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Abstract

Testing multiple subjects within a group, with a single test applied to the group (i.e., group
testing), is an important tool for classifying populations as positive or negative for a specific
binary characteristic in an efficient manner. We study the design of easily implementable, static
group testing schemes that take into account operational constraints, heterogeneous populations,
and uncertainty in subject risk, while considering classification accuracy- and robustness-based
objectives. We derive key structural properties of optimal risk-based designs, and show that
the problem can be formulated as network flow problems. Our reformulation involves com-
putationally expensive high-dimensional integrals. We develop an analytical expression that
eliminates the need to compute high-dimensional integrals, drastically improving the tractabil-
ity of constructing the underlying network. We demonstrate the impact through a case study on
chlamydia screening, which leads to the following insights: (1) Risk-based designs are shown to
be less expensive, more accurate, and more robust than current practices. (2) The performance
of static risk-based schemes comprised of only two group sizes is comparable to those comprised
of many group sizes. (3) Static risk-based schemes are an effective alternative to more compli-
cated dynamic schemes. (4) An expectation-based formulation captures almost all benefits of a
static risk-based scheme.
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1 Introduction and Motivation

Classifying subjects within a large population as positive or negative for a certain binary charac-
teristic (e.g., disease, product defect), through screening, is important in many settings. Testing
each subject individually incurs high testing costs, and is often not budget-feasible. Consequently,
testing facilities often utilize a testing method known as group testing, wherein multiple subjects,
or specimens from those subjects (e.g., blood or urine samples, genetic material), are grouped and
tested together, with one test applied to each group. In this case, the test provides one outcome for
the entire group, with a positive group test outcome suggesting the presence of the binary charac-
teristic in at least one subject in the group, and a negative test outcome suggesting that all subjects
in the group are free of the binary characteristic. Subjects in positive-testing groups may undergo
follow-up testing via new specimens collected from those subjects, so that they can be classified as
positive or negative for the binary characteristic. Thus, group testing can offer substantial reduc-
tions in testing costs over individual testing, especially in the case of a binary characteristic with
a low prevalence, and is commonly utilized as an integral part of screening/testing schemes across
various disciplines, including public health screening, industrial quality control, conflict resolution in
multi-access communication networks, software testing, and compressed sensing, e.g., [3,5,9,11,37].
The origins of group testing date back to the 1940’s, when Dorfman [11], an economist, introduced
this concept as a way to test military inductees for syphilis in an efficient manner. Dorfman pro-
posed a simple two-stage testing scheme: in the first stage, a group of subjects are tested with a
single test; if the group test outcome is negative, then testing stops and all subjects in the group are
classified as negative; if, on the other hand, the test outcome is positive, then testing proceeds to the
second stage in which each subject is individually tested, and classified according to the outcome of
their individual test. Today, this so-called Dorfman testing is one of the most commonly adopted
schemes in practice due to its simplicity and efficiency, and is the focus of this paper.

In these settings, the tester needs to determine the various group sizes to be used in the first
stage of Dorfman testing, along with the assignment of heterogeneous subjects, with different risk
(probability of positivity) estimates for the binary characteristic, to the different groups. While
doing so, various operational and technological constraints may need to be taken into account to
ensure that the testing scheme is feasible and/or easily implementable for large populations. For
example, it may not be practical to change the testing scheme (e.g., group sizes) frequently, or to
use a large number of different (distinct) group sizes, as doing so may incur high set-up cost/time
(e.g., for configuring the testing machine for different group sizes) and operational challenges, or
may simply be infeasible due to the capability of the testing equipment. Thus, a static testing
scheme, which does not change over time, is highly desirable for practitioners; and is the focus of
this paper. In addition to ease of implementation, another advantage of a static testing scheme is
that it is determined only once and can be integrated into the testing protocol, allowing for a clear
and concise testing protocol. While determining a static testing scheme, it is essential to customize
the scheme based on the characteristics of the testing population (e.g., risk distribution) and the
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testing facility (e.g., capabilities of the testing machines), and we develop optimization models that
determine customized static testing schemes considering these characteristics.

What further complicates the testing scheme design is that the test is not perfectly reliable; and
consequently, subject misclassification is possible. This includes false negative classifications, that
is, positive subjects falsely classified as negative, and false positive classifications, that is, negative
subjects falsely classified as positive. This testing design problem arises in many settings, as dis-
cussed above. For example, in the context of public health screening, testing laboratories screen
donated blood (via a specimen from each donation), received periodically (e.g., with each ship-
ment), for a set of infectious diseases, such the human immunodeficiency virus (HIV), and hepatitis
viruses [10]; similarly, public health screening laboratories test segments of the state population for
sexually-transmitted diseases (STDs), such as chlamydia, via specimens from the subjects received
periodically [29]. In both cases, specimens are loaded into automated testing machines in batches
(typically between 40-200 specimens per batch depending on the equipment used [22]). Due to the
large number of subjects that need to be tested, testing begins as soon as a sufficient number of
subjects to form a complete batch arrive. As another example, consider industrial quality control
in which a set of products, received periodically (e.g., with each shipment from the supplier, in each
manufacturing shift), needs to be tested for defects; and the batch size may represent the shipment
size, or the capacity of the testing machine. Note that the batch size is a decision related, for ex-
ample, to equipment acquisition, operational characteristics, and financial parameters (e.g., based
on the trade-off between fixed costs and the delay in obtaining results), whereas the testing scheme
(group sizes, which is the focus of our paper) is an operational decision based on the population
risk distribution and test efficacy (sensitivity and specificity), and the batching decision constrains
the grouping decision. We model this aspect of the problem by considering the batch size as exo-
geneous, and studying the operational level grouping decision, constrained by the exogenous batch
size. While determining an optimal batch size is an important problem, it is outside the scope of
this paper.

The probability of having the binary characteristic (risk) may vary, sometimes substantially, with
subject-specific characteristics (risk factors) that are often known prior to testing. For example,
in donated blood screening, first-time blood donors in the United States (US) are around seven
times more likely to have an HIV infection than repeat donors [43]; various risk factors exist for
sexually-transmitted diseases, including chylamydia [6]; vector-borne infections, such as babesiosis
and Zika, are endemic in certain areas of the US [21]. Thus, subjects come from a heterogeneous
population, with each sub-population having a potentially different risk. However, the process of
estimating the subject-specific risk, informed by sub-population-specific risk estimates or based
on established risk factors for the binary characteristic, is far from perfect. This is because risk
estimates in the different sub-populations are inherently uncertain, and risk factors are often not
well-understood, e.g., [2, 19]. Consequently, the true risk of a subject is unobservable, and the
tester needs to estimate the risk of each subject and construct an uncertainty set that contains
the true risk with a high probability. Under such uncertainty in risk estimation, it is important
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to determine testing schemes that are not highly sensitive to perturbations in risk estimates, i.e.,
robust testing schemes. Specifically, we study the problem of determining optimal static risk-based
Dorfman testing schemes, comprised of a set of group sizes and a policy to assign subjects, with
different risk, to the mutually exclusive groups, under uncertainty on both subject characteristics
(hence the estimated risk) and the actual risk. Our goal is to identify a static testing scheme that
is used repetitively for every batch and that satisfies certain limitations on group sizes; and that
is accurate, in terms of subject classification, efficient, in terms of testing cost, and robust, with
respect to deviations from the estimated risk vector. Most literature on group testing considers the
objective of minimizing the testing cost under perfect tests, with limited focus on misclassification;
and robustness is an often overlooked dimension in group testing, as the relevant literature almost
exclusively assumes that subject risk is perfectly observable, that is, deterministic and known.

More specifically, both Dorfman’s original model and the majority of the subsequent research
impose unrealistic assumptions, such as perfect tests, i.e., there are no classification errors, a homo-
geneous population, i.e., the risk of the binary characteristic is identical across subjects, and infinite
testing batch sizes (e.g., [11, 37, 38]). While several papers extend the analysis of Dorfman testing
schemes to imperfect tests (e.g., [18, 24, 26, 29]), there is very limited work on Dorfman testing for
a heterogeneous population, i.e., with subject-specific risk, and the few papers that consider a het-
erogeneous population (e.g., [1, 23, 29]) mainly do so under restrictive assumptions, including that
subject risk is perfectly observable, or they determine testing schemes heuristically. In particular,
Hwang [23] determines optimal risk-based Dorfman testing schemes for a heterogeneous population,
but under the assumption that the test is perfect (hence, the objective is to minimize the number of
tests) and the subject risk is perfectly observable. Moreover, Hwang’s focus is on dynamic testing
schemes, i.e., group sizes and the subject-group assignment policy are allowed to change with each
batch, that is, the group testing problem is a deterministic problem, solved after the risk of each
batch of subjects is observed. McMahan et al. [29] extend the analysis in [23] to the case of im-
perfect tests, but conjecture that the problem, of determining risk-based Dorfman testing schemes
that minimize the expected number of tests, under imperfect tests and perfectly observable subject
risk, is intractable, and develop heuristics. More recently, focusing on dynamic testing schemes,
Aprahamian et al. [1] demonstrate that the generalization of Hwang’s model that takes into ac-
count imperfect tests, but with perfectly observable subject risk, is in fact tractable, resolving the
conjecture in the literature; establish the equivalence of the dynamic testing design problem to a
specific form of a network flow problem, namely the constrained shortest path problem; and develop
exact algorithms to determine optimal dynamic risk-based Dorfman testing schemes.

