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Abstract. Random batch algorithms are constructed for quantum Monte Carlo simu-
lations. The main objective is to alleviate the computational cost associated with the
calculations of two-body interactions, including the pairwise interactions in the poten-
tial energy, and the two-body terms in the Jastrow factor. In the framework of varia-
tional Monte Carlo methods, the random batch algorithm is constructed based on the
over-damped Langevin dynamics, so that updating the position of each particle in an
N-particle system only requires O(1) operations, thus for each time step the computa-
tional cost for N particles is reduced from O(N?) to O(N). For diffusion Monte Carlo
methods, the random batch algorithm uses an energy decomposition to avoid the com-
putation of the total energy in the branching step. The effectiveness of the random
batch method is demonstrated using a system of liquid “He atoms interacting with a
graphite surface.
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1 Introduction

One of the fundamental problems in chemistry is the computation of the ground state
energy of a many-body quantum system. Although this major difficulty has been cir-
cumvented to some extent by the density-functional theory [29], the quantum Monte
Carlo (QMC) method [2, 3,13, 39, 46] still remains an important approach to determine
the ground state energy and electron correlations.
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This paper is concerned with the implementation of the QMC for many-body systems.
More specifically, we consider the Hamiltonian,

N
H= Z——ArﬂrZW 1i—17)+ Y Vext(r:). (1.1)
i#j i=1

Here we use r = (r1,r2,---,rN) to denote the particle coordinates with N being the total
number of particles. and the Laplacian (—A) in the first term of the Hamiltonian indi-
cates the kinetic energy. The second term in the Hamiltonian, which is a double sum,
embodies the pairwise interactions, e.g., Coulomb, while the last term includes the exter-
nal potential, namely,

M
Vext 7’1 Z (1.2)

where R,, for instance, can be the position of an atom.
In principle, the ground state can be obtained by computing the smallest eigenvalue
and the corresponding eigenfunction. It can be expressed in terms of a Rayleigh quotient,

/ 3N<I)Hq)d1’1 .. -di"N
E=min R

@ /IRSN]CDFdrl---drN

, (1.3)

and the minimizer @ corresponds to the ground state wave function. However, due to
the high dimensionality, a direct numerical approach, e.g., using finite difference or finite
element methods together with numerical quadrature for the integrals suffers from the
curse of dimensionality, thus is typically prohibitively expensive.

Within the variational Monte Carlo (VMC) framework, this issue is addressed by se-
lecting an appropriate ansatz, denoted here by ® ~ ¥y, for the many-body wave func-
tion. Then the multi-dimensional integral is interpreted as a statistical average, which
can be sampled using a Monte Carlo procedure. Traditionally, ¥ is constructed using
the one-body wave functions, with the effect of particle correlations described by Jastrow
factors [13]. Recently, artificial neural networks from machine learning have also been
used to represent the many-body wave function [7,17,18,37]. In fact, the recent surge of
interest in applying machine-learning algorithms to scientific computing problems has
been a strong motivation for the current work.

The first part of this paper is concerned with the numerical implementation of VMC.
Since VMC formulates the energy calculation as a sampling problem, the most natural
approach is the Metropolis-Hastings (MH) algorithm which, in general, falls into the
category of Markov chain Monte Carlo (MCMC) algorithms in statistics. At each step,
the chain is updated by calculating the energy change. As can be seen from (1.1) and
(1.3), this requires visiting all particles in the system. A direct treatment would involve
O(N(N+M)) operations in each time step. The presence of the Jastrow factor further
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complicates the computation. To alleviate the computational cost, we propose a random
batch method (RBM), originated from emerging machine learning algorithms [4, 6, 48],
and recently introduced to classical interacting particle systems in [23] and extended to
various applications in both classical and quantum N-body systems [15,21,22,28,30-32].
In particular, [23] established an error of RBM to be of (’)(\/E), where At is the time step,
uniformly in N. For the present problem, the objective is to use such an idea to quickly
relax the quantum system and sample the energy in the VMC method.

To this end, we first formulate the sampling problem using an over-damped Langevin
equation, where the particles are driven by a drift and a stochastic force. The idea of using
a Langevin dynamics to constructa VMC algorithm has been pursued in [44]. Rather than
computing the particle interactions directly, our proposed RBM algorithm divides the
system into random batches and only the interactions within each batch are computed.
As a result, on average, updating all N particles only requires O(N-+ M) operations. We
justify the method by examining the transition density and show that at each step the
density induced by the RBM is consistent with the exact transition kernel up to O(A#?),
the same order as the Euler-Maruyama method.

The other important approach in QMC is the diffusion Monte Carlo (DMC) method
[2,39], which starts with the time-dependent Schrodinger equation (TDSE), and evolves
the quantum system in an imaginary time scale, leading to a parabolic equation [39],

~

oY=(Er—H)¥. (1.4)

The energy shift Et is adjusted on-the-fly based on the change of the magnitude of the
wave function. The key observation is that the dynamics (1.4) can be associated with a
stochastic process. In particular, the wave function |¥|? can be interpreted as the empir-
ical measure of a particle system, in which the particles are driven by drift velocity and
diffusion. The growth/decay of the wave function is treated by introducing multiple
copies of the system, each of which is called a walker or a diffuser [2,39]. The number
of walkers, which reflects the change of the norm of the wave function, is realized by
using a birth/death process. The movement of the walkers is driven by the same over-
damped Langevin dynamics. Therefore, the RBM is again a natural fit. On the other
hand, the probability associated with the birth/death process depends on the total en-
ergy. To avoid the computation of the total energy E, especially before the ground state
is reached, we propose to decompose the energy into one-, two-, and three-body terms.
We construct an RBM where at each step a batch with three particles are selected and we
only compute the energy within the batch.

