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Abstract

We present a new approach to validated numerical integration for systems of delay differential

equations. We focus on the case of a single constant delay though the method generalizes to

systems with multiple lags. The method provides mathematically rigorous existence results

as well as error bounds for both the solution and the Fréchet derivative of the solution with

respect to a given past history segment. We use Chebyshev series to discretize the problem,

and solve approximately using a standard numerical scheme corrected via Newton’s method.

The existence/error analysis exploits a Newton–Kantorovich argument. We present examples

of the rigorous time stepping procedure, and illustrate the use of the method in computer-

assisted existence proofs for periodic solutions of the Mackey–Glass equation.

Keywords Delay equations · Validated numerics · Numerical integration · Chebyshev series

1 Introduction

Use of the digital computer as a tool for proving theorems in nonlinear analysis has its roots

in the work of R.E. Moore on interval analysis [1,2], and has increased steadily since the

groundbreaking work of Lanford, Eckman, Wittwer, and Koch on computer assisted analysis

of renormalization group operators and the Feigenbaum conjectures in the early 1980s [3–5].

For a general overview of the literature we refer to the review articles [6,7] and to the book

of Tucker [8].
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Since the main objective of nonlinear dynamics is to understand the organization and inter-

connectedness of invariant sets, it is natural that validated numerical methods for computing

mathematically rigorous enclosures of orbit segments play an indispensable role. The sim-

plest case is a finite dimensional discrete time dynamical system, where computing an orbit

segment requires iterating a function. This reduces to validated range bounding for nonlinear

functions, and is one of the foundational problems of interval analysis [2,8]. The case of a

finite dimensional continuous time system is more difficult, as an orbit segment is the solution

of an initial value problem. Tremendous effort has gone into developing rigorous integrators

for ordinary differential equations (ODEs) for precisely this purpose. The literature on this

topic is substantial and, while a thorough review is beyond the scope of the present work, we

will refer the interested reader to the works of [9–15] and the references therein.

Analogous problems for infinite dimensional discrete and continuous time dynamical

systems are even more challenging, as in these cases the state space is itself a function

space. There is a great deal of research interest in validated numerical methods for infinite

dimensional discrete time dynamics, going back to work the mid 1980’s on renormaliza-

tion operators in the context of computer assisted proofs of the Feigenbaum conjectures and

their generalizations [3–5,16–18] See also the works of [19–23] on computer-assisted exis-

tence proofs for fixed points, periodic orbits, attracting Morse sets, chaotic dynamics, and

homoclinic connecting orbits for infinite dimensional discrete time dynamical systems. More

recently there has been substantial progress in validated numerical methods for continuous

time infinite dimensional systems. We refer the interested reader to the works of [24–30] on

time stepping procedures for parabolic partial differential equations (PDEs), and to the recent

computer aided proofs of the existence of chaotic dynamics in the Kuramoto–Sivashinsky

PDE [31] and heteroclinic orbits in the Ohta–Kawasaki model [32]. The work of [33] devel-

ops a C0 validated integration techniques for scalar delay differential equations (DDEs),

where functions are represented by piecewise Taylor expansions. We direct the interested

reader also to the recent resolution of both Jone’s and Wright’s conjectures in [34,35], which

required development of a whole suit of validated numerical techniques for DDEs.

In contrast to the Taylor based C0 approach of [33], our work develops a validated C1 time

stepping procedure based on Chebyshev series expansions for nonlinear systems of DDEs

given by

y′(t) = f (y(t), y(t − τ)), (1)

where f : R
d ×R

d → R
d is a smooth function and τ > 0. We derive an implicit time stepping

scheme based on the so called method of steps (see Sect. 1.1 for the formal definition). The

method of steps leads to a fixed point problem for the evolution of the initial history segment,

which is projected into an appropriate finite dimensional space and approximately solved

numerically by iterating a Newton scheme. We then formulate an a-posteriori argument,

which is based on a Newton–Kantorovich theorem, and which provides mathematically

rigorous error bounds on the difference between the true and the approximate solution.

One novelty of our approach is the use of Chebyshev series to represent both the past

history and the solution space. Chebyshev series provide accurate low density representations

of smooth functions on an interval. Moreover the regularity of the solutions translates directly

into decay rates for the Chebyshev coefficients, and this information is useful for choosing

appropriate Banach spaces of infinite sequences in which to study the fixed point problem.

Another feature of our method is that it is C1. That is, the method provides mathematically

rigorous information about the derivative of the time step with respect to initial conditions.

Such information is needed for local stability analysis in many areas of dynamical systems

theory (though we do not consider these applications in this work).

123



Journal of Dynamics and Differential Equations

Another fundamental difference between the method developed in the present work and

the methods of previous works is that we treat the problem as implicitly defining an infinite

dimensional discrete time dynamical system, rather than treating it as an infinite dimensional

flow. This aspect of the approach is discussed in more detail in the next section. As an

application of our method, we prove the existence of some periodic orbits in the Mackey–

Glass Equation.

1.1 Problem Description: TheMethod of Steps

The method of steps is a classical technique for studying DDEs. The idea is to integrate both

sides of Eq. (1) and observe that for 0 ≤ t ≤ τ a solution y(t) satisfies

y(t) = y(0) +

∫ t

0

f (y(s), y(s − τ)) ds, t ≥ 0. (2)

This formulation makes it explicitly clear that the function y must be given on the interval

[−τ, 0] so that the right hand side is defined for t ∈ [0, τ ]. The expression in Eq. (2) suggests

we pass to an appropriate fixed point problem.

To this end suppose that a smooth initial history segment y0 ∈ C([−τ, 0], R
d) is specified.

The function y1 : [0, τ ] → R
d is a solution of the DDE on the interval [0, τ ] if f is continuous

in both variables and y1 is a fixed point of the operator

T (y1, y0)(t) = y0(0) +

∫ t

0

f (y1(s), y0(s − τ)) ds, t ∈ [0, τ ].

Define the mapping �1 : C([−τ, 0], R
d) → C([0, τ ], R

d) by the rule that

�1(x) = y,

if and only if y is the unique fixed point of

y(t) = T (y, x)(t).

We refer to �1 as the first step map for the DDE and write �1(y0) = y1 when y1 solves Eq. (2)

on [0, τ ] with past history y0 on [−τ, 0]. If y1 : [0, τ ] → R
d solves the fixed point problem,

then it is C1 by the fundamental theorem of calculus. We remark that, while uniqueness of

y1 on [0, τ ] follows from standard existence and uniqueness results for ODEs as soon as f

is Lipschitz continuous in the first variable and y0 is continuous, the constructive methods

developed in the present work obtain existence and uniqueness without assuming that f is

globally Lipschitz.

Iterating the procedure leads to subsequent step maps �n+1 : C([(n − 1)τ, nτ ], R
d ) →

C([nτ, (n + 1)τ ], R
d) by the rule that

�n+1(x) = y,

if and only if y is the unique fixed point of

y(t) = x(nτ) +

∫ t

nτ

f (y(s), x(s − τ)) ds, t ∈ [nτ, (n + 1)τ ],

for n ≥ 0. Clearly the step maps improve regularity by one derivative in each application, so

that the maps have a discrete smoothing property akin to the infinitesimal smoothing property

of parabolic PDEs. Indeed the �n+1 are compact mappings.
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Moreover taking K compositions of the first K step maps is equivalent to solving the

DDE over K units of the delay τ . More precisely, if y0 : [−τ, 0] → R
d is a given history on

[−τ, 0], then y : [0, K τ ] → R
d solves Equation (1) with history y0 if and only if

y(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

y0(t), t ∈ [−τ, 0)

�1(y0)(t), t ∈ [0, τ )

�2(y1)(t), t ∈ [τ, 2τ)

...

�K (yK−1)(t), t ∈ [(K − 1)τ, K τ ].

The fact that integrating the DDE leads to a sequence of distinct step maps, each defined

between different function spaces, prevents the scheme above from defining a discrete time

dynamical systems. This inconvenience is easily overcome by shifting and rescaling time.

More precisely, we shift and re-scale the time interval [0, τ ] to [−1, 1] (Chebyshev series

are defined for functions on [−1, 1]) and define T : C([−1, 1], R
d) × C([−1, 1], R

d) →

C([−1, 1], R
d) by

T (y, x)(t) = x(1) +
τ

2

∫ t

−1

f (y(s), x(s)) ds, t ∈ [−1, 1], (3)

and the mapping � : C([−1, 1], R
d) → C([−1, 1], R

d) by the rule

�(x) = y ⇐⇒ y = T (y, x) (uniquely).

We refer to � as the step map for the DDE. Given y0 ∈ C([−1, 1], R
d) define

yn = �(yn−1),

for n = 1, . . . K . Shifting and rescaling back to the original domains recovers the solution

of Eq. (1).