While the aforementioned studies have improved our understanding of optimal risk-based Dorf-
man testing for a heterogeneous population, they leave out other important aspects of the problem,
such as implementability of the testing scheme and uncertainty in subject risk estimates. For exam-
ple, both Aprahamian et al. [1] and Hwang [23] assume that the decision-maker can construct an
optimal dynamic testing scheme, customized for each batch of subjects, and subject risk values are
deterministic and perfectly observable by the tester. While the first assumption may be justified
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in certain settings, in other settings the decision-maker may not have the flexibility to modify the
testing scheme for every batch, as discussed above. McMahan et al. [29] consider a static testing
scheme (same group sizes and assignment policy are used for every batch), which partially resolves
the implementability issue, but this is done by: (i) ordering the subjects in non-decreasing order of
their risk and simply setting the risk of each subject to the expected risk of the corresponding order
statistics, and, (ii) determining testing schemes that attempt to minimize the expected number of
tests using heuristics, which are based on structures that are not guaranteed to exist in an optimal
testing scheme (e.g., group sizes are non-increasing for a risk-ordered batch, see [1]). A lack of
properties and algorithms for optimal static Dorfman testing schemes in this setting is not surpris-
ing, because various functions of order statistics (for batch sizes that are in the hundreds) arise
in an exact formulation, substantially complicating the analysis. Our analysis, of optimal static
Dorfman testing schemes for heterogeneous populations, resolves all of the aforementioned issues,
and as a by product, provides an analytical expression to compute the expectation of the product
of some function of a set of consecutive order statistics in an efficient manner, without requiring
high dimensional integrals. In addition, we investigate the realistic situation in which the true risk
of a subject is not known with certainty, but lies within a known uncertainty set, and this aspect
of the problem gives rise to a novel robust formulation of the problem.

Our contributions in this paper are as follows: First, we model important aspects of group
testing that are often overlooked in the literature, such as implementability of the testing scheme
and the uncertainty in subject risk, and we do so within a classification accuracy maximization
framework (rather than the minimization of the expected number of tests that is prevalent in the
literature). In this aspect, our formulation builds upon the deterministic formulation in Aprahamian
et al. [1], to consider static testing schemes under uncertainty, and allows us to quantify the “price of
implementability". Some key properties established in [1] for the deterministic model extend to the
stochastic setting. Consequently, we take advantage of a reformulation technique presented in [1] in
which the set partitioning problem is cast as a Constrained Shortest Path Problem. However, unlike
the model in [1], this reformulation does not, by itself, lead to an efficient solution technique for the
static grouping problem, and the structure of the optimal solution needs to be further analyzed.
Specifically, constructing the underlying graph requires the computation of a large number of high
dimensional integrals, the number of which grows quadratically in the number of subjects. By
exploiting the specific structure of the resulting integral for consecutive order statistics, we are able
to provide an equivalent expression for these integrals, substantially reducing their dimension. This
drastically improves the tractability of our approach and allows us to solve realistic problem sizes to
optimality. Armed with these results, we explore novel expectation-based and robust formulations of
this decision problem, show that both models reduce to a common form, which can be equivalently
formulated as a network flow problem, and use this reformulation to solve the static testing design
problem to optimality, expanding the previous result on dynamic testing schemes in Aprahamian
et al. [1] to static testing schemes under risk uncertainty. Analysis of the expectation-based and
robust models further provides valuable insight on the trade-off between classification accuracy
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and robustness. We demonstrate the effectiveness of the proposed static risk-based Dorfman testing
scheme through a case study on chlamydia screening, one of the most prevalent STDs in the US. The
proposed testing schemes reduce the misclassification and testing costs substantially over optimal
non risk-based (uniform) schemes and current screening practices. Further, our numerical study
suggests that the expected testing cost and misclassification cost of static risk-based testing schemes
are within two percent of the more complicated dynamic risk-based testing schemes, i.e., schemes
that are customized for each batch [1, 23]. Thus, restricting the testing scheme to a static scheme
does not hinder the performance of screening in a significant way. We find that this price of
implementability is especially low when the batch sizes are large or test accuracy is low. Our
numerical results also indicate that the performance of static risk-based testing schemes comprised
of only a small number of group sizes (only two in our setting) is comparable to more complicated
static risk-based testing schemes comprised of many group sizes. These findings indicate that simple
static schemes, with a small number of groups, can capture most benefits of risk-based testing,
underscoring the value of static risk-based testing schemes studied in this paper.

Lastly, from a practical perspective, which motivated this paper, the decision-maker (e.g., a
lab manager at a public health state laboratory) must develop testing protocols. Our optimization
models develop customized static testing schemes that specify, for all batches, both the group sizes
to be used and the subject assignment policy (i.e., based on a risk-ordering of the subjects), allowing
for a clear and concise testing protocol. The testing protocol for a dynamic testing scheme, in which
group sizes and subject-group assignment potentially change with each batch of subjects, are much
more complex. We also show that for an optimal assignment of the heterogeneous subjects to testing
groups, a risk-ordering of subjects is sufficient, that is, the tester does not need to estimate subject
risk with high accuracy. The models developed in this paper provide the decision-maker with the
necessary tools to identify an optimal static policy, which can then be included in their testing
protocol.

The remainder of this paper is structured as follows. Section 2 presents the notation and
the decision problem, and Section 3 discusses the expectation-based and robust formulations, and
provides expressions for the relevant metrics. Section 4 then analyzes the optimal design of static
risk-based Dorfman testing schemes and unveils key properties of an optimal testing scheme. Section
5 presents our results and findings from our case study on chlamydia screening in the US. Finally,
Section 6 concludes the paper and provides possible future research directions. To improve the
presentation and flow of the paper, all proofs and derivations are relegated to the Appendix.

2 The Notation and the Decision Problem

In this section, we present the notation and the decision problem. Throughout, we use upper-case
letters to denote random variables, lower-case letters to denote their realization, and boldface to
denote vectors. The terms positive and negative are used to refer to a subject’s true status (i.e., to
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denote whether or not the binary characteristic is present), or to the binary test outcome (i.e., to
denote whether or not the test outcome indicates the presence of the binary characteristic).

Consider a testing facility (e.g., laboratory) where subjects (or specimens collected from subjects)
arrive throughout the day. Subjects are tested in batches of size N for a binary characteristic,
where the batch size N is determined by the testing equipment, and hence, is considered exogenous
in our models; see the discussion in Section 1. Due to limited testing capacity and throughput
requirements, we assume that testing begins when a sufficient number of subjects arrive to form a
batch. For example, most public health screening laboratories have testing equipment dedicated to
the screening of a certain condition (i.e., disease or genetic disorder), and most testing machines
are highly automated, e.g., the nucleic acid amplification testing machine [22, 41] that we consider
in our case study in Section 5. These testing machines are loaded in batches (e.g., with batch sizes,
N , ranging from 40 to 200, depending on the testing machine), and testing of each batch typically
takes 3-4 hours. Thus, testing starts as soon as a set of N subjects is received. The tester needs
to place these N subjects in groups and classify each subject as positive or negative for the binary
characteristic, so as to minimize the costs of misclassification and testing, under imperfectly reliable
tests, and constrained by the given batch size.

The population is heterogeneous with respect to risk (probability of positivity) for the binary
characteristic due to subject-specific demographic and clinical factors. To model population het-
erogeneity, let Dm denote the true status of subject m for the binary characteristic, with a value
of 1 if subject m is a true-positive for the characteristic, and 0 otherwise, that is, random vari-
able Dm, unknown to the tester, follows a Bernoulli distribution with a subject-specific probability
of positivity given by Pm, independently of other subjects. However, the value of Pm, i.e., the
true risk of subject m, is unobservable by the tester. Therefore, the tester estimates the risk of
subject m, denoted by P̃m, based on the subject’s characteristics. We let Ξm denote the random
perturbation (error) term for the risk of subject m, i.e., the deviation of the estimated risk from
the true risk. Thus, the true risk of subject m can be expressed as a function of the estimated
risk and the random perturbation term. We assume that random variables P̃m,m = 1, · · · , N, are
independent and identically distributed (iid), following an arbitrary continuous distribution with
support in [a, b], for 0 ≤ a < b ≤ 1; random variables Ξm,m = 1, · · · , N, are iid, following an
arbitrary continuous distribution with support in [−δ, δ], for some δ ≥ 0; and random vectors P̃

and Ξ are independent1. Our modeling of subject risk, P̃m,m = 1, · · · , N, as a continuous random
variable not only allows for a broad class of risk prediction models with continuous outcome (e.g.,
regression), but also significantly improves the computational tractability of our solution algorithm.
In what follows, we also discuss the implications of a discrete (categorical) risk distribution. Then,
the true risk of subject m, conditional on the estimated risk and perturbation term, can be written