Speeding up QMC simulations has been an important focus in computational chem-
istry. Various software packages have been developed to this end [26,35,43]. For instance,
Kim et al. [26] demonstrated how DMC algorithms can be efficiently implemented on
high-performance computer clusters. They showed that when the dynamics of walkers
is distributed among the OPENMP threads or MPI units, one can achieve an almost ideal
speedup. Toward this end, we implemented the RBM algorithm by moving the walkers
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in parallel, and we are able to perform QMC simulations of a Helium system with 5016
particles using only 60 cores.

The rest of the paper is organized as follows. We first consider the RBM in the VMC
setting in Section 2, and justify the method in terms of the transition density. Numerical
results are presented for the Helium system. In Section 3, we show the RBM in the DMC
setting, followed by numerical results. The paper is concluded in Section 4.

2 The random batch algorithm for the variational Monte Carlo

methods

The crucial observation that motivated the VMC framework is that the ground state en-
ergy can be viewed as an average with respective to a probability density,

E=(Ea()) = [ p(r)Ea(r)r, @)
where p(r) is regarded as a probability density function (PDF),
p(r) o< |Do(r)[?, (2.2)
and the energy Ei., given by R
Eiot(r) = %{0}0, (2.3)

will be regarded as a random variable.

We will consider Boson systems, which allow us to neglect the sign problem [39] and
focus exclusively on the sampling procedure. In addition, to have a class of explicit trial
wave functions to work with, we follow the QMC methods for liquid Helium interacting
with a graphite surface [36,47], where the following ansatz has been proven successful,

2
TN (e ()b
@)= JOTIN, p(ri), u(r)= (;) tara (24)
For homogeneous Hellium systems, the ansatz with only the Jastor factor has been widely
used in QMC simulations [25,34]. The ansatz in (2.4) includes orbitals centered around
the graphite atoms.
From (2.4), we can write the density (2.2) in an exponential form,

p(r)ce?, V=—In®y=-Y log¢(r;)+ % YN u(lri—r]). (2.5)
i i A

The PDF is reminiscent of a Gibbs distribution with temperature ' =1/2.
The goal of VMC is to create samples according to such a probability density function,
from which the ground state energy can be computed from (2.1) by averaging over those
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samples. Most VMC methods are of Markov chain Monte Carlo (MCMC) type. Namely,
one constructs a Markov chain, which equilibrates to the PDF given by (or close to) (2.5).

Thanks to the explicit ansatz (2.4) for the wave function, the total energy can be ex-
plicitly expressed as follows,

1 N
Eot(r) = E1<l-2+2vv<ri—r]-) + Y Vexi(ri). (2.6)
i#] i=1

Since the computational cost is of primary concern here, let us write out all the relevant
terms. The first term comes from the kinetic energy,

@ P ADy W 7>

AiIn®y— —|V;Indo?. (2.7)

e z
The actual form of the kinetic energy depends on the choice of the ansatz for ®. For
instance, with the choice (2.5), the total energy is given by

hZ hZ ) N M
Etot(r) = 5 AV IVVI?+) W(ri—r))+) ) U(ri—Rq). (2.8)
iZi i—la=1

Since the one-particle wave function is non-negative, we express it as exponential func-
tions,

M
p(r)=Y e 0"k, (2.9)
a=1
for some function 6. This form has been used in [47] and the parameters were obtained
by solving a one-dimensional Schrédinger equation.
In light of (2.8), the calculation of the total energy, which will be part of both the vari-
ational and diffusion Monte Carlo algorithms, scales quadratically in terms of the number
of particles N.

2.1 The classical Metropolis-Hastings algorithm

A classical algorithm in VMC is the Metropolis-Hastings algorithm. This algorithm is
usually implemented by randomly displacing one particle as a time. With the observation
that,

N
V=YV, Vi=—logp(ri)+) u(|ri—rj), (2.10)

] =1

Z i
only V; needs to be computed to determine the energy change due to the change of r;,
which subsequently determines the rejections/acceptance of this move. The MH algo-

rithm is standard in computational chemistry for both classical and quantum systems [1],
so we keep the discussion brief and summarize the algorithm in Algorithm 1. Notice that
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the only parameters in the algorithm are the size of the trial moves, denoted by Ax, Ay
and Az in each of the three spatial directions, respectively. Since the trial step involves a
random walk, the method will be referred to as the random walk MH algorithm.

Algorithm 1 Random Walk Metropolis-Hastings (MH) algorithm for variational Monte
Carlo
for nt=1, num_steps do
for np=1, num_particles do
Randomly pick an atom i
e_old = V;in (2.10);
rold =r.i;
ri < ri+ ((rand() -0.5)*Ax, (rand() -0.5)*Ay, (rand() -0.5)*Az );
Compute the energy e_new= V; and AE = e_new - e_old;
if exp[-2AE] > rand() then
ri=r.old
end if
end for
end for

It is clear from (2.9) and (2.10) that updating the position of one particle requires
O(N+ M) operations. Our goal is to reduce the cost of this computation to O(1).

2.2 A random batch algorithm based on the over-damped Langevin dynamics

The idea behind the random batch algorithm can be best explained in terms of an over-
damped Langevin dynamics,

N
dri=Vlogp(r;)dt—Y Vyu(|ri—r;])dt-+dW;(t), 1<i<N. (2.11)
=1

J#i
Here W;(t)’s are independent Wiener processes. Its empirical measure f(r,t) corresponds
to the Fokker Planck equation (FPE),

1
8tf:—V-(vf)+§Af, (2.12)
where v=(v1,v,---,vN) and
N
v;=Vlogp(ri) =Y _Vyu(lri—rj|), (2.13)
j=1
J#i

is interpreted as a drift velocity. Under suitable conditions [33], the dynamical system
with potential given by (2.5) is ergodic, and the PDF p(r) in (2.5) is the unique equilibrium
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measure of this stochastic system. Therefore the numerical integration of the SDEs (2.11)
offers a route to navigate to (2.5) and sample the energy.

