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Motivated by computational geometry of point configurations on the Euclidean plane,

and by the theory of cluster algebras of type A, we introduce and study Heronian friezes,

the Euclidean analogues of Coxeter’s frieze patterns. We prove that a generic Heronian

frieze possesses the glide symmetry (hence is periodic) and establish the appropriate

version of the Laurent phenomenon. For a closely related family of Cayley–Menger

friezes, we identify an algebraic condition of coherence, which all friezes of geometric

origin satisfy. This yields an unambiguous propagation rule for coherent Cayley–Menger

friezes, as well as the corresponding periodicity results.

1 Introduction

Coxeter’s frieze patterns [6] are certain multiline arrays of numbers satisfying a simple

local condition (a determinantal recurrence). They arise in multiple mathematical con-

texts including quiver representations, plane hyperbolic geometry, and most recently,

cluster algebras of type A; see [17] for an excellent survey. In this paper, we introduce

Heronian friezes, the analogues of Coxeter’s friezes built using recurrence relations

arising in the context of metric geometry of the Euclidean plane. A Heronian frieze

is an algebraic abstraction of the set of measurements associated with an n-tuple of
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652 S. Fomin and L. Setiabrata

points on the plane; these measurements include the squared distances between pairs

of points as well as signed areas of oriented triangles formed by triples of points.

Just like the ordinary friezes, the Heronian ones are governed by rational recurrences.

The key distinction from the classical setting is that the quantities being updated

as one moves along a Heronian frieze are not algebraically independent: they satisfy

Heron’s formulas. Crucially, these algebraic dependences propagate under the frieze

recurrences.

We establish the basic properties of Heronian friezes, most importantly those

concerning periodicity and Laurentness. We also study a related notion of a Cayley–

Menger frieze, based on the eponymous equation involving the six squared distances

between four coplanar points. To achieve unambiguous single-valued propagation in

a Cayley–Menger frieze, we identify a subtle algebraic condition of coherence, which

involves squared distances between six coplanar points.

We next provide a brief overview of the paper. Suppose one wants to describe

a configuration of n points on the Euclidean plane A, viewed up to the action of the

group Aut(A) of orientation-preserving rigid motions. The parameters (measurements)

used in such a description must be Aut(A)-invariant. The standard approach of distance

geometry is to use a subset of the squared distances between the points. Since the

configuration space has dimension 2n − 3, it is natural to start by measuring some

appropriately selected 2n − 3 squared distances. The simplest choice is to pick a

triangulation of a convex n-gon by n − 3 of its diagonals, view it as a graph with n

vertices and 2n − 3 edges, and measure the distances between the pairs of points in a

configuration corresponding to the sides and diagonals of the polygon. Assuming that

the configuration is sufficiently generic (namely all diagonal lengths are nonzero), this

brings the dimension down to zero; in other words, the number of configurations with

the given values of those 2n − 3 measurements is finite. Unfortunately, this number

is exponentially large: for each triangle of the triangulation, there are two possible

orientations, and each of the 2n−2 choices can be realized.

One way to resolve this ambiguity is to add additional “bracing” edges to

the triangulation [13]. A frieze version of this approach is developed in Section 5,

reviewed later in this introduction. In Section 2, we propose a different approach

(inspired by classical invariant theory) that appears to allow for a better control of the

computational and algebraic aspects of the problem: in addition to the 2n − 3 squared

distances, we measure the signed areas of the n − 2 triangles of the triangulation.

In other words, for each of these triangles, we choose one of the two square roots in

Heron’s formula. It turns out that once such choices have been made, the rest of the
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Heronian Friezes 653

measurements (in particular, the squared distances for all
(n

2

)
pairs of points) can be

computed using rational recurrences.

An explicit implementation of these recurrences leads us to the notion of a

Heronian frieze, introduced in Section 3. We show that a sufficiently generic Heronian

frieze is uniquely determined by a small proportion of its entries. We then prove, under

the same genericity assumption, that any Heronian frieze possesses the glide symmetry

and consequently is periodic; see Theorem 3.11. These periodicity properties parallel

the analogous properties of Coxeter–Conway friezes.

In Section 4, we establish the Laurent phenomenon for Heronian friezes: every

squared distance and every signed area of a triangle in an n-point configuration can

be expressed as a Laurent polynomial in the initial measurement data associated

with an arbitrary triangulation of an n-gon; see Theorems 4.1 and 4.18. Note that the

3n − 5 initial measurements are not algebraically independent, so there is no canonical

rational function that expresses an arbitrary measurement in terms of the initial ones.

Curiously, the only initial measurements that appear in the denominators of our Laurent

expressions are those corresponding to the diagonals of the initial triangulation. While

the absence of the squared distances corresponding to the sides of the polygon did not

come as a surprise (given a similar phenomenon in cluster theory), we see no simple

conceptual explanation for the absence of signed areas in the denominators. Another

mystery is that in spite of having the same underlying combinatorics as cluster algebras

of type A, this construction does not appear to fit into any (generalized) cluster algebras

setup known to us.

Section 5 is essentially self-contained. It is devoted to an alternative construc-

tion of friezes adapted to Euclidean geometry of point configurations. This time, we

do not use signed areas at all, keeping squared distances as the only entries of a

frieze. The naïve idea is to use a propagation rule based on the Cayley–Menger equation

satisfied by the six squared distances between pairs of vertices of a plane quadrilateral.

Unfortunately, this approach immediately runs into a serious complication: unlike the

Ptolemy relation used in the classical theory of friezes, the Cayley–Menger equation

is quadratic in each of the six variables, so the iterative process branches into two

subcases at each step of the recurrence. (A similar situation arises in the study of

the Kashaev equation [14, 16].) To resolve the accumulating ambiguities, we employ

an idea inspired by [16]: we identify an additional algebraic condition that must be

satisfied by a Cayley–Menger frieze coming from a point configuration. This condition,

which we call coherence by analogy with [16], involves 13 frieze entries associated

with a 3 × 3 grid subpattern. The key advantage of the coherence equation is that it
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654 S. Fomin and L. Setiabrata

has degree 1 with respect to the rightmost (or leftmost) variable, so it can be used

to set up a rational recurrence. Under this recurrence, the Cayley–Menger condition

propagates and a coherent frieze is uniquely reconstructed from the initial data, subject

to certain genericity conditions. We later use these propagation rules to establish the

glide symmetry of coherent Cayley–Menger friezes, see Theorem 5.17.

In Section 6, we discuss the relationship between Heronian and Cayley–Menger

friezes. We show that, subject to the aforementioned genericity conditions, the coherent

Cayley–Menger friezes are precisely the restrictions of Heronian friezes. This rela-

tionship closely resembles the one between the hexahedron equation of R. Kenyon–R.

Pemantle [14] and Kashaev’s equation. In fact, both relationships can be viewed as

adaptations of [16, Section 10] to their respective contexts.

Why does an approach employing both squared distances and signed areas

produce simpler recurrences than the one that only uses squared distances? One

possible explanation comes from the fact that in the case of point configurations on

the plane, Cayley–Menger varieties are given by equations of degree 3, namely the

vanishing of the mixed Cayley–Menger determinants, see [3]. By contrast, the ring of

SO(2) invariants of a collection of several vectors is generated in degree 2.

The results in this paper can be extended to other flat real geometries (such as

the cylinder and the torus) by passing to the universal cover. We intend to investigate

the hyperbolic and/or spherical cases in subsequent work. It would also be interesting

to develop the analogues of these results for higher-dimensional geometry.

Our work was inspired by several sources: the classical Coxeter–Conway theory

of frieze patterns [5, 6], the theory of rigidity phenomena in distance geometry

(especially generic global rigidity on the plane [4, 11, 12]), classical invariant theory

[18] (especially invariants of SO(2,C)), the theory of cluster algebras of type A [9, 10]

(especially their hyperbolic geometry models [8]), and A. Leaf’s [16] theory of coherent

solutions of the Kashaev equation.

2 Triangulated Polygons and Heronian Diamonds

Let V be a 2D vector space over C, endowed with a symmetric inner product (u, v) �→
�u, v� and an associated skew-symmetric volume form (u, v) �→ [u, v]. Without loss of

generality, we can identify V with C2, with the two forms defined by

�u, v� = u�v� + u��v��,

[u, v] = u�v�� − u��v�,
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Heronian Friezes 655

for u =
[

u�
u��

]
, v =

[
v�
v��

]
. Let A be the corresponding affine space (the complex plane).

Each pair of points A, B ∈ A gives rise to a vector
−→
AB that moves A to B.

Definition 2.1. For A, B, C ∈ A, we define

x(A, B) = �−→AB,
−→
AB� (“squared distance between A and B”), (2.1)

S(A, B, C) = 2 [
−→
AB,

−→
AC] (“4 ×signed area of the triangle ABC”). (2.2)

Proposition 2.1 (Heron’s formula). For any triple of points A, B, C ∈ A, the “measure-

ments” x(A, B), x(A, C), x(B, C), and S(A, B, C) satisfy

(S(A, B, C))2 = H(x(A, B), x(A, C), x(B, C))

where we use the notation

H(p, q, r) = −p2 − q2 − r2 + 2pq + 2pr + 2qr. (2.3)

There is also a “converse Heron theorem” (Lemma 2.2 below). To state it properly,

we need to introduce the group Aut(A) of orientation-preserving isometries of A.

Lemma 2.2. Given complex numbers p, q, r, s satisfying s2 = H(p, q, r), at least one

of them nonzero, there exists a triangle ABC in A such that x(A, B) = p, x(A, C) = q,

x(B, C) = r, and S(A, B, C) = s. Moreover, such a triangle is unique up to the action of

Aut(A).

Proof. We note that Aut(A) = SO(V) � T(V), where T(V) is the group of translations

by an element of V. Since SO(V) acts freely and transitively on the unit sphere in V, the

claim will follow from Lemma 2.3 below. �

Lemma 2.3. Given A, B ∈ A with x(A, B) = p 	= 0, and three numbers q, r, s ∈ C

satisfying s2 = H(p, q, r), there exists a unique C ∈ A such that x(A, C) = q, x(B, C) = r,

and S(A, B, C) = s.
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656 S. Fomin and L. Setiabrata

Proof. Let u = −→
AB =

[
u�
u��

]
. We want to find a vector v = −→

AC =
[

v�
v��

]
satisfying

(v�)2 + (v��)2 = q, (2.4)

(u� − v�)2 + (u�� − v��)2 = r, (2.5)

2(u�v�� − u��v�) = s. (2.6)

Subtracting (2.5) from (2.4) gives a linear equation in the unknowns v� and v��. Together

with (2.6), this yields v� = u�(p+q−r)−u��s
2p and v�� = u��(p+q−r)+u�s

2p . It is straightforward to

check that we get a solution to (2.4)–(2.6). �

Definition 2.4. A labeled polygon (specifically an n-gon) in A is an ordered n-tuple

of vertices P = (A1, . . . , An) ∈ An, with n ≥ 3. Such a polygon gives rise to the

measurements

xij = xij(P) = x(Ai, Aj), (2.7)

Sijk = Sijk(P) = S(Ai, Aj, Ak), (2.8)

for all distinct i, j, k ∈ {1, . . . , n}. We denote by

xS(P) = (xij) � (Sijk) (2.9)

the labeled collection of all these measurements. This collection of numbers (or,

depending on the point of view, functions on the configuration space An) satisfies many

identities, including the obvious symmetries

xij = xji

Sijk = −Sikj = −Sjik = Sjki = Skij = −Skji

and the Heron equations

S2
ijk = H(xij, xjk, xik) (2.10)

(cf. (2.3)). The full list of relations satisfied by the xijs and Sijks is given by the “second

fundamental theorem” of invariant theory for the special orthogonal group SO(2,C), see

[18, Section II.17].
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Heronian Friezes 657

Fig. 1. A triangulated n-cycle, n = 8.

