fig. 4 in the present work, and also the bottom right
frame of Figure 21 in Kepley and Mireles James (2019). At the same time, it is important
to remark once again that when viewed in the spatial problem we see that the cycle-to-cycle
connections have substantial out-of-plane amplitude.
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Fig. 15 Homoclinic connections to a spatial periodic orbit from the vertical Lyapunov family at L.
Mass values are m| = 0.4 and mp = 0.35. J = 3.2 is the Jacobi constant of the periodic orbit. Compare the
shapes of the orbits in the left frame with the planar homoclinic orbits in the bottom right frame of Figure 21
in Kepley and Mireles James (2019), or (more loosely) with the shapes of the planar homoclinics in the right
frame of Fig. 4 of the present work. While the shape of the cycle-to-cycle homoclinics is clearly inherited
from the planar homoclinics, the right frame illustrates the out-of-plane dynamics of the spatial homoclinic
tangle

The situation is similar at £5. Figures 16, 17, and 18 illustrate the situation in the triple
Copenhagen problem with m| = my = m3 = 1/3. Since the +120 degree rotational sym-
metry is not broken, the dynamics are the same at L4 ¢. The figures should be compared with
Fig. 5 of the present work, which illustrates that indeed the shapes of the spatial cycle-to-cycle
homoclinics are in strong agreement with the planar saddle-focus equilibrium homoclinics.
The right frame of each of Figs. 16, 17, and 18 illustrates the out-of-plane motion of each
homoclinic and the convergence to the vertical Lyapunov orbit.

We illustrate in Fig. 19 that the spatial dynamics just discussed hold for nearby values of
the Jacobi integral. That is, the shapes are robust for nearby energies. Continuation in the
masses leads to similar robustness results.

Finally, we provide some numerical indication that the picture does change dramatically
when the Jacobi integral is changed enough. For example, the results in Fig. 20 show the four
shortest connecting orbits at £y when m = 0.4, mp = 0.35, and m3 = 0.25, for J = 2.55.
We note that the height of the vertical Lyapunov periodic orbit at this value of the energy
has more than doubles compared with the results in Figs. 14 and 15 and that the shortest
connections are dramatically shorter.

Figure 20 shows the same four orbits in the xy projection, and we see that the shapes of
the spatial cycle-to-cycle homoclinics are no longer described by the planar problem. We
know that the £, vertical family is very close to the £y family at this value of energy. We
conjecture that there are heteroclinic cycles between the two families at this energy and that
the short homoclinics shadow these connections.

6 Conclusions
The numerical results given in the main body of the present work provide an example of

a case where the existence of a blue sky catastrophe in the planar subsystem gives rise to
chaotic motions in the full spatial problem. This is a very interesting phenomena because
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Fig. 16 Homoclinic connections to a spatial periodic orbit from the vertical Lyapunov family at L5 in the
triple Copenhagen problem. Compare the shapes of the orbits in the left frames with the planar homoclinic
orbits in the top two frames of Figure 5 of the present work (Figure 18 in Kepley and Mireles James 2019).
While the shape of the cycle-to-cycle homoclinics is clearly inherited from the planar homoclinics, the right
frame illustrates the out-of-plane dynamics of the spatial homoclinic tangle

x(t)

while the blue sky catastrophe can appear only at discrete values of the Jacobi integral of
the planar system—the energies of the saddle-focus equilibrium solutions—the transverse
cycle-to-cycle homoclinics are robust with respect to small perturbations in the energy. The
dynamics in the planar system at the saddle-focus energy level have ramifications for the
dynamics of the spatial problem over a whole range of energies away from the planar value.

The discussion can be formalized as follows. Suppose that a three-degree-of-freedom
Hamiltonian system has (A) an invariant planar (two degrees of freedom) subsystem, (B) an
in plane equilibrium solution whose linear stability is saddle focus relative to the invariant
plane and saddle focus x center in the full problem, (C) an in plane orbit homoclinic to the
saddle-focus equilibrium. Then:

— 1(P) There exists an invariant tube of planar periodic orbits, parameterized by energy,
accumulating to the homoclinic orbit. The stability of the orbits changes infinitely many
times as they approach the homoclinic along the tube.

