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Abstract

We present a new approach to validated numerical integration for systems of delay differential
equations. We focus on the case of a single constant delay though the method generalizes to
systems with multiple lags. The method provides mathematically rigorous existence results
as well as error bounds for both the solution and the Fréchet derivative of the solution with
respect to a given past history segment. We use Chebyshev series to discretize the problem,
and solve approximately using a standard numerical scheme corrected via Newton’s method.
The existence/error analysis exploits a Newton—Kantorovich argument. We present examples
of the rigorous time stepping procedure, and illustrate the use of the method in computer-
assisted existence proofs for periodic solutions of the Mackey—Glass equation.
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1 Introduction

Use of the digital computer as a tool for proving theorems in nonlinear analysis has its roots
in the work of R.E. Moore on interval analysis [1,2], and has increased steadily since the
groundbreaking work of Lanford, Eckman, Wittwer, and Koch on computer assisted analysis
of renormalization group operators and the Feigenbaum conjectures in the early 1980s [3-5].
For a general overview of the literature we refer to the review articles [6,7] and to the book
of Tucker [8].
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Since the main objective of nonlinear dynamics is to understand the organization and inter-
connectedness of invariant sets, it is natural that validated numerical methods for computing
mathematically rigorous enclosures of orbit segments play an indispensable role. The sim-
plest case is a finite dimensional discrete time dynamical system, where computing an orbit
segment requires iterating a function. This reduces to validated range bounding for nonlinear
functions, and is one of the foundational problems of interval analysis [2,8]. The case of a
finite dimensional continuous time system is more difficult, as an orbit segment is the solution
of an initial value problem. Tremendous effort has gone into developing rigorous integrators
for ordinary differential equations (ODEs) for precisely this purpose. The literature on this
topic is substantial and, while a thorough review is beyond the scope of the present work, we
will refer the interested reader to the works of [9—15] and the references therein.

Analogous problems for infinite dimensional discrete and continuous time dynamical
systems are even more challenging, as in these cases the state space is itself a function
space. There is a great deal of research interest in validated numerical methods for infinite
dimensional discrete time dynamics, going back to work the mid 1980’s on renormaliza-
tion operators in the context of computer assisted proofs of the Feigenbaum conjectures and
their generalizations [3-5,16—18] See also the works of [19-23] on computer-assisted exis-
tence proofs for fixed points, periodic orbits, attracting Morse sets, chaotic dynamics, and
homoclinic connecting orbits for infinite dimensional discrete time dynamical systems. More
recently there has been substantial progress in validated numerical methods for continuous
time infinite dimensional systems. We refer the interested reader to the works of [24-30] on
time stepping procedures for parabolic partial differential equations (PDEs), and to the recent
computer aided proofs of the existence of chaotic dynamics in the Kuramoto—Sivashinsky
PDE [31] and heteroclinic orbits in the Ohta—Kawasaki model [32]. The work of [33] devel-
ops a C¥ validated integration techniques for scalar delay differential equations (DDEs),
where functions are represented by piecewise Taylor expansions. We direct the interested
reader also to the recent resolution of both Jone’s and Wright’s conjectures in [34,35], which
required development of a whole suit of validated numerical techniques for DDEs.

In contrast to the Taylor based C° approach of [33], our work develops a validated C! time
stepping procedure based on Chebyshev series expansions for nonlinear systems of DDEs
given by

Y@ = fOy@), yt — 1), ey

where f: R xR? — R is a smooth function and t > 0. We derive an implicit time stepping
scheme based on the so called method of steps (see Sect. 1.1 for the formal definition). The
method of steps leads to a fixed point problem for the evolution of the initial history segment,
which is projected into an appropriate finite dimensional space and approximately solved
numerically by iterating a Newton scheme. We then formulate an a-posteriori argument,
which is based on a Newton—Kantorovich theorem, and which provides mathematically
rigorous error bounds on the difference between the true and the approximate solution.

One novelty of our approach is the use of Chebyshev series to represent both the past
history and the solution space. Chebyshev series provide accurate low density representations
of smooth functions on an interval. Moreover the regularity of the solutions translates directly
into decay rates for the Chebyshev coefficients, and this information is useful for choosing
appropriate Banach spaces of infinite sequences in which to study the fixed point problem.

Another feature of our method is that it is C!. That is, the method provides mathematically
rigorous information about the derivative of the time step with respect to initial conditions.
Such information is needed for local stability analysis in many areas of dynamical systems
theory (though we do not consider these applications in this work).
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Another fundamental difference between the method developed in the present work and
the methods of previous works is that we treat the problem as implicitly defining an infinite
dimensional discrete time dynamical system, rather than treating it as an infinite dimensional
flow. This aspect of the approach is discussed in more detail in the next section. As an
application of our method, we prove the existence of some periodic orbits in the Mackey—
Glass Equation.

1.1 Problem Description: The Method of Steps

The method of steps is a classical technique for studying DDEs. The idea is to integrate both
sides of Eq. (1) and observe that for 0 < ¢t < t a solution y(¢) satisfies

t
y(@) = y(0) +/0 F(s), y(s — 1)) ds, 1=0. (@)

This formulation makes it explicitly clear that the function y must be given on the interval
[—7, 0] so that the right hand side is defined for ¢ € [0, t]. The expression in Eq. (2) suggests
we pass to an appropriate fixed point problem.

To this end suppose that a smooth initial history segment yg € C([—t, 0], R9)is specified.
The function y; : [0, 7] — R is a solution of the DDE on the interval [0, 7 ]if f is continuous
in both variables and y; is a fixed point of the operator

t
T(y1, yo)(t) = yo(0) +/0 SO1(s), yols — 1)) ds, te[0, 7]

Define the mapping ®;: C([—t, 0], RY — C ([0, 7], Rd) by the rule that
®1(x) =y,
if and only if y is the unique fixed point of

y(@) =Ty, x)().

We refer to @ as the first step map for the DDE and write &1 (yp) = y; when y; solves Eq. (2)
on [0, t] with past history yp on [—7, 0]. If y1: [0, 7] — R solves the fixed point problem,
then it is C! by the fundamental theorem of calculus. We remark that, while uniqueness of
y1 on [0, t] follows from standard existence and uniqueness results for ODEs as soon as f
is Lipschitz continuous in the first variable and yp is continuous, the constructive methods
developed in the present work obtain existence and uniqueness without assuming that f is
globally Lipschitz.