Definition 2.5. A triangulated cycle (or simply a triangulation, when the context

allows) is a particular kind of unoriented simple graph G on n vertices 1, . . . , n. Such

a graph must have 2n − 3 edges: n sides {1, 2}, {2, 3}, . . . , {n − 1, n}, {1, n} forming a

distinguished n-cycle, together with n − 3 non-side edges called diagonals. The key

requirement is that G must possess a planar realization of the following kind: take a

convex n-gon on the real plane with vertices cyclically labeled 1, . . . , n, triangulate it by

diagonals, and consider the resulting graph. An example is shown in Figure 1.

More generally, in what follows, any pair {i, j} of non-adjacent distinct vertices

on the distinguished n-cycle will be called a diagonal.

We note that each diagonal in a triangulation G belongs to exactly two triangles,

that is, K3-subgraphs of G.

Definition 2.6. A triangulated polygon T = (P, G) is a polygon P as above together

with a specific choice of a triangulation G as in Definition 2.5. Once this choice has

been made, it makes sense to consider the labeled subcollection of measurements

xSG(P) = (xij) � (Sijk),

which only includes the values xij corresponding to the sides and diagonals of T (in

other words, the edges {i, j} of the graph G), and the signed areas Sijk corresponding to

the triangles of the triangulation G.

Example 2.2. The simplest nontrivial case is n = 4. A quadrilateral (A1, A2, A3, A4)

has two triangulations, involving diagonals A1A3 and A2A4, respectively. Figure 2 shows
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658 S. Fomin and L. Setiabrata

Fig. 2. Measurement data for two triangulations of a plane quadrilateral.

these two triangulations, along with their respective measurement data, which involve

the measurements

a = x14 , b = x12 , c = x23 , d = x34 , e = x13 , f = x24 , (2.11)

p = S123 , q = S134 , r = S124 , s = S234. (2.12)

Corollary 2.7. Let G be a triangulated n-cycle, cf. Definition 2.5. Let

xS = (xij) � (Sijk)

be a collection of complex numbers labeled by the edges {i, j} and the oriented triangles

(i, j, k) of G. Assume that Heron’s equation (2.10) holds for each triangle (i, j, k) in G, and

furthermore, xij 	= 0 for each diagonal {i, j} in G. Then, there exists an n-gon P with

xSG(P) = xS. Moreover, P is unique up to the action of Aut(A). In particular, all the

measurements in xS(P) are uniquely determined by xSG(P).

Proof. This follows by repeated application of Lemma 2.2/Lemma 2.3. �

By Corollary 2.7, a polygon can be uniquely recovered from the measurement

data associated with an arbitrary triangulation (as long the diagonal lengths are

nonzero). In particular, the measurement data coming from two different triangulations

uniquely determine each other. It is natural to ask for an explicit description of the

corresponding transition maps. Since any two triangulations can be connected by a

sequence of f lips (cf. Definition 4.1 below), it suffices to understand the case of a

quadrilateral.
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Heronian Friezes 659

With notation (2.11)–(2.12), Corollary 2.7 (for n = 4) asserts that the measure-

ments (a, b, c, d, e, p, q) determine (a, b, c, d, f , r, s), and vice versa, provided e 	= 0 and

f 	= 0. The next proposition describes this correspondence explicitly.

Proposition 2.8. Let (A1, A2, A3, A4) be a 4-gon in A. Denote the associated 10

measurements by a, b, c, d, e, f , p, q, r, s, as shown in (2.11)–(2.12) and Figure 2. Then

p2 = H(b, c, e), (2.13)

q2 = H(a, d, e), (2.14)

r2 = H(a, f , b), (2.15)

s2 = H(c, f , d), (2.16)

r + s = p + q, (2.17)

4ef = (p + q)2 + (a − b + c − d)2, (2.18)

e(r − s) = p(a − d) + q(b − c). (2.19)

Proof. Each of these identities can be verified by expressing the involved quantities

in terms of the coordinates of the relevant points on the plane. Equations 2.132.16

are instances of Heron’s formula. Equation (2.17) reflects the fact that the signed

area of a quadrilateral can be obtained by cutting it into two triangles by either of

the two diagonals and adding their areas. Equation (2.18) is known as Bretschneider’s

formula for the (squared) area of a quadrilateral. Modulo (2.17), equation (2.19) can be

interpreted as the SO(2) instance of [18, Section II.17, relations J3]. �

Motivated by Proposition 2.8, we introduce the following notion.

Definition 2.3. A Heronian diamond is an ordered 10-tuple of complex numbers

(a, b, c, d, e, f , p, q, r, s) satisfying equations 2.132.19. Instead of listing the components

of a Heronian diamond as a row of 10 numbers, we will typically arrange them in a

diamond pattern, as shown in Figure 3.

Remark 2.9. Proposition 2.8 can be restated as saying that for any quadrilateral on

the plane A, the associated 10 measurements (6 squared distances and 4 signed areas),

when properly arranged, will form a Heronian diamond.
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660 S. Fomin and L. Setiabrata

Fig. 3. A Heronian diamond. Here, b and d are associated to the dashed lines extending the

bimedians of the diamond. The remaining eight numbers are placed at the vertices of the diamond

and at the midpoints of its sides.

Remark 2.10. Some of the seven conditions (2.13)–(2.19) appearing in the definition

of a Heronian diamond are redundant: it is easy to check that equations 2.132.14 (or

equations 2.152.16) follow from the remaining five. It is however convenient to work

with all these seven conditions, for the sake of symmetry (cf. Proposition 2.12 below) as

well as conceptual clarity.

Proposition 2.11. Let (a, b, c, d, e, p, q) be a 7-tuple of complex numbers satisfying

equations 2.132.14. Assume that e 	= 0. Then, there exist unique f , r, s ∈ C such that

(a, b, c, d, e, f , p, q, r, s) is a Heronian diamond. Specifically,

f = (p + q)2 + (a − b + c − d)2

4e
, (2.20)

r = p(e + a − d) + q(e − c + b)

2e
, (2.21)

s = p(e − a + d) + q(e + c − b)

2e
. (2.22)

Proof. We get (2.20) from (2.18) and (2.21)–(2.22) from (2.17) and (2.19). One then checks

that (2.15)–(2.16) are satisfied, cf. Remark 2.10. �

Reflecting a Heronian diamond in a horizontal or vertical axis of symmetry

produces a Heronian diamond. More precisely:

Proposition 2.12. Let (a, b, c, d, e, f , p, q, r, s) be a Heronian diamond. Then,

• (c, d, a, b, e, f , q, p, s, r) is a Heronian diamond;

• if e 	= 0, then (a, d, c, b, f , e, s, r, q, p) is a Heronian diamond.
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Heronian Friezes 661

Proof. The 1st statement is easy: as a result of the interchanges a ↔ c, b ↔ d, p ↔ q,

and r ↔ s, the identities (2.13)–(2.19) get permuted among themselves.

The second reflection, across a vertical line, interchanges d ↔ b, q ↔ r, e ↔ f ,

and p ↔ s. Again, the identities (2.13)–(2.18) get permuted—but (2.19) is replaced by

f (p − q) = r(c − d) + s(b − a). (2.23)

Thus, we need to deduce (2.23) from (2.13)–(2.19). It will be convenient to denote g =
a − b + c − d. We then obtain

4ef (p − q)

by (2.18) = ((p + q)2 + g2)(p − q)

= (p2 − q2)(p + q) + g2(p − q)

by (2.13),(2.14) = (H(b, c, e) − H(a, d, e))(p + q) + g2(p − q)

= ((a + b − c − d)g + 2e(−a + b + c − d))(p + q) + g2(p − q)

= g((a+b−c−d)(p+q)+g(p − q))+2e(−a+b+c−d)(p+q)

by (2.17) = g(2p(a − d) + 2q(b − c)) + 2e(r + s)(−a + b + c − d)

by (2.19) = 2e(r − s)(a − b + c − d) + 2e(r + s)(−a + b + c − d)

= 4er(c − d) + 4es(b − a).

Dividing by 4e (here, we use that e 	= 0), we get (2.23). �

Corollary 2.13. In a Heronian diamond (a, b, c, d, e, f , p, q, r, s), once the components

a, b, c, d (shown in blue in Figure 3) have been fixed, the values e, p, q determine f , r, s

uniquely (provided e 	= 0), and vice versa (provided f 	= 0).

Proof. Combine Propositions 2.11 and 2.12. �

The next two lemmas will be needed in Section 3.

Lemma 2.14 (Heronian diamonds with a = q = r = 0). Complex numbers

0, b, c, d, e, f , p, 0, 0, s
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662 S. Fomin and L. Setiabrata

form a Heronian diamond if and only if

p2 = H(b, c, e), (2.24)

d = e, (2.25)

f = b, (2.26)

s = p. (2.27)

Proof. Under the assumptions a = q = r = 0, we have

(2.13)−(2.19) ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2 = H(b, c, e)

0 = H(0, d, e) = −(d − e)2

0 = H(0, f , b) = −(f − b)2

s2 = H(c, f , d)

s = p

4ef = p2 + (−b + c − d)2

es = dp

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2 = H(b, c, e)

d = e

f = b

s2 = H(c, b, e)

s = p

p2 = 4eb − (−b + c − e)2.

Since 4eb − (−b + c − e)2 = H(b, c, e), the claim follows. �

Lemma 2.15 (Heronian diamonds with c = p = s = 0). Complex numbers

a, b, 0, d, e, f , 0, q, r, 0

form a Heronian diamond if and only if

q2 = H(a, d, e), (2.28)

b = e, (2.29)

f = d, (2.30)

r = q. (2.31)

Proof. The proof is completely analogous to the proof of Lemma 2.14. Alternatively,

combine Lemma 2.14 with Proposition 2.12. �

Corollary 2.16. In a Heronian diamond (a, b, c, d, e, f , p, q, r, s) with a = q = r = 0,

the values e, b, p determine f , d, s uniquely, and vice versa. In a Heronian diamond
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Heronian Friezes 663

Fig. 4. A Heronian diamond for a quadruple of vertices with labels i, j, k, �.

(a, b, c, d, e, f , p, q, r, s) with c = p = s = 0, the values d, e, q determine b, f , r uniquely,

and vice versa.

3 Heronian Friezes

Remark 2.9 implies the following statement.

Proposition 3.1. Let P = (A1, . . . , An) be a polygon in A. For any four vertices

Ai, Aj, Ak, A� of P, the corresponding 10 measurements form a Heronian diamond shown

in Figure 4. More explicitly, the measurements in xS(P)= (xij) � (Sijk) (cf. Definition 2.4)

satisfy the following identities, for any distinct i, j, k, � ∈ {1, . . . , n}:

S2
ijk = H(xij, xjk, xik), (3.1)

Sijk + Sik� = Sij� + Sjk�, (3.2)

4xikxj� = (Sijk + Sik�)
2 + (xij − xjk + xk� − xi�)

2, (3.3)

xik(Sij� − Sjk�) = Sijk(xi� − xk�) + Sik�(xij − xjk). (3.4)

Motivated by Figure 4, we introduce the notion of a Heronian frieze, cf.