1.2 Chebyshev Discretization for theMethod of Steps

We are interested in numerically iterating the step map, and discretize an appropriate subset

of C([−1, 1], R
d) (to be specified later) using Chebyshev series expansions. Throughout this

section we use freely a number of standard facts about Chebyshev series. Indeed we remark

that Chebyshev series are an excellent tool for studying nonperiodic solutions of nonlinear

differential equations as

• Chebyshev series have excellent (in some sense optimal) uniform approximation prop-

erties.

• The derivative is a diagonally dominant operator in Chebyshev coefficient space.

• Multiplication of scalar valued functions corresponds to discrete cosine convolution in

Chebyshev coefficient space.

Excellent references for this material is [36,37].

Let x, y : [−1, 1] → R
d have convergent expansions

y(t) = a0 + 2
∑

n≥1

anTn(t) and x(t) = b0 + 2
∑

n≥1

bnTn(t),

where for n ≥ 0 the coefficients an, bn ∈ R
d , and where the Tn(t) are the Chebyshev

polynomials defined recursively by T0(t) = 1, T1(t) = t and Tn+1(t) = 2tTn(t) − Tn−1(t),
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for n ≥ 1. Denote the coefficient sequences by a = (an)n≥0 and b = (bn)n≥0. Moreover,

assume that the Chebyshev series expansion of f (x, y) is convergent and given by

f (y(t), x(t)) = φ0 + 2
∑

n≥1

φnTn(t), φn = φn(a, b) ∈ R
d . (4)

As mentioned above, the product of two scalar Chebyshev series is given by discrete cosine

convolution. Then if f : R
d ×R

d → R
d is polynomial, the φn consist of discrete convolutions

involving the components of a and b. Using that
∫

T0(s) ds = T1(s)+ const .,
∫

T1(s) ds =
T0(s)+T2(s)

4
+ const . and

∫

Tn(s) ds = 1
2

(

Tn+1(s)
n+1

−
Tn−1(s)

n−1

)

+ const . for n ≥ 2, yields

∫ t

−1

f (y(s), x(s)) ds

=

⎛

⎝φ0 −
φ1

2
− 2

∑

k≥2

(−1)k

k2 − 1
φk

⎞

⎠ T0(t) + 2
∑

n≥1

1

2n
(φn−1 − φn+1)Tn(t).

Hence, the fixed point equation y = T (y, x) becomes

y(t) = a0 + 2
∑

n≥1

anTn(t)

= x(1) +
τ

2

∫ t

−1

f (y(s), x(s))

= b0 + 2
∑

n≥1

bn +
τ

2

⎛

⎝

⎛

⎝φ0 −
φ1

2
− 2

∑

k≥2

(−1)k

k2 − 1
φk

⎞

⎠ T0(t)

+2
∑

n≥1

1

2n
(φn−1 − φn+1)Tn(t)

⎞

⎠

which is equivalent to solving F̃0(a, b) + 2
∑

n≥1 F̃n(a, b)Tn(t) = 0 for all t ∈ [−1, 1],

with

F̃n(a, b)
def
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a0 −

⎛

⎝b0 + 2
∑

k≥1

bk

⎞

⎠−
τ

2

⎛

⎝φ0 −
φ1

2
− 2

∑

k≥2

(−1)k

k2 − 1
φk

⎞

⎠ , n = 0

an −
τ

4n
(φn−1 − φn+1), n ≥ 1.

Observe that F̃n(a, b) = 0, for all n ≥ 1 only if an = τ
4n

(φn−1 − φn+1) for all n ≥ 1, and

we see that

a0 −

⎛

⎝b0 + 2
∑

k≥1

bk

⎞

⎠−
τ

2

⎛

⎝φ0 −
φ1

2
− 2

∑

k≥2

(−1)k

k2 − 1
φk

⎞

⎠

= a0 + 2
∑

k≥1

(−1)kak −

⎛

⎝b0 + 2
∑

k≥1

bk

⎞

⎠ .
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This leads to the equivalent zero finding problem Fn(a, b) = 0 given component-wise by

Fn(a, b)
def
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a0 + 2
∑

k≥1

(−1)kak −

⎛

⎝b0 + 2
∑

k≥1

bk

⎞

⎠ , n = 0

an −
τ

4n
(φn−1 − φn+1), n ≥ 1.

(5)

Define the operators

T
def
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 · · ·

1 0 −1 0 · · ·

0 1 0 −1 0 · · ·

. . .
. . .

. . .
. . .

. . .

. . . 0 1 0 −1

. . .
. . .

. . .
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and �−1 def
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1
2

0 0 · · ·

. . .
. . .

. . .
. . .

. . .

. . . 0 0 1
n

0

. . .
. . .

. . .
. . .

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(6)

The nonlinear map F defined in (5) is expressed as

Fn(a, b) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a0 + 2
∑

k≥1

(−1)kak −

⎛

⎝b0 + 2
∑

k≥1

bk

⎞

⎠ , n = 0

(

a −
τ

4
�−1T φ(a, b)

)

n
, n ≥ 1.

(7)

We solve F(a, b) = (Fn(a, b))n≥0 = 0 on a space of infinite sequences, with b the fixed

sequence of Chebyshev coefficients for the past history.

To recapitulate, if a = (an)n≥0 is a zero of F(a, b) for fixed b = (bn)n≥0, and if x(t)

and y(t) are the functions whose Chebyshev series have coefficient sequences a and b, then

y = T (y, x) and by rescaling the domains we have that y is a solution of the DDE (1) with

previous history x . Regularity of the functions x, y leads to rapid decay of their Chebyshev

series coefficients, and this fact is exploited to topologize the solution space of F . We endow

the coefficient space with a weighted “little-ell-one” norm. Such norms induce Banach space

– in fact component-wise Banach algebra – structure, under discrete convolution. This results

in a problem formulation amenable to Fréchet differential calculus, and Newton’s method is

an appropriate tool for studying the zero finding problem.

Thought of this way, the problem of time-stepping Eq. (1) is mathematically quite similar

to the work of [38–41] on computer-assisted existence proofs for periodic orbits of DDEs.

The works just cited reformulate a periodic solution of the DDE as a zero finding problem

in a sequence space of rapidly decaying Fourier coefficients, and much of the technology

developed in the references just cited is useful in the present work. The important difference

being that we now employ discretization via Chebyshev series approximation, which are

often described as Fourier series in disguise. In this sense the present work builds on earlier

successful applications of Chebyshev series in validated numerical computations [42,43]

and especially the work of [44–48] on computer-assisted proofs of solutions to initial and

boundary value problems. We refer also to the computer-assisted existence proofs for spatial

periodic orbits in a restricted four body problem in [49]. All of the works just cited exploit

Chebyshev series approximation.

The remainder of the paper is organized as follows. Section 2 formalizes the problem

description and presents the theoretical tools needed for the rest of the paper. Section 3
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presents in details the a-posteriori analysis for Chebyshev discretization scheme for the

method of steps, as well as how to get C1 bounds. We apply the technique to Wright’s

equation. In Sect. 4 we present a method to obtain computer-assisted proofs of periodic orbits

for DDEs, and we apply our approach to prove several periodic orbits in the Mackey–Glass

equation.

Finally we remark that all of the programs discussed in this paper are implemented in

MATLAB, some utilizing the IntLab library [50] for interval arithmetic and some the open-

source package Chebfun. Our programs are freely available at

http://cosweb1.fau.edu/~jmirelesjames/methodOfSteps_CAP_DDE.html.

2 A-Posteriori Analysis and C
1 Bounds for theMethod of Steps

In this section we develop the general setup used to study dynamical systems implicitly

defined by certain fixed point problems throughout the remainder of the paper. The main

tools are the implicit function theorem between Banach spaces, the contraction mapping

theorem, and the Neumann series. The material in this section is agnostic toward problem

specific details like the choice of function spaces and the projections used to study the problem

numerically. Only in Sect. 3 do we return to the topic of Chebyshev series discretization for

DDEs.

2.1 Functional Analytic Set up for Implicitly DefinedMaps

Let X be a Banach space and T : X × X → X be a smooth function. Given a norm ‖ · ‖X on

X , denote by

Br (c)
def
= {a ∈ X : ‖a − c‖X < r} ⊂ X

the open ball of radius r centered at c ∈ X . We are interested in the dynamical system

� : X → X defined by the following rule: for a, b ∈ X we say that

�(b) = a,

if and only if a is the unique fixed point of the equation

T (a, b) = a,

for the given b. The domain of � is the set

D = {b ∈ X : T (·, b) has a unique fixed point a ∈ X} ,

which may or may not be empty. However, if b0 ∈ D then the implicit function theorem tells

us when D contains an open neighborhood of b0. To see this suppose that (a0, b0) ∈ X × X

has that T (a0, b0) = a0, and consider the function F : X × X → X defined by

F(a, b) = a − T (a, b).