Iterating the procedure leads to subsequent step maps ®,11: C([(n — 1)t, nt], RY) —
C([nt, (n + D7), RY) by the rule that

Cpi1(x) =y,
if and only if y is the unique fixed point of
t
y(#) = x(nt) +/ Fy@s), x(s — 1)) ds, t € [nt, (n+ D],
nt

for n > 0. Clearly the step maps improve regularity by one derivative in each application, so
that the maps have a discrete smoothing property akin to the infinitesimal smoothing property
of parabolic PDEs. Indeed the ®,, 1 are compact mappings.
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Moreover taking K compositions of the first K step maps is equivalent to solving the
DDE over K units of the delay 7. More precisely, if yo: [—7, 0] — R is a given history on
[—7,0], then y: [0, KT] — R4 solves Equation (1) with history y if and only if

yo(1), tel[-1,0)
D1 (y0) (@), t€[0,7)
y(t) = { L2y @), t €[r,27)

Px(yk-1)(@), te[(K—Drt, K]

The fact that integrating the DDE leads to a sequence of distinct step maps, each defined
between different function spaces, prevents the scheme above from defining a discrete time
dynamical systems. This inconvenience is easily overcome by shifting and rescaling time.
More precisely, we shift and re-scale the time interval [0, 7] to [—1, 1] (Chebyshev series
are defined for functions on [—1, 1]) and define 7: C([—1, 1], RY) x C([—1, 1], R?) —
C(—1,11,R) by

t
T(y, x)(t) =x(1) + % / 1 F(y(s), x(s)) ds, re[-1.1], 3

and the mapping ®: C([—1, 1], Rd) — C([—1,1], Rd) by the rule
O(x) =y — y=T(y,x) (uniquely).
We refer to ® as the step map for the DDE. Given yg € C([—1, 1], R?) define

Yn = DP(Yn-1),

forn = 1, ... K. Shifting and rescaling back to the original domains recovers the solution
of Eq. (1).

1.2 Chebyshev Discretization for the Method of Steps

We are interested in numerically iterating the step map, and discretize an appropriate subset
of C([—1, 1], RY) (to be specified later) using Chebyshev series expansions. Throughout this
section we use freely a number of standard facts about Chebyshev series. Indeed we remark
that Chebyshev series are an excellent tool for studying nonperiodic solutions of nonlinear
differential equations as

e Chebyshev series have excellent (in some sense optimal) uniform approximation prop-
erties.

e The derivative is a diagonally dominant operator in Chebyshev coefficient space.

e Multiplication of scalar valued functions corresponds to discrete cosine convolution in
Chebyshev coefficient space.

Excellent references for this material is [36,37].
Let x, y : [—1, 1] = R have convergent expansions

YOy =ao+2) anTu(0) and x(t)=bo+2) buTu(0),

n>1 n>1

where for n > 0 the coefficients a,, b, € RY, and where the T,,(r) are the Chebyshev
polynomials defined recursively by To(t) = 1, T1(t) =t and Tp,41(t) = 2tT,,(t) — T,—1 (1),
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for n > 1. Denote the coefficient sequences by a = (an)n>0 and b = (b,),>0. Moreover,
assume that the Chebyshev series expansion of f(x, y) is convergent and given by

fOO,x@) =¢o+2) ¢uTu(),  ¢u = pala, b) € R )

n>1

As mentioned above, the product of two scalar Chebyshev series is given by discrete cosine
convolution. Thenif f : R xR? — R¥ is polynomial, the ¢, consist of discrete convolutions
involving the components of a and b. Using that [ To(s) ds = Ti(s) + const., [ Ti(s) ds =

7%(3)?4”2(” + const. and [ T,(s) ds = % (T”nﬂ?) — L’j;‘i‘y)) + const. for n > 2, yields

t
/lf(y(S),x(S))ds

DE 1
=|¢o —*—ZZ( ) Pr To(l)+22%(¢n—1—¢n+1)Tn(t)~

n>1

Hence, the fixed point equation y = T'(y, x) becomes

YO =ag+2)a,Ty(t)

n>1

t
x<1)+§f1f(y(s),x(s)>

— 1)k
b0+22bn+% o —@—221527_)]% To(1)
n>1 k>2

+ZZ (¢n 1 _¢n+1)7;1(t)

n>1

which is equivalent to solving Fola, b) + Zanl ffn (a,b)T,(t) = Oforallr € [—1,1],
with

@ |90 — b0+22bk _Z $o _ﬂ_zz(;l)k(pk , n=0
Fula,b) = k=1 2 =

— E((pn—l — Pnt1), nzl

Observe that %, (a, b) = 0, forall n > 1 only if a,, = ﬁ(qﬁn_l — ¢n41) foralln > 1, and
we see that

k
ao—|bo+23 b | - = ¢—7—2Z( 1)

2
k>1

=a0+22(—1)kak — bo+2Zbk

k>1 k>1
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This leads to the equivalent zero finding problem 7, (a, b) = 0 given component-wise by

. |ao+2 (—1)kak — | bo+2 brl, n=0
Fula,b) = ,; ,; )
T
an — 4*((]5”71 — nt1)s n>1.
n

Define the operators

0 O 0 0 0o .- 1 0 0 0 O
1 0 -1 0 0 1 o o -
01 0 -1 0 00 4 0 0
T d=ef . . . . . and A_l déf . . .
0 1 0 -1 o o L o0
(6)
The nonlinear map F defined in (5) is expressed as
ag+2Y (=Drax — | bo+2) b |, n=0
f”(a,b) = k>1 k>1 @)

(a _ EA—17¢>(a,b)) , n> 1.
4 n

We solve F(a, b) = (Fn(a, b))p>0 = 0 on a space of infinite sequences, with b the fixed

sequence of Chebyshev coefficients for the past history.

To recapitulate, if a = (a,),>0 is a zero of F(a, b) for fixed b = (b,),>0, and if x ()
and y(#) are the functions whose Chebyshev series have coefficient sequences a and b, then
y = T (y, x) and by rescaling the domains we have that y is a solution of the DDE (1) with
previous history x. Regularity of the functions x, y leads to rapid decay of their Chebyshev
series coefficients, and this fact is exploited to topologize the solution space of F. We endow
the coefficient space with a weighted “little-ell-one” norm. Such norms induce Banach space
—in fact component-wise Banach algebra — structure, under discrete convolution. This results
in a problem formulation amenable to Fréchet differential calculus, and Newton’s method is
an appropriate tool for studying the zero finding problem.

Thought of this way, the problem of time-stepping Eq. (1) is mathematically quite similar
to the work of [38—41] on computer-assisted existence proofs for periodic orbits of DDEs.
The works just cited reformulate a periodic solution of the DDE as a zero finding problem
in a sequence space of rapidly decaying Fourier coefficients, and much of the technology
developed in the references just cited is useful in the present work. The important difference
being that we now employ discretization via Chebyshev series approximation, which are
often described as Fourier series in disguise. In this sense the present work builds on earlier
successful applications of Chebyshev series in validated numerical computations [42,43]
and especially the work of [44—48] on computer-assisted proofs of solutions to initial and
boundary value problems. We refer also to the computer-assisted existence proofs for spatial
periodic orbits in a restricted four body problem in [49]. All of the works just cited exploit
Chebyshev series approximation.

The remainder of the paper is organized as follows. Section 2 formalizes the problem
description and presents the theoretical tools needed for the rest of the paper. Section 3
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presents in details the a-posteriori analysis for Chebyshev discretization scheme for the
method of steps, as well as how to get C! bounds. We apply the technique to Wright’s
equation. In Sect. 4 we present a method to obtain computer-assisted proofs of periodic orbits
for DDEs, and we apply our approach to prove several periodic orbits in the Mackey—Glass
equation.

Finally we remark that all of the programs discussed in this paper are implemented in
MATLAB, some utilizing the IntLab library [50] for interval arithmetic and some the open-
source package Chebfun. Our programs are freely available at
http://cosweb1.fau.edu/~jmirelesjames/methodOfSteps_ CAP_DDE.html.