Definition 3.1 below. Informally, a Heronian frieze is a collection of numbers arranged

in a pattern shown in Figure 5 and satisfying the Heronian diamond equations for all

diamonds in the pattern (plus some additional conditions near the upper and lower

boundaries). We next proceed to a formal definition.

We begin by introducing the relevant indexing sets.
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664 S. Fomin and L. Setiabrata

Fig. 5. The combinatorial pattern underlying a Heronian frieze of order n = 4.

Definition 3.2. For n ≥ 4, let Nn and Ln be the sets defined by

Nn = 

(i, j) ∈ (Z × 1

2Z) ∪ (1
2Z × Z) : 0 ≤ j − i ≤ n

�
, (3.5)

Ln = 

(i + 1

2 ,�) : i ∈ Z
� ∪ 


(� , j + 1
2 ) : j ∈ Z

�
. (3.6)

The (disjoint) union In = Nn ∪ Ln will serve as the indexing set for the Heronian friezes.

We visualize this set as follows, see Figure 6. We interpret Z2 as the set of integer points

for the coordinate system whose axes are rotated clockwise by π/4 with respect to the

usual placement. The indices in Nn (“the nodes”) are the points (i, j) in the strip 0 ≤
j − i ≤ n whose coordinates i, j are half-integers, with at least one of them an integer.

The indices in Ln (“the lines”) represent straight lines parallel to the coordinate axes,

with half-integer offsets.

We will refer to the indices (i, j) ∈ Nn with 1 ≤ j − i ≤ n − 1 as the interior nodes

of Nn.

Definition 3.1. A Heronian frieze of order n ≥ 4 is an array z = (zα)α∈In of complex

numbers indexed by the set In (see Definition 3.2), which satisfies the following local

conditions. The main condition is that for every 10-tuple of indices shown in Figure 7

(with (i, j) ∈ Nn ∩ Z2 an interior node), we require the corresponding 10 entries

(z(i,j+1), z
(i+ 1

2 , �)
, z(i+1,j), z

(�,j+ 1
2 )

, z(i,j), z(i+1,j+1), z
(i+ 1

2 ,j), z
(i,j+ 1

2 )
, z

(i+ 1
2 ,j+1)

, z
(i+1,j+ 1

2 )
)

to form a Heronian diamond. (For a dictionary between this notation and the notation

in Definition 2.3, compare Figures 3 and 7.) In addition, we impose the boundary
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Heronian Friezes 665

Fig. 6. The indexing set for a Heronian frieze of order n = 5. The indices in Ln correspond to

the dashed lines; see the top and bottom rows of the picture. The remaining 11 rows of indices

constitute the set of nodes In. The middle seven rows are the interior nodes.

conditions

z(i,i) = z(i,i+n) = z
(i,i+ 1

2 )
= z

(i,i+n− 1
2 )

= 0 (i ∈ Z). (3.7)

The notion of a Heronian frieze simplifies under the assumption that all entries

indexed by the elements of the set Ln (see (3.6)) are equal to each other. (This assumption

mirrors the analogous condition traditionally imposed on the classical Coxeter friezes.)

We next present the self-contained version of Definition 3.1 in this restricted generality.

Definition 3.3. Let b be a nonzero complex number. A Heronian frieze of order n is

called equilateral (with the lateral parameter b) if z
(i+ 1

2 , �)
=z

(�,i+ 1
2 )

=b for all i. Such a

frieze can be thought of as an array z = (z(i,j))(i,j)∈Nn
of complex numbers indexed by the
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666 S. Fomin and L. Setiabrata

Fig. 7. Indexing set for a diamond in a Heronian frieze. Here 1 ≤ j − i ≤ n − 1.

set Nn (see (3.5)) and satisfying the boundary conditions (3.7) together with the following

relations, which hold for every node (i, j) ∈ Z2 with 1 ≤ j − i ≤ n − 1:

z2
(i+ 1

2 ,j)
= H(b, z(i,j), z(i+1,j));

z2
(i,j+ 1

2 )
= H(b, z(i,j), z(i,j+1));

z
(i+ 1

2 ,j) + z
(i,j+ 1

2 )
= z

(i+ 1
2 ,j+1)

+ z
(i+1,j+ 1

2 )
;

4z(i,j)z(i+1,j+1) = (z
(i+ 1

2 ,j) + z
(i,j+ 1

2 )
)2 + (z(i+1,j) + z(i,j+1) − 2b)2;

z(i,j)(z(i+ 1
2 ,j+1)

− z
(i+1,j+ 1

2 )
) = z

(i+ 1
2 ,j)(z(i,j+1) − b) + z

(i,j+ 1
2 )

(b − z(i+1,j)).

An example of an equilateral Heronian frieze (with b = 1) is shown in Figure 8.

The boundary conditions (3.7) imply the following identities.

Proposition 3.4. Let z = (zα)α∈In be a Heronian frieze of order n. Then

z(i,i+1) = z
(i+ 1

2 , �)
= z

(�,i+ 1
2 )

(i ∈ Z), (3.8)

z(i,i+n−1) = z
(i− 1

2 , �)
= z

(�,i+n− 1
2 )

(i ∈ Z). (3.9)

Proof. The diamond condition for the interior node (i, i + 1) says that the 10 numbers

z(i,i+2), z
(i+ 1

2 , �)
, z(i+1,i+1), z

(�,i+ 3
2 )

, z(i,i+1), z(i+1,i+2), z
(i+ 1

2 ,i+1)
, z

(i,i+ 3
2 )

, z
(i+ 1

2 ,i+2)
, z

(i+1,i+ 3
2 )

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/1/648/5825012 by U
niversity of M

ichigan user on 10 July 2021



Heronian Friezes 667

Fig. 8. A fragment of an (equilateral) Heronian frieze of order 6. The entries associated with the

dashed lines (i.e., the ones indexed by the elements of Ln) are all equal to 1.

form a Heronian diamond. By (3.7), three of these numbers vanish: z(i+1,i+1) =z
(i+ 1

2 ,i+1)
=

z
(i+1,i+ 3

2 )
=0. Hence, Lemma 2.15 applies and z(i,i+1) =z

(i+ 1
2 , �)

by (2.29).

Similarly, the diamond condition for the node (i − 1, i) says that the 10 numbers

(z(i−1,i+1), z
(i− 1

2 , �)
, z(i,i), z

(�,i+ 1
2 )

, z(i−1,i), z(i,i+1), z
(i− 1

2 ,i), z
(i−1,i+ 1

2 )
, z

(i− 1
2 ,i+1)

, z
(i,i+ 1

2 )
)

form a Heronian diamond. The three numbers z(i,i), z
(i− 1

2 ,i) and z
(i,i+ 1

2 )
are all zero, so

Lemma 2.15 applies. By (2.30), we get z(i,i+1) = z
(i+ 1

2 ,�)
, establishing (3.8).
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668 S. Fomin and L. Setiabrata

Equation (3.9) is proven in a similar way, by applying Lemma 2.14 to

the Heronian diamonds associated with the interior nodes (i, i + n − 1) and

(i − 1, i + n − 2). �

Definition 3.5. In light of Proposition 3.1 (also compare Figures 4 and 7), any n-gon

P in the plane A gives rise to a Heronian frieze z = z(P) of order n by setting

z(i,j) = x�i��j�, (3.10)

z
(i+ 1

2 ,j) = S�i��i+1��j�, (3.11)

z
(i,j+ 1

2 )
= S�i��j��j+1�, (3.12)

z
(i+ 1

2 , �)
= x�i��i+1�, (3.13)

z
(�,j+ 1

2 )
= x�j��j+1�, (3.14)

where �m� denotes the unique integer in {1, . . . , n} satisfying m ≡ �m� (mod n).

(Condition (3.7) holds because xii = Si,i,i+1 = Si,i+1,i+1 = 0 for every i ∈ Z.)

Any frieze z(P) coming from a polygon P is necessarily periodic:

z(i,j) = z(i+n,j+n) (i, j ∈ Nn), (3.15)

z
(i+ 1

2 , �)
= z

(i+ 1
2 +n, �)

(i ∈ Z), (3.16)

z
(�,j+ 1

2 )
= z

(�,j+ 1
2 +n)

(j ∈ Z). (3.17)

In fact, (3.15) can be strengthened as follows: z(P) possesses the glide symmetry

z(i,j) = z(j,i+n) (i, j ∈ Nn), (3.18)

which also reflects the symmetries xij = xji and Sijk = Sjki of the measurements. (The

same symmetries appear in the Coxeter–Conway theory of frieze patterns [5, 6].) We will

soon provide a partial converse to this phenomenon, cf. Theorem 3.11.

Although the definition of Heronian friezes was motivated by geometry, they are

purely algebraic objects, merely tables of numbers satisfying some algebraic relations.

These relations can be viewed as recurrences: start by picking some initial data,

then propagate away by repeatedly applying Corollary 2.13 (or Corollary 2.16) for the

Heronian diamonds in the pattern. To describe this procedure in precise terms, we will

need to specify the sets of indices corresponding to our choices of initial data.
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Heronian Friezes 669

Definition 3.6. A traversing path π for an order n Heronian frieze is an ordered

collection

π = ((i1, j1), . . . , (i2n−3, j2n−3), �1, . . . , �n−2)

of 3n − 5 indices in In such that

• (i1, j1), . . . , (i2n−3, j2n−3) are interior nodes in Nn;

• �1, . . . , �n−2 are lines in Ln;

• j1 − i1 = 1;

• j2n−3 − i2n−3 = n − 1;

• |ik+1 − ik| + |jk+1 − jk| = 1
2 , for k ∈ {1, . . . , 2n − 4};

• if i2k ∈ Z + 1
2 , then �k = (i2k,�) ∈ Ln;

• if j2k ∈ Z + 1
2 , then �k = (� , j2k) ∈ Ln.

The following less formal description is perhaps more illuminating. Let us view Nn as

the vertex set of a graph, as shown in Figure 5, but without the dashed lines. Then

• (i1, j1), . . . , (i2n−3, j2n−3) are the nodes lying on the shortest path connecting

the lower and upper boundaries of the strip of interior nodes;

• �1, . . . , �n−2 are the dashed lines intersecting this shortest path.

Example 3.2. For n = 5 (cf. Figure 6), a traversing path consists of 3n−5 = 10 indices.

One example of such a path is

(
(0, 1), (0, 3

2 ), (0, 2), (−1
2 , 2), (−1, 2), (−1, 5

2 ), (−1, 3), (� , 3
2 ), (−1

2 ,�), (� , 5
2 )

)
.

Remark 3.7. For a Heronian frieze z(P) obtained from a plane n-gon P as in Definition

3.5, a traversing path π corresponds to a particular kind of a triangulation, namely

one in which every triangle has at least one of its sides lying on the perimeter of P.

(Cf. Definition 4.11 below.) Moreover, by Corollary 2.7, a sufficiently generic polygon P

(hence the entire frieze z(P)) can be recovered from the values of the frieze lying along π .

