
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. APPLIED DYNAMICAL SYSTEMS © 2020 Society for Industrial and Applied Mathematics
Vol. 19, No. 3, pp. 1758–1797

Parameterization Method for Unstable Manifolds of Standing Waves on the Line⇤
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Abstract. We consider a linearly unstable standing wave solution of a parabolic partial differential equation
(PDE) on the real line and develop a high order method for polynomial approximation of the local
unstable manifold. The unstable manifold describes the breakdown of the nonlinear wave after the
loss of stability. Our method is based on the parameterization method for invariant manifolds and
studies an invariance equation describing a local chart map. This invariance equation is a PDE
posed on the product of a disk and the line. The dimension of the disk is equal to the Morse index
of the wave. We develop a formal series solution for the invariance equation, and show that the
coefficients of the series solve certain boundary value problems (BVPs) on the line. We solve these
BVPs numerically to any desired order. The result is a polynomial describing the dynamics of the
PDE in a macroscopic neighborhood of the unstable standing wave. The method is implemented for a
number of example problems. Truncation/numerical errors are quantified via a posteriori indicators.

Key words. traveling waves, unstable manifold, PDE on the line, parameterization method, formal series ex-
pansion, numerical methods
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1. Introduction. Understanding the emergence and evolution of coherent structures is a
fundamental challenge in applied mathematics, and a rich class of examples come from partial
differential equations (PDEs) posed on the entire real line. Traveling waves are an important
special class of solutions where one looks for a fixed wave profile propagating with fixed wave
speed. Waves with zero speed are known as standing waves. Questions about the existence and
qualitative properties of traveling waves for one dimensional PDEs are equivalent to questions
about the existence and shape of certain homoclinic/heteroclinic connecting orbits for finite
dimensional vector fields. This observation leads to a dramatic reduction in the dimension
of the problem and forges deep connections between the theory of nonlinear waves and the
qualitative theory of dynamical systems.

Given a particular nonlinear wave solution, a natural problem is to consider its stability.
That is, what happens to patterns starting near the traveling wave? While stable waves
are observed in a wide variety of natural systems and mathematical models, unstable waves
are not attracting, hence, they are difficult to observe directly. Nevertheless, insights from
the qualitative theory of dynamical systems suggest that unstable waves play an important
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PARAMETERIZATION METHOD FOR STANDING WAVES 1759

role in the organization of global dynamics. For example, changes in stability are important
for understanding spontaneous emergence and bifurcations of patterns. Moreover, unstable
orbits are dense in chaotic attractors and understanding them is important for understanding
spatiotemporal complexity.

Numerical analysis of traveling waves is a growing field, and within the last decade a
number of tools for computing unstable waves have been developed. See for example [1, 2, 3, 4].
In the present work, we use the numerical package STABLAB [5] to compute the traveling
wave profile and to determine the location of zeros of the Evans function, which are the isolated
eigenvalues of the linearized (about the wave) PDE problem. We also use this software for
automatic derivation of finite difference methods, which was recently added to STABLAB to
simulate the flow generated by the PDE. This is important for quantifying error bounds.

The present work concerns the natural next step of studying nonlinear instabilities associ-
ated with traveling waves. We develop a new computational framework for high order Taylor
approximation of the unstable manifold. Our approach is based on the parameterization
method of Cabré, Fontich, and de la Llave [6, 7, 8]. The parameterization method is a general
functional analytic paradigm for studying invariant manifolds in many different settings. The
method is constructive and leads to efficient and accurate numerics. The parameterization is
not required to be the graph of a function over an eigenspace, hence the method can follow
folds in the embedding. In addition to providing the embedding, the parameterization method
also recovers explicitly the dynamics on the manifold.

Following the works just cited—which focus on manifolds attached to fixed points of infi-
nite dimensional maps—the parameterization method has been extended by a number of au-
thors to more general situations such as whiskered tori [9, 10, 11, 12, 13, 14, 15], quasi-periodic
invariant manifolds in infinite dimensional problems [16, 17, 18], and to stable/unstable man-
ifolds attached to periodic orbits of ordinary differential equations [15, 19, 20, 21, 22, 23] to
cite only a few developments. We refer to the book [24] for a much more complete overview of
the literature. We only mention that several recent papers develop numerical approximation
schemes for unstable manifolds in infinite dimensional dynamical systems. See, for example,
the work of [25] on unstable manifolds attached to equilibrium and periodic orbits of delay
differential equations, the work of [26] on unstable manifolds attached to equilibrium solutions
of one dimensional scalar parabolic PDEs posed on compact intervals, and the extension to
planar polygonal domains using finite element methods [27].

The main goal of the work at hand is to develop a parameterization method for the
unstable manifold attached to a traveling wave solution of a parabolic PDE posed on the line.
This represents a substantial generalization of the earlier works [25, 26, 27], as in the present
setting linearizing about the nonlinear wave results in an essential spectrum. In contrast, the
approach of [26], which studied PDEs formulated on compact intervals, results in a problem
which can be projected onto a countable basis of eigenfunctions—reducing to a system of
countably many ordinary differential equations. For PDEs on the line there is no such basis.
Instead we exploit dynamical systems techniques developed for studying nonlinear waves,
where the standing wave (or more generally a traveling wave) is reformulated as a homoclinic
(more generally a heteroclinic orbit) for an auxiliary system of ODEs.

We combine the classic geometric approach to nonlinear waves with the parameterization
method. The program begins by studying an invariance equation describing a chart for the
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1760 B. BARKER, J. M. JAMES, AND J. MORGAN

local unstable manifold. We develop, in the context of a number of examples, formal series
solutions for the invariance equation and show that the coefficients of the series are given by
a recursive scheme. The main observation is that the recursive system of equations describing
the Taylor series coefficients are themselves linear boundary value problems (BVPs)—the so-
called homological equations—with each BVP again formulated on the line. These equations
are amenable to the same geometric methods used to study the nonlinear wave itself, and
numerically solving the recursive system up to some finite order N provides a polynomial
approximation of the parameterization.

The parameterization conjugates the dynamics on the manifold to the linear dynamics
given by the unstable eigenvalues. Checking the conjugacy provides an a posteriori measure of
the truncation/numerical error. We implement the scheme for three systems with well-known
unstable standing waves: the Nagumo equation, the Gray–Scott system, and a nonlinear
Schrödinger’s equation. We compute the manifold to high order and verify its accuracy using
automatic finite difference code described in [28]. In addition, we perform an a posteriori
error analysis of each calculation. The MATLAB code is freely available at github.com/
nonlinear-waves/stablab matlab/tree/master/Parameterization Method

Before concluding this introduction we remark that numerical methods for computing
invariant manifolds for PDEs and other infinite dimensional systems have a long history and
rich literature. While a thorough review of the literature is far beyond the scope of the
present work, we would like to mention—in addition to the references cited above—a few
papers which could serve as an entry point to this vast literature. We refer for example to
the works [29, 30, 31, 32] on heteroclinic and homoclinic phenomena, the works [33, 34, 35,
36, 37] for a description of the organizing role of unstable periodic orbits and their invariant
manifolds in the study of turbulence, to the works [38, 39, 40, 41, 42] on numerical methods
for inertial manifold reduction, the works [43, 44, 45, 46] on numerical methods for center
manifold reduction, the works [47, 48, 49, 50, 51] on efficient numerical calculation of spectral
submanifolds, and the work [52, 53, 54, 55, 56, 57] on the role of invariant manifolds in
delay differential equations. Again, we stress that this list barely scratches the surface of the
literature, and that the interested reader will find much of interest by consulting the references
of the papers just mentioned.

Remark 1.1 (the main examples). Most of the explicit example problems considered in the
present work result in standing waves, though an example of how to treat waves with nonzero
speed is given in section 4.4. Restricting ourselves to standing waves is a minor simplifica-
tion which allows us to demonstrate the method with several well-known problems where the
wave profile and wave speed (which is zero) are explicitly known. As illustrated in section
3.1 the homological equations—and hence the formal calculation of the unstable manifold
parameterization—for standing and traveling waves are nearly identical once the wave speed
has been determined. That is, the difference between working with standing and traveling
waves appears only at zeroth order. Numerical methods for computing traveling waves with
nonzero wave speed are well established but somewhat off the main topic of the present work.
For the sake of simplicity, we focus largely on examples involving standing waves.

Remark 1.2 (PDEs on an interval versus PDEs on the line). An alternative approach to that
taken here would be to truncate R to an interval of the form [�L,L] for L > 0 sufficiently large,
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and then apply the numerical scheme developed in [26]. While in a particular application
this might (or might not) result in acceptable numerical results, the proposed truncation
represents a very singular perturbation and completely changes the spectrum of the linearized
problem, and this truncation is often avoided even for the numerical calculation of the zeroth
order term (the nonlinear traveling wave profile itself). Moreover, while the present work
is not concerned with convergence of the formal series, one of the goals of the present work
is to properly formulate the discussion of the unstable manifold parameterization on R in
anticipation of future works in this direction.

The remainder of the paper is organized as follows. After reviewing some requisite back-
ground material and presenting the main example problems in section 2, we describe in sec-
tion 3 the parameterization method for standing waves of PDEs on the line. We place a
heavy emphasis on formal series solutions of the invariance equation for the main example
applications—that is, we emphasize the derivation of the homological equations in concrete
problems. In section 4 we describe and implement numerical procedures for solving the homo-
logical equations and profiling the results. Some conclusions and suggestions for future work
are discussed in section 5.

2. Background. We begin by reviewing some now standard results about the parame-
terization method. In particular the invariance equation is given and its basic implications
discussed. This material comprises only a few pages and is included so that the present work
may serve as a stand alone introduction to the reader unfamiliar with these developments.