2 A-Posteriori Analysis and C! Bounds for the Method of Steps

In this section we develop the general setup used to study dynamical systems implicitly
defined by certain fixed point problems throughout the remainder of the paper. The main
tools are the implicit function theorem between Banach spaces, the contraction mapping
theorem, and the Neumann series. The material in this section is agnostic toward problem
specific details like the choice of function spaces and the projections used to study the problem
numerically. Only in Sect. 3 do we return to the topic of Chebyshev series discretization for
DDEs.

2.1 Functional Analytic Set up for Implicitly Defined Maps

Let X be a Banach space and 7: X x X — X be a smooth function. Given a norm || - || x on
X, denote by

def

B(c)={aeX:|la—cllx <r}CcX

the open ball of radius r centered at ¢ € X. We are interested in the dynamical system
®: X — X defined by the following rule: for a, b € X we say that

d(b) =a,
if and only if a is the unique fixed point of the equation
T(a,b)=a,
for the given b. The domain of @ is the set
D =1{b e X :T(,b) has aunique fixed pointa € X},

which may or may not be empty. However, if by € D then the implicit function theorem tells
us when D contains an open neighborhood of by. To see this suppose that (ag, by) € X x X
has that T (ag, bg) = ag, and consider the function F: X x X — X defined by

F(a,b)y=a—T(a,b).

Note that F(ag, bp) = 0. By the implicit function theorem we have the following: if the linear
operator D1 F(agp, bp): X — X is an isomorphism then there is an € > 0 and a continuous
function a: B¢(by) — X so that a(bg) = ag and

F(a(b),b) =0 for all b € B (by).
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It follows that

T(a(),b) =a(),
forallb € B¢(bg) C X.Thatis, the function ® is locally well defined near by by the equation

T(®(b),b) = (D), (®)
and we have that

D) =a(b).
This says precisely that B.(bg) C D. Note that, in terms of 7" we have that
D1F(a,b) =1d — D1T(a, b),

is the needed isomorphism, where Id denotes the identify operator on X.
The derivative of @ is obtained by implicit differentiation. Differentiating Equation (8)
with respect to b leads to

D®(b) = DT (®(b),b)DD(b) + DT (D (b), b),
so that
[Id — DT (®(b), D)] DD (b) = DT (P (D), b), )

and since Id — D1T(®(b),b) = Id — DT (a, b) is an isomorphism we obtain the useful
formula

D®(b) =[Id — DT (a,b)]" DT (a,b) = — (D1 F(a,b))"! DyF(a, b). (10)

We remark that the correspondence between iterates of @, fixed points of 7', and zeros of F
plays a central role in the discussion to follow. In the next section we discuss the a-posteriori
theory for studying the solutions of F = 0 — that is, we examine the question of when a
“good enough” approximate solution implies the existence of a true solution “nearby”.

2.2 A-Posteriori Existence and Error Bounds

The following result is a Newton—Kantorovich theorem with hypotheses suitable for computer
assisted implementation. The theorem requires only an approximate solution, and approxi-
mate derivative and approximate inverse of the derivative. More precisely, given any vector
b € X suppose that @ € X has F(a, b) ~ 0, and that operators AT, A € B(X) are linear
operators approximating respectively Dy F(a, b) and DyF(a, b)~'. In practice a will result
by including an approximate numerical solution — an object sitting in the memory of our
computer — into the function space X. Moreover, throughout the present work A and AT will
be finite dimensional matrices combined with identity mappings in the infinite dimensional
“talis”.

The theorem provides conditions sufficient for establishing the existence of an 7o > 0 and
aa € By (a), so that a is the unique solution of F(a, b) = 0 in B,,(a). Here B,,(a) is the
closure of the open ball B, (a). It is important to note that the invertibility of D1F(a, b) is
not assumed; rather it emerges as a corollary (see Corollary 2.2 below).

Newton—Kantorovich theorems and their many variations are used frequently in computer-
assisted proofs, We refer the interested reader to the references [5,38,51-57] for a number
of different related approaches. Denote by B(X) the set of bounded linear operators on the
Banach space X and || - || p(x) the corresponding bounded linear operator norm.
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Theorem 2.1 Let X be a Banach space and F: X x X — X be a Fréchet differentiable
mapping with respect to both variables. Suppose that a, b € X, AT € B(X), and A € B(X)
with A is injective. Assume that Yo, Zo, and Z1 are positive constants and that Z: (0, ry) —
R is a non-negative function satisfying

IAF @, b)llx < Yo, (11)
I1d — AAT |5y < Zo, (12)
IA[D1F (@, b) — Al < Z1, (13)

|A[D1F(a, b) — D1F(a,b)lllpx) < Z2(r)r, VYa € B.(a) and forr € (0,ry). (14)
Define
p(r) = Zao(r)r — (1 = Zo — Z1)r + Y.

Ifthereisanrg € (0, ry) such that p(ro) < O, then there exists aunique a € By (a) satisfying
F(a,b) =0.

Inpractice,b € X isafixeddatapointanda € X is an approximate solution of (-, b) = 0.
The operator AT is an approximation of the Fréchet derivative D F (a, b), and the operator A
is an approximate inverse of AT making it an “even more” approximate inverse of Dy F(a, b).
The function Z,(r) is a local Lipschitz estimate of the first derivative of F at a which
needs only to hold up to distance r, from a. In many applications F is twice continuously
differentiable in its first variable and we simply take

Zr(r) = |Allpx)Cr,
where C is any bound of the form
2
sup | D7 (@, D)y tinearcy) = C-
a€B,, (@)

Here r, may be chosen somewhat arbitrarily —though “small”” — and the norm is an appropriate
norm on the space of bi-linear operators. The estimate of Eq. (14) is seen to hold for any
0 < r < ry by applying the mean value inequality to D{F. Moreover in this case we have
that p(r) is a quadratic polynomial whose roots are easily determined from the quadratic
equation.

Since several details from the proof of Theorem 2.1 are needed in the proof of the corollary
below, we now sketch the argument. The idea is to look for a fixed point of the Newton-like
operator

N@) £ a— AF(a,b),
where we have suppressed the dependance of A/ on b, as the parameter b is fixed throughout
the following discussion. Observe that

DN(a) =1d — ADF(a, b),
so that
IDN (@)l pex) < I1d — AD1F (@, b)llgx)
< |1d—AAT| 5, + [A[AT = DiF@, b)]
+ [|A[D1F(a, b) — D1F(a, D)l px)

” B(X)

@ Springer



Journal of Dynamics and Differential Equations

for all a € B,,(a). Then, by the hypotheses of Theorem 2.1 we have the bound

sup DN (a)llgxy < Z2(ro) + Z1 + Zo, (15)
a€B,, @)

for any 0 < r9p < r,. Now the condition p(rg) < 0 encodes two valuable pieces of
information, namely that Z,(ro)ro + (Z1 + Zo)ro + Yo < ro, and, since Yy, rg > 0, that
Z>(ro) + Z1 + Zy < 1. From the first it follows that

IN(@a@) —allpxy < IN(a) = N (@ Bx) + IN(@) —allpx

sup [[DN(©)llpx)lla —allpx) + I1AF @, b)llpx)
ceByy (@)

< (Za(ro) + Z1 + Zo) ro + Yo < ro,

=
=

so that N maps the ball B, (a) into By, (a). From the second it follows by (15) and the mean
value theorem that A is a strict contraction on By, (a), with Lipschitz constant Z, (ro) + Z1 +
Zy < 1. From the contraction mapping theorem follows the existence of a unique fixed point
a € Byy(a) of N, and from the injectivity of A it follows that @ is a unique zero of F (-, b).