Using the over-damped Langevin equation to sample the Gibb distribution has been
a widely known method. In the context of VMC, this approach has been adopted by Sce-
mama et al. [44] to improve standard methods. In addition, they combined the Langevin
dynamics with the Metropolis-Hastings algorithm to accept/reject the produced sam-
ples.

A direct discretization, e.g., the Euler-Maruyama method [27], would involve the fol-
lowing step [27],

ri(t+At) =ri(t)+Viogp(ri) At =Y V,u(|ri(t)—r;(t)|)At+AW;, 1<i<N. (2.14)
j#i
Here we assume that the step size At is uniform, and the discrete time is given by 7 :=
{nAt, n>0}. The method (2.14) is applied to each time step t € 7. At each step, AW; is
sampled from a normal random distribution with zero mean and variance At.

Although the Euler-Maruyama method is completely different from the random walk
Metropolis-Hastings algorithm, they nevertheless have a similar computational cost for
updating the position of each particle. More specifically, one has to compute the inter-
actions with all other particles (u(|r;(t) —7;(t)|)), for all j #i. In addition, one needs to
compute log¢(r;), which is given by

M
log¢(r;) =log Ze’g(r"’R“). (2.15)
a=1

Together, they contribute to O(M+ N) operations for each particle at each time step.

To reduce the cost of evaluating the two-body interactions, the RBM proceeds as fol-
lows (this corresponds to the RBM with replacement in [23]): At each step, one randomly
picks out two particles, i and j, and compute their interactions, V,,u(|r;—1;|), then up-
dates their positions as follows,

{ri(H—At)

Tj(t+At)

ri(t)+Vioge(r;) At+ (N —1)V,u(|r; —ri| ) At+AW;,

rj(t)+Viog(r;) At+(N—1)V,,u(|ri—r;| ) At+AW;. (2.16)

Notice that V,,u(|ri—r;|) = =V u(|ri—r;j|), thus only one of them needs to be computed.
The factor (N—1) accounts for the fact that we are using one term u(|r;—r;|) to account
for the interactions with all (N —1) particles. In general, it is also possible to pick larger
random batches. Choosing batches with two particles is most popular.

In light of (2.15), the computation of the one-body term still involves O(M) opera-
tions. However, since

M —0(ri—Rq)

i e
Viogg(r)=),~V ) T A Ry (2.17)
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where the coefficients gi’s are non-negative and Y, g, = 1, the log-gradient term can be

viewed as a statistical average with discrete probability given by {q;}i\il So a simple
idea is to pick just one term « randomly, e.g., by using a direct Monte Carlo method for
one step. The implementation is straightforward: Assume that one starts with a and
computes e,; =0(r;—R,), and then we randomly pick 1 < <M, and compute e,y =

0(ri—Rp). We accept B with probability

Pacc X€Xp [_ (enew _eold)] : (2.18)

We summarize the random batch algorithm in Algorithm 2.

Algorithm 2 Random batch algorithm for variational Monte Carlo
for nt=1, num_steps do
for np=1, num_particles/2 do
Randomly pick two particles i and j with i # .
Perform one step of the Monte Carlo algorithm with respect to {4’} with accep-
tance probability (2.18) and select «. Compute b;j=—V8(r;—R,).

Perform one step of the Monte Carlo algorithm with respect to {q{x} with accep-

tance probability (2.18) and select 8. Compute b; =—V6(r;—Rp).
Evaluate u;j=—u;;=(N—1)V,u(|r;—r;|).
Update the particle positions,

1’i<—1’1‘+b1‘At+uijAt+AWi, (2.19)
y %I’j—i—bjAf—Fu]‘iAf—FAWj. .

end for
end for

As a result of the random sampling of the one- and two-body interactions, updating
the position of each particle only requires O(1) operations. In the next section, we will study
the transition density of the random algorithm, which in turn serves as a validation of
the algorithms.

Another practical issue emerges when the interaction u(|r|) has a singularity near
zero. In this case, a direct implementation of the random batch algorithm would often
require much smaller step sizes in the integration of the Langevin dynamics (2.11) [32].
The issue can be mitigated by separating u(|r|) into a singular, but short-ranged part,
and a long-ranged, but smooth part [32]. The short-range interactions can be efficiently
computed using Verlet’s cell list method which, for each particle, still involves O(1) op-
erations. This is a common practice in classical molecular simulations [1,14]. Meanwhile,
the long-range part, which is where most computations are involved, can be simulated
by the random batch algorithm. Here we use a simple approach to separate out the sin-
gularity by introducing a cut-off distance 7., then replacing the short-range part by an
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Figure 1: Separation of the interaction u(r):F5 with singularity at =0 (solid line) into a long range interaction
uy (r) (dashed) without singularity, and a short range interaction ug(r) (dot-dashed).

extrapolation using a Taylor expansion. Namely,

u(r), > Teut,
ur(r)= 2.20
L(r) { u(reat) +1t (reat) (r—7eut) + 31" (reut) (r—reut)?,  otherwise. (220

The short-range part is then defined as ug(r) =u(r) —ur(r). Fig. 1 shows an example of
how such a decomposition can be easily constructed.
2.3 The transition kernel of the random batch algorithm

2.3.1 The random batch algorithm for the one-body term

We will first consider the Monte-Carlo sampling of the one-body term (2.17), and for
clarity we place the problem in the setting of solving a d-dimensional SDE system,

dr(t)=a(r(t))dt+odW;. (2.21)

Here 0 >0 is a constant, which is also allowed to be zero. In light of (2.17), we consider a
vector field a that can be expressed as

Jaau(r), (2.22)

M=

a(r)=

a=1

where the coefficients g,’s represent a discrete probability density, that is, g, > 0 and
Y +qa=1. We examine the random algorithm,

r(t+At) =r(t)+aq (r(t)) At+0AW, (2.23)
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where the index « is selected at random according to the discrete density. We consider

uniform step size At, and the equation will be applied to each step ¢.
Clearly, the corresponding transition density is given by