Similarly we describe some classical material about computation and stability analysis of
traveling wave solutions for PDEs on the line. This material underpins our entire approach.
We conclude the section by presenting the three main example applications studied in this
present work: Nagumo’s equation, the Gray–Scott system, and a nonlinear Schrödinger equa-
tion. For each system we provide a nontrivial unstable standing wave solution for further
analysis later in the paper.

The reader familiar with the topics reviewed in this section is encouraged to skip ahead
to section 3. Indeed, many readers will want to skim the present section and refer back to it
only as needed.

2.1. Overview of the parameterization method for unstable manifolds of vector fields.

Let H be a Hilbert space, D ⇢ H be a dense subset. For a smooth mapping F : D ! H
consider the differential equation

(1)
@

@t
u(t) = F(u(t)).

We are interested in the dynamics near an equilibrium solution u⇤ 2 D. Observe that u⇤ is
an equilibrium solution if

F(u⇤) = 0.

Assume that A = DF(u⇤) has a finite Morse index. More precisely, we require that A has at
most finitely many unstable eigenvalues each with only finite multiplicity. We write �1, . . . ,�M

to denote the unstable eigenvalues and order them so that

0 < real (�1)  · · ·  real (�M ) .
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1762 B. BARKER, J. M. JAMES, AND J. MORGAN

In the present work we assume for the sake of simplicity that each unstable eigenvalue has
multiplicity one. This assumption can be removed (for example see [6, 58]); however, in the
present work we avoid these technicalities. Choose ⇠1, . . . , ⇠M 2 H associated eigenvectors.
More precisely we require that

DF(u⇤)⇠j = �j⇠j , 1  j  M.

If M � 0 the equilibrium u⇤ is said to be spectrally unstable, and we are interested
in parameterization of the M dimensional unstable manifold attached to u⇤. To be more
precise, let r1, . . . , rM > 0 and define B = [�r1, r1] · · · [�rM , rM ]. Consider a smooth function
P : B ! H having that

(2) P (0) = u⇤,

(3) @jP (0) = ⇠j , 1  j  M.

Such a P is tangent to the unstable manifold, and we want that

P (B) ⇢ W u(u⇤).

Write

Λ =

0
B@

�1 . . . 0
...

. . .
...

0 . . . �M

1
CA .

The parameterization method looks for a P which, in addition to satisfying the constraint
equations (2) and (3), is also a solution of the invariance equation

(4) F(P (✓)) = DP (✓)Λ✓ for all ✓ 2 interior (B) .

Figure 1 illuminates the meaning of (4), which is asking that the pushforward of the linear
vector field Λ byDP matches the vector field F restricted to the image of P . Loosely speaking,
since the two vector fields match on the image of P they must generate the same dynamics—
with the dynamics generated by Λ well understood. Then P maps orbits of Λ in B to orbits
of F on the image of P , as we will show below. Since P maps orbits to orbits, (4) is also
called an infinitesimal conjugacy equation. The orbit correspondence is illustrated in Figure
2, and the observations of the preceding paragraph are made precise by the following lemma.
For the sake of simplicity we suppose that the unstable eigenvalues are real. This restriction
can be lifted and complex conjugate eigenvalues handled as described in [59], and we actually
consider this case in section 2.3. The elementary proof of the lemma is found in [27].

Lemma 2.1 (Orbit correspondence). Assume that the unstable eigenvalues �1, . . . ,�M are
real and distinct. Suppose that P : B ! H satisfies the first order constraints of (2) and (3),
and that P is a smooth solution of (4) on interior(B) = (�r1, r1)⇥ · · ·⇥ (�rM , rM ). Then P
parameterizes a local unstable manifold for u⇤.
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Lemma 2.1 explains our interest in the invariance equation (4). Sections 2.1 and 4, re-
spectively, develop formal series methods for solving (4) as well as numerical implementation
of the solutions.

2.2. Stability of traveling waves. This section reviews some basic material on traveling
wave solutions of PDEs formulated on the real line. The material is standard and we do
provide a citation for every relevant fact. We refer the reader to the excellent books [60, 61]
for much more thorough discussions, including references to the primary literature.

Consider the parabolic PDE

(5) @tu = @n
xu+N

�
u, @xu, @

2
xu, . . . , @

n�1
x u

�
,

where u : R ⇥ [0,1) ! R and N : Rn ! R are smooth functions. While the methods of the
present work apply also to systems of PDEs (see the examples) we focus in this section on
scalar equations to minimize technicalities.

A traveling wave solution of (5) is a function of the form

u(x, t) = u⇤(x� ct),

where u⇤ : R ! R is called the wave profile. We ask that u⇤ be a smooth, bounded function,
with n bounded derivatives. The number c 2 R is called the wave speed of the traveling wave.
If c = 0 then u⇤ is a standing wave.

Making the change of variables s = x� ct we see that the function u⇤ solves the ordinary
differential equation (ODE)

(6)
dn

dsn
u+ cu0 +N

✓
u, u00, . . . ,

dn�1

dsn�1
u

◆
= 0.

We focus on traveling waves with simple behavior at infinity. In particular, if

(7) lim
s!�1

u⇤(s) = a�, and lim
s!1

u⇤(s) = a+,

then we say that u(x, t) = u⇤(x� ct) is a traveling front. If a� = a+, it is a traveling pulse.
Introducing the variables U = (u1, . . . , un), where

u1 = u, u2 = u0, . . . , un =
dn�1

dsn�1
u,

allows us to rewrite (6) as a one parameter family of vector fields

U 0 = Fc(U)

with

Fc(U) = F (U, c) = F (u1, . . . , un, c) =

0
BBBBB@

u2
u3
...
un

�cu2 �N(u1, . . . , un)

1
CCCCCA

.
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The vector a 2 R
n is an equilibrium solution of the vector field if and only if

Fc(a) = 0.

Referring back to the explicit formula for Fc we see that a is an equilibrium solution if and
only if

a2 = a3 = · · · = an = 0,

and

�ca2 �N(a1, a2, . . . , an�1, an) = �N(a1, 0, . . . , 0, 0) = 0.

So, the possible asymptotic values for traveling fronts and pulses are given by the roots of the
function g(x) = N(x, . . . , 0, 0).

Suppose that a± are a pair of roots of g(x). The question “does there exist a traveling
front/pulse with wave speed c and asymptotic limits a±?” is equivalent to the question “does
there exist a heteroclinic/homoclinic orbit for the vector field Fc from the equilibrium U� =
(a�, 0, . . . , 0) to the equilibrium U+ = (a+, 0, . . . , 0)?” The answer to the later question is
yes if the unstable manifold of U� intersects the stable manifold of U+. Then it is natural to
require that U± are hyperbolic.

Indeed, let i+ denote the number of unstable eigenvalues of DFc(U+) and i� denote the
number of stable eigenvalues of DFc(U�). If U+ and U� are distinct, and i++i� = n+1, then
it is possible for the unstable manifold of U+ to intersect transversally the stable manifold of
U�. In this case there is an isolated connecting orbit from U+ to U� and, hence, an isolated
traveling wave solution of the PDE for an open set of parameters c. If, on the other hand,
i�+i+ = n (where U± may or may not be distinct) then the stable/unstable manifolds cannot
intersect transversally, and isolated connections are a codimension one phenomenon occurring
at isolated parameter values c. This provides a geometric mechanism for selecting the wave
speed.

Since the wave profile is a component function of a heteroclinic/homoclinic connection
between hyperbolic equilibrium solutions of an ODE, the convergence to constant asymptotic
behavior is exponential. More precisely, there is an r > 0 so that

(8) lim
x!�1

er|x||u⇤(x)� a�| = 0 and lim
x!1

erx|u⇤(x)� a+| = 0.

In the present work we study the existence of heteroclinic/homoclinic solutions on a case by
case basis either from a numerical point of view or referring to standard known solutions from
the literature.

Suppose now that u⇤ : R ! R is a smooth traveling wave with exponential decay as in (8).
We are interested in the behavior of solutions of (5) in a small neighborhood of u⇤. Writing

u(x, t) = u⇤(x) + h(x, t),
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in (5) leads to

@th = @n
xh+ ch0 +N

�
u⇤ + h, @xu⇤ + @xh, @

2
xu⇤ + @2

xh, . . . , @
n�1
x u⇤ + @n�1

x h
�

= @n
xh+ ch0 +rN

�
u⇤, @xu⇤, @

2
xu⇤, . . . , @

n�1
x u⇤

�
0
BB@

h
@xh
. . .

@n�1
x h

1
CCA+Ru⇤

�
h, @xh, . . . , @

n�1
x h

�

= F(h),(9)

where F is now an evolution equation of the form (1). Indeed, under mild assumptions to be
specified below, F is a densely defined vector field on an appropriate Hilbert space.

Let

a0 = @1N(u⇤, @xu⇤, @
2
xu⇤, . . . , @

n�1
x u⇤),

a1 = @2N(u⇤, @xu⇤, @
2
xu⇤, . . . , @

n�1
x u⇤),

...

an�1 = @nN(u⇤, @xu⇤, @
2
xu⇤, . . . , @

n�1
x u⇤),

and note that the aj for 0  j  n are smooth bounded functions as N depends smoothly
on u⇤ and its derivatives. In particular aj 2 L1(R) for 0  j  n. Moreover, defining the
constants

a±j = lim
x!±1

aj(x),

we have that

lim
x!±1

er|x||aj(x)� a±j | = 0

for some r > 0. That is, the aj(x), 0  j  n, are exponentially asymptotically constant.
We consider (9) as an evolution equation on Hn(R), and note that the nonlinear stability

of the origin in (9) is equivalent to the nonlinear stability of the traveling wave u⇤. Under the
mild assumptions on the coefficients aj , 0  j  n, appearing below, the spectral mapping
theorem implies that nonlinear stability of the trivial solution of (9) is determined by the
spectral stability of the linear equation

(10)
@

@t
h = Lh.