In the applications to follow we are interested not only in the existence of a zero a of
F (-, b), but also in some information about the derivative. The following corollary provides
some control over the norm of the inverse of Dy F(a, b), and when A is invertible provides
some control over the difference between the true and approximate inverse at the true zero.
Note that the corollary recycles several bounds already used in Theorem 2.1.

Corollary 2.2 (Bounds on the inverse derivative composed with A) Suppose that X, F, a, b,
A, AT, Zo, Z1, Zo(r) and p(r) are as in Theorem 2.1, and that ro > 0 has p(rg) < 0. Let a
be the unique solution of F (-, b) = 0in B,,(a) given by Theorem 2.1. Then

1. AD|F(a, b) is boundedly invertible with

- -1 1
AD|F(a, b) H < . (16)
H[ ! ] BX) ~ 1 —=(Za(ro) + Z1 + Zo)
2. If A is invertible so is D1F(a, b). In this case we have the bound
L 1Al Bx)
DyF(a,b)™! < . 17
1217@ 0 w0 = T=Zo ) 1 205 20 (4
3. When A is invertible we also have the bound
o Zo+ Z1 + Zy(ro)
D\F@a, by '—A < A . 18
| D1F@, b) lsco = T Ze s 25 Zywroyy M2 (18)

Proof To prove (16) we write
D\F(a,b) = D\F(a,b) — D1 F(a,b)+ D1 F(a,b) — AT + AT
so that
ADyF(a,b) = A [D1F(a,b) — D1F(a,b) + DiF@a,b)— A"+ AT] +1d -1
=1d— (A[D\F(@.b) — D1F(@a,b)] + A[A" — D1 F (@, b)] + [Id — AAT))
or

ADF@,b)=1d— B, (19)
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where
B £ 1d — ADF(a,b).
Combining the definition of B with the calculation above gives

B = A[D\F(a,b) — D\F(@a,b)|+A[A" — D1F@,b)] + [ld— AAT].

The fact that a € B,,(a) and the estimate of Equation (15) (the contraction constant) leads
to the bound

IBllsx) < |A[D1F @, b) = DiF@ b)]| g, + A [AT - D1 F(@a, b))
+ [1d — AAT ”B(X)
< Zy(ro)+Z1+ Zy < 1.

” B(X)

This uses the hypothesis that p(rg) < 0, just as in the proof of Theorem 2.1 sketched above.
Now, by the Neumann theorem, we have that Id — B is invertible with the desired bound.

The proof of (17) is as follows. Since A is invertible, we multiply both sides of Equation
(19) by A~ to obtain

D\ F@G,b)y=A""(1d- B). (20)

Since both operators on the right hand side of Equation (20) are invertible we have that the
product is invertible and that D1 F(a, b)~' = (Id — B)~! A. Taking norms and employing
the bound from Eq. (16) gives inequality (17). Finally, to establish (18) we recall that

IBllpx) = IIld = AD\F(a, b)llpx) < 1,
again exploiting p(rp) < 0. Observing that
DiF@, by~ — A=[1d— AD\F@ b)][DiF@ b»)] ",

the bound (17) gives the inequality of Eq. (18). O

2.3 The Implicit Time Stepping Scheme

We now apply the results of Sect. 2.2 to the method of steps for DDEs. The main task is

simply to write down explicit formulas for the function F and the fixed point operator T

defined in Eq. (3) for the method of steps. These in turn implicitly define the step map &.
Let X = C([—1, 1], R?) and define F: X x X — X by

t
Flyx)(@) = y(t) — x(1) — %/ OO ds

=y@) —T(y, x)(), (1)

where T is the fixed point operator defined in Eq. (3). Observe that we change from (a, b)
to (v, x) when we want to stress that the variables are functions. We save the (a, b) notation
for later after we transform the problem to the space of infinite Chebyshev sequences.

Now, let ®: C([—1, 1], RY) — C([—1, 1], R?) denote the step map as defined in Section
1.1. For fixed x € C([—1, 1], RY) we have that y(t) corresponds (after shifting and rescaling
of the domain) to a solution of the DDE with history x(¢) if and only if ®(x) = y, if and
only if y is a fixed point of T (-, x), if and only if y is a solution of the equation F (-, x) = 0.

@ Springer



Journal of Dynamics and Differential Equations

In the following we write D, Dy, D> to denote Fréchet derivatives and partial Fréchet
derivatives with respect to infinite dimensional variables, and 91, d> to denote the usual
partial derivatives with respect to finite dimensional (vector valued) variables. Then

D1 F(y,x) =1d — DiT(y, x), (22)

where for 4 € X this operator has action

T t
[D1F(y, )R] () = h(t) — = / a1 f (y(x), x(s))h(s)ds. (23)
—1
Itis worth recording also that the partial Fréchet derivative with respect to the second variable
— the past history — is

t
[D2T (y, x)h] (1) = = [D2F (y, x)h] (t) = h(1) + % /1 0 f(y(x), x(s))h(s)ds. (24)

In Sect. 3 we use Eq. (23) to define the approximate derivative A" and approximate inverse
A hypothesized in Theorem 2.1. The formula in Eq. (24) is needed to compute the validated
C'! bounds for the step map.

Suppose that x € C([—1, 1], R%) is given and that y € C([—1, 1], R?) is a fixed point of
T (-, x). Recall from Sect. 2.1 that the step map is well defined near x if Id — D{ T (y, x) is an
isomorphism. We now see that this is equivalent to the nondegeneracy of D1 F(y, x) in the
sense of Corollary 2.2. So, if we prove the existence of a zero of F(y, x) using Theorem 2.1
then the step map is locally well defined near x. Moreover the step map & is differentiable
at x with D® (x) given by Eq. (10), which can now be rewritten as

DO (x) = —D1F(y, x) ' DaF(y,x) = (Id — DT (y, x))"" DaT(y, x). 25)

We stress that if y is found through a successful application of Theorem 2.1 and if A is
invertible, then Corollary 2.2 provides invertibility and norm bounds on D{F(y, x).

2.4 Validated Bounds on the Derivative

Suppose y, x € C([—1, 1], ]Rd) have that F(y, x) = 0, so that ®(x) = y. Then, by the
discussion above D®(x) exists and is given by Eq. (25). Suppose that y results from a
successful application of Theorem 2.1, and that we would like to obtain information about
the derivative. We need to introduce a new operator A;, which approximates Dy F(y, x).
Indeed in practice A; is a finite matrix with zero tail.

Recall that AT is an approximation of DjF (¥, x) and that A is an approximate inverse of
AT Then, recalling the formula for the derivative of the implicitly defined mapping ® given
in Eq. (10), we have in fact that that

DO (x) ~ —AA].

This is a convenient approximation as A and A; are known quantities. The next theorem
provides a quantitative bound on the approximation.