1The independence assumption is common in the field of statistical analysis with measurement errors [17]. The
main idea is that such measurement errors are due to exogenous factors that do not depend on the risk value. For
example, within our context, the error terms may arise due to biased data sets, or omission, or misrepresentation, of
certain risk factors in risk estimation.
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as, Pm|P̃m,Ξm = t
(︁
P̃m,Ξm

)︁
, for m = 1, · · · , N , where t(·) is some arbitrary continuous function

in [0, 1]. We do not make any assumptions on function t(p, ξ), other than that it is non-decreasing
in each of p and ξ; EΞm

[︁
t
(︁
p̃m,Ξm

)︁]︁
= p̃m, that is, the expectation of the true risk equals the esti-

mated risk; and t
(︁
p, 0
)︁
= p, for all p, that is, the true risk reduces to the estimated risk when the

perturbation term is zero, i.e., the case of no estimation error. Then, Dm|P̃m follows a compound
Bernoulli distribution with a probability of positivity of Pm|P̃m, which lies within an uncertainty
set,

[︁
t
(︁
P̃m,−δ

)︁
, t
(︁
P̃m, δ

)︁]︁
⊆ [0, 1]. Notice that the size of the uncertainty set can differ among

the subjects, as it is a function of the subject’s estimated risk, P̃m,∀m; this modeling reflects the
fact that the accuracy of a subject’s estimated risk may depend on their specific characteristics. In
addition, the size of the uncertainty set becomes larger for higher values of δ.

Without loss of generality, we represent the set of subjects in each batch as a risk-ordered set,
S ≡ {1, · · · , N}, that follows a non-decreasing order of the estimated subject risk, i.e., p̃1 ≤ p̃2 ≤
· · · ≤ p̃N . Then P̃ = (P̃ (1), P̃ (2), · · · , P̃ (N)) denotes the random ordered estimated risk vector per
batch, with P̃ (m) denoting the mth order statistic of a random sample of size N .

On the testing side, the test can be used for both individual testing and group testing (i.e., with
specimens from multiple subjects combined and tested as a group with a single test). While one
test per subject suffices for individual testing, group testing follows the two-stage Dorfman testing
scheme: initially, the group is tested with a single test; if the group test outcome is negative, then
testing stops and all subjects in the group are classified as negative. On the other hand, if the group
test outcome is positive, then each subject in the group is tested separately and classified according
to the outcome of their individual test. In either case, the test is not perfectly reliable, leading to the
possibility of misclassification. Let Rm(n) denote the random classification outcome for subject m,
m = 1, · · · , N, when tested within a group of size n in the first stage, with Rm(n) = 1 if subject m
is classified as positive, and 0 otherwise. Then, subject m will become a false negative classification,
i.e., a true-positive subject falsely classified as negative, with probability Pr

(︁
Dm(1−Rm(n)) = 1

)︁
,

and a false positive classification, i.e., a true-negative subject falsely classified as positive, with
probability Pr

(︁
(1−Dm)Rm(n) = 1

)︁
. Let Se and Sp respectively denote the test’s sensitivity (true

positive probability, i.e., the probability that the test outcome is positive, given that the group
contains at least one true-positive) and specificity (true negative probability, i.e., the probability
that the test outcome is negative, given that the group contains all true-negatives), and we assume
that the test’s sensitivity and specificity are not altered by group size. While the assumption that a
test’s specificity is not altered by group size generally holds, in certain settings the test’s sensitivity
may reduce as the group size increases, due to the dilution effect of grouping. We investigate the
impact of dilution on the optimal group testing solution in Section 5.4. Without loss of generality,
we consider that the test’s true negative probability is higher than its false negative probability2,
i.e., Sp ≥ (1− Se) ⇒ Se+ Sp− 1 ∈ [0, 1].

2The outcome of any test that does not satisfy this assumption can be transformed in a way that satisfies this
assumption; this can be done by interpreting a positive (negative) test outcome as a negative (positive) test outcome.
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The tester needs to determine a testing scheme, comprised of a set of group sizes to be used
(with a group size of one indicating individual testing) and an assignment policy (i.e., a set of rules
that specify how each of the N subjects, each with a given risk estimate, is to be assigned to one
of the mutually exclusive groups in a batch). Our focus is on static testing schemes in which group
sizes and the assignment policy remain the same for each batch; and we also consider the practical
restriction that the tester is able to use a maximum of γ distinct group sizes, for some given γ ∈ Z+.
As discussed in Section 1, these constraints may be dictated by the capability of the testing machine
or the set up needed to configure the testing machine for the different group sizes.

Then, the risk-based testing problem is to determine an optimal static testing scheme, i.e.,
a set of group sizes and an assignment policy, under uncertainty on both the estimated risk vector,
P̃ , and the perturbation vector, Ξ. We represent the decision variables as a collection of mutually
exclusive sets, Ω = (Ωi)i=1,··· ,g, for some g ∈ Z+, such that

⋃︁g
i=1Ωi = S, and Ωi ∩ Ωj = ∅, for

all i, j = 1, · · · , g: i ̸= j. Letting ni ≡ |Ωi| denote the cardinality (size) of set Ωi, i = 1, · · · , g, we
refer to the corresponding vector, n = (ni)i=1,··· ,g :

∑︁
i ni = N , as the group size vector. Thus, set

Ωi is the index set of subjects assigned to group i, where a subject’s index is determined based on
the risk-ordered set, S, that is, index m denotes the mth order statistic for a sample of size N . To
represent the constraint on the maximum number of distinct group sizes allowable in any testing
scheme, let yj , j = 1, · · · , N , equal 1 if at least one group of size j is utilized, and 0 otherwise, that
is, for a given Ω, and ∀j = 1, · · · , N , yj = 1 only if there exists at least one group i, i = 1, · · · , g,
such that ni = j. Then, letting

||Ω|| ≡
N∑︂
j=1

yj , (1)

we have that ||Ω|| ≤ γ.

In this setting, the risk vector, p̃, for each subject in a batch is estimated, and testing is conducted
following the assignment indicated by Ω, via groups of sizes n = (ni)i=1,··· ,g:

∑︁
i ni = N . The

objective is to minimize a function of misclassification and testing costs. To express the objective
function, we define the following random variables.

For any testing scheme given by Ω, let FNi(Ωi), FPi(Ωi), and Ti(Ωi) respectively denote the
number of false negative classifications, number of false positive classifications, and number of tests
performed for group i, ∀i. Then, we have that:

FNi(Ωi) =
∑︂
m∈Ωi

Dm(1−Rm(ni)); FPi(Ωi) =
∑︂
m∈Ωi

(1−Dm)Rm(ni); Ti(Ωi) =

⎧⎨⎩1, if ni = 1

1 + niI(Ωi), if ni > 1,

where I(Ωi) = 1, if the test outcome for group i is positive, and 0 otherwise. Then, the total number
of false negative classifications, false positive classifications, and tests performed for the set of N
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subjects under a given testing scheme, Ω, follow:

FN(Ω) =

g∑︂
i=1

FNi(Ωi), FP (Ω) =

g∑︂
i=1

FPi(Ωi), and T (Ω) =

g∑︂
i=1

Ti(Ωi).

Using these expressions, the total cost for group i, i = 1, · · · , g, and the total cost for the set of N
subjects can be respectively written as:

Qi(Ωi) ≡ λ1FNi(Ωi) + λ2FPi(Ωi) + (1− λ1 − λ2)Ti(Ωi), and (2)

Q(Ω) ≡
g∑︂

i=1

Qi(Ωi) =

g∑︂
i=1

[︂
λ1FNi(Ωi) + λ2FPi(Ωi) + (1− λ1 − λ2)Ti(Ωi)

]︂
, (3)

where λ = (λ1, λ2) ∈ [0, 1]2 : λ1 + λ2 ≤ 1, denotes a normalized weight (cost) vector. In practice,
the cost of a false negative classification is typically much higher than the cost of a false positive
classification: While false positives are often detected during subsequent confirmatory testing, false
negatives may lead to a missed diagnosis, and hence to potentially severe negative outcomes. We
discuss the choice of weight parameters in Section 5.

When clear from the context, we remove the arguments in parentheses to improve the presen-
tation. All mathematical proofs and derivations can be found in the Appendix.

3 Optimization Models and the Objective Function

We first present, in Section 3.1, expectation-based and robust formulations of the decision problem.
Then, in Section 3.2, we provide analytical expressions of the various performance measures that
contribute to the objective function.

3.1 Optimization Models

We use two different approaches for formulating the decision problem: (i) an expectation-based op-
timization model (EM) in which the objective is to minimize the expected value (under uncertainty
over both P̃ and Ξ) of the objective function, and (ii) a robust optimization model (RM) in which
the objective is to minimize the expected worst-case value of the objective function, that is, for each
possible realization of the estimated risk vector, P̃ , we determine a realization of the error vector,
Ξ, that provides the worst-case objective function value, and we minimize the expected worst-case
value (under uncertainty over P̃ ) of the objective function.
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Expectation-based Optimization Model (Problem EM):

minimize
Ω=(Ωi)i=1,··· ,g , g∈Z+

EP̃

[︃
EΞ

[︂
E[Q(Ω)|Ξ, P̃ ]

]︂]︃

subject to Ωi ∩ Ωj = ∅, ∀i, j = 1, · · · , g: i ̸= j (4)
g⋃︂

i=1

Ωi = {1, · · · , N} (5)

||Ω|| ≤ γ, (6)

where Q(Ω) is as defined in Eq. (3), γ ∈ Z+ represents the maximum number of distinct group
sizes allowed, and the operator || · || is as defined in Eq. (1).