Note that F(a0, b0) = 0. By the implicit function theorem we have the following: if the linear

operator D1F(a0, b0) : X → X is an isomorphism then there is an ε > 0 and a continuous

function a : Bε(b0) → X so that a(b0) = a0 and

F(a(b), b) = 0 for all b ∈ Bε(b0).
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It follows that

T (a(b), b) = a(b),

for all b ∈ Bε(b0) ⊂ X . That is, the function � is locally well defined near b0 by the equation

T (�(b), b) = �(b), (8)

and we have that

�(b) = a(b).

This says precisely that Bε(b0) ⊂ D. Note that, in terms of T we have that

D1F(a, b) = Id − D1T (a, b),

is the needed isomorphism, where Id denotes the identify operator on X .

The derivative of � is obtained by implicit differentiation. Differentiating Equation (8)

with respect to b leads to

D�(b) = D1T (�(b), b)D�(b) + D2T (�(b), b),

so that

[Id − D1T (�(b), b)] D�(b) = D2T (�(b), b), (9)

and since Id − D1T (�(b), b) = Id − D1T (a, b) is an isomorphism we obtain the useful

formula

D�(b) = [Id − D1T (a, b)]−1 D2T (a, b) = − (D1F(a, b))−1 D2F(a, b). (10)

We remark that the correspondence between iterates of �, fixed points of T , and zeros of F

plays a central role in the discussion to follow. In the next section we discuss the a-posteriori

theory for studying the solutions of F = 0 – that is, we examine the question of when a

“good enough” approximate solution implies the existence of a true solution “nearby”.

2.2 A-Posteriori Existence and Error Bounds

The following result is a Newton–Kantorovich theorem with hypotheses suitable for computer

assisted implementation. The theorem requires only an approximate solution, and approxi-

mate derivative and approximate inverse of the derivative. More precisely, given any vector

b ∈ X suppose that ā ∈ X has F(ā, b) ≈ 0, and that operators A†, A ∈ B(X) are linear

operators approximating respectively D1F(ā, b) and D1F(ā, b)−1. In practice ā will result

by including an approximate numerical solution – an object sitting in the memory of our

computer – into the function space X . Moreover, throughout the present work A and A† will

be finite dimensional matrices combined with identity mappings in the infinite dimensional

“talis”.

The theorem provides conditions sufficient for establishing the existence of an r0 > 0 and

a ã ∈ Br0(ā), so that ã is the unique solution of F(ã, b) = 0 in Br0(ā). Here Br0(ā) is the

closure of the open ball Br0(ā). It is important to note that the invertibility of D1F(ā, b) is

not assumed; rather it emerges as a corollary (see Corollary 2.2 below).

Newton–Kantorovich theorems and their many variations are used frequently in computer-

assisted proofs, We refer the interested reader to the references [5,38,51–57] for a number

of different related approaches. Denote by B(X) the set of bounded linear operators on the

Banach space X and ‖ · ‖B(X) the corresponding bounded linear operator norm.
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Theorem 2.1 Let X be a Banach space and F : X × X → X be a Fréchet differentiable

mapping with respect to both variables. Suppose that ā, b ∈ X, A† ∈ B(X), and A ∈ B(X)

with A is injective. Assume that Y0, Z0, and Z1 are positive constants and that Z2 : (0, r∗) →

R
+ is a non-negative function satisfying

‖AF(ā, b)‖X ≤ Y0, (11)

‖Id − AA†‖B(X) ≤ Z0, (12)

‖A[D1F(ā, b) − A†]‖B(X) ≤ Z1, (13)

‖A[D1F(a, b) − D1F(ā, b)]‖B(X) ≤ Z2(r)r , ∀a ∈ Br (ā) and for r ∈ (0, r∗). (14)

Define

p(r)
def
= Z2(r)r − (1 − Z0 − Z1)r + Y0.

If there is an r0 ∈ (0, r∗) such that p(r0) < 0, then there exists a unique ã ∈ Br0(ā) satisfying

F(ã, b) = 0.

In practice, b ∈ X is a fixed data point and ā ∈ X is an approximate solution of F(·, b) = 0.

The operator A† is an approximation of the Fréchet derivative D1F(ā, b), and the operator A

is an approximate inverse of A† making it an “even more” approximate inverse of D1F(ā, b).

The function Z2(r) is a local Lipschitz estimate of the first derivative of F at ā which

needs only to hold up to distance r∗ from ā. In many applications F is twice continuously

differentiable in its first variable and we simply take

Z2(r) = ‖A‖B(X)Cr ,

where C is any bound of the form

sup
a∈Br∗ (ā)

∥

∥D2
1F(a, b)

∥

∥

bi-linear(X)
≤ C .

Here r∗ may be chosen somewhat arbitrarily –though “small” – and the norm is an appropriate

norm on the space of bi-linear operators. The estimate of Eq. (14) is seen to hold for any

0 < r < r∗ by applying the mean value inequality to D1F . Moreover in this case we have

that p(r) is a quadratic polynomial whose roots are easily determined from the quadratic

equation.

Since several details from the proof of Theorem 2.1 are needed in the proof of the corollary

below, we now sketch the argument. The idea is to look for a fixed point of the Newton-like

operator

N (a)
def
= a − AF(a, b),

where we have suppressed the dependance of N on b, as the parameter b is fixed throughout

the following discussion. Observe that

DN (a) = Id − AD1F(a, b),

so that

‖DN (a)‖B(X) ≤ ‖Id − AD1F(a, b)‖B(X)

≤
∥

∥Id − AA†
∥

∥

B(X)
+
∥

∥A
[

A† − D1F(ā, b)
]
∥

∥

B(X)

+ ‖A [D1F(a, b) − D1F(ā, b)]‖B(X)
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for all a ∈ Br0(ā). Then, by the hypotheses of Theorem 2.1 we have the bound

sup
a∈Br0

(ā)

‖DN (a)‖B(X) ≤ Z2(r0) + Z1 + Z0, (15)

for any 0 < r0 < r∗. Now the condition p(r0) < 0 encodes two valuable pieces of

information, namely that Z2(r0)r0 + (Z1 + Z0)r0 + Y0 < r0, and, since Y0, r0 > 0, that

Z2(r0) + Z1 + Z0 < 1. From the first it follows that

‖N (a) − ā‖B(X) ≤ ‖N (a) − N (ā)‖B(X) + ‖N (ā) − ā‖B(X)

≤ sup
c∈Br0

(ā)

‖DN (c)‖B(X)‖a − ā‖B(X) + ‖AF(ā, b)‖B(X)

≤ (Z2(r0) + Z1 + Z0) r0 + Y0 < r0,

so that N maps the ball Br0(ā) into Br0(ā). From the second it follows by (15) and the mean

value theorem that N is a strict contraction on Br0(ā), with Lipschitz constant Z2(r0)+ Z1 +

Z0 < 1. From the contraction mapping theorem follows the existence of a unique fixed point

ã ∈ Br0(ā) of N , and from the injectivity of A it follows that ã is a unique zero of F(·, b).

In the applications to follow we are interested not only in the existence of a zero ã of

F(·, b), but also in some information about the derivative. The following corollary provides

some control over the norm of the inverse of D1F(ã, b), and when A is invertible provides

some control over the difference between the true and approximate inverse at the true zero.

Note that the corollary recycles several bounds already used in Theorem 2.1.

Corollary 2.2 (Bounds on the inverse derivative composed with A) Suppose that X, F , ā, b,

A, A†, Z0, Z1, Z2(r) and p(r) are as in Theorem 2.1, and that r0 > 0 has p(r0) < 0. Let ã

be the unique solution of F(·, b) = 0 in Br0(ā) given by Theorem 2.1. Then

1. AD1F(ã, b) is boundedly invertible with

∥

∥

∥

[

AD1F(ã, b)
]−1
∥

∥

∥

B(X)
≤

1

1 − (Z2(r0) + Z1 + Z0)
. (16)

2. If A is invertible so is D1F(ã, b). In this case we have the bound

∥

∥D1F(ã, b)−1
∥

∥

B(X)
≤

‖A‖B(X)

1 − (Z2(r0) + Z1 + Z0)
. (17)

3. When A is invertible we also have the bound

∥

∥D1F(ã, b)−1 − A
∥

∥

B(X)
≤

Z0 + Z1 + Z2(r0)

1 − (Z0 + Z1 + Z2(r0))
‖A‖B(X). (18)

Proof To prove (16) we write

D1F(ã, b) = D1F(ã, b) − D1F(ā, b) + D1F(ā, b) − A† + A†

so that

A D1F(ã, b) = A
[

D1F(ã, b) − D1F(ā, b) + D1F(ā, b) − A† + A†
]

+ Id − Id

= Id −
(

A
[

D1F(ā, b) − D1F(ã, b)
]

+ A
[

A† − D1F(ā, b)
]

+
[

Id − AA†
])

or

A D1F(ã, b) = Id − B, (19)
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where

B
def
= Id − AD1F(ã, b).