M (y—x—a‘,c(x)Aif)2
p(r(t+At)=ylr(t) = ; 27102 5773 €XP [— 53 :
For any function A(r) € C*(IR¥) with suitable growth conditions [27], one has

A(y)p(x(t+At) =y|x(t) =x)dy

d

=

NS

1 [A) T () VA@AH S AADAHO(AR)]

a=1

=A(x) +a(x) VA(R)AH 3 AA()AH O(AR)

(2.24)

(2.25)

Therefore, this random algorithm has a first weak-order of accuracy, which is comparable
to the Euler-Maruyama method. Even though the drift term a(r) is only sampled once at
each step, the method is still convergent. Recently, the observation is used by E et al. in
the context of multiscale methods for SDEs [11], where the weak convergence is proved
in a more general (multiscale) setting. Without the stochastic noise AW, this procedure
can be viewed as the stochastic approximation (SA) algorithm of Robbins and Monro [40]

to approximate the root of a nonlinear function.

2.3.2 The random batch algorithm for pair-wise interactions

We now turn to the SDE system (2.11) with pair-wise interactions,

dri(t) =Vlogp(r;)dt—Y Vu(|r;—rj|)dt+dW;.
J#i

By letting u;; = Vu(|r; —1;|), we can write the pair-wise terms as

=) _Wij, W=

j#i

To study the weak convergence, one may consider the conditional expectation,
E [A(r(tMt) (1) :x] .
This is represented by the transition density as follows,

E[A(r(t+At)|r(t) /A (r(t+At) =ylr(t) =x)dy.

(2.26)

(2.27)

(2.28)

(2.29)
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The transition density for the SDEs (2.26) follows the Fokker-Planck equation [27]. The
explicit form of the solution is often unknown. But with the approximation by the Euler-
Maruyama method,

Ti(t—i—At) :ri(t)+Vlog<p(rl-)At+uiAt—i—AWi, (2.30)
we can identify an approximate transition kernel,
pEM(r(t+At) =ylr(t) =x)

:WGXP [— (y—x—Vloge(x)At—u(x)At)*/ (2(72At)] : (2.31)

By the weak It6-Taylor expansion [27], we have from the density induced by the Euler-
Maruyama method,

E[A(X(t+AH)|X(t) =x] = A(x)+LA(x)At+O(AF?), (2.32)
where L is the generator,
LA(x)= Z (Vlogo(x;)+u;)- Vi, A(x)+ %AA(x). (2.33)

The expansion (2.32) is consistent with that of the exact transition density up to O(At?),
making the Euler-Maruyama method first order in the weak sense [27].

We now turn to the random batch algorithm (2.16) with replacement [23]. The conver-
gence property has recently been proved in [22]:

Theorem 2.1. The random batch algorithm over N /2 steps has weak order 1.

Here we illustrate the weak convergence in terms of the transition density. This also
helps us to construct RBM for diffusion Monte Carlo. Since we randomly pick a pair of
components to update, the transition density, denoted here by pR?, is given by

PR ({1 8 =y lr =) = e Ly (v 1), (2.3

i~
where
1
05(y1%) = a7 ©P |~ (=i~ Viogg () At— (N=1)u)r)/ (20)|
X exp [— (yj—xj—Vlog¢(x;)At— (N —1)uj;At) 2/ (ZAt)]
ka#iljé(yk—xk). (235)

The delta functions were included to ensure that when the pair (i,j) is selected, other
components are not updated. In the following discussions, we will simply write the
transition density as pRB(y|x).
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With direct Taylor expansions, one finds that, for any observable A(x),

[ AW)ai(yIx)dy=A(x)+ Viogg(x))- Ty A(x)At-+ Viogg () Vi, A(x) At

—|—(N 1)uij-Vx,.A(x)At—k(N—l)uji~Vx].A(x)At
£ A AR S Ay AR)ALO(AP). (2.36)

Combining this with (2.34), we have

[ AW ey =40+ { T VIog9(x) Vi Al)

Y i Vi A(x) 45 AA( o). @)
i j#i

Therefore, the random batch algorithm with replacement, when applied to one batch of
two particles, has the same accuracy as the Euler-Maruyama method over a time step
of 2At/N. Note one full time step in Euler-Maruyama method corresponds to N /2 such
steps in the RBM with replacement.

It is worthwhile to point out that the RBM, as a sampling method, is biased. Namely,
one is not sampling exactly from the probability density (2.5). One remedy is to regard
the method as a proposal, followed by a Metropolis-Hastings step to either accept or re-
ject the move. The geometric ergodicity of such a hybrid method, often referred to as
Metropolis Adjusted Langevin Algorithm (MALA), has been established in [5,41]. De-
spite the appealing convergence property of MALA, we have not implemented it in con-
junction with RBM, solely because it requires the calculation V in (2.5), which still re-
quires O(N?) operations at each step, and consequently takes away the computational
efficiency gained by the RBM.

2.4 Numerical results

We conduct numerical experiments with *He atoms interacting with a two-dimensional
lattice. The *He atoms, due to the fact that the total spin is zero, are bosons. Driven
by its superfluid properties and many observed quantum effects, *He atoms have been
extensively studied by computer simulations. Acting as a substrate, the lattice has a
triangular structure with lattice spacing given by ap = 4.2576 A. Such a lattice can be
generated using rectangular unit cells, each of which contains two atoms. For example,
Fig. 2 shows such a system with 12 x7 unit cells and a total of 168 atoms. The model is
adapted from previous QMC studies [24,36]. In particular, the model parameters in the
trial wave function have been determined by minimizing the energy (1.3). We choose
A as the length unit and kgKelvin as the unit of energy.
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Figure 2: A two dimensional lattice with Helium atoms.