The following lemma provides an equivalent expression of the EM objective function, and we
use it throughout the paper.

Lemma 1. Problem EM can be equivalently formulated as follows:

minimize
Ω=(Ωi)i=1,··· ,g , g∈Z+

EP̃

[︂
E[Q(Ω)|Ξ = 0, P̃ ]

]︂
subject to (4), (5), (6).

(7)

Problem EM is challenging due to two main reasons: First, the problem, of determining an
optimal testing scheme, Ω, that minimizes the objective function reduces to a partitioning problem,
which is NP -hard [7]. Hence, for realistic problem sizes in which the number of subjects in each
batch, N , is typically in the order of hundreds, the problem quickly becomes computationally
expensive. Second, the objective function is non-linear and non-separable, and further, even the
evaluation of the objective function for a given solution, Ω, poses some difficulty, as it requires the
computation of higher-dimensional integrations (see Sections 3.2 and 4.1).

We next formulate the robust optimization problem: Under uncertainty on the estimated risk
vector, P̃ , the tester determines a robust static testing scheme that would perform well under
most perturbations to a realized vector, p̃. For this purpose, we consider a mini-max (worst-case)
type objective function, commonly adopted in the robust optimization literature, e.g., [4,15,34,36].
Specifically, the objective is to determine a robust static testing scheme that minimizes the worst-
case cost, which, for a given realization of the estimated risk vector p̃, and a given testing scheme,
is attained by a realization of the error vector, Ξ, that maximizes the objective function. Then, the
goal is to determine a static testing scheme that minimizes the expectation (under uncertainty over
P̃ ) of the worst-case cost. The formulation of the robust optimization problem follows:
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Robust Optimization Model (RM):

minimize
Ω=(Ωi)i=1,··· ,g , g∈Z+

EP̃

[︁
Q∗(Ω)|P̃

]︁
subject to (4), (5), (6),

(8)

where Q∗(Ω)|P̃ is the optimal solution to the following stage 2 problem:

Q∗(Ω)|P̃ ≡ maximize
ξ

E
[︁
Q(Ω)|Ξ = ξ, P̃

]︁
subject to − δ ≤ ξm ≤ δ, ∀m = 1, · · · , N.

(9)

We denote the optimal solution to the stage 2 problem by ξm∗(Ω)|P̃ , for m = 1, · · · , N .

Remark 1. When δ = 0, i.e., when P = P̃ , Problem RM reduces to Problem EM.

Problem RM suffers from all the difficulties stated for Problem EM; in addition, Problem RM
faces yet another challenge: Since P̃ is a continuous random vector with an uncountable sample
space, to evaluate the expectation in the objective function of (8), one needs to solve an infinite
number of optimization problems in stage 2 (i.e., (9)), to obtain Q∗(Ω)|P̃ , one for each possible
realization of P̃ . In the subsequent sections, we characterize key properties of Problem RM that
will enable us to solve it to optimality.

While a worst-case objective function, similar to the one used in Problem RM, is a conservative
measure, e.g., [4, 12, 34], one might reduce the value of δ in order to reduce the conservativeness of
the solution.

3.2 The Objective Function

The objective function is a function of the expected number of false negatives, false positives, and
tests. In the following, we provide analytical expressions on each of these performance measures,
extending those in [1] to the case where the true risk vector is stochastic and not perfectly observable.
We refer the interested reader to [1] and Appendix B for derivation details.

False Negative Classifications: In individual testing, a false negative classification occurs if
a subject is positive and the test outcome is negative. In group testing, on the other hand, a false
negative classification occurs if: (i) the group contains positive subjects and the group test outcome
is negative, or (ii) the group contains positive subjects, the group test outcome is positive, and the
individual test outcome of a positive subject is negative. Then, conditioned on the estimated risk
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vector, P̃ , and the perturbation vector, Ξ, we can write, for a given Ω:

E
[︁
FNi(Ωi)|Ξ, P̃

]︁
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1− Se)

∑︂
m∈Ωi

t
(︁
P̃ (m),Ξm

)︁
, if ni = 1,

(1− Se2)
∑︂
m∈Ωi

t
(︁
P̃ (m),Ξm

)︁
, otherwise,

(10)

and E
[︁
FN(Ω)|Ξ, P̃

]︁
=

g∑︂
i=1

E
[︁
FNi(Ωi)|Ξ, P̃

]︁
.

False Positive Classifications: In individual testing, a false positive classification occurs if
a subject is negative and the test outcome is positive. In group testing, on the other hand, a
false positive classification occurs if the group contains negative subjects, the group test outcome
is positive, and the individual test outcome of a negative subject is positive. Then, conditioned on
the estimated risk vector, P̃ , the perturbation vector, Ξ, we have, for a given Ω:

E
[︁
FPi(Ωi)|Ξ, P̃

]︁
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(1− Sp)
∑︂
m∈Ωi

(︁
1− t

(︁
P̃ (m),Ξm

)︁)︁
, if ni = 1,

(1− Sp)Se
∑︂
m∈Ωi

(︁
1− t

(︁
P̃ (m),Ξm

)︁)︁
−ni(1− Sp)(Se+ Sp− 1)

∏︁
m∈Ωi

(︁
1− t

(︁
P̃ (m),Ξm

)︁)︁
, otherwise,

(11)

and E
[︁
FP (Ω)|Ξ, P̃

]︁
=

g∑︂
i=1

E
[︁
FPi(Ωi)|Ξ, P̃

]︁
.

Number of Tests: In individual testing, the per subject number of tests is equal to one. In
contrast, the number of tests in group testing relies on the test outcome of the first stage group
test. Specifically, if the group test outcome is negative, then only a single test is needed, and if
the group test outcome is positive, then additional individual tests are needed to fully classify the
subjects. Then, conditioned on the estimated risk vector, P̃ , the perturbation vector, Ξ, we have,
for a given Ω:

E
[︁
Ti(Ωi)|Ξ, P̃

]︁
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if ni = 1,

1 + ni

⎛⎝Se− (Se+ Sp− 1)
∏︂

m∈Ωi

(︁
1− t

(︁
P̃ (m),Ξm

)︁)︁⎞⎠ , otherwise.
(12)

and E
[︁
T (Ω)|Ξ, P̃

]︁
=

g∑︂
i=1

E
[︁
Ti(Ωi)|Ξ, P̃

]︁
.

Then, for a given weight vector, λ, and a testing scheme, Ω, one needs to use the law of total
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probability to compute the objective functions for each of EM and RM (see Eq.s (2) and (3) and the
formulations in (7)–(9)). This, however, requires computations of higher-dimensional integrations
(up to N -fold), as we discuss in detail in Section 4.1. Moreover, the multiplicative nature of the
expressions in Eq.s (11) and (25) substantially complicates the analysis, as the contribution of a
subject to the objective function depends on the set of subjects it is grouped with.

Notice that when λ = (1, 0) the objective function in Eq. (3) reduces to minimizing the expected
number of false negative classifications only, while when λ = (0, 1) the objective function reduces
to minimizing the expected number of false positive classifications only. Lastly, when λ = (0, 0) the
objective function in Eq. (3) reduces to minimizing the expected number of tests only, which, as
discussed in Section 1, is what is studied in the vast majority of the literature (e.g., [11,23,29,35]).
Thus, EM and RM formulations expand the deterministic formulation in Aprahamian et al. [1], to
consider easily implementable, static testing schemes under risk uncertainty.

4 Structural Properties and Algorithms

Recall that in its current form, Problem RM is intractable, as it requires solutions to an infinite
number of optimization problems in stage 2 (see (9)), one for each possible realization of the risk
vector, P̃ , which is continuous. Thus, in what follows, we first provide an equivalent formulation
for RM. Interestingly, this result also implies that Problems EM and RM both reduce to an
optimization problem with a common structure. Then, in the remainder of this section, we exploit
this common structure to develop structural properties and effective solution algorithms for both
EM and RM.

4.1 Equivalent Formulations for EM and RM

The following result is essential, as it reduces Problem RM from an intractable problem to a problem
that is only as difficult as EM.

Theorem 1.

1. For all Ω and P̃ , there exists an optimal solution to (9) such that ξm∗(Ω)|P̃ equals either −δ

or δ, for all m = 1, · · · , N .

2. If λ1(1−Se) ≥ λ2(1−Sp), then for all Ω and P̃ , there exists an optimal solution to (9) such
that ξm∗(Ω)|P̃ equals δ, for all m = 1, · · · , N .