Corollary 3.8. Let z = (zα)α∈In be a Heronian frieze of order n. Suppose we know that

z(i,j) 	= 0 for any (i, j) ∈ Z2 such that 2 ≤ j − i ≤ n − 2. (3.19)

Then, the entire frieze can be uniquely reconstructed from its entries lying on a single

traversing path π .
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670 S. Fomin and L. Setiabrata

Proof. Repeatedly apply the recurrences underlying Corollary 2.13 and Corollary 2.16

to all Heronian diamonds in the frieze, starting with the ones adjacent to π and

expanding out. �

To be more specific, the recurrences for rightward propagation in a Heronian

freeze are (2.20)–(2.22) (inside the frieze), (2.25)–(2.27) (near the top boundary), and (2.29)–

(2.31) (near the bottom). For an equilateral frieze with parameter b, we set d = b and do

not need to update the line variables b and d.

Remark 3.9. Corollary 3.10 leaves open the question of existence of a Heronian frieze

with the given values along a particular traversing path (subject to an appropriate

nonvanishing condition). We answer this question in Section 4.

Corollary 3.10. Let z be a Heronian frieze of order n satisfying the nonvanishing

condition (3.19). Then, there exists a (unique) n-gon such that z = z(P).

Proof. Pick a traversing path π and construct an n-gon P whose frieze z(P) agrees with

z along π , as in Remark 3.7. Then apply Corollary 3.8. �

Corollary 3.10 implies the following purely algebraic statement.

Theorem 3.11. Any Heronian frieze satisfying the nonvanishing condition (3.19)

possesses the glide symmetry (3.18).

Example 3.3. Figure 8 shows the fundamental domain for an equilateral frieze with

respect to the glide symmetry.

4 Laurent Phenomenon for Heronian Friezes

The main result of this section is the following theorem.

Theorem 4.1. Let G be a triangulated n-cycle. Then, every measurement in xS(P)

(viewed as a function on the configuration space of all n-gons P) can be expressed as

a Laurent polynomial in the measurements in xSG(P). The denominator of this Laurent

polynomial is a monomial in the squared lengths of diagonals of G.

In algebraic terms, Theorem 4.1 asserts that each entry in a generic Heronian

frieze can be written as a Laurent polynomial in the initial data associated with a choice

of a traversing path, see Corollary 4.9 below.
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Heronian Friezes 671

Fig. 9. The trimming of this triangulated 8-cycle G with respect to the diagonal {2, 6} produces a

triangulated hexagon τ(G, 2, 6) with vertices 1, 2, 3, 4, 6, 7.

Later in this section, we prove a slightly stronger—but more technical—version

of Theorem 4.1, see Theorem 4.18.

The proof of Theorem 4.1 requires some preparation.

Definition 4.2. Consider the n-cycle with vertices 1, 2, . . . , n (in this order), n ≥ 4. Let

i, j, k, � be four distinct vertices on this cycle, with i < j and k < �. We say that the

diagonals {i, j} and {k, �} cross if either i < k < j < � or k < i < � < j. (In particular, no

two diagonals incident to the same vertex cross each other.)

Definition 4.3. Let G be a triangulated n-cycle, see Definition 2.5. We denote by E(G)

the set of edges of G and by D(G) ⊂ E(G) the set of diagonals of G. For a diagonal

{i, j} /∈ D(G), the trimming of G with respect to {i, j}, denoted τ(G, i, j), is the induced

subgraph of G whose vertex set includes i, j, and the endpoints of all diagonals in D(G)

that cross {i, j}. Note that τ(G, i, j) is itself a triangulated cycle. If G = τ(G, i, j), then we

say that G is trimmed with respect to {i, j}. See Figure 9.

Similarly, the trimming of G with respect to a triple (i, j, k), denoted τ(G, i, j, k),

is the induced subgraph of G whose vertex set includes i, j, k, and the endpoints of

all diagonals in D(G) that cross at least one of the diagonals {i, j}, {i, k}, {j, k}. Again,

τ(G, i, j, k) is a triangulated cycle. If G = τ(G, i, j, k), then we say that G is trimmed with

respect to (i, j, k).

Remark 4.4. When we are interested in recovering a measurement xij (resp., Sijk)

of a plane polygon P from the subset of measurements xSG(P) corresponding to a

triangulation G, we may always assume, without loss of generality, that G is trimmed
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672 S. Fomin and L. Setiabrata

with respect to the diagonal {i, j} (resp., the triangle (i, j, k)). (Otherwise, we can trim G

and then proceed. The formulas will be exactly the same.)

Remark 4.5. In a trimmed triangulation τ(G, i, j), every triangle uses at least one side

of the n-cycle. Equivalently, no three diagonals form a triangle.

Definition 4.1. Let e be a diagonal in a triangulation G. We denote by G� = μe(G) the

unique triangulation (of the same cycle) obtained by replacing e by a different diagonal

f . We say that G� is obtained from G by f lipping e to f .

Let (P, G) be a triangulated polygon, see Definition 2.6. We denote by xD(G)(P) ⊂
xSG(P) the collection of squared lengths labeled by the diagonals in D(G).

Lemma 4.6. Let G be a triangulated cycle, e ∈ D(G) a diagonal in it, and G� = μe(G).

Suppose that {i, j} /∈ D(G) is a diagonal such that G is trimmed with respect to {i, j},
but G� is not. Let G�� = τ(G�, i, j) be the trimming of G� with respect to {i, j}. Assume

that the measurement xij ∈ xS(P) can be written as a Laurent polynomial in xSG��(P)

whose denominator is a monomial in xD(G��)(P). Then, xij can be expressed as a Laurent

polynomial in xSG(P) whose denominator is a monomial in xD(G)(P). The same holds true

with {i, j} and xij replaced by (i, j, k) and Sijk, respectively.

Proof. Write xij = QG��/MG�� where QG�� is a polynomial in xSG��(P) and MG�� a monomial

in xD(G��)(P). Note that D(G��) = D(G) \ {e}. Also, observe that xSG��(P) consists of some

subset of xSG(P) together with xf and two signed areas of the form Sfgh, for two triangles

that have f as a side. By (2.20)–(2.22), each of these three measurements can be written

as a Laurent polynomial in xSG(P) with denominator xe ∈ xSG(P). Hence, QG�� can be

written as a Laurent polynomial in xSG(P) with denominator a power of xe, and so

xij can be written as a Laurent polynomial in xS(G) with denominator a monomial in

{xe} ∪ xD(G��)(P) = xD(G)(P). A similar argument establishes the companion result for

(i, j, k) and Sijk. �

Proposition 4.7. Let G be a triangulated n-gon that is trimmed with respect to a

diagonal {i, j}. Then, xij can be written as a Laurent polynomial in the measurements

xSG(P) whose denominator is a monomial in the squared lengths of diagonals of G.

Proof. We induct on n. The base n=4 follows from Bretschneider’s formula (2.18). Let

n>4. Note that no diagonal of G is incident to i; hence, e={i−1, i+1} ∈ D(G). (Here and
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Fig. 10. Base cases appearing in the proof of Proposition 4.8.

below we work modulo n.) The triangulation G� = μe(G) includes a diagonal incident to

vertex i, hence, is not trimmed with respect to {i, j}. By Lemma 4.6, it suffices to show

that xij has a Laurent expression in terms of xSG��(P) with denominator a monomial in

xD(G��)(P). Since G�� has fewer vertices than G, we can invoke the induction hypothesis. �

Proposition 4.8. Let G be a triangulated n-gon, trimmed with respect to a triple (i, j, k).

Then, Sijk can be expressed as a Laurent polynomial in xSG(P) whose denominator is a

monomial in xD(G)(P).

Proof. As in the proof of Proposition 4.7, we induct on n. For n = 4, the claim is

immediate from equations (2.21) and (2.22).

For n = 5, all triangulations of a pentagon are equivalent up to cyclic

renumbering of the vertices, so we can assume that G has diagonals {1, 3} and {1, 4},
see Figure 10. Since G is trimmed with respect to (i, j, k), this triple must contain both

2 and 5. Applying Lemma 4.6 with e = {1, 3} and (i, j, k) = (1, 2, 5) (resp., (2, 4, 5)), we

conclude that S125 (resp., S245) can be written as a Laurent polynomial in xSG(P), with

denominator a monomial in xD(G)(P)={x13, x14}. The case of S235 is similar.

Let us now consider the case when n = 6 and G is the triangulation with

diagonals {1, 3}, {3, 5}, and {1, 5}, see Figure 10. The triples (2, 3, 4), (4, 5, 6), (1, 2, 6)

are contained in the triangulated pentagons {1, 2, 3, 4, 5}, {1, 3, 4, 5, 6}, and {1, 2, 3, 5, 6},
respectively; therefore, S234, S456, and S126 can be expressed as Laurent polynomials in

xSG(P), with denominator a monomial in xD(G)(P). The identity

S234 + S456 + S126 + S246 = S123 + S345 + S156 + S135

implies that S246, too, can be expressed in such a form.
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In general, suppose that G includes a diagonal e incident to i. Then, e crosses

{j, k} (because G is trimmed with respect to (i, j, k)). No diagonal of G is incident to j, or

else it would have to intersect {i, k}, hence e as well. Thus, f = {j−1, j+1} ∈ D(G). Note

that the triangulation G� = μf (G) is not trimmed with respect to (i, j, k). Therefore, by

Lemma 4.6 and the induction hypothesis, Sijk can be expressed as a Laurent polynomial

in xSG(P) with denominator a monomial in xD(G)(P).

It remains to treat the case when no diagonal of G incident to i, j, or k exists.

Then, the diagonals {i−1, i+1}, {j−1, j+1}, {k−1, k+1} must all appear in G (as before, we

work modulo n). Let G� denote the triangulation obtained from G by flipping {i − 1, i + 1}
to {i, v}, v ∈ {1, . . . , n}. If {i, v} does not cross {j, k}, then Lemma 4.6 and the induction

hypothesis apply. If {i, v} ∈ E(G�) crosses {j, k}, then so do {i − 1, v}, {i + 1, v} ∈ E(G). It is

then straightforward to check that unless

{{i − 1, v}, {i + 1, v}} = {{j − 1, j + 1}, {k − 1, k + 1}}, (4.1)

flipping {j − 1, j + 1} or {k − 1, k + 1} will transform G into a triangulation that is not

trimmed, in which case we can apply Lemma 4.6 and the induction hypothesis. In the

remaining case, condition (4.1) forces n=6, with G the triangulation shown in Figure 10

and {i, j, k}={2, 4, 6}, up to renumbering; this case was treated above. �

Proof of Theorem 4.1. In view of Remark 4.4, the theorem this follows from

Propositions 4.7 and 4.8. �

The following algebraic statement strengthens Corollary 3.8.

Corollary 4.9. Let π be a traversing path. Let z− denote a collection of complex

numbers assigned to the indices in π that satisfy the appropriate Heron equations, and

moreover, the values at the integer nodes of π are nonzero. Then z− can be extended to a

Heronian frieze z. Furthermore, each entry of z can be written as a Laurent polynomial

in terms of z−, with denominator a monomial in the values indexed by the integer nodes

lying on π .