Theorem 2.3 (C!bounds for an implicit time step) Suppose that X = C([—1, 1], RY), that

Fisasdefinedin Eq. (21), and that y, x € X, A € B(X), Zo, Z1, Z>(r) and p(r) satisfy the
hypotheses of Theorem 2.1. Assume that A is invertible and that A; € B(X). Assume further
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that ro > 0 has p(ro) < 0. Let y be the unique solution of F(-,x) = 0 in B,,(y) given by
Theorem 2.1. Let

M £ —AA] € B(X). (26)
If 89, 81, 82 = 0 are constants with
1 D2F (3, )l gxy < o (27)
[AID2FG0 - Al <y (28)
IA[D2F (¥, x) — DaF (¥, )l pxy < 82 (29)

then
Zo+ Z1 + Zy(ro)
1 —(Zo+ Z1 + Z2(rp))

[D®(x) — Mllpx) < < ) lAllBx)d0 + 81 + 82 (30)

Proof The idea of the proof is that M approximately solves Eq. (9). That is
ID1F(y, x)M + Dy F(y, x)llpx) <K 1.

Then M approximates the derivative and we seek an a-posteriori bound on the approximation.
Recalling (26) and that D® (x) = —D F(F, x) ' D> F (3, x) we have that

DO(x) — M = —[D\F(F,x)"" — AID2F (., x) — A[D2F (5, x) — DyF (3, x)]
—AID2F (5, x) — AJ].
Applying triangle’s inequality gives the desired result:
D@ (x) — Ml Bx)
< D1FG. )™ = AID2FF. X)) + IAID2F(F, x) — Do F (3, )l sx)
+ I AID2F (3, %) — ASllls oo
ID1F G, x)~" = Alllpao I D2F (3, X) | Bx) + 82 + 81

Zo+ Z1 + Za(ro)
T 1—=(Zo+ Z1 + Z2(r0))

IA

Al Bx)80 + 82 + 61.

3 Computer-Assisted Proofs for the Method of Steps

In this section, we introduce the necessary steps to apply the Newton—Kantorovich approach
of Theorem 2.1 to prove existence of zeros of the nonlinear map F given by (5). First,
we introduce in Sect. 3.1 the Banach space X in which we look for solutions of F = 0.
Then in Sect. 3.2, we introduce the finite dimensional projection used to compute numerical
approximations. Third, we introduce in Sect. 3.3 the bounded linear operators A, A" : X —
X required to apply Theorem 2.1.

3.1 Banach Spaces of Infinite Sequences with Rapid Decay

Recall from Sect. 1.2 that we employ Chebyshev series to pass from analysis in function
spaces to sequence spaces, and that in doing so differentiation is represented by a (diagonally
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dominant) infinite matrix, multiplication is given by discrete cosine convolution, and the C°
norm is bounded by an appropriate weighted little ell-one norm. Again we refer to [36,37]
for more general discussion.

Then, given a sequence of weights w = (wy),>0 given by

& 17 =
oy & n=0 31)

20", n>1

for a given real number v > 1, define

€, = fo= (=0 €R and |lofly = Y Janloy < oo . (32)

n>0

Fora,b e cho, denote by a * b the discrete convolution given component-wise by

@by =Y dbjny.
ni+ny=n
ny,no€”Z
It is a classical result that for the weights given in (31), (ELIU, *) is a Banach algebra, that is
la * bl < llallwllblle for all a, b € Z}L,. Indeed this is an example of a Beurling algebra,
whose elementary properties are explored in [58].
Given b € Z}U we look for a solution of F(a, b) = 0 in the space

X =) =fa=(a,as....a0) :a;€tl, forj=1,.... d)

with norm
lallx £ max {lajllo}- (33)
j=1,..., d
Remark 3.1 When f : R? x RY — R? is polynomial, the terms ¢, as in (4) are discrete
convolutions (in a and b) and if b € X, thatif b; € 6(1” foreach j = 1,...,d, since Z}D
defined in (32) is a Banach algebra under discrete convolution, then the map F satisfies
F:XxX— X.

Given an initial condition b € X, the idea of the computer-assisted proof of existence of
a zero of F(-, b) is to demonstrate that a certain Newton-like operator is a contraction on a
closed ball centered at a numerical approximation a. Computing a numerical approximation
requires considering a finite dimensional projection of the nonlinear map (5).

Remark 3.2 (Choice of weights and regularity) Adjusting the weights {w, } in the space (32)
provides control over the regularity of the fixed point argument. Throughout this paper, we
choose the weights given in (31) for a given real number v > 1. Suppose that we obtain a fixed
pointa € ¢ C]U with v = 1. The resulting y; : [—1, 1] — R” with Chebyshev coefficients given
by a isthenin C 0([—1, 1], R") and moreover is differentiable almost everywhere (absolutely
continuous). On the other hand, taking v > 1 results in y; real analytic on [—1, 1]. Of course
a given b may be in some spaces and not others, and in practice this will limit our choices.
On the other hand, we are often guided by theoretical results, for example when f is real
analytic we know that any periodic solution of the DDE is real analytic [59], suggesting the
use of exponential. That said, other weights could be used to represent C¥ functions, namely

def 17 n:()
w =
" 2m+DF, n>1

)
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which still makes Z}u a Banach algebra (e.g. see [60]).

3.2 Finite Dimensional Projection

To compute a, we consider a finite dimensional projection of the map F : X x X — X. Given
a projection dimension number N € N, and glven a vector o = (0ty)n>0 € E consider the
projection 7V : ¢ — RN o 15 nVa = ()Y, € RN“ We extend thls to product
spaces, defining ) : X — RV Dby nl(ay, ... a0) & (wVay, ..., 7Vaz) € RIVHD,
Often, given a € X, we denote

(N) Rd(N+l)

”d

Moreover, we define the natural inclusion (Vv : RN+ < chu as follows. For o = (ot,,),]lvzo S
RV* et Na e ¢ (11) be defined component-wise by

<N) oy, n=0,...,N
o) =
n 0, n>N+1.

Similarly, let Lfiv : RINHTD s X be the natural inclusion defined as follows: given a =
(a,...,aq) € RVTHd = RINVFD,

def
Lf}’a = (LNal,...,tNad) eX.

Consider the finite dimensional projection FN) : RINFD » RINFD _, RANFD of the
map F, fora € RIWVHD a5

FNa, by =) () a, Jb). (34)

Given an initial condition vector b € X, denote by b név b € RINED  Agsume that,
using Newton’s method, a numerical approximation @ € RY(N+1) of (34) has been obtained,
thatis V) (a, b) ~ 0. We slightly abuse the notation and denote @ € RN+ and (Ya € X
both using @. We use a similar identification for b.

3.3 Definition of the Operators A* and A

Consider the finite dimensional projection 7V : RIVFD x RINTD —, RINTD gpqg
assume that we computed (e.g. using Newton’s method) a € R4NFD such that 7NV (a, b) ~
0. Denote by D1 F™)(a, b) € Myn+1)(R) the Jacobian matrix of 7V at a. Givena € X,
define

Ata = ATa+ (1d - x))ATa, (35)

where néVATa = D FM@, b)a®™ and (Id — Lyﬂév)ATa = (Id - L 17Ty Mya. Since AT —
D F(a,b)as N — oo we expect that for N large enough, AT is a good approximation of the
Fréchet derivative D F(a, b). Its action on the finite dimensional projection is the Jacobian
matrix (the derivative) of F™) at @ while its action on the tail is the identity.