— 2(P) There are chaotic dynamics in a neighborhood of the homoclinic. The chaotic sub-
system is an invariant subset of the plane in the energy level of the equilibrium.

— 3(C) There is a one-parameter family of out-of-plane periodic orbits in the center manifold
of the equilibrium. In a small enough neighborhood of the equilibrium, these periodic
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Fig. 17 Homoclinic connections to a spatial periodic orbit from the vertical Lyapunov family at L5 in the
triple Copenhagen problem. Compare the shapes of the orbits in the left frames with the planar homoclinic
orbits in the middle two frames of Fig. 5 of the present work (Figure 18 in Kepley and Mireles James 2019).
While the shape of the cycle-to-cycle homoclinics is clearly inherited from the planar homoclinics, the right
frame illustrates the out-of-plane dynamics of the spatial homoclinic tangle

orbits have saddle-focus stability and hence three-dimensional stable/unstable mani-
folds. For any out-of-plane periodic orbit with small enough out of plane amplitude,
the stable/unstable manifolds of the periodic orbit intersect transversally near the pla-
nar homoclinic. It follows that there are chaotic dynamics in the energy level of the
out-of-plane orbit.

We label 1 and 2 with a P, as these are theorems whose proofs are already in the literature.
Indeed these are simply restatements of the theorems of Henrard (1973) and Devaney (1976),
respectively. Point 3 is labeled with a C as, to the best of our knowledge, this point is conjec-
ture. Indeed, the conjecture may be false without further clarification by other hypotheses;
however, the computations discussed in the present work illustrate that there appear to be
situations where it holds.

A proof of 3 is far beyond the scope of the present—largely numerical—work. Though we
provide the following remarks outlining an argument which we believe could be made precise
with appropriate refinements. First, we note that the equilibrium satisfies the hypothesis of
the Lyapunov center theorem—see for example (Liapounoff 1947; Moser 1958; Siegel et al.
1995)—since there is only one center direction and the other directions at the equilibrium are
hyperbolic (assuming that the vector field and the first integral are analytic). This guarantees
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Fig. 18 Homoclinic connections to a spatial periodic orbit from the vertical Lyapunov family at L5 in the
triple Copenhagen problem. Compare the shapes of the orbits in the left frames with the planar homoclinic
orbits in the bottom two frames of Fig. 5 of the present work (Figure 18 in Kepley and Mireles James 2019).
While the shape of the cycle-to-cycle homoclinics is clearly inherited from the planar homoclinics, the right
frame illustrates the out-of-plane dynamics of the spatial homoclinic tangle

the existence of the out-of-plane family of periodic orbits. The saddle-focus stability of
the out-of-plane orbits follows from the center-stable manifold theorem (Kelley 1967; Carr
1981), and from the saddle-focus stability follows the claim about the dimension of the
stable/unstable manifolds of the periodic orbit.

The existence of a transverse connecting orbit could be completed by formulating the
connecting orbit as the solution of a two-point boundary value problem (BVP), with boundary
conditions projected onto the stable/unstable manifolds of the periodic orbit. See (Doedel
et al. 2009) for more complete discussion of the BVP formulation of the connecting orbit. An
approximate connecting orbit is obtained by taking a suitable portion of the planar homoclinic.
If the approximation is “good enough” then there is hope that an application of the Newton-
Kantorovich theorem (Ortega 1968) could complete the proof.