The condition imposed in the second part of Theorem 1 is realistic, as the weight (cost) of a
false negative in the objective function, i.e., λ1, is typically much larger than the weight (cost) of a
false positive, i.e., λ2, as discussed in Section 2. As such, in the remainder of the paper, we assume
that the condition, λ1(1− Se) ≥ λ2(1− Sp), is satisfied.
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Corollary 1. If λ1(1−Se) ≥ λ2(1−Sp), then Problem RM reduces to the following optimization
problem:

minimize
Ω=(Ωi)i=1,··· ,g , g∈Z+

EP̃

[︂
E
[︁
Q(Ω)|Ξ = δ, P̃

]︁]︂
subject to (4), (5), (6).

(13)

Theorem 1 is significant, because it shows that an optimal solution does not depend on the dis-
tribution of the error term, but rather on its support, [−δ, δ]; further, it eliminates the need to solve
an infinite number of optimization problems in (9) to determine an optimal solution to RM, and re-
duces the two-stage robust formulation in (8)-(9) to a single-stage optimization problem. Moreover,
notice that the equivalent formulations for Problems EM and RM, provided respectively in (7)
and (13) (Lemma 1 and Corollary 1), have a common structure, in that the random perturbation
vector, Ξ, is reduced to a constant vector in both cases: in EM, Ξ = 0, and in RM, Ξ = δ. Hence,
both EM and RM reduce to the following form of an optimization problem:

Common-form Optimization Model (CM)

minimize
Ω=(Ωi)i=1,··· ,g , g∈Z+

EP̃

[︂
E
[︁
Q(Ω)|Ξ = z, P̃

]︁]︂
subject to Ωi ∩ Ωj = ∅, ∀i, j = 1, · · · , g: i ̸= j

g⋃︂
i=1

Ωi = {1, · · · , N}

||Ω|| ≤ γ,

(14)

where z is a constant vector, which equals 0 for EM and δ for RM, and the objective function is
given by:

EP̃

[︂
E
[︁
Q(Ω)|Ξ = z, P̃

]︁]︂
=

∫︂ b

a

∫︂ b

p̃1

· · ·
∫︂ b

p̃N−2

∫︂ b

p̃N−1

E
[︁
Q(Ω)|Ξ = z, P̃ = p̃

]︁
fP̃ (1),··· ,P̃ (N)(p̃

1, · · · , p̃N )dp̃N · · · dp̃1,

where

E
[︁
Q(Ω)|Ξ = z, P̃

]︁
= λ1E

[︁
FN(Ω)|Ξ = z, P̃

]︁
+λ2E

[︁
FP (Ω)|Ξ = z, P̃

]︁
+(1−λ1−λ2)E

[︁
T (Ω)|Ξ = z, P̃

]︁
,

and E
[︁
FN(Ω)|Ξ = z, P̃

]︁
, E
[︁
FP (Ω)|Ξ = z, P̃

]︁
, and E

[︁
T (Ω)|Ξ = z, P̃

]︁
are given by Eq.s (10),

(11), and (25), respectively, and fP̃ (1),··· ,P̃ (N)(.) denotes the joint probability density function of the
ordered random variables P̃ (1), P̃ (2), · · · , P̃ (N).

As stated earlier, Problem CM is challenging due to two main reasons: First, it is at least as
hard as the partitioning problem, which is NP -hard [7]; and second, the evaluation of the objective
function for a given solution, Ω, requires the computation of up to N -fold integrations, which are
computationally expensive. Therefore, in this section, we explore important structural properties
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of CM. Towards this end, consider the following definition.

Definition 1. A testing scheme, Ω =
(︁
Ωi

)︁
i=1,··· ,g, for some g = 1, · · · , N , is an ordered testing

scheme if it adheres to the ordered set S = {1, 2, · · · , N}, that is, Ω1 = {1, · · · , n1}, Ω2 = {n1 +

1, · · · , n1 + n2}, · · · ,Ωg = {
∑︁g−1

i=1 ni + 1, · · · , N}, where ni ∈ Z+, i = 1, · · · , g, and
∑︁g

i=1 ni = N .

This definition allows the representation of an ordered testing scheme Ω =
(︁
Ωi

)︁
i

in terms of a
vector corresponding to the group size, n = (ni)i, as groups are constructed (i.e., subjects in each
batch are assigned to groups) following the risk-ordered set, S.

Our main results for CM are given in Theorems 2, 3, and Lemma 2.

Theorem 2. For all N ∈ Z+ and γ ∈ Z+, there exists an optimal solution to CM in which the
testing scheme is an ordered testing scheme.

Theorem 2 expands the previous results in Aprahamian et al. [1] to static testing schemes
under risk uncertainty. Theorem 2 can be proven by an interchange argument, which is used to
transform any unordered partition into an ordered partition. By Theorem 2, to determine an optimal
risk-based testing solution, it is sufficient to consider the ordered testing schemes. This result is
important in two ways: First, it allows us to reformulate Problem CM as a Constrained-Shortest
Path (C-SP) Problem: While C-SP is NP-hard [16], the equivalent C-SP-type formulation enables
us to characterize important structural properties of the risk-based testing problem, allowing us to
efficiently solve the problem for realistic problem sizes. Second, recall that the objective function
in CM includes the expected number of false positive classifications and the number of tests, and
the expressions for each term contains products of some function of a set of order statistics (see
Eq.s (11) and (25)). However, Theorem 2 indicates that these expressions need to be evaluated
for products of functions of consecutive order statistics, and not any set of order statistics. This
result turns out to be very useful, as we are able to exploit this property in Lemma 2 to reduce the
higher dimensional (up to N -fold) integrations required to compute those expectations into 3-fold
integrations, substantially improving the efficiency with which the CM objective function can be
evaluated.

As a side note, Theorem 2 highlights an additional benefit of optimal static risk-based testing
schemes for practitioners: the tester does not need to evaluate the exact risk of each subject, rather it
is sufficient to determine a risk-ordering of the subjects. This greatly facilitates the implementation
of static risk-based testing schemes.

Lemma 2. Consider N iid continuous random variables, each with a continuous probability density
function fX(·), cumulative distribution function FX(·), and support [a, b]:0 ≤ a < b ≤ 1. Let X(1) ≤
X(2) ≤ · · · ≤ X(N) denote the order statistics, and let fX(i),··· ,X(j)(·) and fX(i),X(j)(·) respectively
represent the joint probability density functions of the ordered random variables, X(i) ≤ · · · ≤ X(j),
and of X(i) ≤ X(j), i < j. Let g(·) denote any continuous function. Then, for all N ≥ 4 and
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i, j = 1 · · · , N :i < j, we have:

E

[︄
j∏︂

m=i

g
(︁
X(m)

)︁]︄
=

∫︂ b

a

∫︂ xj

a

· · ·
∫︂ xi+1

a

g(xi)g(xi+1) · · · g(xj)fX(i),··· ,X(j)(xi, · · · , xj)dxi · · · dxj

=

∫︂ b

a

∫︂ xj

a

g(xi)g(xj)

[︄∫︂ xj

xi

g(x)fX(x)dx

FX(xj)− FX(xi)

]︄j−i−1

fX(i),X(j)(xi, xj)dxidxj .

Lemma 2 follows because, by conditioning on the values of the lowest and highest order statistics,
and by exploiting the structure of the integral, we are able to recursively reduce its dimensionality.
Thus, the continuous distribution assumption of the risk random variable leads to the expressions
in Lemma 2, greatly facilitating the evaluation of the CM objective function. In contrast, if one
considers a discrete (categorical) risk distribution, then such integration-based manipulations will
no longer be valid, and one has to keep track of all possible risk realizations for all N subjects,
significantly increasing the difficulty of evaluating the objective function value. For example, even
with only two risk categories, e.g., low and high risk, the total number of risk possibilities increases
exponentially with the number of subjects, N . In Appendix C, we demonstrate that a continuous
risk distribution has the potential of accurately emulating the statistical behavior of a discrete risk
distribution. Doing so enables the use of Lemma 2, which significantly simplifies the analysis.

In the following, we provide an equivalent, C-SP-type formulation for CM.

Remark 2. For a given y = (yj)j=1,··· ,N , the problem of finding a feasible decomposition, Ω =

(Ωi)i=1,··· ,g, that corresponds to vector y, i.e., ∀j = 1, · · · , N , yj = 1 only if there exists at least one
i, i = 1, · · · , g, such that ni = j, reduces to a Shortest Path (SP) Problem defined on an acyclic
directed graph G = (V,E), with vertex set V = {1, · · · , N+1}, edge set E = {(i, j) ∈ V : yj−i = 1},
and edge costs given by: ⎧⎨⎩EP̃

[︂
E
[︁
Qi(Si−j)|Ξ = 0, P̃

]︁]︂
, for Problem EM

EP̃

[︂
E
[︁
Qi(Si−j)|Ξ = δ, P̃

]︁]︂
, for Problem RM
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Theorem 3. Problem CM can be equivalently formulated as a C-SP Problem as follows:

minimize
y=(yj)j=1,··· ,N ,
x=(xij)(i,j)∈E

∑︂
(i,j)∈E

EP̃

[︂
E
[︁
Qi(Si−j)|Ξ = z, P̃

]︁]︂
xij

subject to
∑︂

j∈V :j>i

xij −
∑︂

j∈V :j<i

xji =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if i = 1

−1, if i = N + 1

0, otherwise

, ∀i ∈ V

∑︂
j∈V :j>i

xij ≤ 1, ∀i ∈ V

xkl ≤ yl−k, ∀(k, l) ∈ E (15.1)

N∑︂
j=1

yj ≤ γ (15.2)

yj ≤
∑︂

(k,l)∈E: l−k=j

xkl, ∀j = 1, · · · , N (15.3)

yj ∈ {0, 1}, ∀j = 1, · · · , N (15.4)

xij ∈ {0, 1}, ∀(i, j) ∈ E,

(15)

where Qi(·) function is as defined in Eq. (2); Si−j = {i, · · · , j − 1}, for all (i, j) ∈ E; yj, j =

1, · · · , N , is 1 if a group of size j is utilized, and 0 otherwise; xij, (i, j) ∈ E, is 1 if edge (i, j) is
selected, i.e., the group, comprised of subjects {i, · · · , j − 1}, is utilized, and 0 otherwise; and z is
a constant vector, which equals 0 for EM and δ for RM.