Here L : Hn(R) ! L2(R) is the closed, densely defined, exponentially asymptotic PDE

(11) L = @n
x + c+ a0(x) + a1(x)@x + a2(x)@

2
x + · · ·+ an�1(x)@

n�1
x .

Then the main question is to understand the spectrum of L, and the analysis is complicated
by the fact that L will typically have an essential spectrum.
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Nevertheless, for a large class of equations the spectrum of L can be determined using stan-
dard techniques. The analysis exploits the fact that the operator is asymptotically constant.
Define the constant coefficient linear differential operators

L+ = @n
x + c+ a+0 + a+1 @x + a+2 @

2
x + · · ·+ a+n�1@

n�1
x

and

L� = @n
x + c+ a�0 + a�1 @x + a�2 @

2
x + · · ·+ a�n�1@

n�1
x .

The essential spectra of L± can be worked out using Fourier transform methods. This results
in two curves in the complex plane, the so called Fredholm boundary of L. The essential
spectrum of L is the region in C bound between these Fredholm boundaries. In particular, if
L± have an essential spectrum in the open left half-plane then so does L.

We now clarify the necessary assumptions required for the spectral mapping theorem.
These assumptions are satisfied by all the examples considered in the present work.

• A1: The essential spectrum of L is a subset of the open left half-plane.
• A2: The operator L has only finitely many isolated unstable eigenvalues, each with
finite multiplicity.

• A3: The only zero eigenvalues are due to symmetries in the PDE and the associated
eigenvectors are obtained by studying the symmetry group. In this case zero eigen-
values due to symmetries can be moved into the left-half plane using exponentially
weighted norms.

• A4: The operator L generates an analytic semigroup.
• A5: The operator N : Hn(R) ! Hn(R) defined by the Taylor remainder

N (h) = Ru⇤
(h),

satisfies a quadratic estimate of the form

kN(h)kHn(R)  CkhkHn(R)

for some C > 0.
By A2 L has at most a finite number of eigenvalues in the open right half of the complex
plane. These are the unstable eigenvalues. Under these assumptions it is possible to define
the variation of constants formula, also known as Duhamel’s principle, using the semigroup
of A4. Then one can prove spectral mapping theorems (spectral stability implies nonlinear
stability) as well as stable/unstable/center manifold theorems. In the context of the present
work the essential point is that the unstable manifold has the same dimension as the number
of unstable eigenvalues counted with multiplicity. That is, the unstable manifold is finite
dimensional and we are in the situation described in section 2.1.

The isolated eigenvalues of L and, in particular the unstable spectrum, can be computed
using the Evans function. We sketch the main ideas. Suppose that � 2 C and ⇠ 2 Hn(R).
Then (�, ⇠) is an eigenvalue/eigenvector pair for L if

L⇠ = �⇠,
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which is
dn

dxn
⇠ + a0(x)⇠ + a1(x)⇠

0 + a2(x)⇠
00 + · · ·+ an�1(x)

dn�1

dxn�1
⇠ = �⇠.

A necessary condition for ⇠ 2 Hn(R) is that

lim
x!±1

⇠(x) = 0.

As in the case of a traveling wave, the geometry of the eigenvalue problem is illuminated
if we it rewrite as a system of ODEs. Let Y = (y1, . . . , yn) by y1 = ⇠, y2 = ⇠0, . . . , yn =
dn�1/dxn�1 and define the one parameter family of nonconstant coefficient linear systems

Y 0 = A(x,�)Y,

where

A(x,�) =

0
BBBBBBB@

0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1

�� a0(x) �a1(x) �a2(x) . . . an�2(x) an�1(x)

1
CCCCCCCA

.

Defining the constant coefficient matrices

A±(�) = lim
x!±1

A(x,�),

we see that the linear system Y 0 = A(x,�)Y is an asymptotically constant coefficient. Let
i�(�) and i+(�) denote the Morse indices (number of unstable eigenvalues) of A�(�) and
A+(�), and E

u
�(�) and E

s
+(�) denote the unstable and stable eigenspaces of A�(�) and A+(�),

respectively. The eigenvalue problem for L is equivalent to solving the boundary value problem

(12) Y 0 = A(x,�)Y, lim
x!±1

Y (x) 2 E
s,u
± (�), Y 6⌘ 0.

By A2 there are only finitely many solutions of the problem, and the BVP can be solved
numerically in explicit examples. When solving (12) numerically, � is treated as a free pa-
rameter and a phase condition is imposed on the eigenfunction to select one solution among
the family of nonzero multiples. A sufficiently good guess for the eigenvalue and eigenvector
must be provided to the numerical solver. The Evans function can be used to obtain a good
initial guess.

We briefly introduce the idea of the Evans function and refer the interested reader to
the references, especially [60]. In the following discussion, we are restricting � 2 C to be to
the right of the essential spectrum of L. We let Y u

�1(x) be a matrix valued function whose
columns form a basis, varying analytically in �, for the set of solutions to

Y 0(x) = A(x,�)Y (x), lim
x!�1

Y (x) 2 E
u
�(�), Y 6⌘ 0,D
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and let Y s
+1(x) be a matrix valued function whose columns form a basis, also varying analyt-

ically in �, for the set of solutions to

Y 0(x) = A(x,�)Y (x), lim
x!+1

Y (x) 2 E
s
+(�), Y 6⌘ 0.

The Evans function D is defined as the determinant of the concatenated matrix,

D(�) := det
�
[Y u

�(0), Y s
+(0)]

�
.

By construction, the Evans function is complex analytic and its zeros correspond to eigenvalues
of L. We may thus use complex analytic root finding techniques to locate the zeros of the
Evans function. These provide good guesses for the eigenvalues, and Y s

+1(x) and Y u
�1(x)

form good initial approximations of the associated eigenfunction.
We refer the interested reader to several additional papers about the Evans function,

[60, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85],
though even this list is far from complete. Again, we remark that the STABLAB [5] software
is used in the present work to compute wave profiles and zeros of the Evans function.

2.3. The main examples: Profiles and eigendata. In this section we describe the three
models used in the present work. For each system we consider a standing wave profile and
examine the stability via the Evans function. The first model is Nagumo’s equation, for which
an explicit pulse solution, explicit eigenvalue, and explicit eigenfunction are known. The sec-
ond model, the Gray–Scott system, also has explicit solutions for unstable standing waves, but
explicit solutions for its eigenfunctions are not known. The third system, Schrödinger’s equa-
tion, is known to exhibit a Hopf bifurcation resulting in oscillating eigenfunctions associated
with complex conjugate eigenvalues. The Gray–Scott and Schrödinger models illustrate that
our method applies to systems as well as scalar equations. The Schrödinger model further
illustrates the computation of a two dimensional unstable manifold.

2.3.1. Nagumo equation. The Nagumo equation in one spatial dimension is given by

ut = uxx � u+ u3,(13)

where u(x, t) : R⇥ (0,1) ! R. The profile equation for a standing wave is

u00 � u+ u3 = 0,

which leads to the first order system

u01 = u2,

u02 = u1 � u31.

The Nagumo equation has an unstable standing wave solution given by

u⇤(x) = u1(x) =
p
2 sech(x).
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u
∗
(x
)

<latexit sha1_base64="8stlA79fJTgjpw3LYQcze4yy+hw=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRaheii7VdBj0YvHCvYD2qVk02wbm02WJCuWpf/BiwdFvPp/vPlvTNs9aOuDgcd7M8zMC2LOtHHdbye3srq2vpHfLGxt7+zuFfcPmlomitAGkVyqdoA15UzQhmGG03asKI4CTlvB6Gbqtx6p0kyKezOOqR/hgWAhI9hYqZn0zspPp71iya24M6Bl4mWkBBnqveJXty9JElFhCMdadzw3Nn6KlWGE00mhm2gaYzLCA9qxVOCIaj+dXTtBJ1bpo1AqW8Kgmfp7IsWR1uMosJ0RNkO96E3F/7xOYsIrP2UiTgwVZL4oTDgyEk1fR32mKDF8bAkmitlbERlihYmxARVsCN7iy8ukWa1455Xq3UWpdp3FkYcjOIYyeHAJNbiFOjSAwAM8wyu8OdJ5cd6dj3lrzslmDuEPnM8foQOOgQ==</latexit>

ξ
(x
)

<latexit sha1_base64="4UfsCV2+gQyTosVFZPEKAgm9VMA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXspuFfRY9OKxgv2AdinZNNvGZpMlyUrL0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHTS0TRWiDSC5VO8CaciZowzDDaTtWFEcBp61gdDvzW09UaSbFg5nE1I/wQLCQEWys1OyOWXl83iuW3Io7B1olXkZKkKHeK351+5IkERWGcKx1x3Nj46dYGUY4nRa6iaYxJiM8oB1LBY6o9tP5tVN0ZpU+CqWyJQyaq78nUhxpPYkC2xlhM9TL3kz8z+skJrz2UybixFBBFovChCMj0ex11GeKEsMnlmCimL0VkSFWmBgbUMGG4C2/vEqa1Yp3UaneX5ZqN1kceTiBUyiDB1dQgzuoQwMIPMIzvMKbI50X5935WLTmnGzmGP7A+fwBATKOwA==</latexit>

Figure 3. The Nagumo equation profile, u⇤(x), and eigenfunction, ξ(x), associated with the unstable
eigenvalue λ = 3.

Linearizing (13) about the wave u⇤ and looking for separated solutions (that is, ignoring the
continuous spectrum) yields the eigenvalue problem

(14) ⇠00(x)� ⇠(x) + 3u⇤(x)
2⇠(x) = �⇠(x), lim

x!±1
⇠(x) = 0, ||⇠|| 6= 0.