Particles that represent the wave function ®g are created randomly near the nuclei.
We follow the setup in [36]. In particular, in the wave function ansatz (2.4), the one-
particle wave function is assumed to be

M
¢(r;)=exp— ((zi—ze)z/zé) Zexp (— (r,-—Ra)z/r%). (2.38)

a=1

Here z; indicates the third component of the coordinate r;. In addition, the two-body
terms in the Jastrow factor are chosen to consist of both short and long range terms,

7y, b 2.39
un)=(3) + a5z 239
Although the first term decays rather quickly, we do not use an abrupt truncation of
the function. Instead, we follow the construction (2.20), and split it into a function that
vanishes beyond a cut-off distance r.,;. The remaining part is merged into the second
term in (2.39) and regarded as a long-range interaction. The parameters, with unit A, are
given in Table 1. Unlike other parameters, which are taken from previous QMC studies
[24,36], we choose b=5 to address the practical issue with the long-range interactions.

Table 1: Model parameters in the QMC simulations of *He.

Ze Z rg | a b c Teut
28510521 | 15| 2.771 | 5.0 | 10.0 | 8.0

We first carry out VMC simulations using RBM-VMC (Algorithm 2) and the Euler-
Maruyama method (2.14). In the simulations, we run the algorithms with 300 ensembles
and the average energy at each step will be computed as an average over these ensembles.
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In principle, the algorithms can be implemented with just one realization, and the ground
state energy would be computed entirely from the time series. But multiple ensembles
can be easily implemented in parallel. In addition, the ensembles can later be turned into
walkers in the DMC simulations.

In the context of Metroplis-adjusted Langevin algorithm (MALA) [41], the RBM-VMC
and the Euler-Maruyama methods correspond to the unadjusted Langevin algorithm
(ULA). The convergence of such methods usually requires more stringent conditions
[33,41], which are not necessarily fulfilled by the QMC model (2.5). Therefore, we rely on
empirical observations from the numerical experiments.

Fig. 3 shows the average energy computed from the RBM-VMC and the Euler-
Maruyama methods in the time interval [0,150]. The step size is At =10"3. We observe
that both methods relax to equilibrium around t =25. Since the time scale is fictitious, we
do not assign a unit for the time variable.

We also show the time correlation of the sampled energy after the system has reached
equilibrium. To obtain a more quantitative comparison, we implemented an MCMC di-
agnostics. In this context, the relaxation is known as the burn-in period, and a thinning
parameter can be used to indicate correlations. More specifically, we use the Raftery and
Lewis criteria [38] (g =0.025, r=0.0125, s=0.95) and find that the burn-in period is 23.49
and 38.54, with thinning parameters 0.058 and 0.066, for the Euler-Maruyama and RBM,
respectively. One can see that the random batch method has slightly longer burn-in time,
and longer correlation. Since both of these methods are constructed by integrating SDEs
in time, we have factored in the step size At in estimating these parameters. We also show
the energy sampled from the random walk Metropolis-Hastings algorithm in Fig. 4. The
average energy is 2.361113 x 10* with standard statistical error 1.698. Note that it is not
straightforward to compare the previous two algorithms to the random walk Metropolis-
Hastings algorithm, since the latter method does not have an associated time scale.

We now compare the CPU time that is needed to move the 300 Markov chains for
1000 steps. In this comparison, we have excluded the cost associated with the energy cal-
culations in the random batch and Euler-Maruyama methods, since they are not needed
in the burn-in period, and even upon equilibrium, it is a good practice to sample it every
few steps to obtain less correlated samples. From Table 2, one clearly sees that the RBM is
more efficient than the Euler-Maruyama method, mainly due to the random sampling of
the pairwise interactions in the Jastrow factor in the wave function (2.4). It is much more
efficient than the random walk Metropolis-Hastings algorithm, mainly because the latter
method requires the calculation of the energy at every step.

Table 2: Comparison of the CPU time (measured in seconds) for several VMC methods.

Random Walk Euler- Random
Metropolis-Hastings | Maruyama | Batch
CPU time for a 1000-step sampling period | 1503 469 54
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Finally, we examine the effect of the time discretization. Unlike the random walk
metropolis-Hastings algorithm, the RBM and Euler-Maruyama methods are biased, and
the results depend on the step size. Fig. 5 shows the averages computed from the two
methods for different choices of At. We choose 10° samples from equilibrium in the
estimation. Compared to the values from the MH algorithm, it can be observed that
the Euler-Maruyama method over-estimates the ground state energy, while the random
batch method under-estimates it. We also observed that the RBM seems to be more sen-
sitive to the choice of the step size. It is likely that the RBM has a larger pre-factor in the
error. We will further comment on this observation in Section 4.
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3 The random batch algorithm in diffusion quantum Monte
Carlo methods

The accuracy of the VMC method is limited by the ansatz of the wave function (2.4). The
idea of the DMC is to go back to the time-dependent Schrédinger equation and evolve
the system along the imaginary time,

0¥ =(Er—H)Y. (3.1)

Here a rescaling of time scale it/ — t has been introduced and t now represents a ficti-
tious time scale. Since the transient is not of interest here, we will not keep track of the
time scales.

Depending on the choice of the reference energy Er, the solution would either decay
or grow exponentially, unless Et coincides with the ground state energy, at which point,
the wave function converges to the ground state as t — +oco.

Instead of solving (3.1) directly, it is often more practical to find f(r,t) with

frt) =% (r,t)Do (r). (32)
This ansatz has the flavor of the importance sampling. In addition, if one chooses
¥ (r,0) =D (r), then f(r,0)=|Pg|? < p(r) in (2.5). Therefore, we can use a VMC method
to initialize f(r,t).
Direct calculations yield the following differential equation [39],

hZ
atf:_v.< (r)f) + 5=V f = (Er—Eia(r)) . (3.3)

The average energy E(t) is defined as a weighted average,
/f(r,t)Etot(r)dr
E(t)= .
/ f(rt)dr

Without the last term on the right hand side of (3.3), the equation above, with a time
rescaling T — th?/m, would be reduced to the Fokker-Planck equation (2.12) associated
with the SDE (2.11), with the additional term that embodies the influence of the choice of
the energy shift on the change of total mass.