We stress, however, that even if the above outline were completed, it would provide results
only in a, possibly very, small neighborhood of the invariant plane. The numerical results
given in the present work on the other hand suggest that the planar homoclinics can have an
important organizing effect on the dynamics even for Lyapunov orbits with large out-of-plane
amplitude. At least this appears to be the case for the spatial equilateral restricted four-body
problem.
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Fig. 19 Numerical continuation of homoclinic connections for the spatial Lyapunov family at £(: Masses
m1 = 0.4, mp = 0.35 and values of the energy from J = 3.15 to J = 3.4. The part displayed in green and
red are given using the conjugacy relation and the Parameterization of the stable and unstable manifold,
respectively. The parameterization is approximated up to order 8 in Taylor and order 20 in Fourier. The
part displayed in blue, orange and yellow is all given by the Chebyshev expansion. The three families of
connecting orbit are out of plane and seem to accumulate to the planar homoclinic orbit displayed in Sect. 2.2.
The calculation suggests that the cycle-to-cycle chaos continuing out of the planar homoclinic web persists
for moderately large out-of-plane amplitudes

A more interesting topic of future work would be to refine the numerical results of the
present work into theorems for explicit larger out-of-plane amplitudes. Most likely, this
would be done using computer-assisted methods of proof. For example, a method for proving
the existence of spatial periodic orbits for the CRFBP has already been given in Burgos-
Garcia et al. (2018), where indeed the existence of many out-of-plane orbits coming from the
vertical Lyapunov family has already been established using computer-assisted means. Using
the methods of Castelli et al. (2016)—or some modification of these—one could compute
validated bounds on the attached stable/unstable manifolds of these periodic orbits. Once
the stable/unstable manifold validations are validated, then computer-assisted proof of the
desired transverse homoclinic connections can be given using small modifications of the
techniques developed in Lessard et al. (2014) and van den Berg et al. (2015). Implementing
the computer-assisted argument just sketched is the topic of a work in preparation by the
authors.

Appendix A: Obtaining a polynomial field by automatic differentiation
of the CRFBP

To facilitate formal series calculations in the CRFBP, we first rewrite the problem as a first-
order ordinary differential equation and then introduce a change of variable, often referred
to as automatic differentiation, to obtain a polynomial vector field. The problem is recovered
via projection, as long as the initial conditions are restricted to an appropriate submanifold.
We first set

Uy =x, Up=X, U3=Yy, U4=Y, U5=2Z, Uc=2, (14)
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Fig. 20 Four shortest homoclinic connections to a periodic orbit at £o—Ilarge out-of-plane amplitude: Mass
values of my = 0.4 and mp = 0.35 and J = 2.55—much higher out-of-plane amplitude than considered for
the results illustrated in Figs. 14 and 15. The results suggest a dramatic change in the phase space structure,
as the shortest homoclinics no longer resemble the planar case. The likely explanation is that the vertical
Lyapunov family at £ is close to the vertical family at £ and that the stability of both is saddle focus. There
are likely heteroclinic connections between these two families, and the homoclinics shown here shadow these

heteroclinics
Fig. 21 View from above of all

four shortest homoclinic
connections displayed in Fig. 20

@ Springer




Homoclinic dynamics in a spatial restricted four-body problem Page350f44 38

and obtain a first-order ODE 1 = f(u) given by

Uy =uy,
uy = 2ug + §2,,,
u3 = uy4,
(15)
Uy = —2up + §2,;,
us = ug,
M‘() = Qu57

where §2 is as previously given but using the new set of variable. This vector field still has
singularities introduced by the terms corresponding to the inverse of the distance with the
primaries, and we extend our set of variables using the following definitions:

1 1
uy = = s
TGPt 0P+ G—a? - x0? + 3 — 02 + (s — 21)2
(16)
1 1
Ug = = ’
’ VaE=x)2+ 0 =)+ @ —2)? V@ —x2)+ (u3 — y2)? + (us — 22)?
(17)
1 1
Ug = = .
STV 0P kG2 V-1 - 332+ (s - 23)?
(18)

Let U C R® be an open set excluding the primaries. Then, a direct computation provides
that for the function R : U — R° given by

u
U
u3
us
Ruy, uz, u3, ug, us, ug) = s (19)
ue

1
J(ul—x,)2+<u31—y1>2+(u5—z1>2

NS —xz)2+(u31—y2)2+(u5 —22)?