Proof. Let G be the triangulated cycle corresponding to the path π , cf. Remark 3.7. In

light of Corollary 2.7, there exists a unique polygon P whose measurements in xSG(P)

match those in z−. Now, set z = z(P) and apply Theorem 4.1. �

Combining Corollary 4.9 with Corollary 3.8, we obtain:
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Heronian Friezes 675

Corollary 4.10. Let z be a Heronian frieze satisfying the nonvanishing condition (3.19).

Then, each entry of z can be written as a Laurent polynomial in terms of the entries

lying on an arbitrary traversing path π . The denominator of this Laurent polynomial is

a monomial in the values indexed by the integer nodes lying on π .

Example 4.2. Let π be the traversing path at the left rim of Figure 8. The values of the

frieze lying on π are

1, 2, 2, −2, 5, 2, 2, 2, 1; 1, 1, 1, 1

(the last 4 values, all equal to 1, are associated with the dashed lines). In agreement

with Corollary 4.10, all values in the frieze are rational numbers whose denominators

only have prime factors equal to 2 or 5. (In fact, the only denominator that shows up in

this particular example is 5.)

In the remainder of this section, we present an alternative approach to the

Laurent phenomenon for Heronian friezes. While more technical than the proof of

Theorem 4.1 given above, this approach produces a stronger (and more explicit) result.

Definition 4.11. A triangulation G of an n-cycle with vertices 1, . . . , n is called thin if

it does not include three diagonals forming a triangle. By Remark 4.5, every trimmed

triangulation is thin. Conversely, every thin triangulation G is trimmed with respect to

a unique diagonal {b, c}, namely the diagonal connecting the only two vertices b and c,

which are not incident to any diagonal in G.

In the case of triangles, Remark 4.4 can be strengthened as follows.

Lemma 4.12. Let G be a triangulation trimmed with respect to a triple (i, j, k). Suppose

that for any � /∈ {i, j, k}, the triangulation G is trimmed with respect to at least one of

the triples (i, j, �), (i, k, �), (j, k, �). Then, G is trimmed with respect to at least one of {i, j},
{i, k}, or {j, k}. In particular, G is thin.

Proof. First, suppose that one of the sides of the triangle (i, j, k), say {i, j}, lies on

the distinguished n-cycle; that is, i ≡ j ± 1 mod n. (If there are two such sides, then

G is trimmed with respect to the 3rd one.) It is easy to see that in this case, G cannot

simultaneously include (a) a diagonal that crosses {i, k} but not {j, k} and (b) a diagonal

that crosses {j, k} but not {i, k}. Hence, G is trimmed with respect to either {i, k} or {j, k}.
So let us assume that each of {i, j}, {i, k}, and {j, k} is a diagonal, that is, not an

edge of the distinguished n-cycle. Let D(G)[i, j] (resp., D(G)[i, k], D(G)[j, k]) denote the

subset of D(G) consisting of those diagonals in G that cross {i, j} (resp., {i, k}, {j, k}). If

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/1/648/5825012 by U
niversity of M

ichigan user on 10 July 2021



676 S. Fomin and L. Setiabrata

one of these three subsets coincides with D(G), then we are done, so we can assume that

none does.

Since G is trimmed with respect to (i, j, k), we have D(G)[i, j] ∪ D(G)[i, k] ∪
D(G)[j, k] = D(G). Suppose for a moment that D(G)[i, j]∩D(G)[i, k] = ∅, that is, no diagonal

of G crosses both {i, j} and {i, k}. By assumption, there is a diagonal D ∈ D(G) that

does not cross {j, k}. Say D crosses {i, j}. Since D crosses neither {i, k} nor {j, k}, it must

terminate at k. Now, since none of the diagonals in D(G) can cross D, but each must cross

one of the sides of (i, j, k), it follows that each diagonal in G crosses {i, j}, as desired.

It remains to treat the case when the intersection D(G)[i, j] ∩ D(G)[i, k] is

nonempty, and moreover, both D(G)[i, j]∩D(G)[j, k] and D(G)[i, k]∩D(G)[j, k] are nonempty

as well. Let Di ∈ D(G)[i, j] ∩ D(G)[i, k], Dj ∈ D(G)[i, j] ∩ D(G)[j, k], and Dk ∈ D(G)[i, k] ∩
D(G)[j, k]. Then, there exists a vertex � such that the diagonal {j, �} crosses both Dj

and {i, k} but neither Di nor Dk. We now observe that the diagonal Di does not cross

any of the sides of (j, k, �), the diagonal Dj does not cross any of the sides of (i, k, �),

and the diagonal Dk does not cross any of the sides of (i, j, �). In other words, the

triangulation G is not trimmed with respect to each of the triples (i, j, �), (i, k, �), (j, k, �), a

contradiction.
�

Remark 4.13. We already noted, cf. Remark 4.4 and the proof of Theorem 4.1, that it

is sufficient to establish the Laurent phenomenon in the case when the triangulation G

at hand is trimmed with respect to the measurement in question. In the case when the

measurement is a squared distance xij, this immediately implies that G is thin. In the

case of a signed area Sijk, we can assume that the triangulation G, in addition to being

trimmed with respect to (i, j, k), is also trimmed with respect to at least one of the triples

(i, j, �), (i, k, �), (j, k, �). (Otherwise, we can invoke the additive identity (3.2) and then use

trimming to induct on n, the number of vertices.) Hence, Lemma 4.12 applies, meaning

that we may assume that G is trimmed with respect to one of the sides of (i, j, k), and in

particular is thin.

Definition 4.14. Let G be a thin triangulation of an n-cycle, trimmed with respect to

the diagonal D = {c, n}, cf. Definitions 4.3 and 4.11. The n − 3 diagonals of G, together

with {c −1, c} and {1, n}, form the edge set of a spanning tree of G. We denote these n−1

edges by D2, . . . , Dn, so that D2 = {c − 1, c}, Dn = {1, n}, and for every j ∈ {2, . . . , n}, the

edges Dj and Dj+1 are two sides of a triangle in G.

Let P = (A1, . . . , An) be a polygon on the plane A. We continue to use the notation

from Definition 2.4 for the measurements xij = xij(P) and Sijk = Sijk(P). Let v2, . . . , vn be

the vectors corresponding to the edges D2, . . . , Dn of a thin triangulation G as described
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Heronian Friezes 677

above; to be more precise,

vk = −−→
AiAj, where Dk = {i, j}, i < j. (4.2)

We then define, for 2 ≤ j ≤ n − 1:

Sj = Sj(P) = 2[vj, vj+1], (4.3)

Tj = Tj(P) = 2�vj, vj+1�, (4.4)

It will also be helpful to introduce the following notation, for 2 ≤ a < b ≤ n:

�even(a, b) =
�

J⊆{a,...,b−1}
|J| even

(−1)|J|/2

⎛⎝�
j∈J

Sj

⎞⎠
⎛⎜⎜⎝ �

a≤j<b
j/∈J

Tj

⎞⎟⎟⎠ , (4.5)

�odd(a, b) =
�

J⊆{a,...,b−1}
|J| odd

(−1)(|J|−1)/2

⎛⎝ �
j∈J

Sj

⎞⎠
⎛⎜⎜⎝ �

a≤j<b
j/∈J

Tj

⎞⎟⎟⎠ . (4.6)

Lemma 4.15. Every Sj, Tj, �even(a, b), and �odd(a, b) is a polynomial with integer

coefficients in the measurements in xSG(P).

Proof. First, Sj ∈ xSG(P) since Sj is the rescaled area of the triangle whose two sides

are Dj and Dj+1 (cf. (2.2) and (2.8)). Second, note that vj − vj+1 is a vector linking two

adjacent points on the perimeter of the polygon P. Consequently,

Tj = �vj − vj+1, vj − vj+1� − �vj, vj� − �vj+1, vj+1� ∈ Z[xSG(P)].

The statement concerning �even(a, b) and �odd(a, b) follows. �

Proposition 4.16. In the notation of (4.2) and (4.5)–(4.6), we have:

�va, vb� = 2a−b �even(a, b)

b−1�
m=a+1

�vm, vm�−1, (4.7)

[va, vb] = 2a−b �odd(a, b)

b−1�
m=a+1

�vm, vm�−1. (4.8)
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678 S. Fomin and L. Setiabrata

In particular, both �va, vb� and [va, vb] are Laurent polynomials with integer coefficients

in the measurements in xSG(P). In each of these Laurent polynomials, the denominator

is a square-free product of the measurements xij ∈ xD(G)(P).

Proof. Let us adjoin a formal square root ε = √−1 to C. In other words, our

computations will be done in the ring C[ε]/�ε2 +1�. The key observation is that for a < b,

b−1�
m=a

(Tm + εSm) = �even(a, b) + ε�odd(a, b). (4.9)

Furthermore, with the notation vm =
[

v�
m

v��
m

]
, we have

Tm + εSm = 2(�vm, vm+1� + ε[vm, vm+1]) = 2(v�
m − εv��

m)(v�
m+1 + εv��

m+1)

and consequently

b−1�
k=a

(Tm + εSm) = 2b−a
b−1�
m=a

(v�
m − εv��

m)(v�
m+1 + εv��

m+1)

= 2b−a(v�
a − εv��

a)(v�
b + εv��

b)

b−1�
m=a+1

(v�
m − εv��

m)(v�
m + εv��

m)

= 2b−a(�va, vb� + ε[va, vb])
b−1�

m=a+1

�vm, vm�. (4.10)

Comparing (4.9) with (4.10), we conclude that

�even(a, b) = 2b−a�va, vb�
b−1�

m=a+1

�vm, vm�, (4.11)

[−1pt]�odd(a, b) = 2b−a[va, vb]
b−1�

m=a+1

�vm, vm�. (4.12)

Rearranging equations (4.11) and (4.12) yields (4.7) and (4.8). �

For 1 ≤ j < k ≤ n, consider the unique path in the spanning tree formed by

D2, . . . , Dn that connects j to k. We denote the length of this path by �(j, k). Let i1(j, k) ≤
· · · ≤ i�(j,k)(j, k) be the indices of the edges forming this path, so that the set of these

edges is {Dia : 1 ≤ a ≤ �(j, k)}.
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Heronian Friezes 679

Proposition 4.17. Let (P, G) be a thin triangulation of a plane n-gon, trimmed with

respect to the diagonal D = {c, n}, see Definition 4.14. Then

xjk =
�(j,k)�
a=1

�(j,k)�
b=1

(−1)a+b�via(j,k), vib(j,k)� (1 ≤ j < k < n), (4.13)

Sjkn = 2 �j�k

�(j,k)�
a=1

�(k,n)�
b=1

(−1)a+b[via(j,k), vib(k,n)] (1 ≤ j < k < n), (4.14)

where we use the notation

�j =

⎧⎪⎨⎪⎩
+1 if c ≤ j;

−1 if c > j.

Proof. Observe that
−−−→
AjAk = �j

��(j,k)

a=1 (−1)avia(j,k). Therefore

xjk = �−−−→
AjAk,

−−−→
AjAk� =

�
�(j,k)�
a=1

(−1)avia(j,k),
�(j,k)�
b=1

(−1)bvib(j,k)

�
,

Sjkn = 2 [
−−−→
AjAk,

−−−→
AkAn] = 2 �j�k

⎡⎣ �(j,k)�
a=1

(−1)avia(j,k),
�(k,n)�
b=1

(−1)bvib(k,n)

⎤⎦ .