A solution to (14) for the unique unstable eigenvalue � = 3 is given by the eigenfunction

⇠(x) =

(
e2x(2� 2 tanh(x)� sech2(x)) if x � 0,

e�2x(2 + 2 tanh(x)� sech2(x)) if x < 0,

can be seen in Figure 3. The profile and eigenfunction for Nagumo’s equation are plotted in
Figure 3.

2.3.2. Gray–Scott. The Gray–Scott equations in one spatial dimension are given by

ut = uxx � uv2 + ↵(1� u),

vt = vxx + uv2/� � v/�,
(15)

where u, v : R ⇥ (0,1) ! R, and ↵, � > 0 are parameters. The equations model a cubic
autocatalytic reaction without stirring [86, 87, 88]. The profile equations for a standing wave
solution are

u00 = uv2 � ↵(1� u), v00 =
1

�
(v � uv2).(16)

We take ↵� = 1 and 0 < � < 2
9 , as for these parameters there is a known explicit solution

(see [87]) for the profile equations given by

u⇤(x) = 1� 3�

1 +Q cosh(x/
p
�)

,

v⇤(x) =
3

1 +Q cosh(x/
p
�)

,

(17)
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Figure 4. Standing wave solution for the Gray–Scott equations.

where Q :=
p
1� 9�/2. These solutions were shown to be unstable in [89]. We select values

of ↵ = 9 and � = 1
9 . The corresponding profile is shown in Figure 4.

Linearizing (15) about the profile (u⇤, v⇤), and looking for separated solutions, we arrive
at the eigenvalue problem

⇠00 � v2⇤⇠ � 2u⇤v⇤⌘ � ↵⇠ = �⇠,

⌘00 +
v2⇤
�
⇠ +

2

�
u⇤v⇤⌘ � 1

�
⌘ = �⌘,

which upon rearranging terms becomes the second order system

⇠00 = v2⇤⇠ + 2u⇤v⇤⌘ + ↵⇠ + �⇠,(18)

⌘00 = �v2⇤
�
⇠ � 2

�
u⇤v⇤⌘ +

1

�
⌘ + �⌘.(19)

We note that, due to the symmetry of u⇤ and v⇤, eigenfunctions may be even or odd functions
of x 2 R. We introduce the variables ⇠1 = ⇠, ⇠2 = ⇠0, ⌘1 = ⌘, ⌘2 = ⌘0 and write (18) as a first
order system W 0(x;�) = A(x;�)W (x;�) as follows:

0
BB@

⇠01
⇠02
⌘01
⌘02

1
CCA =

0
BB@

0 1 0 0
�+ v2⇤ + ↵ 0 2u⇤v⇤ 0

0 0 0 1
�v2⇤/� 0 �+ (1� 2u⇤v⇤)/� 0

1
CCA

0
BB@

⇠1
⇠2
⌘1
⌘2

1
CCA .(20)

The asymptotic matrices A± := limx!±1A(x;�) are given by

A±(�) =

0
BB@

0 1 0 0
�+ ↵ 0 0 0
0 0 0 1
0 0 �+ 1/� 0

1
CCA .(21)

The eigenvalues of A± are given by µ±
1 = ±

p
�+ ↵ and µ±

2 = ±
p
�+ 1/�. The associated

eigenvectors are given by v±1 = (1, µ±
1 , 0, 0)

T and v±2 = (0, 0, 1, µ±
2 )

T . Using these eigenvectors
to create projective boundary conditions, we solve for the eigenfunctions as described at the
end of section 2.2. The profiles of the eigenfunctions are illustrated in Figure 5.
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Figure 5. The Gray–Scott eigenfunctions, ξ(x) and η(x) – red (top) and blue (bottom), respectively.
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Figure 6. Profile for PNLS. The blue (top) line corresponds to the component u⇤, and the orange (bottom)
line to the component v⇤.

2.3.3. Nonlinear Schrödinger equations. The rescaled, parametrically forced nonlinear
Schrödinger equation (PNLS) in one spatial dimension is given by

ut = �vxx + µv � v(v2 + u2),

vt = uxx � u+ u(v2 + u2)� 2⌫v,
(22)

where u and v represent, respectively, the real and imaginary part of the dependent variable
of the rescaled PNLS, and µ and ⌫ are rescaled coefficients; see [90] for details. It was shown
in [90] that Hopf bifurcations of a pulse solution exist in PNLS.

The system has a stationary pulse equilibrium given by (u⇤, v⇤) = (
p
2 sech(x), 0) solving

the profile equation

�v00 + µv � v3 � vu2 = 0,

u00 � u� 2⌫v + uv2 + u3 = 0;
(23)

see Figure 6.
Linearizing about the profile leads to the eigenvalue problem

�⌘00 + µ⌘ � 3v2⇤⌘ � u2⇤⌘ � 2u⇤v⇤⇠ = �⇠,

⇠00 � ⇠ � 2⌫⌘ + v2⇤⇠ + 2u⇤v⇤⌘ + 3u2⇤⇠ = �⌘.
(24)D
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Figure 7. The real and imaginary part of the eigenfunctions corresponding to the complex conjugate pair
of eigenvalues λ1,2 = 0.0557± 1.3053i. Red corresponds to ξ(x) and blue to η(x).

We fix parameters µ = 0.3957 and ⌫ = 0.1745, which correspond to a = 4 and � = 2 in [90].
We solve for one of the eigenvalue-eigenfunction pairs of PNLS using the method described at
the end of section 2.2, and then we obtain the other eigenpair by taking the complex conjugate
of the first. These are a pair of complex conjugate unstable eigenvalues �1,2 ⇡ 0.0557±1.3053i.
We plot the real and imaginary parts of the associated eigenfunctions in Figure 7.

3. Unstable manifolds for standing waves: Formal series calculations. In this section,
we derive the formal derivation of the homological equations.

3.1. Homological equations for standing waves. Suppose that u⇤ : R ! R is a smooth
traveling wave solution of (5). That is, we assume that u⇤ is an equilibrium solution of
(9). Under assumptions A1–A5 there is a locally well-defined L2(R) flow near u⇤, and the
nonlinear stability of u⇤ is determined by spectral analysis of the asymptotically constant
linearized problem. We assume that the linearized problem has m unstable eigenvalues each
with multiplicity one, and we want to represent the local unstable manifold via the parameter-
ization method. Let �1, . . . ,�M 2 C denote the unstable eigenvalues and ⇠1, . . . , ⇠M 2 Hn(R)
an associated choice of eigenfunctions. Let Λ be the M ⇥ M diagonal matrix of unstable
eigenvalues.

We look for a formal series approximation of the unstable manifold parameterization
discussed in section 2.1, and make the power series ansatz

P (✓1, . . . , ✓M , x) =

1X

m1=0

. . .

1X

mM=0

pm1,...,mM
(x)✓m1

1 . . . ✓mM

M ,

where pm1,...,mM
2 Hn(R) for m1 + · · ·+mM � 1. Observe that p0,...,0 = u⇤ and pej = ⇠j for

1  j  M . Note also that if

(25)

1X

m1+···+mM�1

kpm1,...,mM
k
Hn(R) r

m1

1 . . . rmM

M < 1,

then, by a standard argument involving the monotone convergence theorem, we have that for
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each (✓1, . . . , ✓M ) 2 (�r1, r1)⇥ · · ·⇥(�rM , rM ) the function P (✓1, . . . , ✓M , x) is in u⇤+Hn(R).
Indeed, under the assumption given in (25) we have that P̃ : (�r1, r1) ⇥ · · · ⇥ (�rM , rM ) !
Hn(R) given by

P̃ = P � u⇤,

is a real analytic embedding of a disk.
Note that, on the level of formal power series, the differential operator on the left-hand

side of (4) is expressed as

DP (✓, x)Λ✓ =

1X

m1=0

. . .

1X

mM=0

(m1�1 + · · ·+mM�M ) pm1,...,mM
(x)✓m1

1 . . . ✓mM

M .

Now write

F(P (✓, x)) =

1X

m1=0

. . .

1X

mM=0

qm1,...,mM
(x)✓m1

1 . . . ✓mM

M ,

where the power series coefficients qm1,...,mM
depend on the power series coefficients of P in a

problem specific manner. Matching like powers of ✓ = (✓1, . . . , ✓M ) leads to

(m1�1 + · · ·+mM�M ) pm1,...,mM
(x) = qm1,...,mM

.

Indeed we will see, by considering the examples below, that

(26) qm1,...,mM
(x) = DF(u⇤)pm1,...,mM

(x) +Rm1,...,mM
(x),

where the functions Rm1,...,mM
: Hn(R) ! L2(R) depend only on lower order terms. That is,

Rm1,...,mM
depends on coefficients pj1,...,jM with j1 < m1, . . . , jM < mM . The explicit form

of the functions Rm1,...,mM
depend on the functional form of the nonlinearity of the traveling

wave problem, and for the purposes of the present work we choose to work these out on a
case by case basis. Nevertheless we remark that an explicit general formula for the Rm1,...,mM

(albeit one which is not especially computationally efficient) can be worked out using Faá di
Bruno’s formula. See, for example, [6].

Considering the definition of F in (9) and the definition of the linear operator L in (10),
we have that

DF(u⇤)pm1,...,mM
= Lpm1,...,mM

= @n
xpm1,...,mM

(x) + cpm1,...,mM
(x) + a0(x)pm1,...,mM

(x) + · · ·+ an�1(x)@
n�1
x pm1,...,mM

(x).

That is

qm1,...,mM
(x) = Lpm1,...,mM

+Rm1,...,mM
(x).