Combining the definition of B with the calculation above gives

B = A
[

D1F(ā, b) − D1F(ã, b)
]

+ A
[

A† − D1F(ā, b)
]

+
[

Id − AA†
]

.

The fact that ã ∈ Br0(ā) and the estimate of Equation (15) (the contraction constant) leads

to the bound

‖B‖B(X) ≤
∥

∥A
[

D1F(ā, b) − D1F(ã, b)
]∥

∥

B(X)
+
∥

∥A
[

A† − D1F(ā, b)
]∥

∥

B(X)

+
∥

∥Id − AA†
∥

∥

B(X)

≤ Z2(r0) + Z1 + Z0 < 1.

This uses the hypothesis that p(r0) < 0, just as in the proof of Theorem 2.1 sketched above.

Now, by the Neumann theorem, we have that Id − B is invertible with the desired bound.

The proof of (17) is as follows. Since A is invertible, we multiply both sides of Equation

(19) by A−1 to obtain

D1F(ã, b) = A−1 (Id − B) . (20)

Since both operators on the right hand side of Equation (20) are invertible we have that the

product is invertible and that D1F(ã, b)−1 = (Id − B)−1 A. Taking norms and employing

the bound from Eq. (16) gives inequality (17). Finally, to establish (18) we recall that

‖B‖B(X) = ‖Id − AD1F(ã, b)‖B(X) < 1,

again exploiting p(r0) < 0. Observing that

D1F(ã, b)−1 − A =
[

Id − AD1F(ã, b)
] [

D1F(ã, b)
]−1

,

the bound (17) gives the inequality of Eq. (18). ��

2.3 The Implicit Time Stepping Scheme

We now apply the results of Sect. 2.2 to the method of steps for DDEs. The main task is

simply to write down explicit formulas for the function F and the fixed point operator T

defined in Eq. (3) for the method of steps. These in turn implicitly define the step map �.

Let X = C([−1, 1], R
d) and define F : X × X → X by

F(y, x)(t) = y(t) − x(1) −
τ

2

∫ t

−1

f (y(s), x(s)) ds

= y(t) − T (y, x)(t), (21)

where T is the fixed point operator defined in Eq. (3). Observe that we change from (a, b)

to (y, x) when we want to stress that the variables are functions. We save the (a, b) notation

for later after we transform the problem to the space of infinite Chebyshev sequences.

Now, let � : C([−1, 1], R
d) → C([−1, 1], R

d) denote the step map as defined in Section

1.1. For fixed x ∈ C([−1, 1], R
d) we have that y(t) corresponds (after shifting and rescaling

of the domain) to a solution of the DDE with history x(t) if and only if �(x) = y, if and

only if y is a fixed point of T (·, x), if and only if y is a solution of the equation F(·, x) = 0.
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In the following we write D, D1, D2 to denote Fréchet derivatives and partial Fréchet

derivatives with respect to infinite dimensional variables, and ∂1, ∂2 to denote the usual

partial derivatives with respect to finite dimensional (vector valued) variables. Then

D1F(y, x) = Id − D1T (y, x), (22)

where for h ∈ X this operator has action

[D1F(y, x)h] (t) = h(t) −
τ

2

∫ t

−1

∂1 f (y(x), x(s))h(s) ds. (23)

It is worth recording also that the partial Fréchet derivative with respect to the second variable

– the past history – is

[D2T (y, x)h] (t) = − [D2F(y, x)h] (t) = h(1) +
τ

2

∫ t

−1

∂2 f (y(x), x(s))h(s) ds. (24)

In Sect. 3 we use Eq. (23) to define the approximate derivative A† and approximate inverse

A hypothesized in Theorem 2.1. The formula in Eq. (24) is needed to compute the validated

C1 bounds for the step map.

Suppose that x ∈ C([−1, 1], R
d) is given and that y ∈ C([−1, 1], R

d) is a fixed point of

T (·, x). Recall from Sect. 2.1 that the step map is well defined near x if Id − D1T (y, x) is an

isomorphism. We now see that this is equivalent to the nondegeneracy of D1F(y, x) in the

sense of Corollary 2.2. So, if we prove the existence of a zero of F(y, x) using Theorem 2.1

then the step map is locally well defined near x . Moreover the step map � is differentiable

at x with D�(x) given by Eq. (10), which can now be rewritten as

D�(x) = −D1F(y, x)−1 D2F(y, x) = (Id − D1T (y, x))−1 D2T (y, x). (25)

We stress that if y is found through a successful application of Theorem 2.1 and if A is

invertible, then Corollary 2.2 provides invertibility and norm bounds on D1F(y, x).

2.4 Validated Bounds on the Derivative

Suppose y, x ∈ C([−1, 1], R
d) have that F(y, x) = 0, so that �(x) = y. Then, by the

discussion above D�(x) exists and is given by Eq. (25). Suppose that y results from a

successful application of Theorem 2.1, and that we would like to obtain information about

the derivative. We need to introduce a new operator A
†
2, which approximates D2F(ȳ, x).

Indeed in practice A
†
2 is a finite matrix with zero tail.

Recall that A† is an approximation of D1F(ȳ, x) and that A is an approximate inverse of

A†. Then, recalling the formula for the derivative of the implicitly defined mapping � given

in Eq. (10), we have in fact that that

D�(x) ≈ −AA
†
2.

This is a convenient approximation as A and A
†
2 are known quantities. The next theorem

provides a quantitative bound on the approximation.

Theorem 2.3 (C1bounds for an implicit time step) Suppose that X = C([−1, 1], R
d), that

F is as defined in Eq. (21), and that ȳ, x ∈ X, A ∈ B(X), Z0, Z1, Z2(r) and p(r) satisfy the

hypotheses of Theorem 2.1. Assume that A is invertible and that A
†
2 ∈ B(X). Assume further
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that r0 > 0 has p(r0) < 0. Let ỹ be the unique solution of F(·, x) = 0 in Br0(ȳ) given by

Theorem 2.1. Let

M
def
= −AA

†
2 ∈ B(X). (26)

If δ0, δ1, δ2 ≥ 0 are constants with

‖D2F(ỹ, x)‖B(X) ≤ δ0 (27)
∥

∥

∥
A[D2F(ȳ, x) − A

†
2]

∥

∥

∥

B(X)
≤ δ1 (28)

‖A[D2F(ỹ, x) − D2F(ȳ, x)]‖B(X) ≤ δ2 (29)

then

‖D�(x) − M‖B(X) ≤

(

Z0 + Z1 + Z2(r0)

1 − (Z0 + Z1 + Z2(r0))

)

‖A‖B(X)δ0 + δ1 + δ2. (30)

Proof The idea of the proof is that M approximately solves Eq. (9). That is

‖D1F(ỹ, x)M + D2F(ỹ, x)‖B(X) � 1.

Then M approximates the derivative and we seek an a-posteriori bound on the approximation.

Recalling (26) and that D�(x) = −D1F(ỹ, x)−1 D2F(ỹ, x) we have that

D�(x) − M = −[D1F(ỹ, x)−1 − A]D2F(ỹ, x) − A[D2F(ỹ, x) − D2F(ȳ, x)]

−A[D2F(ȳ, x) − A
†
2].

Applying triangle’s inequality gives the desired result:

‖D�(x) − M‖B(X)

≤ ‖[D1F(ỹ, x)−1 − A]D2F(ỹ, x)‖B(X) + ‖A[D2F(ỹ, x) − D2F(ȳ, x)]‖B(X)

+ ‖A[D2F(ȳ, x) − A
†
2]‖B(X)

≤ ‖[D1F(ỹ, x)−1 − A]‖B(X)‖D2F(ỹ, x)‖B(X) + δ2 + δ1

≤
Z0 + Z1 + Z2(r0)

1 − (Z0 + Z1 + Z2(r0))
‖A‖B(X)δ0 + δ2 + δ1.

��

3 Computer-Assisted Proofs for theMethod of Steps

In this section, we introduce the necessary steps to apply the Newton–Kantorovich approach

of Theorem 2.1 to prove existence of zeros of the nonlinear map F given by (5). First,

we introduce in Sect. 3.1 the Banach space X in which we look for solutions of F = 0.

Then in Sect. 3.2, we introduce the finite dimensional projection used to compute numerical

approximations. Third, we introduce in Sect. 3.3 the bounded linear operators A, A† : X →

X required to apply Theorem 2.1.