Consider now a matrix AY) e Myn+1HR) computed so that AN ~ D, FWM)(a, b)
In other words, this means that ||[Id — AN D; FV) (@, b)|| <« 1, where here Id refers to as the
d(N + 1) x d(N + 1) identity matrix. This step is performed using numerical linear algebra
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software ( MATLAB in our case). We decompose the matrix A®) block-wise as

N (N)\d
A( ) = {Aiyj },'!J':p
so that it acts on a®) = (afN), o a((iN)) € RN+ The operator A is defined block-wise
as

A={Ai ¥ (36)
where the action of each block of A is finite (that is they act on a™) = 7 év a only) except for

the d diagonal blocks A; ; (j =1, ..., n) which have infinite (identity) tails. More explicitly,
foreach j =1,....d,

AN TNa, n=0,...,N+1,

(37
i j(ajn n>N+1.

(Ajjaj)n = {

Having defined the operators A and AY, the last step in applying the a-posteriori method
of Theorem 2.1 is the construction of the bounds Yy, Zo, Z1 and Z, satisfying (11)-(14),
respectively. The construction of these bounds reduces to calculations which are by now
standard in the field of rigorous numerics. See for example the works of [61-63]. Then,
rather than developing the bounds in full generality, we focus instead on the specific case of
Wright’s equation

def

W' (@)= fu@),ult —1)) = —ou@ — 1)1 +u(), «ack. (38)

Fixing a scalar DDE with quadratic nonlinearity minimizes the proliferation of technical
details, while still illustrating all the main steps of the procedure. The reader interested in
the construction of Yy, Zy, Z1 and Z, bounds for general polynomial problems is referred to
[41,49].

3.4 Explicit Bounds for the Rigorous C! Integration of Wright's Equation
Equation (38) is referred to as Wright’s Equation, and is a classic example of a simple DDE

with long period stable oscillatory dynamics. For Wright’s equation, the Banach space is
simply X = K}U as this is a scalar equation. Recall that we use the weights w,, given by (31).

3.4.1 The Bound Yy

Assume that the initial condition with Chebyshev coefficients b = (b,),>0 is given with an
error bound of the form

.....

where b is the center of the ball of initial conditions, which we take to have the same number
of non zero components as a. In the context of a calculation involving multiple time steps the
truncation error &g on the initial history comes from the rigorous error bound in the previous
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time step. Denote b* = b — b € X with ||b?||x < &o. Then, ata = a
Fal@, by = Fu(@, b+0°)
N ) N
a+2) (-ra - (bo—l—ZZbk) — b5 +2> 5], n=0
= k=1 k=1 k>1
T

—(¢n-1(@, b +b°) = ¢pyy1(@. b+ b)), n>1
4n

a, —
For each n > 0, write
¢n(@, b +b°) = ¢py(a, b) + Y (a, b, b°),

where the terms v, (@, b, b°) may either be computed exactly using an expansion (in case the
equations are polynomials) or can be estimated (using for instance the mean value inequality
in Banach spaces). Note that F(a, b) can be split as a sum of two terms, that is F(a, b) =
F(a,b)+G(@a,b,b*), where

_ - +2) B, n=0
Gu(a, b, b%) = %}

T _ - _ =
_E(‘//nfl(a’b, b*) — Yuy1(a, b, b%)), n>1.
For Wright’s equation, ¢ (a, b) = —ab — aa * b and therefore

V(@ b,b®) =¢@,b~+b") —¢a,b)
=—ab+b°)—aax(b+b°)+ab+aaxb
= —a(b® +axb°)
= —a(l +a)*b°,

where 1 = (1,0,0,0,...,) e €.
Compute Yél) with interval arithmetic such that

IAF @, b))l < Y3".

The computation of ¥." involves the rigorous evaluation of F (@, b). If f : RY x RY — R?
in (1) is polynomial, then the resulting map F(a, b) involves discrete convolutions with only
finitely many nonzero terms. This rigorous evaluation can be done using the Fast Fourier
Transform (FFT) algorithm combined with Banach algebra estimates (see [60]). If f is non-
polynomial having nonlinearities that are solutions of polynomial ODEg, it is possible to
introduce a higher dimensional polynomial embedding which will recover the dynamics of
the original DDE (e.g. see [64,65]).

Denote by A the first column of the operator A and A o the operator A “take away” the
first column Ag. More explicitly, denoting the operator A entry-wise by A = (Au.n)m.n>0,
the operator A o is defined entry-wise by A1 oc = (Am.n)m=0,n>1. Then,

AG(@, b, b°) = —Ag | b +23 b5 | + %Al,oo (A7'rd +a b*”:)n):o_1 :
k>1 B
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and therefore, using the Banach algebra and that |b8 +2 Zkzl bi| < 1b¥|lw < €0,
= 7o @) s Tlo| i)\
lAG(a, b, b*)|lw < Yy~ = | lAollw + 7||A1 ol (AT T(+a) - llw ) 0.
n=

The computation of Yo(z) involves first computing the vector A~!7T (i + a), which has only
finitely many nonzero terms. Indeed, recalling the linear operators 7 and A~! in (6),

0, n=20
14+ a9 —ap, n=1
v, © (A*T(H&)) =@, —ay), nef2.. . N-1
"o g, ne{N,N+1)
0, n>N+2.

Then, recalling from (37) that the operator consists of a finite dimensional block matrix in
Mpy1(R) and a diagonal (identity) tail,

1
~1 N -
I (A7 70 +2) ) ||w=§ fn,lvn +ylanlen.
which is used to compute Y(gz). Finally, set
Yo & vV +y?. (39)

3.4.2 The Bound Z,

The following result is useful when computing bounded linear operator norms on £ Clu For an
elementary proof see [62].

Lemma 3.3 Consider a linear operator Q : Z(L — Z(L of the form

Q(N) 0
4N+1
Q= qN+2
0

where QW) = ( %Y,)l)o<m w<N and g, € R. Assume that |q|oo = sup,. y |gn| < 00. Then

_ (N)
= max| max wm 40
1Ol g ( max — Z|Q Al |q|oo> (40)

def

Let B = Id — AA". By construction of the tails of A and A, By, =0form > N or
n > N. Letting

1
Z(): max — Z |Bm,n|wms (41)

Lemma 3.3 gives ||Id — AATllg(zlw) < Zy.
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3.4.3 The Bound Z,

Leth € ¢} with |||, < 1 and let
7 £ (D1 F(a,b) — AHh.
Set
AD = (1d—NaMyh =(0,...,0, An g1, Ay, ..) € €L
Recalling that 7{¥ ATa = D\ F™)(a, b)a™), then

2 > (=D, n=0
_CI&ZN+1
in = 7<T(h(1)*5+h*b8)) on=1,....N

n n
o -

E(T(h*b—i—h*be))n, n>N.

Denote
23 oy (=D e, =0 0, n=

n=1,....,N and zP = {9 (T(hxb%),, n=1,...,N

n

oD 2 (T D « b))

2 (T (hxDb)) n>N. 2 (T(h*b%)),, n>N

n’

so that z = z(1 + z® . More explicitly, z? = %A’“T(h * b®), and hence
T
1Az 0 < - IAAT T (h 5 %) o

T _
= 1AM Tlg )20

< 7@ & T Ap- 5+ & 4
=4 = T” I Be1) (@ + @)eo, (42)
where we used the rather straightforward result
1T gy < &+ . 43)
where
A de Wk+1 v def Wk —1
@ = sup—— and o = sup
k>0 @k k>2 Wk

Recalling that the weights are given by &y = 1, for k = 0 and w;; = 2v* for k > 1,

R 2v 2pk+l 5 4 k=1
d=max | —,sup—— | =2v and & =su = —.
e 2k s 20k

The more involved estimate is to bound || Az("||,. First note that sz)l)l < VNI+1 .