Now, the bilinearity of the forms �·, ·� and [·, ·] implies (4.13)–(4.14). �

Theorem 4.18. Let (P, G) be a triangulated polygon in the plane A. Every measure-

ment xij (resp., Sijk) in xS(P) can be expressed as a Laurent polynomial with integer

coefficients in the measurements in xSG(P), with the denominator equal to the product

of the measurements xab corresponding to the diagonals {a, b} ∈ D(G) that cross {i, j}
(resp. (i, j, k)).

Proof. In the case when triangulation G is thin, and trimmed with respect to

the measurement in question, the statement follows by substituting the formulas in

Proposition 4.16 into the ones given in Proposition 4.17 and recalling Lemma 4.15. The

general case follows by Remark 4.13 (based on Lemma 4.12). As noted in the latter

remark, the final formulas for the signed areas Sijk are obtained by using the additive

relations (3.2) to combine several expressions resulting from (4.14) and (4.8). �
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680 S. Fomin and L. Setiabrata

Remark 4.19. For the readers interested in the computational aspects of these

problems, we note that the above formulas lead to polynomial complexity algorithms:

although the sums in (4.7)–(4.8) may contain exponentially many terms as n → ∞, they

can be computed very fast via the product formula (4.9).

We conclude this section by providing an explicit version of Theorem 4.1 for the

“fan” triangulation in which all diagonals are incident to a single vertex.

Definition 4.20. Let G1 be the triangulated n-cycle with vertices 1, 2, . . . , n, sides

{1, 2}, . . . , {n − 1, n}, {n, 1}, and diagonals {1, 3}, . . . , {1, n − 1}. Let P = (A1, . . . , An) be a

polygon on the plane A. We continue to use the notation (2.7)–(2.8). For 1 < a < b ≤ n

and J ⊂ {a, . . . , b − 1}, we denote

QJ,[a,b] =
⎛⎝ �

j∈J

S1,j,j+1

⎞⎠⎛⎝ �
j∈{a,...,b−1}\J

(x1j + x1,j+1 − xj,j+1)

⎞⎠ . (4.15)

Corollary 4.21. Each measurement in xS(P) can be explicitly expressed as a Laurent

polynomial in the measurements in xSG1
(P) (cf. Definition 4.20), as follows. For 1 < a <

b ≤ n, we have:

xab = x1a + x1b −
⎛⎝2b−a−1

b−1�
k=a+1

x1k

⎞⎠−1 �
J⊂{a,...,b−1}

|J| even

(−1)|J|/2 QJ,[a,b], (4.16)

S1ab =
⎛⎝2b−a−1

b−1�
k=a+1

x1k

⎞⎠−1 �
J⊂{a,...,b−1}

|J| odd

(−1)(|J|−1)/2 QJ,[a,b]. (4.17)

Also, for 1 < a < b < c ≤ n, we have:

Sabc = S1ab + S1bc − S1ac. (4.18)

Proof. Formula (4.18) is clear. Formula (4.16) is a special case of (4.13) (with the

substitutions (4.7)), applied to the trimming of G with respect to the diagonal {a, b}.
Similarly, formula (4.17) is a special case of (4.14), with the substitutions (4.8). �

5 Cayley–Menger Friezes

Recall the following classical result; see for example, [1, Section 9.7.3] or [2, Section 40].
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Heronian Friezes 681

Fig. 11. A Cayley–Menger diamond, cf. Definition 5.2.

Proposition 5.1. Let (A1, A2, A3, A4) be a quadrilateral in A with measurements

a = x14 , b = x12 , c = x23 , d = x34 , e = x13 , f = x24 (5.1)

(squared distances between all pairs of vertices), as in Example 2.2. Then

M(a, b, c, d, e, f )
def= det

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1

1 0 b e a

1 b 0 c f

1 e c 0 d

1 a f d 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 0. (5.2)

The determinant M(a, b, c, d, e, f ) appearing in (5.2) is called the Cayley–Menger

determinant. It is a homogenous polynomial of degree 3 in the variables a, b, c, d, e, f .

Viewed as a polynomial in each individual variable, it has degree 2. For each 5-tuple of

numbers a, b, c, d, e, there are ordinarily two values of f such that (5.2) holds. Informally

speaking, a configuration of four points in the plane A is “almost” determined by five of

the six squared lengths between these points, up to a binary choice.

Definition 5.2. A Cayley–Menger diamond is a 6-tuple (a, b, c, d, e, f ) of complex

numbers satisfying (5.2). As with Heronian diamonds, we typically arrange these six

numbers in a diamond pattern, as shown in Figure 11. Proposition 5.1 can be restated

as saying that for any plane quadrilateral (A1, A2, A3, A4), the six squared distances

listed in (5.1) form a Cayley–Menger diamond. Cf. Remark 2.9.

Remark 5.3. Thanks to the symmetries of the Cayley–Menger determinant, the

notion of a Cayley–Menger diamond is invariant under the dihedral symmetries of the
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682 S. Fomin and L. Setiabrata

Fig. 12. Indexing set for a diamond in a Cayley–Menger frieze.

underlying square pattern. Thus, if (a, b, c, d, e, f ) is a Cayley–Menger diamond, then so

are (c, d, a, b, e, f ), (a, d, c, b, f , e), (f , d, e, b, a, c), etc.

Definition 5.4. Let n ≥ 4 be an integer. A Cayley–Menger frieze z = (zα)α∈ICM
n

is an

array of complex numbers indexed by the set

ICM
n = {(i, j) ∈ Z2 : 0 ≤ j − i ≤ n} ∪ Ln

(see (3.6)) in which, for every (i, j) ∈ Z2 satisfying 1 ≤ j − i ≤ n − 1, the 6-tuple

�i,j(z)
def= (z(i,j+1), z

(i+ 1
2 , �)

, z(i+1,j), z
(�,j+ 1

2 )
, z(i,j), z(i+1,j+1)) (5.3)

(see Figure 12) forms a Cayley–Menger diamond. In other words, we require that

M( �i,j(z)) = 0 (1 ≤ j − i ≤ n − 1).

In addition, we impose the following boundary conditions (cf. (3.8)–(3.9)):

z(i,i) = 0, z(i,i+1) = z
(i+ 1

2 , �)
= z

(�,i+ 1
2 )

(i ∈ Z), (5.4)

z(i,i+n) = 0, z(i,i+n−1) = z
(i− 1

2 , �)
= z

(�,i+n− 1
2 )

(i ∈ Z). (5.5)

An example of a Cayley–Menger frieze is shown in Figure 13.

Definition 5.5. By Proposition 5.1, any n-gon P in the plane A gives rise to a Cayley–

Menger frieze z = zCM(P) of order n by setting

z(i,j) = x�i��j�, (5.6)
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Heronian Friezes 683

Fig. 13. A Cayley–Menger frieze z of order 6. The entries associated with the dashed lines (which

match the entries in the top and bottom nonzero rows) are all equal to 1. The leftmost entries in

each row, starting from the bottom, are indexed by (4, 4), (3, 4), (3, 5), (2, 5), (2, 6), (1, 6), and (1, 7),

respectively.

Fig. 14. A hexagon P = (A1, . . . , A6) giving rise to the frieze in Figure 13. Each side of the hexagon

is of length 1, as are the diagonals A1A3, A1A4, A1A5. The measurements x44 = 0, x34 = 1, x35 = 3,

x25 = 4, x26 = 3, x16 = 1, x11 = 0 match the leftmost entries in each row of the frieze.

z
(i+ 1

2 , �)
= x�i��i+1�, (5.7)

z
(�,j+ 1

2 )
= x�j��j+1�, (5.8)

where �m� denotes the unique integer in {1, . . . , n} satisfying m ≡ �m� (mod n). The

boundary conditions (5.4)–(5.5) are easily checked, using the fact that xii = 0 for all

i ∈ {1, . . . , n}.
An example is shown in Figure 14.

Definition 5.1. It will be helpful to introduce some nonconventional (but sug-

gestive) notation for the partial derivatives of the Cayley–Menger polynomial M =
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684 S. Fomin and L. Setiabrata

M(a, b, c, d, e, f ) with respect to its 6 arguments. This notation makes reference to the

placement of these arguments in the diamond, cf. Figure 11. We denote

∂↑M = ∂M

∂a

∂←M = ∂M

∂e
∂→M = ∂M

∂f
(5.9)

∂↓M = ∂M

∂c

∂�M = ∂M

∂b
∂�M = ∂M

∂d
. (5.10)

In particular,

∂→M(a, b, c, d, e, f ) = ∂M

∂f
(a, b, c, d, e, f )

= 2(−ab + ac + bd − cd + ae + be + ce + de − e2 − 2ef )

= 2Q(a, b, c, d, e, f ),

where

Q(a, b, c, d, e, f ) = (a − d)(c − b) + e(a + b + c + d − e − 2f ). (5.11)

The other five partial derivatives of M are obtained by evaluating 2Q at the appropriate

permutations of (a, b, c, d, e, f ). (Incidentally, some permutations leave Q invariant:

Q(a, b, c, d, e, f ) = Q(c, d, a, b, e, f ) = Q(b, a, d, c, e, f ) = Q(d, c, b, a, e, f ).)

When a, b, c, d, e, f satisfy equation (5.2), there are alternative formulas for the

squared partial derivatives of M, see Lemma 5.6 below. Put in a different way, the

formulas in Lemma 5.6 hold modulo M.

Lemma 5.6. For a Cayley–Menger diamond (a, b, c, d, e, f ), we have:

(∂→M(a, b, c, d, e, f ))2 = 4H(b, c, e)H(a, d, e), (5.12)

(∂↑M(a, b, c, d, e, f ))2 = 4H(b, c, e)H(c, d, f ), (5.13)

(∂↓M(a, b, c, d, e, f ))2 = 4H(a, b, f )H(a, d, e), (5.14)

(∂←M(a, b, c, d, e, f ))2 = 4H(a, b, f )H(c, d, f ). (5.15)

(There are also analogous formulas for ∂�M and ∂�M.)
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Proof. It is straightforward to verify the polynomial identity

(∂→M(a, b, c, d, e, f ))2 = −8eM(a, b, c, d, e, f ) + 4H(b, c, e)H(a, d, e). (5.16)

For a Cayley–Menger diamond, we have M(a, b, c, d, e, f ) = 0, and (5.12) follows.