3.1 Banach Spaces of Infinite Sequences with Rapid Decay

Recall from Sect. 1.2 that we employ Chebyshev series to pass from analysis in function

spaces to sequence spaces, and that in doing so differentiation is represented by a (diagonally
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dominant) infinite matrix, multiplication is given by discrete cosine convolution, and the C0

norm is bounded by an appropriate weighted little ell-one norm. Again we refer to [36,37]

for more general discussion.

Then, given a sequence of weights ω = (ωn)n≥0 given by

ωn
def
=

{

1, n = 0

2νn, n > 1
(31)

for a given real number ν ≥ 1, define

�1
ω

def
=

⎧

⎨

⎩

α = (αn)n≥0 : αn ∈ R and ‖α‖ω
def
=
∑

n≥0

|αn |ωn < ∞

⎫

⎬

⎭

. (32)

For a, b ∈ �1
ω, denote by a ∗ b the discrete convolution given component-wise by

(a ∗ b)n =
∑

n1+n2=n

n1,n2∈Z

a|n1|b|n2|.

It is a classical result that for the weights given in (31),
(

�1
ω, ∗

)

is a Banach algebra, that is

‖a ∗ b‖ω ≤ ‖a‖ω‖b‖ω for all a, b ∈ �1
ω. Indeed this is an example of a Beurling algebra,

whose elementary properties are explored in [58].

Given b ∈ �1
ω we look for a solution of F(a, b) = 0 in the space

X
def
= (�1

ω)d = {a = (a1, a2, . . . , ad) : a j ∈ �1
ω, for j = 1, . . . , d}

with norm

‖a‖X
def
= max

j=1,...,d
{‖a j‖ω}. (33)

Remark 3.1 When f : R
d × R

d → R
d is polynomial, the terms φn as in (4) are discrete

convolutions (in a and b) and if b ∈ X , that if b j ∈ �1
ω for each j = 1, . . . , d , since �1

ω

defined in (32) is a Banach algebra under discrete convolution, then the map F satisfies

F : X × X → X .

Given an initial condition b ∈ X , the idea of the computer-assisted proof of existence of

a zero of F(·, b) is to demonstrate that a certain Newton-like operator is a contraction on a

closed ball centered at a numerical approximation ā. Computing a numerical approximation

requires considering a finite dimensional projection of the nonlinear map (5).

Remark 3.2 (Choice of weights and regularity) Adjusting the weights {ωn} in the space (32)

provides control over the regularity of the fixed point argument. Throughout this paper, we

choose the weights given in (31) for a given real number ν ≥ 1. Suppose that we obtain a fixed

point ã ∈ �1
ω with ν = 1. The resulting y1 : [−1, 1] → R

n with Chebyshev coefficients given

by ã is then in C0([−1, 1], R
n) and moreover is differentiable almost everywhere (absolutely

continuous). On the other hand, taking ν > 1 results in y1 real analytic on [−1, 1]. Of course

a given b may be in some spaces and not others, and in practice this will limit our choices.

On the other hand, we are often guided by theoretical results, for example when f is real

analytic we know that any periodic solution of the DDE is real analytic [59], suggesting the

use of exponential. That said, other weights could be used to represent Ck functions, namely

ωn
def
=

{

1, n = 0

2(n + 1)k, n > 1
,
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which still makes �1
ω a Banach algebra (e.g. see [60]).

3.2 Finite Dimensional Projection

To compute ā, we consider a finite dimensional projection of the map F : X × X → X . Given

a projection dimension number N ∈ N, and given a vector α = (αn)n≥0 ∈ �1
ω, consider the

projection π N : �1
ω → R

N+1 : α �→ π N α
def
= (αn)N

n=0 ∈ R
N+1. We extend this to product

spaces, defining π N
d : X → R

d(N+1) by π N
d (a1, . . . , ad)

def
= (π N a1, . . . , π

N ad) ∈ R
d(N+1).

Often, given a ∈ X , we denote

a(N ) def
= π N

d a ∈ R
d(N+1).

Moreover, we define the natural inclusion ιN : R
N+1 ↪−→ �1

ω as follows. For α = (αn)N
n=0 ∈

R
N+1 let ιN α ∈ �1

ω be defined component-wise by

(

ιN α

)

n
=

{

αn, n = 0, . . . , N

0, n ≥ N + 1.

Similarly, let ιN
d : R

d(N+1) ↪−→ X be the natural inclusion defined as follows: given a =

(a1, . . . , ad) ∈ (RN+1)d ∼= R
d(N+1),

ιN
d a

def
=
(

ιN a1, . . . , ι
N ad

)

∈ X .

Consider the finite dimensional projection F (N ) : R
d(N+1) × R

d(N+1) → R
d(N+1) of the

map F , for a ∈ R
d(N+1), as

F (N )(a, b) = π N
d F(ιN

d a, ιN
d b). (34)

Given an initial condition vector b ∈ X , denote by b̄
def
= π N

d b ∈ R
d(N+1). Assume that,

using Newton’s method, a numerical approximation ā ∈ R
d(N+1) of (34) has been obtained,

that is F (N )(ā, b̄) ≈ 0. We slightly abuse the notation and denote ā ∈ R
d(N+1) and ιN

d ā ∈ X

both using ā. We use a similar identification for b̄.

3.3 Definition of the Operators A† and A

Consider the finite dimensional projection F (N ) : R
d(N+1) × R

d(N+1) → R
d(N+1) and

assume that we computed (e.g. using Newton’s method) ā ∈ R
d(N+1) such that F (N )(ā, b̄) ≈

0. Denote by D1F
(N )(ā, b̄) ∈ Md(N+1)(R) the Jacobian matrix of F (N ) at ā. Given a ∈ X ,

define

A†a = ιN
d π N

d A†a + (Id − ιN
d π N

d )A†a, (35)

where π N
d A†a = D1F

(N )(ā, b̄)a(N ) and (Id − ιN
d π N

d )A†a = (Id − ιN
d π N

d )a. Since A† →

D1 F(ā, b̄) as N → ∞ we expect that for N large enough, A† is a good approximation of the

Fréchet derivative D1F(ā, b̄). Its action on the finite dimensional projection is the Jacobian

matrix (the derivative) of F (N ) at ā while its action on the tail is the identity.

Consider now a matrix A(N ) ∈ Md(N+1)(R) computed so that A(N ) ≈ D1F
(N )(ā, b̄)

−1
.

In other words, this means that ‖Id− A(N ) D1F
(N )(ā, b̄)‖ � 1, where here Id refers to as the

d(N + 1) × d(N + 1) identity matrix. This step is performed using numerical linear algebra
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software ( MATLAB in our case). We decompose the matrix A(N ) block-wise as

A(N ) = {A
(N )
i, j }d

i, j=1,

so that it acts on a(N ) = (a
(N )
1 , . . . , a

(N )
d ) ∈ R

d(N+1). The operator A is defined block-wise

as

A = {Ai, j }
d
i, j=1, (36)

where the action of each block of A is finite (that is they act on a(N ) = π N
d a only) except for

the d diagonal blocks A j, j ( j = 1, . . . , n) which have infinite (identity) tails. More explicitly,

for each j = 1, . . . , d ,

(Ai, j a j )n =

{

(A
(N )
i, j π N a j )n n = 0, . . . , N + 1,

δi, j (a j )n n ≥ N + 1.
(37)

Having defined the operators A and A†, the last step in applying the a-posteriori method

of Theorem 2.1 is the construction of the bounds Y0, Z0, Z1 and Z2 satisfying (11)–(14),

respectively. The construction of these bounds reduces to calculations which are by now

standard in the field of rigorous numerics. See for example the works of [61–63]. Then,

rather than developing the bounds in full generality, we focus instead on the specific case of

Wright’s equation

u′(t) = f (u(t), u(t − τ))
def
= −αu(t − τ)(1 + u(t)), α ∈ R. (38)

Fixing a scalar DDE with quadratic nonlinearity minimizes the proliferation of technical

details, while still illustrating all the main steps of the procedure. The reader interested in

the construction of Y0, Z0, Z1 and Z2 bounds for general polynomial problems is referred to

[41,49].

3.4 Explicit Bounds for the Rigorous C1 Integration ofWright’s Equation

Equation (38) is referred to as Wright’s Equation, and is a classic example of a simple DDE

with long period stable oscillatory dynamics. For Wright’s equation, the Banach space is

simply X = �1
ω as this is a scalar equation. Recall that we use the weights ωn given by (31).