In summary, the equivalence between the testing/grouping model in CM and the network flow
formulation provided in Theorem 3 holds in our setting due to two main properties: (1) An optimal
solution corresponds to a risk-ordered testing scheme (Theorem 2), thus, one can, without loss
of optimality, search over the set of risk-ordered testing schemes (rather than all possible testing
schemes); and (2) the objective function is additive by group. In Theorem 3, we utilize these
properties to represent the testing problem for N subjects as a network flow model, defined on
graph G = (V,E), with vertex set V = {1, · · · , N + 1} and edge set E = {(i, j) ∈ V : i < j}. Each
vertex in V (with the exception of the dummy sink vertex, N + 1) corresponds to a subject, and
an edge from vertex i to vertex j corresponds to a group comprised of subjects i to j − 1. Note
that under this representation, each path from vertex 1 to N +1 corresponds to an ordered testing
scheme, and the set of all paths from vertex 1 to vertex N +1 represents the set of all possible risk-
ordered testing schemes. Consequently, by setting the weight of each edge in E as the contribution
of its corresponding group to the objective function, one can obtain the optimal testing scheme by
solving a Constrained-Shortest Path Problem on graph G = (V,E), provided in Theorem 3.

Remark 3.

1. To construct graph G = (V,E) for the CM formulation in Theorem 3, one needs to compute
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N(N + 1)/2 edge costs, where the cost of each edge (i, j) ∈ E, i.e., E[Qi(Si−j)], requires
(j − i)-fold integration. Thus, Lemma 2 greatly facilitates the construction of this graph by
allowing all higher-dimensional integrations, with j−i ≥ 4, to be computed via 3−dimensional
integrations.

2. If Constraints (15.1)-(15.4), which limit the number of allowable distinct group sizes, are
relaxed, then CM reduces to an SP Problem, which, for an acyclic graph, can be solved in
polynomial time via, for example, a topological sorting algorithm in O(|V | + |E|) = O(N2)

[8]. While such an algorithm runs in quadratic time, one must still construct the graph by
computing all edge costs, and Lemma 2 substantially reduces the computational effort required
for constructing the graph.

We note here that the total unimodularity property, satisfied for the SP, no longer holds with
the addition of Constraints (15.1)-(15.4). Nevertheless, in what follows, we show that the integrality
constraint can still be relaxed for a large set of decision variables, while preserving the integrality
of the optimal solution.

Lemma 3. The integrality constraint for x in (15) can be relaxed without loss of optimality.

As a result of Lemma 3, integrality constraints are needed only on the y variables, and hence,
the number of binary decision variables in CM grows only linearly with problem size, improving
the computational efficiency.

In the next section, we utilize the properties developed in this section to determine optimal
testing schemes for our case study, and discuss our findings.

5 Case Study: Chlamydia Screening in the United States

In this section, we demonstrate the value of static risk-based group testing schemes through a case
study on chlamydia screening. Chlamydia is among the most prevalent STDs in the US [6], and
existing screening practices differ substantially across states. For instance, certain states screen only
a subset of the their population, e.g., many states follow the United States Preventive Services Task
Force (USPSTF) recommendations to screen sexually active females of 24 years of age or younger,
and older females who are at high risk [14]. This focus on females is partial because the consequences
of chlamydia can be more severe for females, including infertility, and thus this is a harm mitigation
strategy. North Carolina [31] utilizes individual testing for the USPSTF recommended population,
while Iowa and Idaho utilize groups of size four [27, 30, 40]. It is worth noting that by screening
we imply the testing of asymptomatic subjects for chlamydia. For instance, Iowa state’s laboratory
does individual testing for subjects that have chlamydia symptoms, but we consider this diagnostic
testing, not screening. Further, whether testing is done through the state laboratory can depend on
many factors, including insurance status, e.g., see [30]. While these are interesting issues, worthy
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of research, we consider them out of scope, and here just assume a laboratory receiving many daily
samples that include some risk information, e.g., gender, age, and race/ethnicity.

Our objectives in this case study are multi-fold: (1) To quantify the benefits of risk-based
testing, i.e., EM and RM, in the realistic setting where subject risk is not perfectly observable,
over testing schemes that ignore the risk characteristics of the subjects. For the latter class of
testing schemes, we consider uniform testing schemes (UM), commonly studied in the literature
(e.g., [11, 18, 26]): Such uniform testing schemes assume that the population is homogeneous, and
rely solely on the overall prevalence rate in the population for determining a common group size,
and randomly assign subjects to testing groups. Owing to their simplicity, uniform testing schemes
are commonly adopted in practice (e.g., [27]), which is why we set them as the primary benchmark
scheme. Following current practices, in UM, if N is not divisible by the common group size, then
all leftover subjects are combined into a (smaller) group for testing. We also compare the proposed
testing schemes with a testing scheme that does not utilize group testing, and, as a result, restricts
screening to only a certain group of the population, which can be considered a proxy for the current
practices discussed above. (2) To compare the performance of the robust and expectation-based
versions of risk-based testing, i.e., solutions to RM and EM, and to quantify the price of robustness
for RM. (3) To compare the performance of the static risk-based schemes, studied in this paper,
to dynamic risk-based schemes (DM), i.e., testing schemes that are customized (in terms of group
sizes and subject assignment to groups) for each testing batch, based on the estimated risk vector
for that particular batch [1]. Of course, due to the additional flexibility, dynamic testing schemes are
expected to outperform static schemes, but this may come at a high operational complexity/cost;
hence, our goal is to shed light on the potential loss in screening performance from using static
schemes, i.e., the price of implementability, and to gain insight into the conditions under which
static schemes are expected to perform relatively well compared to their dynamic counter-parts,
that is, cases when the price of implementability is low. (4) To gain insight on the impact of
the dilution of grouping (which was assumed negligible in our models), on the benefits of static
testing schemes.

The remainder of this section is organized as follows. In Section 5.1, we calibrate our models
and discuss the data sources. Then, in Sections 5.2, 5.3, and 5.4 we discuss the findings from our
case study, in terms of the aforementioned objectives.

5.1 Model Calibration and Data Sources

To derive the risk estimate distribution for chlamydia in the general population (i.e., random variable
P̃ ), we use data from the Centers for Disease Control and Prevention (CDC) for the year 2014
[6]. The data set provides the number of chlamydia cases reported, along with the size of the
corresponding sub-population for each combination of gender, age group, and race/ethnicity group
(the data set contains two gender categories, seven age group categories, and five race/ethnicity
categories, leading to a total of 70 categories). Our analysis of this data set indicates that prevalence
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rates for chlamydia differ substantially among the 70 categories; hence in our study we consider each
category as a risk group, with risk corresponding to the prevalence rate of that group. In addition,
studies show that a large proportion of chlamydia cases go undiagnosed or unreported [13]; and the
number of actual cases is estimated to be roughly three-fold the number of cases reported [20]. This
underscores the importance of factoring in under-reporting, which we do by multiplying the number
of reported cases for each sup-population by 3. This leads to a total prevalence rate that is in line
with published rates. One potential drawback of this approach, is that it assumes a common under-
reporting rate for all sub-populations; this assumption is made due to a lack of under-reporting
data for the different sub-populations.

Based on the histogram of the risk for the CDC data set (see Figure 4 in Appendix C), we model
the estimated risk, P̃ , with a mixture distribution, comprised of two exponential distributions. This
particular mixture distribution provides a good fit for the histogram, which closely resembles the
probability density function of an exponential distribution, but with a higher coefficient of variation
than that of a single exponential distribution (which is one). The probability density function of
the mixture distribution follows:

fP̃ (p) = wβ1e
−β1p + (1− w)β2e

−β2p, ∀p ≥ 0, (16)

where w ∈ [0, 1] is a weight parameter, and β1, β2 > 0 are scale parameters corresponding to each
exponential distribution. The parameters of the mixture distribution, w, β1, β2, are derived by
matching the first two moments of the distribution to those of the data set so as to minimize the
Kolmogorov-Smirnov statistic [28], i.e., to minimize the maximum distance between the empirical
and the fitted cumulative distribution functions (see Appendix C for details). This method provides
parameter values of w = 0.235, β1 = 25.708, and β2 = 1, 291.832 for the mixture distribution.