Formulas (5.13)–(5.15) are proved in a similar way; alternatively, use the symmetry of

M under the natural S4-action. �

When a Cayley–Menger diamond consists of the measurements coming from a

plane quadrilateral, Lemma 5.6 can be strengthened by assigning a geometric meaning

to each evaluation of a partial derivative of M:

Proposition 5.7 ([7, p. 40]; cf. [15, Theorem 1]). Let (A1, A2, A3, A4) be a quadrilateral in

A. We continue to use notation (2.7), (2.8), (2.11), (2.12), (5.9), (5.10). Let

x = (x14 , x12 , x23 , x34 , x13 , x24) = (a, b, c, d, e, f )

denote the corresponding Cayley–Menger diamond. Then

∂←M(x) = −2S124S234, ∂→M(x) = −2S123S134, (5.17)

∂�M(x) = 2S134S234, ∂�M(x) = 2S123S124, (5.18)

∂↑M(x) = 2S123S234, ∂↓M(x) = 2S124S134. (5.19)

Proposition 5.8. Let

x1 = (x15, x12, x24, x45, x14, x25), (5.20)

x2 = (x16, x12, x25, x56, x15, x26), (5.21)

x3 = (x25, x23, x34, x45, x24, x35), (5.22)

x4 = (x26, x23, x35, x56, x25, x36) (5.23)

be Cayley–Menger diamonds (see Figure 15 for a visual representation). Then

(
∂←M(x1) ∂→M(x4)

)2 = (
∂↑M(x2) ∂↓M(x3)

)2. (5.24)

Moreover, if xij =xij(P) are the measurements of a hexagon P=(A1, . . . , A6), then

∂←M(x1) ∂→M(x4) = ∂↑M(x2) ∂↓M(x3). (5.25)
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686 S. Fomin and L. Setiabrata

Fig. 15. The variables involved in Propositions 5.8 and 5.13.

Proof. Applying Lemma 5.6 to each Cayley–Menger diamond xi, we conclude that

(
∂←M(x1)∂→M(x4)

)2 = 16H245H125H256H235 = (
∂↑M(x2)∂↓M(x3)

)2,

where

H125 = H(x12, x15, x25), H256 = H(x25, x26, x56),

H245 = H(x24, x25, x45), H235 = H(x23, x25, x35).

If the xij come from a hexagon (A1, . . . , A6), then Proposition 5.7 applies, and

∂←M(x1)∂→M(x4) = 4S245S125S256S235 = ∂↑M(x2)∂↓M(x3).

�

Remark 5.9. The last assertion in Proposition 5.8 can be restated in a more explicit

form, using notation (5.11). Let P = (A1, . . . , A6) be a hexagon on the plane A. As before,

let xij denote the squared distance between vertices Ai and Aj. Then

Q(x26, x23, x35, x56, x25, x36) Q(x24, x12, x15, x45, x25, x14) (5.26)

= Q(x15, x56, x26, x12, x25, x16) Q(x35, x45, x24, x23, x25, x34).

Equation (5.26) involves 13 squared distances xij, with the exception of x13 and x46.
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Heronian Friezes 687

Fig. 16. The fragment of a Cayley–Menger frieze involved in Definition 5.10.

Let z be a Cayley–Menger frieze. Consider four adjacent diamonds sharing a

common vertex (i, j), as shown in Figure 16. Proposition 5.8 implies that for any (i, j) ∈
Z2 with 2 ≤ j − i ≤ n − 2, we have

(∂←M( �i−1,j−1(z)) ∂→M( �i,j(z)))2 = (∂↑M( �i−1,j(z)) ∂↓M( �i,j−1(z)))2, (5.27)

where we use notation (5.3) for the diamonds of z. Consequently,

∂←M( �i−1,j−1(z)) ∂→M( �i,j(z)) = ±∂↑M( �i−1,j(z)) ∂↓M( �i,j−1(z)). (5.28)

In general, the signs of the products appearing on both sides of (5.28) do not have to

match, see Example 5.2 below. The settings where they do match play a key role in this

section.

Definition 5.10. We call a Cayley–Menger frieze z coherent if, for all i, j ∈ Z2 with

2 ≤ j − i ≤ n − 2, we have

∂←M( �i−1,j−1(z)) ∂→M( �i,j(z)) = ∂↑M( �i−1,j(z)) ∂↓M( �i,j−1(z)). (5.29)

Accordingly, we call (5.29) (or (5.25)) the coherence condition.
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688 S. Fomin and L. Setiabrata

Theorem 5.11. For any polygon P in the plane A, the corresponding Cayley–Menger

frieze zCM(P) (see Definition 5.5) is coherent.

Proof. The coherence condition (5.29) for (i, j) ∈ Z2 is precisely equation (5.25) for

the (possibly degenerate) sub-hexagon (Ai−1, Ai, Ai+1, Aj−1, Aj, Aj+1) of P. This equation

holds by virtue of Proposition 5.13. �

Remark 5.12. The coherence condition (5.29) involves 13 entries of the frieze whose

indices are shown in Figure 16. The indexing set includes 9 integer points forming the

3 × 3 grid {i − 1, i, i + 1} × {j − 1, j, j + 1} together with 4 indices {(i ± 1
2 ,�), (� , j ± 1

2 )}
corresponding to slanted dashed lines. To write the coherence condition in a more

explicit (but not too bulky) form, we introduce the temporary notation

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d2 t13

d1 t12 t23

t11 t22 t33

b1 t21 t32

b2 t31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
def=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z
(�,j+ 1

2 )
z(i−1,j+1)

z
(�,j− 1

2 )
z(i−1,j) z(i,j+1)

z(i−1,j−1) z(i,j) z(i+1,j+1)

z
(i− 1

2 , �)
z(i,j−1) z(i+1,j)

z
(i+ 1

2 , �)
z(i+1,j−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using this notation along with (5.11), the coherence condition (5.29) becomes

Q(t23, b2, t32, d2, t22, t33) Q(t21, b1, t12, d1, t22, t11) (5.30)

= Q(t12, d2, t23, b1, t22, t13) Q(t32, d1, t21, b2, t22, t31)

(cf. (5.26)).

Example 5.2. The Cayley–Menger frieze zCM(P) shown in Figure 13 is obtained from

the polygon P in Figure 14, and is therefore coherent by Theorem 5.11.

Figure 17 shows a non-coherent Cayley–Menger frieze z of order 6.

The following result shows that the coherence condition can be used as a basis

for a rational recurrence.
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Heronian Friezes 689

Fig. 17. A non-coherent Cayley–Menger frieze z of order 6. The entries associated with the dashed

lines (which match the entries in the top and bottom nonzero rows) are all equal to 1. The

coherence condition is violated at one place only, namely for the four diamonds surrounding the

red entry.

Proposition 5.13. Let

x1 = (x15, x12, x24, x45, x14, x25), (5.31)

x2 = (x16, x12, x25, x56, x15, x26), (5.32)

x3 = (x25, x23, x34, x45, x24, x35) (5.33)

be Cayley–Menger diamonds, cf. (5.20)–(5.22) and Figure 15. If x25H245H125 	= 0, then

there is a unique number x36 ∈ C such that equation (5.25) is satisfied, where

x4 = (x26, x23, x35, x56, x25, x36), (5.34)

as in (5.23). Moreover, x4 is a Cayley–Menger diamond.

Similarly, let x2, x3, x4 be three Cayley–Menger diamonds as in (5.32)–(5.34). If

x25H256H235 	= 0, then there is a unique number x14 ∈ C such that equation (5.25) is

satisfied, with x1 given by (5.31). Moreover, x1 is a Cayley–Menger diamond.

Proof. Direct inspection shows that equation (5.25) is of degree 1 in the variable x14,

with the coefficient of x14 being x25∂→M(x4). This coefficient is nonzero because

x2
25(∂→M(x4))2 = x2

25 · 4H256H235 	= 0.

Hence, the solution exists and is unique. The case of x36 is treated analogously.
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690 S. Fomin and L. Setiabrata

Let us now prove that x1 is a Cayley–Menger diamond, given that the same is

true about x2, x3, and x4. Applying Lemma 5.6 to the Cayley–Menger diamonds x2, x3,

and x4, and the identity (5.16) to x1, we obtain:

(
∂↑M(x2)∂↓M(x3)

)2 = 16H245H125H256H235, (5.35)(
∂←M(x1)∂→M(x4)

)2 = (4H245H125 − 8x25M(x1)) · 4H256H235. (5.36)

Since (5.25) holds, the expressions on the left-hand sides of (5.35) and (5.36) are equal to

each other, and we conclude that x25H256H235M(x1) = 0. Given that x25H256H235 	= 0, we

get M(x1) = 0, as desired. The case of x4 is similar. �

Definition 5.14 (cf. Definition 3.6). A traversing path π for an order n Cayley–Menger

frieze is an ordered collection

π = ((i1, j1), . . . , (in−1, jn−1), �1, . . . , �n−2)

of 2n − 3 indices in ICM
n such that

• (i1, j1), . . . , (in−1, jn−1) are integer points in {(i, j) ∈ Z2 : 1 ≤ j − i ≤ n − 1};
• �1, . . . , �n−2 are lines in Ln;

• jk − ik = k for k = 1, . . . , n − 1;

• |ik+1 − ik| + |jk+1 − jk| = 1, for k = 1, . . . , n − 2;

• if jk+1 = jk, then �k = (ik − 1
2 ,�) ∈ Ln;

• if ik+1 = ik, then �k = (� , jk + 1
2 ) ∈ Ln.

The following less formal description is perhaps more illuminating. Let us view the set

{(i, j) ∈ Z2 : 1 ≤ j − i ≤ n − 1} as the vertex set of a graph (a 2D integer lattice). Then:

(a) (i1, j1), . . . , (in−1, jn−1) are the nodes lying on the shortest path connecting

the lower and upper boundaries of the strip of interior nodes;

(b) �1, . . . , �n−2 are the dashed lines intersecting this shortest path.

For a traversing path as above, we call the collection of 3n − 4 indices

π = ((i1, j1), . . . , (in−1, jn−1), (i1 + 1, j1 + 1), . . . , (in−1 + 1, jn−1 + 1), �1, . . . , �n−2)

the thickening of π . Thus, the thickened path π consists of the subsets (a) and (b)

described above together with

(c) the nodes on the path (a) shifted by (1, 1) to the right.
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Heronian Friezes 691

Fig. 18. A traversing path π for a Cayley–Menger frieze of order n = 5, and its thickening π , see

Example 5.3. The dashed lines in π are colored red. The nodes in π are the circled red nodes; the

ones in π \ π are hollow red.

Example 5.3. Figure 18 shows the traversing path

π = (
(0, 1), (0, 2), (−1, 2), (−1, 3), (� , 3

2 ), (−1
2 ,�), (� , 5

2 )
)
,

for an order 5 Cayley–Menger frieze, cf. Example 3.2. Its thickening π is given by

π = (
(0, 1), (0, 2), (−1, 2), (−1, 3), (1, 2), (1, 3), (0, 3), (2, 3), (� , 3

2 ), (−1
2 ,�), (� , 5

2 )
)
.

The paths π and π include 2n − 3 = 7 and 3n − 4 = 11 indices, respectively.

Theorem 5.15 (cf. Corollary 3.8). Let z = (zα)α∈ICM
n

be a coherent Cayley–Menger frieze

of order n such that

z(i,j) 	= 0 for (i, j) ∈ Z2, 2 ≤ j − i ≤ n − 2, (5.37)⎧⎨⎩H(z(i,j), z(i+1,j), z
(i+ 1

2 , �)
) 	= 0,

H(z(i,j−1), z(i,j), z
(�,j− 1

2 )
) 	= 0

for (i, j) ∈ Z2, 2 ≤ j − i ≤ n − 1. (5.38)

Then, z is uniquely determined by its entries belonging to the thickening π of an

arbitrary traversing path π .