3.4.1 The Bound Y0

Assume that the initial condition with Chebyshev coefficients b = (bn)n≥0 is given with an

error bound of the form

‖b − b̄‖X = max
j=1,...,d

{‖b j − b̄ j‖ω} ≤ ε0,

where b̄ is the center of the ball of initial conditions, which we take to have the same number

of non zero components as ā. In the context of a calculation involving multiple time steps the

truncation error ε0 on the initial history comes from the rigorous error bound in the previous
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time step. Denote bε def
= b − b̄ ∈ X with ‖bε‖X ≤ ε0. Then, at a = ā

Fn(ā, b) = Fn(ā, b̄ + bε)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ā0 + 2

N
∑

k=1

(−1)k āk −

(

b̄0 + 2

N
∑

k=1

b̄k

)

−

⎛

⎝bε
0 + 2

∑

k≥1

bε
k

⎞

⎠ , n = 0

ān −
τ

4n
(φn−1(ā, b̄ + bε) − φn+1(ā, b̄ + bε)), n ≥ 1.

For each n ≥ 0, write

φn(ā, b̄ + bε) = φn(ā, b̄) + ψn(ā, b̄, bε),

where the terms ψn(ā, b̄, bε) may either be computed exactly using an expansion (in case the

equations are polynomials) or can be estimated (using for instance the mean value inequality

in Banach spaces). Note that F(ā, b) can be split as a sum of two terms, that is F(ā, b) =

F(ā, b̄) + G(ā, b̄, bε), where

Gn(ā, b̄, bε)
def
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−

⎛

⎝bε
0 + 2

∑

k≥1

bε
k

⎞

⎠ , n = 0

−
τ

4n
(ψn−1(ā, b̄, bε) − ψn+1(ā, b̄, bε)), n ≥ 1.

For Wright’s equation, φ(a, b) = −αb − αa ∗ b and therefore

ψ(ā, b̄, bε) = φ(ā, b̄ + bε) − φ(ā, b̄)

= −α(b̄ + bε) − αā ∗ (b̄ + bε) + αb̄ + αā ∗ b̄

= −α(bε + ā ∗ bε)

= −α(1̂ + ā) ∗ bε,

where 1̂
def
= (1, 0, 0, 0, . . . , ) ∈ �1

ω.

Compute Y
(1)
0 with interval arithmetic such that

‖AF(ā, b̄)‖ω ≤ Y
(1)
0 .

The computation of Y
(1)
0 involves the rigorous evaluation of F(ā, b̄). If f : R

d × R
d → R

d

in (1) is polynomial, then the resulting map F(ā, b̄) involves discrete convolutions with only

finitely many nonzero terms. This rigorous evaluation can be done using the Fast Fourier

Transform (FFT) algorithm combined with Banach algebra estimates (see [60]). If f is non-

polynomial having nonlinearities that are solutions of polynomial ODEs, it is possible to

introduce a higher dimensional polynomial embedding which will recover the dynamics of

the original DDE (e.g. see [64,65]).

Denote by A0 the first column of the operator A and A1,∞ the operator A “take away” the

first column A0. More explicitly, denoting the operator A entry-wise by A = (Am,n)m,n≥0,

the operator A1,∞ is defined entry-wise by A1,∞ = (Am,n)m≥0,n≥1. Then,

AG(ā, b̄, bε) = −A0

⎛

⎝bε
0 + 2

∑

k≥1

bε
k

⎞

⎠+
τα

4
A1,∞

((

�−1T (1̂ + ā) ∗ bε
)

n

)∞

n=1
,
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and therefore, using the Banach algebra and that
∣

∣bε
0 + 2

∑

k≥1 bε
k

∣

∣ ≤ ‖bε‖ω ≤ ε0,

‖AG(ā, b̄, bε)‖ω ≤ Y
(2)
0

def
=

(

‖A0‖ω +
τ |α|

4
‖A1,∞

((

�−1T (1̂ + ā)

)

n

)∞

n=1
‖ω

)

ε0.

The computation of Y
(2)
0 involves first computing the vector �−1T (1̂ + ā), which has only

finitely many nonzero terms. Indeed, recalling the linear operators T and �−1 in (6),

vn
def
=
(

�−1T (1̂ + ā)

)

n
=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, n = 0

1 + ā0 − ā2, n = 1
1
n
(ān−1 − ān+1), n ∈ {2, . . . , N − 1}

1
n

ān−1, n ∈ {N , N + 1}

0, n ≥ N + 2.

Then, recalling from (37) that the operator consists of a finite dimensional block matrix in

MN+1(R) and a diagonal (identity) tail,

‖A1,∞

((

�−1T (1̂ + ā)

)

n

)∞

n=1
‖ω =

N
∑

m=0

∣

∣

∣

∣

∣

N
∑

n=1

A(N )
m,nvn

∣

∣

∣

∣

∣

ωm +
1

N + 1
|āN |ωN+1,

which is used to compute Y
(2)
0 . Finally, set

Y0
def
= Y

(1)
0 + Y

(2)
0 . (39)

3.4.2 The Bound Z0

The following result is useful when computing bounded linear operator norms on �1
ω. For an

elementary proof see [62].

Lemma 3.3 Consider a linear operator Q : �1
ω → �1

ω of the form

Q =

⎡

⎢

⎢

⎢

⎣

Q(N ) 0

qN+1

qN+2

0
. . .

⎤

⎥

⎥

⎥

⎦

where Q(N ) =
(

Q
(N )
m,n

)

0≤m,n≤N
and qn ∈ R. Assume that |q|∞ = supn>N |qn | < ∞. Then

‖Q‖B(�1
ω) = max

(

max
0≤n≤N

1

ωn

N
∑

m=0

|Q(N )
m,n |ωm , |q|∞

)

. (40)

Let B
def
= Id − AA†. By construction of the tails of A and A†, Bm,n = 0 for m > N or

n > N . Letting

Z0
def
= max

0≤n≤N

1

ωn

∑

0≤m≤N

|Bm,n |ωm, (41)

Lemma 3.3 gives ‖Id − AA†‖B(�1
ω) ≤ Z0.
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3.4.3 The Bound Z1

Let h ∈ �1
ω with ‖h‖ω ≤ 1 and let

z
def
= (D1F(ā, b) − A†)h.

Set

h(I ) def
= (Id − ιN π N )h = (0, . . . , 0, hN+1, hN+2, . . .) ∈ �1

ω.

Recalling that π N
1 A†a = D1F

(N )(ā, b̄)a(N ), then

zn =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2
∑

k≥N+1

(−1)khk, n = 0

τα

4n

(

T (h(I ) ∗ b̄ + h ∗ bε)

)

n
, n = 1, . . . , N

τα

4n

(

T (h ∗ b̄ + h ∗ bε)
)

n
, n > N .

Denote

z(1)
n

def
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
∑

k≥N+1(−1)khk , n = 0

τα
4n

(

T (h(I ) ∗ b̄)
)

n
, n = 1, . . . , N

τα
4n

(

T (h ∗ b̄)
)

n
, n > N .

and z(2)
n

def
=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, n = 0

τα
4n

(T (h ∗ bε))n , n = 1, . . . , N

τα
4n

(T (h ∗ bε))n , n > N

so that z = z(1) + z(2). More explicitly, z(2) = τα
4

�−1T (h ∗ bε), and hence

‖Az(2)‖ω ≤
τα

4
‖A�−1T (h ∗ bε)‖ω

≤
τα

4
‖A�−1T ‖B(�1

ω)ε0

≤ Z
(2)
1

def
=

τα

4
‖A�−1‖B(�1

ω)(ω̂ + ω̌)ε0, (42)

where we used the rather straightforward result

‖T ‖B(�1
ω) ≤ ω̂ + ω̌, (43)

where

ω̂
def
= sup

k≥0

ωk+1

ωk

and ω̌
def
= sup

k≥2

ωk−1

ωk

.

Recalling that the weights are given by ωk = 1, for k = 0 and ωk = 2νk for k ≥ 1,

ω̂ = max

(

2ν

1
, sup

k≥1

2νk+1

2νk

)

= 2ν and ω̌ = sup
k≥2

2νk−1

2νk
=

1

ν
.

The more involved estimate is to bound ‖Az(1)‖ω. First note that |z
(1)
0 | ≤ 1

νN+1 .

The following technical lemma, which is a slight modification of Corollary 3 in [62]), will

be useful when bounding ‖Az(1)‖ω.