1 =x3)2 4+ (u3—y3)2 +(us—23)2

and the polynomial vector field F: R® — R? given by
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uz
2ug +uy +my(xp — u)ugugug + ma(xa — uy)ugugug + ma(x3 — u1)ugliguy
ug
—2up +u3 +m(yr — uz)ugugug +mo(y2 — uz)ugugug + mo(x3 — u1)ugugug
F(u) = Ue s

m1(z1 — us)ugugug + mo(z2 — us)ugugug + ma(z3 — us)uguguy
(x1 — upugugugug + (y1 — uz)uguguguy + (21 — us)ueuuyiy
(x2 — up)upugugug + (y2 — uz)ugugugug + (22 — us)ucugugig
(x3 — up)uguguoug + (y3 — us)ugugugug + (23 — us)uciougitg

(20)
we have the infinitesimal conjugacy
DRu)f(u) = F(R(u)), Yuel. (21)

Hence, orbits of u’ = F(u) have the same dynamics as x’ = f(x) after projecting onto the
first six components. We note that, as an effect of the change of variable, the new vector field
does not have any singularity. Nevertheless, the dynamics of the two are related only on the
graph of R, and R caries the singularities of f. The following items formalize the remarks
just made.

1. Let 7 : R? — RO denotes the projection onto the first six coordinates. So that for all
u € U we have u = m(R(u)) and

n(F(Rw)) = fu).

Therefore, we recover the original problem.

2. The orbits of f are mapped onto orbits of ' under R and the graph of R is invariant under
the flow of F.

3. If H : R® — R is constant along curves solution of the initial system, then G : R® — R
such that G(R(u)) = H(u) forallu € U is constant along curves solution of the extended
problem.

It follows from those remarks that it is possible to find periodic orbits of the four-body
problem using the vector field F. Our goal is to compute stable and unstable manifolds for
a periodic orbit y (r) of iz = f(u), so that we have to show that the associated periodic orbit
I’ (t) = R(y(¢)) has the same stability type. This is the object of the next theorem.

Theorem 1 Let y (t) be aperiodic orbitofu = f (u) with Floquet multiplier A associated with
the tangent bundle v(t). Then X is a Floquet multiplier of the periodic orbit I'(t) = R(y (1)),
solution to the system x = F(x), moreover £(t) = DR(y(¢))v(t) is the associated tangent
bundle.

Proof We first note that v(r) will satisfy
v(t) = Df (y )v(t) — rv(r) (22)
and that differentiating (21) provides
D>R(u) f () + DR(u)Df (u) = DF(R(u)) DR (u). (23)
So that a direct computation provides that
§(1) = D*R(y 1))y (1)v(t) + DR(y (1))i(1)
= D’R(y (@) f (y ()v(t) + DR(y ) Df (y (1))v(t) — DR(y () rv(1)
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where we used the fact that y (¢) is a periodic solution of f as well as Eq. (22). Then using
(23), I'(t) = R(y(t)) and £(t) = DR(y(t))v(t), we obtain that

E(t) = DF(I'(1))&(1) — A&(1).

This is the desired result. O

It follows from this result that in the extended system six of the multipliers will be known
from the usual theory. The other three are all zeros so that the dimension of the stable and
unstable manifolds for any orbits remains unchanged.

Appendix B: Orbit data

In this section, we provide several tables of data meant to make the present work more
reproducible. Since our calculations of the connecting orbits utilize fairly sophisticated
Fourier-Taylor approximations of the local stable/unstable manifolds in the formulation
of the two-point boundary value problems, it is unreasonable to think that the casual reader
would reimplement these calculations. On the other hand, many readers will have experience
in the use of numerical integrators for problems in Celestial Mechanics, and once equipped
with the equations of motion it is not unreasonable to think one might want to reproduce
some of the periodic orbits and connections discussed in the present work. To this end, we
provide accurate initial conditions which can be integrated to reproduce the orbits discussed
in the present work. The resulting orbits could also be taken as initial conditions for numerical
continuation software packages like AUTO or MatCont.

The table is organized in the same way. In the first column, we give the initial point
expressed as a six-dimensional vector representing the initial position and momentum. The
coordinates are given in the following order:

Py=(x,%,y,¥,2,2).