The following technical lemma, which is a slight modification of Corollary 3 in [62]), will
be useful when bounding || Az .

Lemma 3.4 Fix a truncation Chebyshev mode to be N. Let M € N and let « =
(@0, .-, aum,0,0,...) € L. Then, forallh € ¢} suchthat||h|, < 1, andfork =0,..., N,

‘(& « h(”)k‘ <@ S max (Sl (44)

{=N+1,..., k+M wy
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Defining 21 € RY ! component-wise by

1
Ay _ ) N
Z = T _
" —“(|T<N>|\p(b)) Cn=1,....N
n n

we have

1Az = 1142V 0,

n>0
< Z Az D ulwn + Y 1Az D]y
n=0 n>N
N T
(N) (D) A
<Y 1AM ED),0, + R > T (h s b)lulen
n=0 n>N
N
(N) (D)
gnA 20 )yon + 4(N+1) Zuf(h*b)]nm
N
<z E 3 AMED 0, + (@ + D) Bl (45)

4N+1)
n=0

where we used (43) to establish the last inequality. Combining (45) and (42), we see that

z =72V + 2% (46)
satisfies (13).
3.4.4 The Bound Z;
Since for Wright’s equation, ¢ (a, b) = —ab — aa * b is linear in a, then D F(c, b) —

D{F(a,b) = 0. Hence, we set Z, = 0.

In the next subsections, we compute the bounds 89, §1 and &7, satisfying (27)—(29), respec-
tively. Recall that via Theorem 2.3 these bounds are used to compute C!-bounds for the step
map F.

3.4.5 The Bound &

ef

Recall that &y is a bound for || Dy F(a, b)”B(Zul)). Let » € B1(0) C X and denote by z =
Dy F(a, b)h which is given component-wise by

- ho—i—Zth ., n=0
in = k>0

X Tth+axh),, n=1,
4n
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and which satisfies (recalling the definition of the weights w, in (32))

lzllo = lz0l +2 ) lzalv" < | lhol +2 ) I/l +2Z\4 (T(h +axh)),| v
n>0 k>0

<1+ ||T||B(£1)||h+a*h”w
< 1+7(w+w)(1+ llallw)

T, -
=1+ @+ o)l +lale +ro).

Hence, we set

def

T _
do =1+ Ta(a)+w)(1 +llallw +ro). (47)

3.4.6 The Bound 81

< §&1. Denote by D FMN(a,b) €

Recall that §; satisfies HA[sz(a,b) Al H
My+1(R). Given h € E}D, define

B(£L)

Alh =2l Alh + ad — o, (48)

where T[INA;h = D,FM (@, b)h™. Again we note that as N — oo, A; approaches the
Fréchet derivative D> (a, b), and hence we expect the approximation to be good when N
is large enough. The action of A" on the finite dimensional projection is the Jacobian matrix
(the derivative w.r.t b) of ZV) while its action on the tail is zero. Let h € £ i) with || A, <1
and let

2 & (D2F(a,b) — ADh.

Recalling that JTINA;h = Dy FN) (a, l;)h(N), we have

-2 Z Iy, n=0

k>=N+1

Zn = E(T(a*h“))), n=1,....N
4n n

T _
— (T (h+a=x*h)),, n>N.
4n

Defining 7 € RY ! component-wise by

1
. N+

T <|T(N)|\IJ([1)) Cn=1,....N
n n
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we see that

N
1Azllw < Y l[AZlnlon + Y [[Azlslwn
n=0

= n>N

énA(an]nwn 4(N+ D - Z [T (h + @ % h)lulwn
N
< EOHA(NH%]M m Z [T (h + @ % h)lnlwn
N
<81 £ 314N 2w, + MHTHBMI +lall).  (49)

n=0

3.4.7 The Bound &,

Since for Wright’s equation, ¢ (a, b) = —ab — aa * b is linear in b, then DrF(a, b) —
Dy F(a, b) = 0. Hence, we set 5, = 0.

Having defined all the bounds hypothesized in Theorems 2.1 and 2.3 we now present
some applications.

3.5 Rigorous C' Integration for Wright's Equation

The bounds Yy, Zo and Z; given by (39), (41) and (46) are implemented in the MATLAB pro-
gram script_iterate_wright_cheb.m which uses the interval arithmetic library
INTLAB [50] and Chebfun [66]. We fixed the parameter value to o & 2.350319657675625,
since at that value, there is a periodic orbit of period roughly equal to 5. We fixed an initial
condition b € R? close to 0 with fast decay (the Chebyshev coefficients of b can be found in
the file b0 .mat available on the codes’ website mentioned in Section 1), fixed v = 1.1 and
the number of Chebyshev coefficients per step to be N = 40. The code verified successfully
the hypothesis of Theorem 2.1 for 17 consecutive steps. At each step, the program verifies
the existence of ro > 0 such that p(rg) < 0. The orbit is visualized in Figure 1 and the values
of rg are found in Table 1.

The bounds §p and §; given respectively by (47) and (49) are also implemented in the
program and Theorem 2.3 and applied to prove, still with N = 40 and v = 1.1, that in
the first step we have |[D®(x) — MIIB%) < 0.229, with M an explicitly known matrix
stored during the program execution. We changed N = 200, and obtained a proof that
ID®(x) — M”B(Q)) < 0.0172. Fixing v = 1.01 and N = 1000, we proved that

It is clear that the accuracy of the C! bounds improve as N is increased, and that there is
hope of obtaining qualitative information about stability using these bounds. Yet, in many
problems such bounds are not needed as we illustrate in the next section.
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Fig. 1 A rigorously computed 17-step orbit in Wright’s equation at the parameter value o =~
2.350319657675625. The final step appears to be close to an attracting periodic solution of Wright’s. This
illustrates an integration starting near an unstable equilibrium and terminating near the global attractor

4 Proofs of Existence of m-Steps Periodic Solutions in DDEs

Using the rigorous method of steps of this paper, we can obtain computer-assisted proofs of
existence of some specific type, namely m-steps periodic solutions, which we now define.

Definition 4.1 Given an integer m € N, a differentiable function ¢ : R — RY is said to be
an m-steps periodic solution of the delay equation y'(t) = f(y(¢), y(t — 7)) if ¥ solves the
equation, ¥ (t +T) = ¢ (¢) forallt e Rand T = mr.

An m-steps periodic solution of the delay equation y' (1) = f(y(t), y(t —t)) is represented
with a sequence of m sequences a g@ . atm ¢ (E}L,)d satisfying

F(z, a(2)7 a(l))

F(r, a®, a(z))

: =0¢e@lymd (50)

.7:(7,', a(m)’ a(m—l))
F(r,aM, am)

where F is given by (5). More explicitly, giveni € {1,...,m — 1},

@i+1) k _(@+1) (i) (i)
. . a +2 (—D*a —lay +2 a , n=20
F(r,aith q®y & 70 g ¢ ’ ; ' G

. T . . . .
" — (@1 @D, aD) = a1 @D, 0 D)), 2

Remark 4.2 Given an integer m € N, solving for an m-steps periodic solution of the delay
equation y'(r) = f(y(t), y(t — t)) requires having that % = m € N. Rather than solving
for the period T (or equivalently the frequency), we solve for the delay = for which we can
find a solution to (57).