Lemma 3.4 Fix a truncation Chebyshev mode to be N. Let M ∈ N and let ᾱ =

(ᾱ0, . . . , ᾱM , 0, 0, . . .) ∈ �1
ω. Then, for all h ∈ �1

ω such that ‖h‖ω ≤ 1, and for k = 0, . . . , N,

∣

∣

∣
(ᾱ ∗ h(I ))k

∣

∣

∣
≤ �k(ᾱ)

def
= max

�=N+1,...,k+M

|ᾱk+� + ᾱ|k−�||

ω�

. (44)
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Defining ẑ(1) ∈ R
N+1
+ component-wise by

ẑ(1)
n =

⎧

⎨

⎩

1

νN+1
, n = 0

τα

4n

(

|T (N )|�(b̄)

)

n
, n = 1, . . . , N

we have

‖Az(1)‖ω =
∑

n≥0

|[Az(1)]n |ωn

≤

N
∑

n=0

|[Az(1)]n |ωn +
∑

n>N

|[Az(1)]n |ωn

≤

N
∑

n=0

[|A(N )|ẑ(1)]nωn +
τα

4(N + 1)

∑

n>N

|[T (h ∗ b̄)]n |ωn

≤

N
∑

n=0

[|A(N )|ẑ(1)]nωn +
τα

4(N + 1)

∑

n≥0

|[T (h ∗ b̄)]n |ωn

≤ Z
(1)
1

def
=

N
∑

n=0

[|A(N )|ẑ(1)]nωn +
τα

4(N + 1)
(ω̂ + ω̌)‖b̄‖ω, (45)

where we used (43) to establish the last inequality. Combining (45) and (42), we see that

Z1
def
= Z

(1)
1 + Z

(2)
1 (46)

satisfies (13).

3.4.4 The Bound Z2

Since for Wright’s equation, φ(a, b) = −αb − αa ∗ b is linear in a, then D1F(c, b) −

D1F(ā, b) = 0. Hence, we set Z2 = 0.

In the next subsections, we compute the bounds δ0, δ1 and δ2, satisfying (27)–(29), respec-

tively. Recall that via Theorem 2.3 these bounds are used to compute C1-bounds for the step

map F .

3.4.5 The Bound ı0

Recall that δ0 is a bound for ‖D2F(ã, b)‖B(�1
ω). Let h ∈ B1(0) ⊂ X and denote by z

def
=

D2F(ã, b)h which is given component-wise by

zn =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−

⎛

⎝h0 + 2
∑

k≥0

hk

⎞

⎠ , n = 0

τα

4n
(T (h + ã ∗ h))n , n ≥ 1,
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and which satisfies (recalling the definition of the weights ωn in (32))

‖z‖ω = |z0| + 2
∑

n≥0

|zn |νn ≤

⎛

⎝|h0| + 2
∑

k≥0

|hk |

⎞

⎠+ 2
∑

n≥1

∣

∣

∣

τα

4n
(T (h + ã ∗ h))n

∣

∣

∣
νn

≤ 1 +
τα

4
‖T ‖B(�1

ω)‖h + ã ∗ h‖ω

≤ 1 +
τα

4
(ω̂ + ω̌)(1 + ‖ã‖ω)

≤ 1 +
τα

4
(ω̂ + ω̌)(1 + ‖ā‖ω + r0).

Hence, we set

δ0
def
= 1 +

τα

4
(ω̂ + ω̌)(1 + ‖ā‖ω + r0). (47)

3.4.6 The Bound ı1

Recall that δ1 satisfies

∥

∥

∥
A[D2F(ā, b) − A

†
2]

∥

∥

∥

B(�1
ω)

≤ δ1. Denote by D2F
(N )(ā, b̄) ∈

MN+1(R). Given h ∈ �1
ω, define

A
†
2h = ιN

1 π N
1 A

†
2h + (Id − ιN

1 π N
1 )0, (48)

where π N
1 A

†
2h = D2F

(N )(ā, b̄)h(N ). Again we note that as N → ∞, A
†
2 approaches the

Fréchet derivative D2F(ā, b̄), and hence we expect the approximation to be good when N

is large enough. The action of A† on the finite dimensional projection is the Jacobian matrix

(the derivative w.r.t b) of F (N ) while its action on the tail is zero. Let h ∈ �1
ω with ‖h‖ω ≤ 1

and let

z
def
= (D2F(ā, b) − A

†
2)h.

Recalling that π N
1 A

†
2h = D2F

(N )(ā, b̄)h(N ), we have

zn =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−2
∑

k≥N+1

hk, n = 0

τα

4n

(

T (ā ∗ h(I ))

)

n
, n = 1, . . . , N

τα

4n
(T (h + ā ∗ h))n , n > N .

Defining ẑ ∈ R
N+1
+ component-wise by

ẑn =

⎧

⎪

⎨

⎪

⎩

1

νN+1
, n = 0

τα

4n

(

|T (N )|�(ā)

)

n
, n = 1, . . . , N
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we see that

‖Az‖ω ≤

N
∑

n=0

|[Az]n |ωn +
∑

n>N

|[Az]n |ωn

≤

N
∑

n=0

[|A(N )|ẑ]nωn +
τα

4(N + 1)

∑

n>N

|[T (h + ā ∗ h)]n |ωn

≤

N
∑

n=0

[|A(N )|ẑ]nωn +
τα

4(N + 1)

∑

n≥0

|[T (h + ā ∗ h)]n |ωn

≤ δ1
def
=

N
∑

n=0

[|A(N )|ẑ]nωn +
τα

4(N + 1)
‖T ‖B(�1

ω)(1 + ‖ā‖ω). (49)

3.4.7 The Bound ı2

Since for Wright’s equation, φ(a, b) = −αb − αa ∗ b is linear in b, then D2F(ã, b) −

D2F(ā, b) = 0. Hence, we set δ2 = 0.

Having defined all the bounds hypothesized in Theorems 2.1 and 2.3 we now present

some applications.

3.5 Rigorous C1 Integration forWright’s Equation

The bounds Y0, Z0 and Z1 given by (39), (41) and (46) are implemented in the MATLAB pro-

gram script_iterate_wright_cheb.m which uses the interval arithmetic library

INTLAB [50] and Chebfun [66]. We fixed the parameter value to α ≈ 2.350319657675625,

since at that value, there is a periodic orbit of period roughly equal to 5. We fixed an initial

condition b ∈ R
27 close to 0 with fast decay (the Chebyshev coefficients of b can be found in

the file b0.mat available on the codes’ website mentioned in Section 1), fixed ν = 1.1 and

the number of Chebyshev coefficients per step to be N = 40. The code verified successfully

the hypothesis of Theorem 2.1 for 17 consecutive steps. At each step, the program verifies

the existence of r0 > 0 such that p(r0) < 0. The orbit is visualized in Figure 1 and the values

of r0 are found in Table 1.

The bounds δ0 and δ1 given respectively by (47) and (49) are also implemented in the

program and Theorem 2.3 and applied to prove, still with N = 40 and ν = 1.1, that in

the first step we have ‖D�(x) − M‖B(�1
ω) ≤ 0.229, with M an explicitly known matrix

stored during the program execution. We changed N = 200, and obtained a proof that

‖D�(x) − M‖B(�1
ω) ≤ 0.0172. Fixing ν = 1.01 and N = 1000, we proved that

‖D�(x) − M‖B(�1
ω) ≤ 0.00369.

It is clear that the accuracy of the C1 bounds improve as N is increased, and that there is

hope of obtaining qualitative information about stability using these bounds. Yet, in many

problems such bounds are not needed as we illustrate in the next section.
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Fig. 1 A rigorously computed 17-step orbit in Wright’s equation at the parameter value α ≈

2.350319657675625. The final step appears to be close to an attracting periodic solution of Wright’s. This

illustrates an integration starting near an unstable equilibrium and terminating near the global attractor

4 Proofs of Existence ofm-Steps Periodic Solutions in DDEs

Using the rigorous method of steps of this paper, we can obtain computer-assisted proofs of

existence of some specific type, namely m-steps periodic solutions, which we now define.

Definition 4.1 Given an integer m ∈ N, a differentiable function ψ : R → R
d is said to be

an m-steps periodic solution of the delay equation y′(t) = f (y(t), y(t − τ)) if ψ solves the

equation, ψ(t + T ) = ψ(t) for all t ∈ R and T = mτ .

An m-steps periodic solution of the delay equation y′(t) = f (y(t), y(t−τ)) is represented

with a sequence of m sequences a(1), a(2), . . . , a(m) ∈ (�1
ω)d satisfying

⎛

⎜

⎜

⎜

⎜

⎜

⎝

F(τ, a(2), a(1))

F(τ, a(3), a(2))
...

F(τ, a(m), a(m−1))

F(τ, a(1), a(m))

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= 0 ∈ (�1
ω)md , (50)

where F is given by (5). More explicitly, given i ∈ {1, . . . , m − 1},

Fn(τ, a(i+1), a(i))
def
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a
(i+1)
0 + 2

∑

k≥1

(−1)ka
(i+1)
k −

⎛

⎝a
(i)
0 + 2

∑

k≥1

a
(i)
k

⎞

⎠ , n = 0

a(i+1)
n −

τ

4n
(φn−1(a

(i+1), a(i)) − φn+1(a
(i+1), a(i))), n ≥ 1

(51)

Remark 4.2 Given an integer m ∈ N, solving for an m-steps periodic solution of the delay

equation y′(t) = f (y(t), y(t − τ)) requires having that T
τ

= m ∈ N. Rather than solving

for the period T (or equivalently the frequency), we solve for the delay τ for which we can

find a solution to (57).