Returning to (26), we obtain that the homological equation defining pm1,...,mM
(x) is given by

the recursive system of asymptotically constant nth order linear BVPs on R defined by

(27) Lpm1,...,mM
(x)� (m1�1 + · · ·+mM�M )pm1,...,mM

(x) = �Rm1,...,mM
(x),
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where Rm1,...,mM
2 L2(R). Note that (L� zI)�1 : L2(R) ! Hn(R) is a well-defined bounded

linear operator as long as z /2 spec(L), and we assume that L has no essential spectrum in
the closed right half-plane. Then the homological equation has a unique solution in Hn(R) as
long as z = m1�1 + · · ·+mM�M is not an eigenvalue of DF (u⇤). Observing that real(z) > 0
we see that this reduces to the scalar nonresonance condition

(28) m1�1 + · · ·+mM�M 6= �j

for 1  j  M . These are the finitely many nonresonance conditions which always appear
in the parameterization method. They are the obstruction to the existence of a formal series
conjugating the nonlinear dynamics to linear. See, again, [6, 7, 8].

The nonresonance conditions of (28) are valuable in practice as they are scalar conditions
which warn us whether or not to proceed with the manifold calculation. Suppose, for example,
that we compute the eigenvalues of L using the Evans function, and that we want to compute
the polynomial approximation of the unstable manifold parameterization to order N 2 N.
Then we simply check the nonresonance for each multi-index (m1, . . . ,mM ) 2 N

N with 2 
m1 + · · ·+mM  N . If there are no resonances to order N then we know in advance that we
will be able to solve each of the homological equations defining the Taylor coefficients and we
are confident committing the computational resources.

Assuming there are no resonances the homological equations uniquely determine the coef-
ficients for all orders greater than or equal to two. This says that once the first order data are
chosen, the parameterization P solving (4) is unique. But the only free choice in the first order
data is the choice of the scalings of the eigenvectors. Put another way, the parameterization
P is unique up to the choice of the eigenvector scaling. This nonuniqueness is exploited in
numerical calculations where we use it to control the growth of the coefficients. Indeed, the
scalings of the eigenvectors determine the decay rate of the norms kpm1,...,mM

kHn(R) and can
in general be chosen so that the growth condition of (25) is satisfied. In the present work we
are not concerned with the convergence of the formal series and refer the interested reader
to [26, 91] for convergence results in other contexts, though we do report the numerically ob-
served convergence rates in some explicit examples below. Finally we remark that the entire
discussion generalizes to systems of PDEs with only the obvious modifications, as illustrated
in section 4.

3.2. Cauchy products of power series. Derivation of homological equations in the ap-
plications below relies on some formal power series manipulations. These calculations are
much cleaner if we introduce a little notation. In particular, since our example systems are
nonlinear, products of power series are a critical operation. In the present work we consider
polynomial systems with only quadratic and cubic nonlinearities. We remark that higher
degree polynomials are treated similarly. Moreover, using techniques from automatic differ-
entiation for power series it is possible to transform nonpolynomial systems into polynomial
systems of a larger number of variables. For explicit examples of this procedure for parabolic
PDEs see [27]. A more abstract discussion is found in Chapter 2 of [24].

For the present work it is enough to consider the Cauchy product of two or three power
series in one or two variables. Consider then the three power series of a single variable given
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by

P (✓) =
1X

n=0

pn✓
n,

Q(✓) =
1X

n=0

qn✓
n,

and

R(✓) =

1X

n=0

rn✓
n.

The pointwise products of P · Q and P · Q · R are expressed as power series via the Cauchy
product formulas

(P ·Q)(✓) =
1X

n=0

(p ⇤ q)n✓n,

and

(P ·Q ·R)(✓) =
1X

n=0

(p ⇤ q ⇤ r)n✓n,

where

(p ⇤ q)n =
nX

j=0

pn�jqj

and

(p ⇤ q ⇤ r)n =

nX

j=0

jX

k=0

pn�jqj�krk.

Suppose we want to isolate the highest order terms from the Cauchy products. We have
that

(p ⇤ q)n =

nX

j=0

pn�jqj

= p0qn + q0pn +
n�1X

j=1

pn�jqj

= p0qn + q0pn + (p⇤̂q)n,

where we define

(p⇤̂q)n =

n�1X

j=1

pn�jqj .

For the cubic term we have that

(p ⇤ q ⇤ r)n = p0q0rn + q0r0pn + p0r0qn + (p⇤̂q⇤̂r)n,
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where

(p⇤̂q⇤̂r)n =
nX

j=0

jX

k=0

�̂njkpn�jqj�krk,

where the term �̂njk is defined by

�̂
nj
jk =

8
>>>><
>>>>:

0 if j = k = 0,

0 if j = k = n,

0 if k = 0 and j = n,

1 otherwise,

and appears so that terms of order n are removed from the Cauchy product. The point is
that the so called “hat products” do not depend on terms of order n.

Similarly, consider three power series of two variables:

P (✓1, ✓2) =
1X

n=0

1X

m=0

pmn✓
m
1 ✓n2 ,

Q(✓1, ✓2) =
1X

n=0

1X

m=0

qmn✓
m
1 ✓n2 ,

and

R(✓1, ✓2) =

1X

n=0

1X

m=0

rmn✓
m
1 ✓n2 .

Define the Cauchy products

(P ·Q)(✓1, ✓2) =
1X

n=0

1X

m=0

(p ⇤ q)mn✓
m
1 ✓n2

and

(P ·Q ·R)(✓1, ✓2) =
1X

n=0

1X

m=0

(p ⇤ q ⇤ r)mn✓
m
1 ✓n2 ,

where

(p ⇤ q)mn =

mX

i=0

mX

j=0

pm�i,n�jqij

and

(p ⇤ q ⇤ r)mn =

mX

i=0

iX

j=0

nX

k=0

kX

l=0

pm�i,n�kqi�j,k�lrjl.

In this case we have that

(p ⇤ q)mn = p00qmn + q00pmn + (p⇤̂q)mn
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and
(p ⇤ q ⇤ r)mn = p00q00rmn + p00r00qmn + q00r00pmn + (p⇤̂q⇤̂r)mn,

where

(p⇤̂q)mn =
mX

i=0

nX

j=0

�̂
nj
mipm�i,n�jqij

and

(p⇤̂q⇤̂r)mn =

mX

i=0

iX

j=0

nX

k=0

kX

l=0

�̂nklmijpm�i,n�kqi�j,k�lrjl

with

�̂
nj
mi =

8
><
>:

0 if i = j = 0,

0 if i = m and j = n,

1 otherwise,

and

�̂nklmij =

8
>>>><
>>>>:

0 if i = k = 0,

0 if j = m and l = n,

0 if i = m, k = n, j = 0, and l = 0,

1 otherwise.

Remark 3.1 (formal calculation versus numerical implementations). It is worth noting that
the formulas discussed above may not lead to the most efficient numerical implementations.
For example it may be preferable to compute uN by repeated Cauchy products, especially if the
intermediate products u2, u3, . . . , uN�1 are also desired. Moreover, state-of-the-art polynomial
manipulation libraries typically employ the fast Fourier transform algorithm for multiplying
polynomials, especially in the multivariate case.

That being said, it should be noted that the hat products have

(p⇤̂q⇤̂r) 6= (p⇤̂q)⇤̂r 6= p⇤̂(q⇤̂r),

so that the formulas above should be kept in mind in formal series calculations. Optimal
implementation of these products is not the topic of the present work.

3.3. Homological equations for Nagumo’s equation. Since Nagumo’s equation has one
unstable eigenvalue �, the unstable manifold is one dimensional and we look for P (✓, x) with
x 2 R and ✓ 2 [�r, r] parameterizing the unstable manifold. The value of r is a priori unknown
and is in fact set only after some numerical experimentation.

Assume that the parameterization has the power series expansion

P (✓, x) =

1X

n=0

pn(x)✓
n.

Imposing the first order conditions, P (0, x) = p0(x) = u⇤(x) is the wave profile and
∂
∂θ
P (✓, x)|θ=0 =

p1(x) = ⇠(x) is the eigenfunction.

D
o
w

n
lo

ad
ed

 0
7
/0

9
/2

1
 t

o
 2

4
.2

2
4
.5

3
.4

5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARAMETERIZATION METHOD FOR STANDING WAVES 1779

The invariance equation (4) for a one dimensional unstable manifold reduces to

�✓
@

@✓
P (✓, x) = F (P (✓, x)),

where for the Nagumo equation

F (P (✓, x)) =
@2

@x2
P (✓, x)� P (✓, x) + P (✓, x)3.

We describe the formal series calculation in some detail, for reasons which will become clear
by the end.

Substituting the power series ansatz into the invariance equation we have

�✓
@

@✓
P (✓, x) = �✓

@

@✓

 
1X

n=0

pn(x)✓
n

!

= �✓

1X

n=0

npn(x)✓
n�1

=

1X

n=0

�npn(x)✓
n

on the left and

F (P (✓, x)) =
@2

@x2

 
1X

n=0

pn(x)✓
n

!
�

1X

n=0

pn(x)✓
n +

 
1X

n=0

pn(x)✓
n

!3

=

1X

n=0

p00n(x)✓
n �

1X

n=0

pn(x)✓
n +

1X

n=0

(p ⇤ p ⇤ p)n(x)✓n

=

1X

n=0

�
p00n(x)� pn(x) + 3p0(x)

2pn(x) + (p⇤̂p⇤̂p)n(x)
�
✓n

on the right. By matching like powers we obtain that

�npn(x) = p00n(x)� pn(x) + 3p0(x)
2pn(x) + (p⇤̂p⇤̂p)n(x),

and isolating terms of order n on the left leads to the homological equation

(29) p00n(x) +
�
�1 + 3p0(x)

2
�
pn(x)� �npn(x) = �(p⇤̂p⇤̂p)n(x).