By construction, a solution of (50) yields the existence of an m-steps periodic solution of
y'(t) = f(y(t), y(t — T)). Let us consider applications of this approach to prove existence
of periodic solutions in the Mackey—Glass equation.
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Table 1 At each step, the values of g > 0 such that p(rg) <0

step

1 2 3 4 5

6

7 8 9 10

11

12 13

14 15 16 17

o

1.3e-15 9.3e-15 7.5e-14 59e-13 3e-12

1.7e-11

2.2e-10 2e-09 5.3e-09 5.4e-08

1.5e-06

1.5e-05 2.3e-05

3.4e-04 7.8e-03 0.23 3.84
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4.1 Applications to the Mackey-Glass Equation
Consider the scalar delay differential equation

, u(t — 1)
w(t)=gw@),u—1))=—yult)+p

Trug—ne P70 02

Typically p is chosen large and possibly non-integer [67,68]. Denote y; (t) = u(@). Letting

w @
»n@) = THy0r = h(y1(1)),

then y| (1) = —yy1(t) + Bya(t — 7). Letting y3(t) = y1(1)*~> and y4(t) = yi(1)~" allows
us considering the following system of polynomial DDEs

yi(@t) = —yyi(t) + Byt — 1), (53a)
Y5(1) = y2(t) (v4(t) — py2(H)y3(1) (—yy1 (1) + By2(t — 1)), (53b)
y3(1) = (p — 2)ya(®)y3(1) (—yy1 (1) + By2(t — 1)), (53¢)
Yat) = =ya()* (=yy1(0) + Bya(t — 1)) (53d)

Denote y(1) = (y1(t), y2(2), y3(t), y4(1)), x(2) = (x1(t), x2(t), x3(t), x4(t)) = y(t — 1) =
1t — 1), y2(t = 7), y3(t — 7), y4(¢t — 7)) and

—y3 (@) + Bra()
w [ 320 a0 — 022030 (v 31 (1) + B2 (1))
FO®. X = ) D3 (1) (—yy1 () + xa(1))
—y4()? (=yy1(t) + Bx2(1))

To compute periodic orbits of the Mackey—Glass equation via the system of polyno-
mial delay equations (53a)—(53d), one must introduce the unfolding parameters (as the ones
considered in [41]) together with the extra scalar equations included to impose the correct
initial conditions on the auxiliary differential equations describing the nonlinearities. More
explicitly, one solves

Y1) = —yy1(t) + Byt — 1), y1(0) =1,
(54a)
Yo(t) = —yy1(0)y2()ya(t) + By2()ya()y2(t — T) + py y1 (1) y2(1)*y3(1)
— pBY2()*y3(D)ya(t — T) + 11, ¥2(0) = 1/2,
(54b)
y3(1) = =y (p =2 y1(®)y3()ya(t) + Blp — 2)y3(O)ya@)y2(t — T) +m2,  y3(0) =1,
(54¢)
Vo) = yy1(0)ya()? = Bya(®)*ya(t — ) + 13, 4(0) = 1.
(544d)

Hence, in this case

(=ya1 + Bb2),
Sna. b & (—yaiazas + Barashy + pyaiajaz — ;0/30%(13132 + 1)
e (=v(p — Darazas + B(p — 2)azasbs + )
(vaiai — Bajby +13),

where 7, = (1;,0,0,0,...) € £} for j = 1,2,3.

4 EEGR))

n
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Fig. 2 A rigorously validated 6-step periodic orbit of the Mackey—Glass equation at the parameter values
o = 2,8 = 1and p = 10. For the proof, we used N = 55 Chebyshev coefficients per component
and fixed v = 1.05. The radius enclosure of the orbit is given by r = 2.5 x 108 and the delay t
is given by the rigorous enclosure v € 1.539575123 + [—r, r]. The code which performs the proof is
script_proof_ PO_Fig3_MG_period_6.m

Fig. 3 A rigorously validated 12-step periodic orbit in the Mackey—Glass equation at the parameter val-
ues @ = 2, = 1 and p = 10. For the proof, we used N = 60 Chebyshev coefficients per component
and fixed v = 1.033. The radius enclosure of the orbit is given by r = 4.3 x 10~3 and the delay 7
is given by the rigorous enclosure 7 € 1.587078323 £ [—r,r]. The code which performs the proof is
script_proof_ PO_Fig4_MG_period_12.m

The unknowns describing the m-steps periodic solutions in the Mackey—Glass equations
are given by the time delay t € R, the_unfolding parameters n = (11, 2, 3) € R? and the
Chebyshev coefficients of each step a® e X = (cho)d fori =1,...,m. Denote

def

x ¢ (r,n,a(l),...,a(m))eX SR XX x--x X =Rx R} x X"

We endow the Banach space X’ with the product norm

def

1
Ixllae = max{|z|, |, Im2l, Insl, laPlx, ..., la"™ ).

Using Chebyshev series expansion of the solution y(¢) on the first time step interval [0, 7],
the four extra scalar equations y;(0) = 1, y2(0) = 1/2, y3(0) = 1 and y4(0) = 1 become

P 2 @Mo+2) (D@ —a; =0, j=1,2,34
k>1
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Fig. 4 A rigorously validated 6-step periodic orbit in the Mackey—Glass equation at the parameter values
a = 2,8 = 1and p = 9.65. For the proof, we used N = 54 Chebyshev coefficients per compo-
nent and fixed v = 1.05. The radius enclosure of the orbit is given by r = 3.5 x 108 and the delay
7 is given by the rigorous enclosure 7 € 1.827334865 &+ [—r, r]. The code which performs the proof is
script_proof_ PO_Fig5_MG_period_6.m

def

where o) = 3 = a4 = 1 and @y = 1/2. Denote P(a'V) = (Pi(aV), P,(a'V), P3(aV),
Py (a(l))) € R*. This leads to the zero finding problem F®® : X — X given by

P(a(]))
F(r,n,a?,ab)
def

Fro(x) = : , (56)

F(r,n,a™, am=D)
Ft.n.aM, am)

where

o Jao+2) Dfar—bo+2) b, n=0
Fo(t,n,a,b) = ; ,; (57)

T
a, — E(¢n_](a, bs n) - ¢}’l+1(a7 ba 7}))’ n Z 1

with ¢, (a, b, n) given in (55). By construction, a solution x € X to F' PO (x) =0 yields an
m-steps periodic solution of (52). To prove the existence of solutions to FP® = 0, we may
apply Theorem 2.1, or any Newton—Kantorovich type theorem. In this way we proved the
existence of two 6-step and one 12-step periodic solutions of the Mackey—Glass equation.
These validated solutions are illustrated in Figs. 2, 3 and 4 . Details about the parameters are
given in the captions.

Note that we have not computed the C! bounds associated to the periodic orbits in Mackey—
Glass, as this would involve more than just computing D® at each step of the orbit. More
explicitly, this involves computing a bound on the derivative of a composition operator. While
we believe this can be done, this is the subject of future investigation. Finally note that the
polynomial embedding approach does not create any obstruction in obtaining information
about the Floquet multipliers associated to the periodic orbit (e.g. see [64]).
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