By construction, a solution of (50) yields the existence of an m-steps periodic solution of

y′(t) = f (y(t), y(t − τ)). Let us consider applications of this approach to prove existence

of periodic solutions in the Mackey–Glass equation.
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Table 1 At each step, the values of r0 > 0 such that p(r0) < 0

step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

r0 1.3e-15 9.3e-15 7.5e-14 5.9e-13 3e-12 1.7e-11 2.2e-10 2e-09 5.3e-09 5.4e-08 1.5e-06 1.5e-05 2.3e-05 3.4e-04 7.8e-03 0.23 3.84

1
23
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4.1 Applications to theMackey–Glass Equation

Consider the scalar delay differential equation

u′(t) = g(u(t), u(t − τ)) = −γ u(t) + β
u(t − τ)

1 + u(t − τ)ρ
, γ, β, ρ > 0. (52)

Typically ρ is chosen large and possibly non-integer [67,68]. Denote y1(t)
def
= u(t). Letting

y2(t)
def
=

y1(t)

1 + y1(t)ρ
= h(y1(t)),

then y′
1(t) = −γ y1(t)+β y2(t − τ). Letting y3(t)

def
= y1(t)

ρ−2 and y4(t)
def
= y1(t)

−1 allows

us considering the following system of polynomial DDEs

y′
1(t) = −γ y1(t) + β y2(t − τ), (53a)

y′
2(t) = y2(t) (y4(t) − ρy2(t)y3(t)) (−γ y1(t) + β y2(t − τ)) , (53b)

y′
3(t) = (ρ − 2)y4(t)y3(t) (−γ y1(t) + β y2(t − τ)) , (53c)

y′
4(t) = −y4(t)

2 (−γ y1(t) + β y2(t − τ)) . (53d)

Denote y(t) = (y1(t), y2(t), y3(t), y4(t)), x(t) = (x1(t), x2(t), x3(t), x4(t)) = y(t − τ) =

(y1(t − τ), y2(t − τ), y3(t − τ), y4(t − τ)) and

f (y(t), x(t))
def
=

⎛

⎜

⎜

⎝

−γ y1(t) + βx2(t)

y2(t) (y4(t) − ρy2(t)y3(t)) (−γ y1(t) + βx2(t))

(ρ − 2)y4(t)y3(t) (−γ y1(t) + βx2(t))

−y4(t)
2 (−γ y1(t) + βx2(t))

⎞

⎟

⎟

⎠

.

To compute periodic orbits of the Mackey–Glass equation via the system of polyno-

mial delay equations (53a)–(53d), one must introduce the unfolding parameters (as the ones

considered in [41]) together with the extra scalar equations included to impose the correct

initial conditions on the auxiliary differential equations describing the nonlinearities. More

explicitly, one solves

y′
1(t) = −γ y1(t) + β y2(t − τ), y1(0) = 1,

(54a)

y′
2(t) = −γ y1(t)y2(t)y4(t) + β y2(t)y4(t)y2(t − τ) + ργ y1(t)y2(t)

2 y3(t)

− ρβ y2(t)
2 y3(t)y2(t − τ) + η1, y2(0) = 1/2,

(54b)

y′
3(t) = −γ (ρ − 2)y1(t)y3(t)y4(t) + β(ρ − 2)y3(t)y4(t)y2(t − τ) + η2, y3(0) = 1,

(54c)

y′
4(t) = γ y1(t)y4(t)

2 − β y4(t)
2 y2(t − τ) + η3, y4(0) = 1.

(54d)

Hence, in this case

φn(a, b, η)
def
=

⎛

⎜

⎜

⎝

(−γ a1 + βb2)n
(

−γ a1a2a4 + βa2a4b2 + ργ a1a2
2a3 − ρβa2

2a3b2 + η̂1

)

n
(

−γ (ρ − 2)a1a3a4 + β(ρ − 2)a3a4b2 + η̂2

)

n
(

γ a1a2
4 − βa2

4b2 + η̂3

)

n

⎞

⎟

⎟

⎠

, (55)

where η̂ j
def
= (η j , 0, 0, 0, . . . ) ∈ �1

ω for j = 1, 2, 3.
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Fig. 2 A rigorously validated 6-step periodic orbit of the Mackey–Glass equation at the parameter values

α = 2, β = 1 and ρ = 10. For the proof, we used N = 55 Chebyshev coefficients per component

and fixed ν = 1.05. The radius enclosure of the orbit is given by r = 2.5 × 10−8 and the delay τ

is given by the rigorous enclosure τ ∈ 1.539575123 ± [−r , r ]. The code which performs the proof is

script_proof_PO_Fig3_MG_period_6.m
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Fig. 3 A rigorously validated 12-step periodic orbit in the Mackey–Glass equation at the parameter val-

ues α = 2, β = 1 and ρ = 10. For the proof, we used N = 60 Chebyshev coefficients per component

and fixed ν = 1.033. The radius enclosure of the orbit is given by r = 4.3 × 10−8 and the delay τ

is given by the rigorous enclosure τ ∈ 1.587078323 ± [−r , r ]. The code which performs the proof is

script_proof_PO_Fig4_MG_period_12.m

The unknowns describing the m-steps periodic solutions in the Mackey–Glass equations

are given by the time delay τ ∈ R, the unfolding parameters η = (η1, η2, η3) ∈ R
3 and the

Chebyshev coefficients of each step a(i) ∈ X = (�1
ω)d for i = 1, . . . , m. Denote

x
def
= (τ, η, a(1), . . . , a(m)) ∈ X

def
= R

4 × X × · · · × X = R × R
3 × Xm .

We endow the Banach space X with the product norm

‖x‖X

def
= max{|τ |, |η1|, |η2|, |η3|, ‖a(1)‖X , . . . , ‖a(m)‖X }.

Using Chebyshev series expansion of the solution y(t) on the first time step interval [0, τ ],

the four extra scalar equations y1(0) = 1, y2(0) = 1/2, y3(0) = 1 and y4(0) = 1 become

Pj
def
= (a

(1)
j )0 + 2

∑

k≥1

(−1)k(a
(1)
j )k − α j = 0, j = 1, 2, 3, 4
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Fig. 4 A rigorously validated 6-step periodic orbit in the Mackey–Glass equation at the parameter values

α = 2, β = 1 and ρ = 9.65. For the proof, we used N = 54 Chebyshev coefficients per compo-

nent and fixed ν = 1.05. The radius enclosure of the orbit is given by r = 3.5 × 10−8 and the delay

τ is given by the rigorous enclosure τ ∈ 1.827334865 ± [−r , r ]. The code which performs the proof is

script_proof_PO_Fig5_MG_period_6.m

where α1 = α3 = α4 = 1 and α2 = 1/2. Denote P(a(1))
def
=
(

P1(a
(1)), P2(a

(1)), P3(a
(1)),

P4(a
(1))
)

∈ R
4. This leads to the zero finding problem F (po) : X → X given by

F (po)(x)
def
=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

P(a(1))

F(τ, η, a(2), a(1))
...

F(τ, η, a(m), a(m−1))

F(τ, η, a(1), a(m))

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (56)

where

Fn(τ, η, a, b)
def
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

a0 + 2
∑

k≥1

(−1)kak −

⎛

⎝b0 + 2
∑

k≥1

bk

⎞

⎠ , n = 0

an −
τ

4n
(φn−1(a, b, η) − φn+1(a, b, η)), n ≥ 1

(57)

with φn(a, b, η) given in (55). By construction, a solution x ∈ X to F (po)(x) = 0 yields an

m-steps periodic solution of (52). To prove the existence of solutions to F (po) = 0, we may

apply Theorem 2.1, or any Newton–Kantorovich type theorem. In this way we proved the

existence of two 6-step and one 12-step periodic solutions of the Mackey–Glass equation.

These validated solutions are illustrated in Figs. 2, 3 and 4 . Details about the parameters are

given in the captions.

Note that we have not computed the C1 bounds associated to the periodic orbits in Mackey–

Glass, as this would involve more than just computing D� at each step of the orbit. More

explicitly, this involves computing a bound on the derivative of a composition operator. While

we believe this can be done, this is the subject of future investigation. Finally note that the

polynomial embedding approach does not create any obstruction in obtaining information

about the Floquet multipliers associated to the periodic orbit (e.g. see [64]).
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25. Zgliczyński, P.: Rigorous numerics for dissipative partial differential equations. II. periodic orbit for the

Kuramoto–Sivashinsky PDE—a computer-assisted proof. Found. Comput. Math. 4(2), 157–185 (2004)
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