We require that pn(x) ! 0 as x ! ±1.
Observe that (29) does in fact have the form

[DF (p0(x))� �nId] pn(x) = Rn(x)

with Rn(x) given explicitly by

Rn(x) = �(p⇤̂p⇤̂p)n(x),
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just as claimed in section 3.1. The important point, in fact the entire reason for working
through the formal calculation just given, is that we obtain explicitly the form of the right-
hand side Rn(x).

Introducing the variable qn(x) = p0n(x) we write (29) as a first order system, giving rise
to the boundary value problem,

(30)

✓
p0n(x)
q0n(x)

◆
=

✓
0 1

1 + �n� 3p20(x) 0

◆✓
pn(x)
qn(x)

◆
�
✓

0Pn
k=0

Pk
r=0 �

n
k,rpn�k(x)pk�r(x)pr(x)

◆
.

We impose projective boundary conditions on (30) that select the solution that decays as
x ! ±1. That is, the solution to (30) that we approximate is tangent to the stable and
unstable manifolds associated with the linear ODE system

(31)

✓
pn(x)
p0n(x)

◆0

=

✓
0 1

1 + �n 0

◆✓
pn(x)
p0n(x)

◆

at x = ±1. Specifically, the boundary conditions are

PL · pn(�L) = 0, PR · pn(L) = 0,(32)

where PL = (�
p
1 + �n, 1)T and PR = (

p
1 + �n, 1)T , and the truncated domain is [�L,L].

To approximate well the solution Pn(x) = (pn(x), qn(x))
T of (30) posed on the whole

real line, we must choose L sufficiently large. In practice, we take L large enough that
|pn(±L)| < 10�8. For Nagumo’s equation, L = 20 satisfies this choice.

To speed up the computation, we use Chebyshev polynomial interpolation of the numerical
approximations of the solutions pn(·) of the homological equations, which greatly speeds up
the evaluation of the farthest right term in (30) when using the MATLAB routine bvp5c. It
is faster to evaluate a Chebyshev polynomial interpolant then to use the routine deval built
into MATLAB. Increasing L requires higher degree Chebyshev polynomial interpolants.

3.4. Gray–Scott’s homological equations. Recall that the Gray–Scott equations have the
unstable eigenvalue � ⇡ 8.6267, and take the profiles u⇤, v⇤ and eigenfunctions as discussed in
section 2.3.2. Since the unstable manifold is one dimensional we make the power series ansatz

(33) ~P (✓, x) =


P (✓, x)
Q(✓, x)

�
=

1X

n=0


un(x)
vn(x)

�
✓n =

1X

n=0

~pn(x)✓
n,

where u0(x) = u⇤(x), v0(x) = v⇤(x), u1(x) = ⇠(x), and v1(x) = ⌘(x).
In this case the invariance equation reduces to

�✓
@

@✓
~P (✓, x) = F (~P (✓, x)),

where, as before,

�✓
@

@✓
~P (✓, x) =

1X

n=0

n�~pn(x)✓
n
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and

F (~P (✓, x)) =

 
∂2

∂x2P (✓, x)� P (✓, x)Q(✓, x)2 + ↵(1� P (✓, x))
∂2

∂x2Q(✓, x)� 1
γ
Q(✓, x) + 1

γ
P (✓, x)Q(✓, x)2

!
.

A calculation following the same steps as in section 3.3 shows that for n � 2 the coefficients
~pn(x) must satisfy,

u
00

n(x)� (↵+ n�)un(x)� v⇤(x)
2un(x)� 2u⇤v⇤vn(x) = (u⇤̂v⇤̂v)n,

v
00

n(x)� n�vn(x) +
1

�

�
v⇤(x)

2un(x) + 2u⇤v⇤vn(x)� vn(x)
�
= �1

�
(u⇤̂v⇤̂v)n

(34)

which again has the desired form

(DF (u⇤, v⇤)� n�Id) ~pn(x) = Rn(x),

and recovers the explicit form of Rn(x).
Introducing the variables pn(x) = u0n(x) and qn(x) = v0n(x), the homological equations

can be rewritten as a first order system, giving rise to the BVP

(35)

0
BB@

u0n(x)
p0n(x)
v0n(x)
q0n(x)

1
CCA =

0
BBB@

0 1 0 0
↵+ n�+ v2⇤ 0 u⇤v⇤ 0

0 0 0 1

�v2
⇤

γ
0 1

γ
+ n�� 2

γ
u⇤v⇤ 0

1
CCCA

0
BB@

un
pn
vn
qn

1
CCA+

0
BB@

0
bn
0

� 1
γ
bn

1
CCA ,

where bn := (u⇤̂v⇤̂v)n.
Let

An =

0
BB@

0 1 0 0
↵� n� 0 0 0

0 0 0 1
0 0 n� 0

1
CCA

and Wn(x) = (un(x), pn(x), vn(x), qn(x))
T . Define P 1

n , P
2
n and P 3

n , P
4
n to be the unstable and

the stable eigenvectors of An, respectively, and let E+
n = span(P 1

n , P
2
n) and E

�
n = span(P 3

n , P
4
n).

We choose L = 25 so that |Pn(±L)| < 10�8, and impose the projected boundary condition
Wn(�L) 2 E+ and Wn(L) 2 E+ to numerically solve the homological equation.

3.5. Schrödinger’s homological equations. Suppose that u⇤(x), v⇤(x) is an equilibrium
(standing wave) solution of the Schrödinger equation with complex conjugate eigenvalues

�1,2 = ↵± i�,

and that the corresponding complex conjugate eigenvectors ⇠(x) = (⇠1(x), ⇠2(x)), and ⌘(x) =
(⌘1(x), ⌘2(x)) satisfy

⇠(x) = ⌘(x).

Let

P (✓1, ✓2, x) =

1X

m=0

1X

n=0


umn(x)
vmn(x)

�
✓m1 ✓n2D
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with
u00(x) = u0(x), v00 = v0(x),

and where

u10(x) = ⇠1(x), v10 = ⇠2(x), u01(x) = ⌘1(x), v01 = ⌘2(x),

are the components of the eigenfunction. Since the unstable manifold is two dimensional the
invariance equation in this case reduces to

�1✓1
@

@✓1
P (✓1, ✓2, x) + �2✓2

@

@✓2
P (✓1, ✓2, x) = F (P (✓1, ✓2, x)).

Substituting in the power series ansatz leads to

�1✓1
@

@✓1
P (✓1, ✓2, x) + �2✓2

@

@✓2
P (✓1, ✓2, x) =

1X

m=0

1X

n=0

(�1m+ �2n)


umn(x)
vmn(x)

�
✓m1 ✓n2 ,

on the left and
F (P (✓1, ✓2, x))

=
1X

m=0

1X

n=0

✓
�v00mn(x) + µvmn(x)� (v ⇤ v ⇤ v)mn � (v ⇤ u ⇤ u)mn

u00mn(x)� umn(x) + (u ⇤ v ⇤ v)mn + (u ⇤ u ⇤ u)mn � 2⌫vmn

◆
✓m1 ✓n2 ,

on the right. Matching like powers leads to

(�1m+ �2n)

✓
umn

vmn

◆

=

✓
�v00mn(x) + µvmn(x)� (v ⇤ v ⇤ v)mn � (v ⇤ u ⇤ u)mn

u00mn(x)� umn(x) + (u ⇤ v ⇤ v)mn + (u ⇤ u ⇤ u)mn � 2⌫vmn

◆

=

✓
�v00mn + µvmn � 3v2⇤vmn � (v⇤̂v⇤̂v)mn � u2⇤vmn � 2v⇤u⇤umn � (v⇤̂u⇤̂u)mn

u00mn � umn + 2u⇤v⇤vmn + v2⇤umn + (u⇤̂v⇤̂v)mn + 3u2⇤umn + (u⇤̂u⇤̂u)mn � 2⌫vmn

◆
.

Observe that (after choosing an appropriate norm) the Fréchet derivative of F at (u⇤, v⇤)
acting on (u, v)T is

DF (u⇤, v⇤)


u
v

�
=


�v00 + µv � 3v2⇤v � 2u⇤v⇤u� u2⇤v

u00 � u+ 2u⇤v⇤v + v2⇤u+ 3u2⇤u� 2⌫v

�

so that the homological equations indeed have the form

(DF (u0, v0)� (m�1 + n�2)Id)


umn

vmn

�
= Rmn(x),

just as they must. We stress once again that the entire point of going through the formal
series calculations above is that we obtain explicitly the expression

Rmn(x) =


�(u⇤̂u⇤̂u)mn � (u⇤̂v⇤̂v)mn

(v⇤̂u⇤̂u)mn � (v⇤̂v⇤̂v)mn

�
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for the right-hand side. The fact that the left-hand side comes out correctly provides a
convenient check on our work.

Introducing the variables pmn = u0mn and qmn = v0mn and defining the matrices

Amn(x) =

0
BB@

0 1 0 0
1� 3u⇤(x)

2 � v⇤(x)
2 0 (�1n+ �2m) + 2⌫ � 2u⇤(x)v⇤(x) 0

0 0 0 1
�(�1n+ �m)� 2u⇤(x)v⇤(x) 0 µ� 3v⇤(x)

2 � u⇤(x)
2 0

1
CCA

we rewrite the homological equations as the linear system

0
BB@

u0nm
p0nm
v0nm
q0nm

1
CCA = Amn

0
BB@

unm
pnm
vnm
qnm

1
CCA�

0
BB@

0
N1

mn

0
N2

mn

1
CCA ,(36)

where

N1
mn := (u⇤̂u⇤̂u)mn + (u⇤̂v⇤̂v)mn,

N2
mn := (v⇤̂u⇤̂u)mn + (v⇤̂v⇤̂v)mn.