Within a short time step, At, the solution of (3.3) can be approximated by [39]

f(r,t+At):/

R3

hZ
—0
m

(3.4)

NG(r,r’,At)f(r’,t)dr’, (3.5)
where the function G, often referred to as Green’s function, is given by [39]

1 (- Ay (r))
G(r, 7 ,At)= Wexp [— (r=r 20"; o(r)) ] exp [At(Er—Et(1))] . (3.6)
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The parameter o = v/ At /\/m and the vector field v is given by (2.13).
This Green’s function can be interpreted as a transition kernel in a general sense. In
terms of an observable A, the action of the Green’s function is expressed as follows,

/A(r')G(r’,r,At)dr' =A(r)+ %20(1’) VA(r)At+ %2 SEAA(r)

+At(Er—Eor(r)) A(r) + O(AF). (3.7)
One can write G(v/,r,At) =Gy (v, r,At)Go (v, 7, At), with

(r’—r—%v(r))2

(2m02)*N"? oPT 202 ’ (3.8)
Go (¥, r,At) =exp [At(Er— Eo (1)) |-

Gy (7, r,At) =

Computationally, the two operations are carried out in two steps, which can be viewed as
an operator-splitting method. Better results are often obtained with a symmetric splitting,
which corresponds to redefining

Go(r,r,At) =exp [At(Er— 5 (Etot(r) + Ewot (r')))] - (3.9)

A typical DMC algorithm begins with an ensemble of L copies of the system, also known
as walkers [2]. For each realization, one first solves the SDEs,

n n
drz(t)—EVIOggb(rl)dt—F E;v,]dt—kadwl(t). (3.10)
This step corresponds to the action of the first Green’s function G;. Specifically, r and
" in G refer to, respectively, the positions of the particles before and after these SDEs
are solved for one time step. As alluded to at the beginning of this section, these SDEs
coincide with the over-damped Langevin equations (2.11) after a simple rescaling of the
time variable.
One can think of the approximations by these SDEs as an approximation of the func-
tion f(r,t) using a sum of delta functions,

L
Flrt) ~ % Y 5(r—r (1)), (3.11)
(=1

The Green’s function Gy is precisely the transition kernel. In particular, the number of
walkers will not be changed by this step.

After the particles at the step t+At are updated by Gj, the Green’s function G in
(3.9) needs to be incorporated. This is done by using a birth/death process to determine
whether a realization should be removed or duplicated. For each walker, one computes
a weight factor,

w(t+At) =exp [At(Er — 3 (Eot(r) + Etot (1)) ], (3.12)



S.Jinand X. Li / Commun. Comput. Phys., x (20xx), pp. 1-30 19

which corresponds to the Green’s function G; in (3.9). To apply Green’s function G,
the walkers are duplicated (removed) based on the magnitude of w(t+At). The overall
algorithm is summarized on Algorithm 3, which will be later referred to as the direct
DMC method.

Algorithm 3 Diffusion Monte Carlo (Direct DMC)

Sample the initial num_walkers walkers using the VMC algorithm. Set M(1) as the
number of walkers initially. Set ET to be the average energy computed from the VMC.

for nt=1, num_steps do
for n=1, num_walkers do

Compute the energy Eo (7).
Drift and diffuse the nth walker according to (3.10).
Compute the energy Eiot(1').
Determine the probability of the branching process:

wy =exp [At(Er— (Ewot(r) + Erot (")) /2)] .

end for
for n=1, num_walkers do
if w, <1 then
The walker survives with probability w;,.
else
The walker is duplicated |w, | times. A new walker is created with probability
Wy — | Wy .
end if
end for
Recount the number of walkers num_walkers, and set it to M(nt+1).

M(nt+1)

Adjust the energy shift: Er < Er+xIn M0 -

end for

3.1 The random batch algorithm for DMC

Since the initialization, as well as the drift-diffusion step of the DMC involves the solution
of the over-damped Langevin dynamics (2.11) (or (3.10)), our random batch algorithm for
VMC can be directly applied to this part of the DMC method, to mitigate the same issue
encountered in the Metropolis-Hastings algorithm.

It remains to treat the transition kernel G, (#/,r,At) (3.9). The primary challenge is that
computing the energy at each step requires O((N+M)N) operations in order to update
the position of N particles. To reduce this part of the computation, we propose to write
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the total energy (2.8) as follows,

Etot ZEl 1"1 + Z EZ rl/r] Z E3(1’i,1‘]‘,1’k). (313)

1<i<j<N 1<i<j<k<N

These three terms are onsite, two-body, and three-body contributions. The on-site energy
comes from the one-particle wave function and the external potential,

hZ ) hZ 5 M
Ei(r;) = —%V Ing(r;) — %|V1n<,b(ri)| + Y U(ri—Ry). (3.14)

a=1

To ensure that this part of the energy is evaluated with O(1) operations, we pick one
atom « in the external potential randomly in the last term, and compute

2 2
E1(r) =20 92Ing(r) — o [Ving(ry) >+ MU(r,—Ry). (3.15)

Let r;j =r; —r; be the relative position and r;; = |rl-j| be its distance. The two-body term
consists of the following terms,

2 2 2
Ex(ri1j) = —%V21nu(rij) +% (Ving(r;) —Ving(r;)) - Vu(rij)+ % |Vu(r) ]2+W(rz-]-).
(3.16)
The three-body term can be derived from the first term in the kinetic energy (2.7), and it
is given by

2
Es(r;,1,1%) = % {Vu(rij) Nu(ri) +Vu(rj) - Vu(ri) +Vu(rg) - Vu(rkj)} . (3.17)

These three-body terms arise due to the ||V V|| term in (2.6).