Proof. Given the entries indexed by the elements of π , the boundary conditions (5.4)–

(5.5) allow us to determine the entries of z indexed by the lines Ln as well as those
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692 S. Fomin and L. Setiabrata

indexed by the four rows {(i, j) ∈Z2 : j − i ∈ {0, 1, n−1, n}}. To reconstruct the remaining

entries, indexed by {(i, j)∈Z2 : 2≤ j−i≤n−2}, we repeatedly use the coherence equation

(5.29) to propagate away from π . Proposition 5.13 ensures both the existence and the

uniqueness of propagation, so the resulting frieze agrees with z. �

Remark 5.16. It is instructive to make a comparison between the assumptions

underlying Corollary 3.8 and Theorem 5.15, or equivalently the corresponding recursive

algorithms for constructing Heronian and Cayley–Menger friezes. Corollary 3.8 relies

on nonvanishing at the interior integer points, see (3.19)/(5.37). (In a geometric setting,

the squared lengths of diagonals must be nonzero.) Theorem 5.15 needs the addi-

tional requirement (5.38): the nonvanishing of the Heron expressions. (In a geometric

setting, this means that certain triangles must have nonzero areas.) In other words,

(re)constructing a Heronian frieze is computationally more feasible than the similar

task for a Cayley–Menger frieze.

The following result can be viewed as a partial converse to Theorem 5.11.

Theorem 5.17. Let zCM = (zα)α∈ICM
n

be a coherent Cayley–Menger frieze of order n

satisfying the conditions in Theorem 5.15. Then, there exists a plane n-gon P such that

zCM =zCM(P), cf. Definition 5.5. Consequently, zCM has the glide symmetry:

z(i,j) = z(j,i+n) (1 ≤ j − i ≤ n − 1).

Theorem 5.17 will be proved at the end of Section 6.

Remark 5.18. The nonvanishing conditions (5.37)–(5.38) appearing in Theorems 5.15

and 5.17 are satisfied by any Cayley–Menger frieze zCM(P) associated with a polygon P

in the real plane R2 such that any line extending a side of P does not pass through a 3rd

vertex. This condition is violated for the polygon shown in Figure 14, so condition (5.38)

fails for the coherent frieze zCM(P) shown in Figure 13.

6 Cayley–Menger Friezes versus Heronian Friezes

Our 1st goal is to show that, under mild genericity conditions, a Heronian diamond

restricts to a Cayley–Menger diamond.

Lemma 6.1. Let xS = (a, b, c, d, e, f , p, q, r, s) ∈ C10 be a Heronian diamond satisfying

the following condition:

(e, f ) 	= (0, 0) or a = q = r = 0 or c = p = s = 0. (6.1)
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Heronian Friezes 693

Then

−2rs = ∂←M(a, b, c, d, e, f ), −2pq = ∂→M(a, b, c, d, e, f ), (6.2)

2qs = ∂�M(a, b, c, d, e, f ), 2pr = ∂�M(a, b, c, d, e, f ), (6.3)

2ps = ∂↑M(a, b, c, d, e, f ), 2rq = ∂↓M(a, b, c, d, e, f ). (6.4)

Proof. If a = q = r = 0 or c = p = s = 0, then formulas (6.2)–(6.4) can be checked one by

one, taking care to apply Lemmas 2.14 or 2.15, respectively. For example, a = q = r = 0

implies d = e, f = b, ps = p2 = H(b, c, e), and consequently ∂↑M(a, b, c, d, e, f ) = 2(e −
b)(f − d) + 2c(e + d + f + b − c − 2a) = −2(e − b)2 + 2c(2e + 2b − c) = 2H(b, c, e) = 2ps.

If (e, f ) 	= (0, 0), then we can assume that e 	= 0, since the case f 	= 0 can

be treated in the same way. Now, Corollary 2.7 (applied to the triangulated 4-cycle

G with diagonal {1, 3}) and Proposition 2.11 imply that xS = xS(P) for some plane

quadrilateral P. It remains to apply Proposition 5.7 and observe that equations 6.26.4

are a restatement of (5.17)–(5.19) via the notational conventions (2.11)–(2.12). �

Proposition 6.2. Let (a, b, c, d, e, f , p, q, r, s) ∈ C10 be a Heronian diamond satisfying

condition (6.1). Then (a, b, c, d, e, f ) is a Cayley–Menger diamond.

Proof. First, suppose a = q = r = 0 or c = p = s = 0. By Lemmas 2.14 and 2.15,

it remains to check that (0, b, c, e, e, b) and (a, b, 0, d, b, d) are Cayley–Menger diamonds.

This can be verified by direct computation.

Now, suppose (e, f ) 	= 0. Without loss of generality, we can assume that e 	= 0

(cf. Proposition 2.12 and Remark 5.3). Equations 2.212.22 imply that

2ers = ps(e + a − d) + qs(e − c + b) = pr(e − a + d) + qr(e + c − b),

or equivalently

2ers − 1

2

(
(a − d)(ps − pr) + (b − c)(qs − qr) + e(ps + qs + pr + qr)

)
= 0. (6.5)

Let x = (a, b, c, d, e, f ). Substituting the expressions for pq, rs, pr, qs, rq, ps given in

Lemma 6.1 into (6.5) and negating both sides results in

e

4

(
4∂→M(x) + ∂↑M(x) + ∂�M(x) + ∂↓M(x) + ∂�M(x)

)
+ a − d

4

(
∂↑M(x) − ∂�M(x)

)
+ b − c

4

(
∂�M(x) − ∂↓M(x)

)
= 0.

The left-hand side of the last equation is nothing but M(x). �
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694 S. Fomin and L. Setiabrata

Fig. 19. The arrangement of four Heronian diamonds in Proposition 6.3.

It turns out that when we restrict from the Heronian setup to the Cayley–Menger

one, the coherence condition (5.29) is automatically satisfied:

Proposition 6.3. Let x1, x2, x3, x4 be four Heronian diamonds arranged in a grid,

as shown in Figure 19. Suppose that each xi satisfies condition (6.1). Then, the

corresponding Cayley–Menger diamonds (cf. Proposition 6.2) satisfy the coherence

equation (5.29).

Proof. We may apply Lemma 6.1 to each diamond. Formulas (6.2)–(6.4) imply that both

sides of the coherence equation (5.29) will be equal to the product of the four entries

adjacent to the central node in Figure 19. �

Proposition 6.4. Let x = (a, b, c, d, e, f ) be a Cayley–Menger diamond such that (e, f ) 	=
(0, 0) and

H(b, c, e)H(a, d, e)H(a, f , b)H(c, f , d) 	= 0. (6.6)

Then, there exist exactly two Heronian diamonds that restrict to x, differing from each

other by a simultaneous sign change of {p, q, r, s}.

Proof. In view of Lemma 5.6 and condition (6.6), the partial derivatives appearing in

(6.2) do not vanish. Hence, for any Heronian diamond (a, b, c, d, e, f , p, q, r, s) restricting

to x, we have pqrs 	= 0. Moreover, the pairwise products of the nonzero numbers p, q, r, s

must be given by (6.2)–(6.4). It follows that these numbers are uniquely determined by x,

up to a simultaneous sign change.
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It remains to show existence. We need to check that conditions

M(x) = 0, p2 = H(b, c, e), q = − 1
2p∂→M(x), r = 1

2p∂�M(x), s = 1
2p∂↑M(x)

imply the requirements (2.13)–(2.19) from the definition of a Heronian diamond. The

Heron relations (2.14)–(2.16) follow using (5.12)–(5.15). Since p 	= 0, equation (2.17) is

equivalent to 2H(b, c, e) − ∂→M(x) = ∂�M(x) + ∂↑M(x), which can be verified by a direct

calculation. Finally, equations (2.18) and (2.19) reduce to M(x) = 0 after eliminating

p, q, r, s. �

We are now ready to describe the relationship between Heronian and Cayley–

Menger friezes.

Theorem 6.5. Let z = (zα)α∈In be a Heronian frieze such that

z(i,j) 	= 0 for any (i, j) ∈ Z2 such that 2 ≤ j − i ≤ n − 2. (6.7)

Then the restriction of z to ICM
n is a coherent Cayley–Menger frieze.

Conversely, let zCM = (zα)α∈ICM
n

be a coherent Cayley–Menger frieze satisfying

(6.7). In addition, suppose that for every (i, j) ∈ Z2 with 2 ≤ j − i ≤ n − 1, we have

H(z(i,j), z(i+1,j), z
(i+ 1

2 , �)
) 	= 0, H(z(i,j−1), z(i,j), z

(�,j− 1
2 )

) 	= 0. (6.8)

Then, there exists a Heronian frieze z = (zα)α∈In that extends zCM. This extension is

unique up to a global change of sign of the entries indexed by In \ ICM
n .

We note that condition (6.7) is the same as (3.19) or (5.37), whereas condition (6.8)

is the same as (5.38).

Proof. The restriction of z to ICM
n is a Cayley–Menger frieze by Proposition 6.2. By

Corollary 3.10, z = z(P) is the frieze obtained from some n-gon, so Theorem 5.11 implies

that zCM = zCM(P) is coherent. This proves the 1st part of the theorem.

Now let zCM be a coherent Cayley–Menger frieze satisfying (6.7)–(6.8). Let π be

a traversing path in ICM
n , and let π be its thickening, see Definition 5.14. Let π̃ be the

“lift” of π to In, constructed from two adjacent traversing paths in In whose restriction
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696 S. Fomin and L. Setiabrata

onto ICM
n agrees with π ; in addition, π̃ contains the midpoints of lattice segments

connecting neighboring points lying on these two paths to each other. Successively

applying Proposition 6.4 to the string of Cayley–Menger diamonds whose indexing sets

are contained in π , we conclude that there exist exactly two arrays z̃1 and z̃2 on π̃

that agree with zCM along π and that satisfy the Heronian diamond equations for each

diamond in π̃ . Moreover, these arrays differ by a simultaneous sign change of the entries

indexed by π̃ \ π . To complete the proof of the theorem, it remains to establish the

following claims:

(i) there exist unique Heronian friezes z1 and z2 that extend z̃1 and z̃2,

respectively, and restrict to zCM;

(ii) z1 and z2 differ by a global sign change of the entries indexed by In \ ICM
n .

Let x1, x2, x3 be three Heronian diamonds located along π , all sharing a node

z(i,j). Apply Corollary 2.13 to construct the 4th Heronian diamond x4 containing z(i,j).

The boundary conditions (5.4)–(5.5) required of a Cayley–Menger frieze, together with

(6.7)–(6.8) along π , ensure that each of the four Heronian diamonds x1, x2, x3, x4 satisfies

condition (6.1). By Proposition 6.3, this establishes the coherence condition (5.29)

for the corresponding four Cayley–Menger diamonds. Furthermore, Proposition 5.13

applies (thanks to (6.7)–(6.8)), implying that the newly constructed entry of x4 agrees

with the corresponding entry of zCM. We now repeat the above process over and over,

propagating away from π , to construct the (unique) Heronian friezes z1 and z2 satisfying

the specifications in claim (i). Near the boundary, we use propagation rules for Heronian

friezes (see (2.25)–(2.27) and (2.29)–(2.31)), which agree with their counterparts for

Cayley–Menger friezes, see (5.4)–(5.5).

Finally, a repeated application of Proposition 6.4 establishes claim (ii). �

Proof of Theorem 5.17. By Theorem 6.5, the Cayley–Menger frieze zCM can be extended

to a Heronian frieze. The latter comes from a polygon by Corollary 3.10. Hence, so does

the former. �
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