The limiting matrix for the linear portion of (36) is given by

(37) Amn =

0
BB@

0 1 0 0
1 0 (�1n+ �2m) + 2⌫ 0
0 0 0 1

�(�1n+ �2m) 0 µ 0

1
CCA .

Let Wmn(x) = (umn(x), pmn(x), vmn(x), qmn(x))
T and define P 1

m,n, P
2
m,n and P 3

m,n, P
4
m,n to be

the unstable and the stable eigenvectors of Am,n, respectively, and let E+ = span(P 1
m,n, P

2
m,n)

and E� = span(P 3
m,n, P

4
m,n). We choose L = 300 which ensures that |Pn(±L)| < 10�8, and

impose the projected boundary condition Wm,n(�L) 2 E+ and Wm,n(L) 2 E+ to numerically
solve the homological equation.

4. Numerical implementation and example calculations. Consider again the parabolic
PDE

ut = F(u),

as discussed in section 3.1. In all of the examples considered in the present work, F is densely
defined on a Hilbert space H. The numerical procedure for computing the unstable manifold
parameterization is as follows.

• Step 1: Numerically solve the profile equation F(u) = 0 to find a traveling wave
u⇤ 2 H. Let p0 = u⇤.

• Step 2: Suppose that the standing wave is unstable with Morse index M . If M = 0 the
wave is stable and the unstable manifold is empty. In this case we end the procedure.
Otherwise numerically solve the eigenvector problem

DF(p⇤)⇠ = �⇠
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to find the unstable eigenvalues �1, . . . ,�M and associated eigenfunctions ⇠1, . . . , ⇠M 2
H. Set pej = ⇠j , where ej is the vector with a 1 in the jth component and zeros
elsewhere.

• Step 3: Check the nonresonance conditions

m1�1 + · · ·+mM�M 6= �j ,

(m1, . . . ,mM ) 2 N
M with m1 + · · · + mM � 2 and for each 1  j  M . (This is

actually only a finite number of conditions as the �j are all unstable). If there is a
resonance at order Ñ � 2 choose N < Ñ . If there are no resonances then we are free
to approximate the parameterization to any desired order N � 2.

• Step 4: For all (m1, . . . ,mM ) 2 N
M with m1 + · · · + mM � 2 solve the homological

equation

[DF(p⇤)� (m1�1 + · · ·+mM�M )Id] pm1,...,mM
= �Rm1,...,mM

,

where pm1,...,mM
2 H. This is a projected boundary value problem on the line. The

equation has a unique solution as there are no resonances up to order N . Return the
power series coefficients pm1,...,mM

for 0  m1 + · · ·+mM  N .
We refer to this as the main algorithm. The polynomial

PN (x, ✓1, . . . , ✓M ) =
X

0m1+···+mMN

pm1,...,mM
(x)✓m1

1 . . . ✓mM

M ,

approximates the unstable manifold to order N .
As a postprocessing step we check the a posteriori error associated with PN as follows.

Choose an allowed error tolerance " ⌧ 1 and for some large K 2 N choose some sample points
{~✓k}

K
k=1 2 B throughout the domain of PN . For some ⌧ > 0 and for each 1  k  K define

e~✓k by
e~✓k = e�ΛM τ~✓k.

Here

ΛM =

0
B@

�1 . . . 0
...

. . .
...

0 . . . �M

1
CA

is the diagonal matrix of eigenvalues. Compute the quantities

✏k = kΦnum(
e~✓k, ⌧)� P (~✓k)kH,

where Φnum is a numerical integration scheme for the parabolic PDE. We are satisfied with
the calculation if

max(✏1, . . . , ✏K)  ".

If the check fails then we can decrease the size of the box B = [�r1, r1] ⇥ · · · ⇥ [�rM , rM ]
(or decrease the scalings of the eigenfunctions) and rerun the main algorithm. On the other
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hand it may turn out that the ✏1, . . . , ✏K are all dramatically less than ". In this case we
can increase the size of the domain (or the scalings of the eigenvectors) and run the main
algorithm again.

Automatic procedures for choosing optimal scalings for the eigenvectors are discussed in
[91]. In the present work we employ the heuristic that the Nth order coefficients should be
on the order of the absolute error tolerance of the BVP solver used to solve the homological
equations, or smaller. This is usually enough to guarantee that max(✏1, . . . , ✏K) is less than
". We note that we can approximate how large we may take ~✓K via the heuristic we now
describe. Suppose the parameterization is given by

P (✓1, . . . , ✓M , x) =
1X

m1=0

. . .
1X

mM=0

pm1,...,mM
(x)✓m1

1 . . . ✓mM

M ,

and that p̃m1,...,mM
(x) (may be zero) is our numerical approximation of pm1,...,mM

(x) for each
pair of indices. Further suppose that maxm1,...,mM ,x |pm1,...,mM

(x)� p̃m1,...,mM
(x)| < ⇣ for some

⇣ > 0 and each pair of indices. The tolerance for the BVP solver is a good approximation of
⇣. We note that,

P (✓1, . . . , ✓M , x) =

1X

m1=0

. . .

1X

mM=0

p̃m1,...,mM
(x)✓m1

1 . . . ✓mM

M

+

1X

m1=0

. . .

1X

mM=0

(pm1,...,mM
(x)� p̃m1,...,mM

(x)) ✓m1

1 . . . ✓mM

M .

Thus the error of the numerical solution is bounded by

1X

m1=0

. . .

1X

mM=0

��(pm1,...,mM
(x)� p̃m1,...,mM

(x)) ✓m1

1 . . . ✓mM

M

��  ⇣

1X

m1=0

. . .

1X

mM=0

��✓m1

1 . . . ✓mM

M

�� .

If we want the error of the parameterization method to be bounded by ⇣1 > ⇣, then we take
~✓K such that |✓K1

1 , . . . , ✓KM

M |  ζ1
ζ
.

We refer to the entire error checking procedure just described as a posteriori verification
for the main algorithm.

4.1. Unstable manifold for Nagumo’s equations. We use (30) in the main algorithm to
recursively solve the first N = 30 homological equations. The first four generated solutions of
the homological equations we denote by p2, p3, p4, and p5 and they are illustrated in Figure
8. These are the Taylor coefficients of the parameterization to order 5. Observe that the 5th
order coefficients already have C0 norm on the order of 10�5. The maximum absolute value of
the final homological equation solution (N = 30) is given by 6.290e-21. We choose a domain
of B = [�2, 2] for the parameterization, that is, we take r = 2.

Figure 9 illustrates what the nonlinear unstable manifold looks like away from the sta-
tionary solution.
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Figure 8. Solutions to the first four generated homological equations, p2, p3, p4, and p5 for the Nagumo
equation.

Figure 9. Plot of u(x) on the unstable manifold for Nagumo’s equation with values of θ 2 [�2, 2]. The
black line represents the profile/equilibrium solution.

4.1.1. Finite difference verification of Nagumo. To verify the correctness of our approx-
imation of the unstable manifold via the parameterization method, we employ the a posteriori
verification scheme. For all systems in this work, we use the package provided in [28] to auto-
matically produce finite difference code for the Crank–Nicolson method, giving the numerical
integration scheme Φnum. Recall that the Crank–Nicolson scheme is second order accurate for
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Table 1

Convergence study results for Nagumo’s equation. Here ∆x in the distance between spatial grid points, and
“Time” is how long the code ran for the associated value of ∆x. The distance between temporal nodes is given
by ∆t = ∆x2/4. The last column shows the difference in the C0 norm of the solutions of the time evolution
and the parameterization method at the final time.

∆x Time kun � u0k1

2�2 3.64e-1 6.53e-1
2�3 1.45 9.36e2
2�4 1.04e1 2.15e-2
2�5 6.36e1 5.27e-3
2�6 6.48e22 1.33e-3
2�7 6.94e3 3.53e-4

the heat equation. Thus, we have cause to hope that the Crank–Nicolson scheme will also
be second order accurate for the systems we consider. We will consider the parameterized
nonlinear manifold to be verified correct if we initialize the finite difference time evolution
code with a solution of the parameterization method and then observe convergence of order
two of the finite difference scheme solution to the solution predicted by the parameterization
after the same amount of time has passed. We remark that the accuracy and speed of the
parameterization method compared to the finite difference scheme is one of the benefits of the
former. Indeed, the limiting factor in the precision with which we verify the parameterization
method is the computation time as the finite difference grid size decreases.

For verification of the main algorithm, we initialize the PDE with data corresponding to
✓̂0 = 1/2, and then we evolve forward in time by T = 0.334. The time elapsed between the
two parameterization values ✓̂0 = 1/2 and ✓̂1 = 1.36 can be calculated as ∆T = (log(✓̂1) �
log(✓̂0))/�. We begin the finite difference code at u0(x) = PN (✓̂0, x) and evolve it ∆T forward
in time, denoting its final result as un(x). Let u1(x) = PN (✓̂1, x). We then check that
kun(x) � u1(x)kinf is small and converges toward zero as the finite difference mesh becomes
finer, which verifies the conjugacy condition holds, in turn verifying the code to solve the
homological equations was correctly implemented. We performed a convergence study to check
the conjugacy for ∆x = 2�k, k 2 {2, . . . , 7}, with ∆t

∆x2 = 0.25. For the time evolution, we use
Dirichlet boundary conditions matching the solution given by the parameterization method.
Recall that we use projective boundary conditions to solve the homological equations. We
truncate the domain to [�L,L] where L = 25, which is large enough that the solutions to
the homological equations evaluated on the boundary of the domain are within approximately
1e-8 of their asymptotic end states. We conclude that the method gives accurate results as
seen by the rate of convergence shown in Table 1.