This partition of the energy is structured in the same manner as in molecular dynam-
ics models [1]. In the random batch algorithm, we randomly pick a batch C; with three
particles: C;={i,j,k}. We first update the position of the three particles (drift and diffuse)
by solving the over-damped Langevin dynamics (3.10) using the random batch algorithm
with batch size 3. This is demonstrated in (3.22) in Algorithm 4. We then define a local
energy,

El(ri,rj,rk) ( ) (T])+E1(1’k)
+ N1 [Ez ri ¥ —I—Ez(r],rk)—kEz(rk,rl)}
+ WUND By (1), (3.18)

In light of (3.15), (3.16), and (3.17), the cost for evaluating this local energy (3.18) remains
O(1).
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In the branching step of our new DMC method, we assign a batch with a weight
wr=exp [At(%ET—EI(Ti,T]‘,Tk))], (319)

which helps to determine whether a walker should be continued/duplicated /deleted.
This amounts to an approximation of Green’s function G;. To see this, note, on average,
the effect of this random procedure on f(r,t) is given by

6
N(N-1)(N-2) l<]2<kw1 ity 1) f (1)
6
- NI )KJZik{1+E1(ri)At+E1(r]-)At+E1(rk)At}f(r,t)
+mi<]§k(1§2(ri/rj)+E2(7’j/7'k)—|—E2(1‘k,ri))Atf(r,t)
+i Z ES(Ti,Vj,rk)Atf(r,t)+(’)(At2),
Ni<j<k
3At )
=f(r,t)+ (Er—Eiot(r)) - f+ O(AF). (3.20)

Therefore the random batch algorithm is consistent with Green’s function G; in (3.9) up
to order O(At?). Note that the evaluation of E; only requires O(1) operations.

In the implementation, to avoid frequent removal and duplication of walkers, we
apply the branching process after N /3 batches of particles are updated. In this case, the
weight function is defined by collecting the local energy from each batch (denoted by I,

here),
N/3
w(r) =exp [At(ET Erot ] Eror= Z E; . (3.21)

Similar to (3.20), one can verify with direct calculations that the branching process with
probability w(r) is also consistent with Green’s function G; in (3.9). Overall, the algo-
rithm is summarized in Algorithm 4.

3.2 Numerical results

Now we test the RBM-DMC (Algorithm 4) and compare the results with the direct DMC
method (Algorithm 3). For the initialization, we first apply a VMC method using the
ansatz (2.4) for the wave function ®y. The random walk Metropolis-Hastings Monte
Carlo method is used in both methods so that they start at the same states. 300 ensembles
are created by sub-sampling one sample out of every 500 steps from the VMC runs to
avoid correlations among the ensembles. For both methods, we use At = 10~* and run
200,000 steps of simulations.
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Algorithm 4 Diffusion Monte Carlo using Random Batch (RBM-DMC)

Sample the initial num_walkers walkers using a VMC algorithm. Set M(1) to be the
number of walkers initially. Set Et to be the average energy computed from the VMC.

for nt=1, num_steps do
for n=1, num_walkers do
form=1,N/3 do
Randomly pick a batch I, with three particles (i,j,k). '
Perform one step of the Monte Carlo algorithm with respect to {4} } and select
. Compute b;=—V0(r;—R,). Similarly compute b; and by.
Evaluate u;j = —uj;=(N—1)V,u(|r;—r;j|). Similarly evaluate u; and uj.
Update the position of the three particles,

hZ 2

ri<—ri+ EbiAt-i- P (uij—i-uik)At-i-O'AWi,
h? h?

7] %I’j—i—Eb]’At—i—E(uji—i—ujk)At—l—(TAW', (3.22)
hz 2

T 1+ EbkAt—i— - (uki+ukj)At+UAWk.

Compute the local batch energy Ej, (r(t+At)) from (3.18).
end for

Determine the probability of the branching process from E,;, E,, = ZN 3E I

m=1
Wy, =exp [At(ET—En)] .
end for

Branch the walkers and adjust the energy Er as in the direct DMC algorithm
end for

Fig. 6 shows the time series (top panel) generated by the two algorithms. We observe
that the random batch method generates samples with slightly larger fluctuations during
the burn in period. But the fluctuations eventually become comparable to those from the
direct DMC simulations. The population of the walkers (middle panel) exhibits a similar
behavior. We also examined the time correlation of the total energy (2.8). This is done by
using the time series within the time interval (10,20) and regard it as a stationary process.

We conduct simulations with various choices of the step size At to monitor the con-
vergence. Fig. 7 shows the energy computed from each instance. We decreased At from
10~ to 0.5x 107%, and then further to 0.25 x 10~%. We observe that the results from the
direct DMC and the random batch DMC methods both exhibit linear convergences. The
extrapolated energy values at At =0 are —2.39723 x 10* and —2.39756 x 10%, respectively.

Since our primary focus is on the speedup of the computation, We examine the CPU
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Figure 8: A comparison of the CPU runtime (in seconds) for running 1000 steps of DMC.

runtime for various system sizes. More specifically, we increase the system size from the
original 168 particles, to N =378, N =672 and N = 1050 particles, and in each case, we
run the direct DMC and the RBM-DMC for 1000 steps. For the initial system N =168, the
runtimes are 129.29 and 474.44 (seconds) for RBM-DMC and direct DMC, respectively. In
this case, the random batch algorithm requires 1/4 of the CPU time, which is a moderate
speedup. But as shown in Fig. 8, the CPU time for the direct DMC method increases
much more rapidly as N increases.

With the advent of modern high-performance computer clusters, QMC methods have
become a leading candidate for computing electronic structures of relatively large sys-
tems. As demonstrated in [26], direct DMC methods can be implemented in multi-core
processors, by distributing the random walkers among different units. As a first step
toward this goal, we study the *He system on a graphite lattice with non-homogeneous
deformation. More specifically, by mimicking an external load, we displace the atoms in



S.Jinand X. Li / Commun. Comput. Phys., x (20xx), pp. 1-30 25

Figure 9: The out-of-plane displacement of the atoms on the graphite lattice.
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Figure 10: The energy from the VMC simulations. Left: undeformed lattice; Right: with deformation (3.23).
The insets show the energy after the system reaches equilibrium.

the third direction according to a Gaussian profile:
zj=z,+hoexp [— (2 +y?) /1000] , (3.23)

with kg indicating the height of the sheet at the origin. To establish such a spatial pro-
file, a much larger system is needed. We consider a system with 5016 atoms, as shown
in Fig. 9. We implemented RBM-DMC (Algorithm 4) on 60 CPUs by distributing the
walkers among the CPUs. After each branching step, the walkers are re-distributed to
maintain a load balance.