We model the relationship between the true (unobservable) risk, P , and the estimated risk, P̃ ,
through a multiplicative model, i.e., P |P̃,Ξ = t(P̃,Ξ) = P̃ (1 + Ξ), where Ξ is a random error term
with support [−δ, δ], and δ, which represents the degree of uncertainty in the estimated risk with
respect to the true risk, is set to 0.667. This value represents the largest possible value that δ can
take while ensuring that all risk realizations are within the interval [0, 1]. Given that this choice
is somewhat arbitrary, we also conduct a one-way sensitivity analysis on δ to determine how the
degree of uncertainty impacts the optimal solutions to EM and RM.

On the testing side, we utilize a DNA-based assay, known as Viper ProbeTec Chlamydia Qx. This
assay is routinely used for the screening of chlamydia, and it can be administered either individually
or within groups [25], with a reported sensitivity of Se = 0.95 and a specificity of Sp = 0.99. We
utilize the findings of [32, 42] to estimate the cost parameter values. In particular, the cost of a
single false negative is set to the expected cost of any consequences resulting from not appropriately
treating a chlamydia patient (estimated as $2,927 3 [32]), while the per test screening cost is set

3The cost of a single false negative is estimated based on quality-adjusted life-years (QALYs), so as to assess the
economic value of medical treatment; see [32] for details.
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to $55 [32]. Lastly, the cost of a single false positive is assumed to be equal to the cost of an
additional confirmatory test, which we set to the cost of the screening test4. Normalizing these cost
parameters leads to λ1 = 0.96 and λ2 = 0.02 (hence, 1 − λ1 − λ2 = 0.02). In what follows, we
illustrate the benefits of our model by considering a testing batch size, N , of 60, as this provides a
realistic treatment of the problem [27].

For each scenario, characterized by the maximum number of distinct group sizes allowed, γ,
we determine the optimal solution for each of Problems UM, EM, and RM. In uniform testing
schemes, generated by UM, the population is assumed to be homogeneous, i.e., the risk of each
subject is the same, and equals the mean prevalence rate of the population, given by 0.97%. For
both EM and RM, we determine an optimal testing scheme that is an ordered testing scheme (see
Theorem 2). Thus, for all models, we can represent the testing scheme in terms of its group size
vector, n = (ni)i, because in EM and RM groups are constructed (i.e., subjects in each batch
are assigned to groups) following the risk-ordered set, S; and in UM groups are constructed in
a random fashion (i.e., subjects, which are assumed identical, are assigned to groups randomly).
To simplify the presentation of the group size vector, we use the notation x(y) to represent y

groups of size x. We also let E-OF denote the expected cost of a testing scheme, i.e., E-OF
≡ EP̃

[︂
E
[︁
Q|Ξ = 0, P̃

]︁]︂
, and W-OF denote the worst-case expected cost of a testing scheme, i.e.,

W-OF ≡ EP̃

[︂
E
[︁
Q|Ξ = δ, P̃

]︁]︂
. Similarly, we let CE-OF denote the expected cost of a testing scheme

conditioned on a given realization of the estimated risk vector, i.e., CE-OF ≡ E
[︁
Q|Ξ = 0, P̃

]︁
, and

CW-OF denote the worst-case cost of a testing scheme conditioned on a given realization of the
estimated risk vector, i.e., CW-OF ≡ E

[︁
Q|Ξ = δ, P̃

]︁
.

5.2 Risk-based versus Non Risk-based (Uniform) Schemes

In this section, we compare the performance of EM and RM to non risk-based (uniform) testing
schemes, i.e., solutions to Problem UM, for various scenarios, see Table 1. First, observe that for
scenarios with γ = 1 (i.e., with only one group size allowed), the optimal group sizes in EM and
UM are not necessarily equal (e.g., the single group size in UM is equal to 11, while the single
group size in EM, when γ = 1, is 12). This difference in group sizes arises due to the ordering
of the estimated risk vector in EM, that is, the optimal group size under a random assignment
policy (in UM) differs from the optimal group size under an ordered assignment policy (in EM).
Note that the number of distinct group sizes is strictly enforced for EM and RM, but not UM.
Also, observe that when the maximum number of distinct group sizes exceeds five (i.e., γ ≥ 5), no
additional benefits are realized in EM and RM solutions, i.e., the solutions converge to the solution
with γ = 5 (and in some scenarios, this convergence happens faster, i.e., for γ ≥ 4); see Table 1.

The results in Table 1 highlight several important properties. First, both EM and RM sub-
4The DNA-based assay considered in this case study is highly accurate, and can thus be considered as a gold

standard test. However, owing to its high cost, individually testing all subjects using this gold standard test is not
budget feasible, which is why group testing was implemented in the first place.
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Table 1: Performance comparison of UM, EM, and RM

Problem UM

n∗=
(︁
11(5), 5(1)

)︁
E-OF=0.2976 W-OF=0.4023

Problem EM

γ n∗ E-OF (%Change†) W-OF (%Change†)

1
(︁
12(5)

)︁
0.2729 (-8.30%) 0.3574 (-11.14%)

2
(︁
46(1), 7(2)

)︁
0.2212 (-25.69%) 0.3093 (-23.11%)

3
(︁
41(1), 11(1), 4(2)

)︁
0.2143 (-27.98%) 0.2908 (-27.71%)

≥ 4
(︁
38(1), 12(1), 6(1), 4(1)

)︁
0.2129 (-28.45%) 0.2881 (-28.38%)

Problem RM

γ n∗ E-OF (%Change†) W-OF (%Change†)

1
(︁
10(6)

)︁
0.2769 (-6.95%) 0.3557 (-11.57%)

2
(︁
24(2), 4(3)

)︁
0.2264 (-23.91%) 0.2981 (-25.90%)

3
(︁
23(2), 6(2), 1(2)

)︁
0.2278 (-23.45%) 0.2877 (-28.48%)

4
(︁
34(1), 14(1), 5(2), 1(2)

)︁
0.2236 (-24.87%) 0.2817 (-29.98%)

≥ 5
(︁
34(1), 14(1), 6(1), 4(1), 1(2)

)︁
0.2224 (-25.27%) 0.2802 (-30.35%)

† Percent change over UM

stantially reduce both the expectation and the worst-case of the cost over UM. For example, for
all γ ≥ 5, comparing EM (RM) with UM, we observe substantial reductions in both the expected
cost and the worst-case cost, respectively by 28% (25%) and 28% (30%) over UM. Even for the
most restrictive case of γ = 1, i.e., with only one group size allowed, EM still reports reductions
in the expected cost. Also, observe that both the optimal expected cost (optimal solution to EM)
and the worst-case cost (optimal solution to RM) reduce as γ increases, but in both cases, the
reductions exhibit diminishing returns, with a substantial reduction occurring when γ increases
from one to two, and with all subsequent reductions being much smaller in magnitude (see Figure
1). For example, if the solution of EM were used with two allowable group sizes, then costs are
expected to reduce by around 23% over a uniform (non-risk-based) testing scheme. This finding has
important implications, as schemes with only two group sizes are easier to implement in practice,
making them especially appealing to practitioners. Following the recommendation of the USPSTF,
we also consider a testing scheme in which only a subset of the population (in this case sexually
active females of 24 years of age or younger) is tested individually, and all others, in the absence
of testing, are classified as negative. This policy, when applied to the CDC data set, leads to an
objective function value of 0.4874, which is 76% to 129% higher than the proposed static testing
schemes, and hence performs much worse than both the static and uniform testing schemes.

Next, we compare the costs incurred in EM and RM solutions so as to quantify the price of
robustness and analyze the trade-off in expected classification accuracy versus solution robustness.
According to Table 1, RM leads to a 3.9% increase in the expected cost over EM; equivalently, the
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Figure 1: Expected cost (E-OF) (left) and worst-case cost (W-OF) (right) for UM, EM, and RM,
as a function of γ
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price of robustness is 3.9%, while EM leads to a 2.1% increase in the worst-case expected cost over
RM. Examining the RM and EM solutions in detail, we observe another advantage of RM, in
that RM has a tendency to reduce the expected number of misclassifications (false positives plus
false negatives) over EM. Specifically, RM reduces the expected number of misclassifications over
EM by an average of 4.7%, but this comes at a cost, as RM increases the expected number of tests
over EM by 9%. In conclusion, both EM and RM provide substantial benefits over non-risk based
testing schemes, such as UM. Depending on the setting, the added benefits of a robust testing
solution may outweigh the observed increase in the expected cost produced by the RM solution.

Next, we study how the testing performance varies with δ, i.e., the degree of uncertainty in
the estimated risk with respect to the true risk. For this purpose, we conduct a one-way sensitiv-
ity analysis on δ and determine UM, EM, and RM optimal solutions for various values of δ in
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}; see Figure 2 for the case with γ ≥ 5, that is, the case where there
is effectively no limit on the number of distinct group sizes (see the discussion above). Our results
indicate that both EM and RM substantially improve both objective functions over UM for all
values of δ. However, the performance of EM and RM turn out to be similar in this case study,
suggesting that EM captures almost all benefits of a static risk-based testing scheme over UM, at
least in this case study.