Then the second column of the table provides 7 an approximation of the period of the
periodic orbit starting at the point previously given. The third column is n, the number of
Floquet multipliers with positive real part. Finally, the last column shows J (Pp), the energy
level of the initial data. We note that that case of interest in this paper is when n = 2 and
the multipliers are complex conjugate. To obtain the data, we start by computing the center
manifold of each libration point to find an initial guess for Py and 7. To improve the guess,
we numerically integrate the approximated periodic orbit and express the result in Fourier
coefficients. Then Newton’s method is applied to obtain a guess for the periodic orbit with
defect close to machine precision, for all cases covered by the tables it suffices to take 50
Fourier coefficients. The resulting sequence of Fourier coefficients is then a starting point
for any continuation method in order to find other members of the family. To construct the
table, we used a zeroth-order predictor—corrector algorithm using Newton’s method in the
space of Fourier coefficients; in this case, the frequency is an unknown of the system, while
the energy level is one of the inputs of the algorithm. The cases of Ly are given at m; = 0.4
and my = 0.35, while the case at L5 is given with equal masses.

The connecting orbits in Fig. 15 are homoclinic and accumulate to the periodic orbit with
initial condition in the row J = 3.2, given by the table for £y. The initial data with higher
accuracy are
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Table 1 Family at L

Py T n I(Pp)
(0.1108,—0.0339,0.1004,— 0.0068,0.7468,0.3387) 5.3875 1 2.0
(0.1192,—0.0190,0.1138,—0.0015,0.6975,0.3190) 5.0672 1 2.1
(0.1277,—0.0082,0.1226,0.0016,0.6501,0.2993) 4.7779 1 22
(0.1356,—0.0007,0.1277,0.0034,0.6045,0.2797) 45162 1 2.3
(0.1425,0.0042,0.1303,0.0041,0.5605,0.2601) 4.2789 2 2.4
(0.1480,0.0073,0.1309,0.0042,0.5177,0.2405) 4.0632 2 2.5
(0.1515,0.0090,0.1303,0.0039,0.4759,0.2209) 3.8666 2 2.6
(0.1526,0.0095,0.1289,0.0034,0.4347,0.2013) 3.6873 2 2.7
(0.1515,0.0092,0.1270,0.0029,0.3938,0.1817) 3.5238 2 2.8
(0.1485,0.0083,0.1248,0.0023,0.3524,0.1620) 3.3746 2 29
(0.1444,0.0070,0.1224,0.0017,0.3099,0.1421) 3.2382 2 3.0
(0.1398,0.0055,0.1199,0.0013,0.2652,0.1220) 3.1132 2 3.1
(0.1349,0.0038,0.1174,0.0009,0.2162,0.1014) 2.9983 2 32
(0.1302,0.0022,0.1150,0.0006,0.1584,0.0797) 2.8924 2 33
(0.1257,0.0005,0.1125,0.0002,0.0716,0.0549) 2.7944 2 34

Table2 Family at Ls, this table is computed with equal masses and we recall that periodic orbits at £4 ¢ can
be obtained by a rotation of £120 degrees. The cases of energy from 2.4 to 2.50 have real Floquet multipliers,