We first perform the VMC simulations with 180 ensembles on the two systems, in-
cluding the homogeneous lattice () =0), and the deformed lattice (we pick hy = 2ap).
This is done by using the RBM-DMC (Algorithm 4) with the branching process turned
off. We choose At =10"* and run the algorithms for 160,000 steps. Fig. 10 shows the
energy computed from the iterations and averaged over the 180 ensembles. In both cases,
the energy exhibits a sharp relaxation before reaching a steady profile. We notice that
the deformation leads to higher ground state energy. Each of the VMCs simulations take
about 30 hours.
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Figure 11: The particle density. Left: undeformed lattice after the VMC sampling; Middle: system with
deformation after the VMC sampling; Right: system with deformation after the DMC sampling.
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Figure 12: The energy from the DMC simulations. Left: undeformed lattice; Right: with deformation.

At the end of the VMC run, we computed the particle density, from the 180 ensembles.
For visualization purpose, we use the smoothed-kernel density estimator (mvksdensity
in MATLAB) with width 1.5A to obtain the density. In this method, the position of each
particle (out of 5016) is interpreted as a data point, and the kernel density includes the
contribution from all particles and all the ensembles. Fig. 11 shows the density plots for
both cases. An interesting observation is that in the deformed case, higher density is
found in an annulus region, where the deformation is the largest.

With the walkers prepared by the VMC simulation, we perform DMC simulations
with the RBM-DMC method (Algorithm 4). Again we use At=10"* and we ran 240,000
steps of the algorithm. We monitor the energy and Fig. 12 shows how the energy changes
during the simulations. The system with homogeneous lattice takes slightly longer
to reach the steady state, and therefore we run the simulation for an extended period
(360,000 steps). We also point out that the energy reported here is the total energy, which
grows as the system size increases. In previous studies [36], these energy values were nor-
malized by the number of graphite atoms, and those results do not change significantly
when a much larger system is considered. On the other hand, the fluctuations in Fig. 12
are quite small. This is due to the fact that multiple ensembles are used in the simulation
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and the energy is computed from ensemble averages. It is also possible that due to the
symmetry from the two-dimensional lattice, the atoms are distributed with almost uni-
form lattice spacing, a spatial averaging is present in the computation of the total energy
(2.6), which further reduces the variance.

4 Summary and discussions

We have constructed random batch algorithms for quantum Monte Carlo simulations.
The main objective is to alleviate the computational cost associated with the calcula-
tions of two-body interactions, including the particle interactions in the potential energy,
and the pairwise terms in the Jastrow factor. In the framework of variational Monte
Carlo methods, the random batch algorithm is constructed based on the over-damped
Langevin dynamics, so that updating the position of each particle only requires O(1) op-
erations per time step. Consequently for the N-particle system the computational cost per
time step is reduced from O(N?) to O(N). For the diffusion Monte Carlo method, we
proposed to decompose the total energy into on-site, two-body, and three-body terms,
which can be evaluated within a random batch of three particles. This still guarantees
O(N) operations per time step for the N-body particle system.

We have placed the main emphasis on the speedup of the computation. The speedup
is more significant for larger systems, where the asymptotic scaling kicks in. In addition,
the speedup offered by the random batch method is mainly in the relaxation (burn-in)
period, where the energy does not need to be sampled. Therefore, it can be used as a pre-
conditioning step. Once the system reaches equilibrium, the computation of the energy
will dominate, and the speedup by the random batch method will not be as significant.
At this point, one may as well switch to a conventional method.

In terms of the accuracy, we have shown that the random algorithms have first-order
accuracy, comparable to the Euler-Maruyama method. This is certainly a low-order
method. For instance, in the VMC simulations, we observed that the random batch al-
gorithm remains stable when At = 0.05, but the step size has to be reduced to at least
At=0.001 to ensure a good accuracy. In this case, high-order diffusion Monte Carlo meth-
ods [12] would be helpful, and the construction of random batch algorithms with higher
accuracy is certainly an open issue. Another common practice to correct the bias is to
combine the algorithm with an Metropolis-Hastings step to accept/reject samples gen-
erated by the random batch method [39,44]. As alluded to in Section 2.3, this requires
computing V in (2.5) at every step. Maintaining detailed balance in the random batch
algorithm without significantly increasing the computational cost is another important
direction to explore.

In principle, some of these interactions in QMC can be (and have been) treated using
fast summation methods, e.g., the fast multipole methods for Coulomb interactions or
Gaussian functions [9,16]. But compared to the fast summation methods, the implemen-
tation of RBM is much easier.
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For Fermions, the ground state wave function is usually sought in a Slater determi-
nant form with a Jastrow factor [13,20],

g =e OIS (9p(r), -, (), J(r) =Y u(lri—r;]). (4.1)

i<j

Here S is the Slater determinant with ¢(r) being the single-particle wave function, and
one can also assume a common pairwise form u(|r;—#;|) for the Jastrow factor J. Al-
though the Jastrow factor can be treated efficiently by the RBM, the computation of the
derivatives (drift and kinetic energy) takes O(N?) operations for updating each parti-
cle [10]. Speeding up the computation of the Slater determinant still remains a challenge
for RBM.

This paper only focuses on the VMC and DMC methods. Another important method-
ology is the path-integral quantum Monte Carlo [8,19,42], which works with the density-
matrix at finite temperature. The formulation of path integral method using molecular
dynamics techniques [45] seems to be an appropriate platform to implement the RBM.
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