4.2. Unstable manifold for Gray–Scott. We use (35) combined with the main algorithm
to recursively solve the first thirty homological equations. Several solutions of the homological
equations are shown in Figure 10, a visualization of the manifold is pictured in Figure 11. In
solving the homological equations, we take L = 10. We compute the parameterization to
order N = 25 and find that the pointwise norm (Euclidean norm) over the coefficients of
order N = 25 is smaller than 1.464e � 26. We choose r = 10 so that B = [�10, 10] is the
domain of the parameterization.
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Figure 10. The first four generated homological equations for the Gray–Scott equation. Note the scaling
decreases in each consecutive figure.

Figure 11. Plot of u(x) and v(x) on the unstable manifold for the Gray–Scott system. Values of θ 2
[�10, 10]. The black line represents the profile/equilibrium solution. The u component is in the left frame
(blue) while the v component is on the right (red).

4.2.1. Finite difference verification of Gray–Scott. for the main algorithm. Evaluating
our parameterization we obtain two solutions, U0 and U1, corresponding to values produced
by the manifold at ✓0 = 0.1 and ✓1 = 1.36, respectively. For our initial state of the finite
difference code, we choose U0. We let ∆T = 0.303 be the total time elapsed by our finite
difference method and perform a convergence study by taking ∆x = 2�k with k 2 {2, . . . , 8}
and ∆t

∆x2 = 0.25. We truncate the domain to [�L,L], where L = 8, which suffices to guarantee
that the homological solutions evaluated on the boundaries are within approximately 1e-8 of
their asymptotic end states. We use N = 30 homological equations in the computation. Table
2 shows the results.

4.3. Unstable manifold for Schrödinger’s equation. We use (36) combined with the main
algorithm to solve the first 20 homological equations. That is we compute the parameterization
to order N = 20. The real and imaginary parts of several of the solutions to the homological
equations are shown in Figure 12. To plot the unstable manifold, we require that ✓1 = ✓̄2 and
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Table 2

Convergence study results for Gray–Scott. Here ∆x is the distance between spatial nodes of the mesh and
“Time” is how long in seconds the finite difference code took to run. The distance between temporal nodes is
given by ∆t = ∆x2/4. The last column shows the distance between the solutions of the time evolution and the
parameterization method at the final time T = 0.303, when initialized the same at T = 0 in the C0 norm.

∆x Time kun � u1k1
2�2 4.93e-1 2.54
2�3 1.67 5.77e-1
2�4 9.59 1.34e-1
2�5 5.94e1 3.27e-2
2�6 4.52e2 8.14e-3
2�7 4.50e3 2.03e-3
2�8 5.56e4 5.09e-4
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Figure 12. The real and imaginary part of the first four generated homological equations for Schrödinger’s
equation. Note the scale gets smaller with each subsequent image.
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Table 3

Convergence study results for Schrödinger’s. Here ∆x is the distance between spatial nodes of the mesh
and “Time” is how long in seconds the finite difference code took to run. The distance between temporal nodes
is given by ∆t = ∆x2/4. The last column shows the distance between the solutions of the time evolution and
the parameterization method at the final time T = 1, when initialized the same at T = 0 in the C0 norm.

∆x Time kun � u1k1
2�2 8.41 1.45e-2
2�3 3.68 3.193-3
2�4 1.86e2 8.74e-4
2�5 9.57e2 5.55e-4

r = 2 and because we use complex conjugate variables the domain can be thought of as the
disk with radius r.

4.3.1. Finite difference verification of Schrödinger’s equation. We apply the a posteriori
verification for the main algorithm. We follow the same process as outlined in section 4.1.1
to perform a convergence study. For the verification of the main algorithm, we take L = 30,
∆t
∆x2 = 1/4, ∆T = 1, and ✓1 = 1.5 + 1.5i. We use 20 homological equations. Table 3 shows
the results. To successfully solve the homological equations for Schrödinger’s equation, we
were only able to request an error tolerance of 1e-6 from the BVP solver, which explains the
decreasing rate of convergence at the end of the table.

4.4. An application to traveling waves with nonzero wave speed. Although the exam-
ples considered up until now have been standing waves, we can apply the same method to
traveling waves. We use Nagumo’s equation with an additional transport term to illustrate
the ideas in a fixed example. The treatment of general traveling waves follows similarly. To
begin, consider the system

ũt̃ = ũx̃x̃ � ũx̃ � ũ+ ũ3,(38)

where ũ(x̃, t̃) : R⇥ (0,1) ! R. A traveling wave solution of (38) is given by

u⇤(x̃) =
p
2 sech(x̃� t̃).

Under the coordinate change x = x̃� t̃, t = t̃, (38) becomes

ut = uxx � u+ u3,

which we recognize as Nagumo’s equation given in (13). Thus, all of the computations de-
scribed in section 4.1 apply to this system in the new coordinates. If u(x, t) is the unstable
manifold solution of (13) corresponding to the stationary wave u⇤(x) =

p
2 sech(x), then we

find upon reversing the coordinate change that ũ(x̃, t̃) := u(x̃� t̃, t̃) is the unstable manifold
solution to (38) corresponding to the unstable traveling wave solution u⇤(x̃). Conceptually,
the nonlinear manifold solution of (38) is the nonlinear manifold solution of (13) “moving
along” at the speed of the traveling wave.

More generally, if u⇤(x̃, t̃) is a traveling wave solution of the parabolic PDE

ũt̃ = N(ũ)D
o
w
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with constant speed c, whereN is a partial differential operator, then by making the coordinate
change x = x̃� ct̃, t = t̃, we obtain the PDE

ut � cux = N(u),(39)

which has u⇤(x) := u⇤(x, 0) as a stationary wave solution. We may then carry out all of the
methods of this paper to approximate the unstable manifold defined by u(x, t) for the PDE
given in (39), and then reverse the coordinate change to find the unstable manifold in the
original coordinates, given by ũ(x̃, t̃) := u(x̃� ct̃, t̃).

5. Conclusions. In this paper we have presented a method for high order numerical ap-
proximation of unstable manifolds attached to traveling wave solutions for parabolic PDEs
on the line. The unstable manifolds describe the time behavior of solutions which diverge
from a small neighborhood of the unstable nonlinear wave. We developed a parameterization
method which applies to nonlinear wave solutions and showed that the invariance equation
can be solved using formal series methods. We derived the recursion relations, or homological
equations, for the formal series solution in a number of example problems and showed that
the homological equations are nonautonomous systems of linear equations on the line satis-
fying asymptotic boundary conditions. We implemented numerical methods for solving the
homological equations in a number of interesting examples coming from applied mathemat-
ics. Using techniques of numerical integration for solving initial value problems for parabolic
PDEs on the line we showed that our approximate manifolds provide a good description of
the unstable manifolds away from the traveling wave.

An interesting generalization would be to study parabolic PDEs formulated on R
2 instead

of on the line. For example one could study unstable nonlinear waves for conservation laws.
This is an active area of research even in terms of numerical analysis of the wave profiles
and their stability, as the traveling wave ansatz does not in general reduce the problem to an
ODE (unless planar waves are considered). It is therefore, in general, more difficult, if not
impossible, to apply dynamical systems techniques. Nevertheless it is reasonable to suggest
that for any examples where the profile and unstable eigenvalues can be computed numerically,
the homological equations for the jets of the parameterization could be developed and solved
also numerically. This would make a very interesting topic for a future study.

Finally, we mention that in recent years a number of researchers have developed com-
puter assisted methods of proof for studying existence questions for traveling wave solutions
[92, 88, 93, 94] and also computer aided methods for verifying both existence and stability
properties of such waves [95, 96, 97, 98, 99]. If one were to develop analogous computer
assisted methods of proof for studying the homological equations, this would open the way
to validated computation of unstable manifolds for traveling waves. Indeed such techniques
would be a first step toward computer assisted proofs for connecting orbits in the full PDE
(posed on the line), though several other components would be needed as well, namely, com-
puter assisted analysis of the stable manifold and computer assisted techniques for rigorous
integration of the flow. This is an ambitious program whose completion could take years of
sustained research.

Acknowledgments. The authors offer sincere thanks to two anonymous referees for care-
fully reading an earlier version of the work. Their many suggestions greatly improved the final

D
o
w

n
lo

ad
ed

 0
7
/0

9
/2

1
 t

o
 2

4
.2

2
4
.5

3
.4

5
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARAMETERIZATION METHOD FOR STANDING WAVES 1793

manuscript. We would like to thank Christian Reinhardt for invaluable conversations and for
bringing the first two authors together on this project. We thank Björn Sandstede for making
us aware of the explicit eigenvalue-eigenvector pair for the scalar Nagumo equation.

REFERENCES

[1] E. J. Doedel, T. F. Fairgrieve, B. Sandstede, A. R. Champneys, Y. A. Kuznetsov, and X.

Wang, Auto-07p: Continuation and Bifurcation Software for Ordinary Differential Equations, Tech-
nical report, 2007.

[2] B. Deconinck, F. Kiyak, J. D. Carter, and J. N. Kutz, SpectrUW: A laboratory for the numerical
exploration of spectra of linear operators, Math. Comput. Simulation, 74 (2007), pp. 370–378.

[3] T. Rees and A. Monahan, A general numerical method for analyzing the linear stability of stratified
parallel shear flows, J. Atmos. Ocean. Technol., 31 (2014), pp. 2795–2808.

[4] P. Brodtkorb, P. Johannesson, G. Lindgren, I. Rychlik, J. Ryden, and E. Sjo, WAFO - A
MATLAB toolbox for analysis of random waves and loads, Proceedings of the Tenth International
Offshore and Polar Engineering Conference, International Socidety of Offshore and Polar Engineers,
Cupertino, CA, 3 (2000), pp. 343–350.

[5] B. Barker, J. Humpherys, J. Lytle, and K. Zumbrun, STABLAB: A MATLAB-based Numerical
Library for Evans Function Computation, https://github.com/nonlinear-waves/stablab.git.
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