while the remaining of the table are complex conjugate

Py T n 1(Py)
(0.4844,— 0.5703,— — 0.2358,0.0306,0.6981,0.5661) 6.2404 1 1.6
(0.5063,— 0.5224,— 0.2102,0.0344,0.6830,0.5563) 6.1590 1 1.7
(0.5312,— —0.4749,— 0.1858,0.0383,0.6656,0.5437) 6.0753 1 1.8
(0.5589,— 0.4281,— 0.1629,0.0419,0.6458,0.5279) 5.9924 1 1.9
(0.5892,— 0.3822,— 0.1417,0.0448,0.6236,0.5088) 59132 1 2
(0.6225,— 0.3378,— 0.1221,0.0452,0.5974,0.4883) 5.8397 1 2.1
(0.6576,— 0.2946,— 0.1040,0.0442,0.5679,0.4649) 5.7732 1 22
(0.6940,— 0.2525,— 0.0873,0.0416,0.5344,0.4385) 5.7140 2 23
(0.7313,—0.2113,— 0.0717,0.0376,0.4964,0.4085) 5.6618 2 24
(0.7689,— 0.1712,— 0.0571,0.0323,0.4528,0.3744) 5.6162 2 25
(0.8068,— 0.1319,— 0.0433,0.0259,0.4019,0.3351) 5.5764 2 26
(0.8447,— 0.0934,— 0.0303,0.0184,0.3405,0.2884) 5.5417 2 2.7
(0.8824,— 0.0556,— 0.0178,0.0101,0.2616,0.2297) 55115 2 2.8
(0.9195,— 0.0180,— 0.0057,0.0016,0.1408,0.1423) 5.4852 2 2.9

0.134934339930888
0.003888013139251
0.117443350170703
0.000936082833871
0.216240831347475
0.101389225000425

Py
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To reproduce the trajectories displayed, one can integrate the following initial values Py back
and forward in time for the given time 7'. The starting and ending points of the resulting
trajectories will lay on the boundary of the parameterized unstable and stable manifolds,

respectively.

Py =

Py =

Py =

—0.585194841158983
0.650674788263036
—0.242897059971999
— 0.809665850514842
0.015366927308435
0.645609803647810

—0.010028232796882
0.018905042025788
—0.527614375771166
—0.278204402447460
0.066684862193223
—0.421303149345866

0.364232983907004
0.282004601213298
0.365277731376544
0.566929250936993
0.188719573086921
—0.192150484392393

)

)

’

T =3.9083,
T =3.5848,
T =4.1378.

The three connecting orbits accumulating to the same periodic orbit and member of the
families displayed in Fig. 19 can be found using the following initial condition and integration

time.

—0.101146445518484
0.039260485918423
0.357723970145646
0.064390124937530

—0.215188925518734

—0.117478748772784

0.292042336892103
0.003508935985276
0.118262267817677
—0.031322268117327
0.009128811923180
—0.481727032516309

—0.082031603660355
—0.244810917818636
—0.371129071110934
—0.141117360021255
0.090892927654736
—0.410662336419204

’

’

’

T =23112,
T =1.7643,
T =2.6543.
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In the case of Ls, the connections computed is at J = 2.9, and the initial data for the
periodic orbit are given with higher accuracy by

0.919523300342616
—0.018021865086785
—0.005720721776858

0.001586045655911 |’

0.140748196680255

0.142288965593486

Py = T = 5.485186773053060.

The midpoint of each connecting orbit as well as the approximate integrating time needed to
reach the boundary of the parameterized manifolds is given by pairs, corresponding to their
shape and the figure in which they were presented. The initial data for the connecting orbit
displayed in Fig. 16 are given by

—0.221338679671589
0.290535064047762
0.807520893403199

—0.079212158161279 |’
0.099168243248453

—0.192275633578254

—0.027278885368683
—0.415243675715196
—0.681730123750280
—0.689462085636593 |’
0.002992463395721
0.060975647933203

Py = T =3.9267,

Py = T = 4.1225.

The initial data for the connecting orbit displayed in Fig. 17 are given by

—0.093216716467939
0.539629163160594
0.029112774416657

Po=1"0.487738555586820 |+ T =710

0.028678261003714

—0.264834109382665

—0.369576889105909
— 0.085470029306448
0.463741869935280
o= 0.545543943960734 |’ T'=4.7319.
0.088979849325104

—0.103325348379878

The initial data for the connecting orbit displayed in Fig. 18 are given by

0.497723454800157
0.803131159532739
1.346319122336476
—0.067118235690442 | °
0.029291317637547
—0.145379858982222

Py = T =4.9363,

@ Springer



Homoclinic dynamics in a spatial restricted four-body problem Page 410f44 38

0.480703865397053
—0.766478203112893
—1.325717528617470
—0.049652453045623 |’

0.255108298576897
—0.003998765894041

Py = T =4.9277.
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