5.3 Static Risk-based Schemes versus Dynamic Risk-based Schemes

Having quantified the value of risk-based testing, in this section we compare the performance of
the static EM model to dynamic risk-based schemes, DM, see [1], in which the decision-maker
customizes the testing scheme to each batch, that is, in DM, the decision-maker first observes the
estimated risk vector for the batch, and then optimizes accordingly. The DM testing scheme will
outperform the EM scheme, here we want to quantify the reduction in performance by using a
static scheme, i.e., to quantify the price of implementability. Towards this end, we run a Monte
Carlo simulation with 10,000 replications. While the optimal static EM solution is computed only
once, prior to the simulations (as in the previous section), an optimal DM solution is computed
for each batch, that is, in each replication, a random realization of the estimated risk vector for a
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Figure 2: Expected cost (E-OF) (left) and worst-case cost (W-OF) (right) for UM, EM, and RM,
as a function of δ for all γ ≥ 5
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batch is generated following the distribution in Eq. (16), the optimal DM solution is determined
for this specific estimated risk vector, and the resulting expected costs are computed for the optimal
EM and DM solutions. Figure 3 depicts the histogram of the conditional expected cost, CE-OF,
for EM and DM for all γ ≥ 5. Figure 3 illustrates an interesting finding; the restriction to a
static scheme has minor cost implications. In Figure 3, the increase in expected costs under EM
is only 2.2%± 0.05% over DM, while EM is significantly easier to implement. This implies that a
static risk-based testing scheme captures most benefits of dynamic risk-based testing, while greatly
simplifying the implementation, making static testing schemes appealing for practitioners.

While the above analysis is certainly promising, it does not, however, convey any information
as to how such observations extend to other contexts. In what follows, in an effort to have a
better understanding of the impact of problem parameters on the price of implementability, we
conduct a two-dimensional sensitivity analysis. Specifically, we repeat the aforementioned Monte
Carlo simulation (of 10,000 replications) under 9 distinct settings that are characterized by three
test accuracy settings (low accuracy, (Se, Sp) = (0.6, 0.6), moderate accuracy, (Se, Sp) = (0.8, 0.8),
and high accuracy, (Se, Sp) = (0.95, 0.99)), and three testing population sizes (N = 20, N = 60,
and N = 100). Our choice of conducting a sensitivity analysis on parameters (Se, Sp) and N is
based on our numerical experiments, which demonstrate that the price of implementability is most
heavily impacted by (Se, Sp) and N . Table 2 displays the percent increase in expected cost resulting
from optimal static testing schemes, compared to optimal dynamic testing schemes for each setting.
The numerical results reveal that lower test accuracy leads to smaller differences between static and
dynamic testing schemes. For example, when N = 20, the gap is equal to 4.5%±0.16% for high
accuracy tests, and reduces to 1.4%±0.04% for low accuracy tests; a similar trend can be observed
for N = 60 and N = 100. Further, increasing the number of subjects reduces the gap between static
and dynamic schemes. For example, for low accuracy tests, the gap reduces from 1.4%±0.04%, when
N = 20, to only 0.4%±0.01%, when N = 100; and a similar trend can be observed for moderate and
high accuracy tests. However, notice that the largest gap across all settings is still relatively low
at 4.5%±0.16%. In summary, this analysis demonstrates how the proposed static testing scheme is
not only simpler, but also an effective alternative to the more complicated dynamic testing scheme;
this is especially true when the number of subjects is large and/or the test accuracy is low.
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Figure 3: Histogram of the conditional expected cost (CE-OF) for EM and DM for all γ ≥ 5
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5.4 The Effect of Dilution

So far, we have assumed that the dilution effect of grouping is negligible, that is, the test sensitivity
does not change with group size. In general, the magnitude of the dilution effect depends on the
infection and the testing technology, and in certain settings, the dilution effect can be non-negligible
for sufficiently large group sizes, reducing the test’s sensitivity. Therefore, we next investigate the
impact of dilution on static testing schemes.

There are a number of ways dilution can be incorporated into our models. When dilution for
group sizes below a certain threshold is negligible, as is the case for chlamydia screening via a
DNA-based assay with group sizes up to 10 (e.g., [29]), one can set an upper bound on the allowable
group size. In our network flow reformulation (Theorem 3), this implies removing a subset of the
edges from the graph representation of the problem. Specifically, since each edge corresponds to a
group in our graph, all edges corresponding to groups violating the upper bound constraint can be
removed. Our numerical experiments with an upper bound of 10 on group size indicate that the
proposed static scheme still reduces the overall cost by more than 12% over uniform testing schemes,
demonstrating that static testing schemes continue to offer significant benefits in the presence of
dilution.

In the more general setting where the dilution effect impacts the test sensitivity for all group
sizes, one can explicitly model the test’s sensitivity as a function of group size, n, i.e., Se(n). All the
analytical results in Section 4 continue to hold in this case, and as a result we can take advantage
of both the problem reformulation and the elimination of high dimensional integrals (Lemma 2 and
Theorem 3) to solve the resulting problem, as long as Se(n) + Sp ≥ 1,∀n – since, by definition of
the dilution effect, Se(n) is non-increasing in n, this condition can be guaranteed by, for instance,
setting an upper bound on group size. To demonstrate the impact of a group-dependent sensitivity
function, we investigate our case study setting using published data on the sensitivity of DNA-based
assays as a function of group size [39]. For illustrative purposes, we use linear regression to model the

25



Table 2: Performance comparison of static and dynamic testing schemes, in terms of the price of
implementability (percent increase in expected cost of optimal static schemes compared to optimal
dynamic schemes) for various settings

N = 20 N = 60 N = 100

(Se, Sp) = (0.6, 0.6) 1.4% ± 0.04% 0.5%± 0.01% 0.4%± 0.01

(Se, Sp) = (0.8, 0.8) 4.4%± 0.09% 1.0%± 0.02% 0.6%± 0.02

(Se, Sp) = (0.95, 0.99) 4.5%±0.16% 2.2% ± 0.05% 1.6%±0.03%

The error terms represent the half widths of the 95% confidence intervals

test’s sensitivity (Se(n)) as a linear function of group size (with a correlation coefficient of 0.98); see
Figure 7 in the Appendix. Our numerical study with this linear sensitivity function leads to findings
similar to the no-dilution case, for example, under the dilution effect, the proposed static testing
scheme still reduces the overall cost by 34% over the uniform testing scheme. A main difference,
however, is that the model that considers dilution tends to place lower risk subjects in larger groups
and higher risk subjects in smaller groups. This is intuitive, due the reduced sensitivity under
dilution, larger groups have less accurate test outcomes. Consequently, the optimal solution places
risky subjects in smaller groups so as to have a high level of accuracy, and this comes at the expense
of placing some lower risk subjects in larger groups. While these are interesting observations, we do
note, however, that the differences are subtle as the overall structures of the two solutions remain
similar. In fact, evaluating the objective function value of the no-dilution model’s optimal solution
under the dilution effect reveals that the no-dilution optimal solution still performs exceptionally
well, and reduces the cost by 30% over the uniform testing scheme. This indicates that considering
dilution does not lead to drastic differences in optimal grouping, and that the no-dilution model
continues to provide “good” solutions.

6 Conclusions and Suggestions for Future Research

We develop novel models for determining optimal static risk-based Dorfman testing schemes under
imperfectly observable subject risk, with the objective of accurately and efficiently classifying a
set of subjects as positive or negative for a binary characteristic. Our models take into account
important test and population level characteristics, and generate easily implementable risk-based
testing schemes. While these problems can be modeled as partitioning problems, we derive various
key structural properties of their optimal solutions and reduce them into network flow problems;
this allows us to obtain optimal risk-based testing schemes for realistic problem sizes. Further, our
novel expression on the expected value of the product of a function of a set of consecutive order
statistics enables us to substantially improve the efficiency with which the corresponding graph can
be constructed. We also explore a novel robust formulation, an important special case of which we
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are able to solve to optimality. Our case study, on chlamydia screening in the US, demonstrates the
effectiveness of static risk-based testing schemes, which substantially reduce the costs of misclassi-
fication and testing over current screening practices, while significantly improving the robustness
of the solution. Such results highlight the importance of customizing testing procedures based on
the characteristics of the population (e.g., risk distribution) and the characteristics of the testing
equipment (e.g., batch sizes, level of automation).

There are several important extensions of this research effort. We consider a purely static testing
scheme, comprised of group sizes and a subject assignment policy that is used repetitively for each
testing batch. One might consider various partially dynamic testing schemes in which some com-
ponents of the testing scheme may be customized for the specific batch. Further research directions
may include improving the realism of the model. Our models assume that the dilution effect is
negligible. The magnitude of the dilution effect is context dependent, varies substantially with the
testing technology and the infection, and in certain settings, can be non-negligible for sufficiently
large group sizes, reducing the test’s sensitivity. One may study the testing scheme optimization
model under a test sensitivity function that varies with group size. One can also expand this work
to consider other group testing schemes, such as multi-stage hierarchical schemes or schemes that
take advantage of overlapping groups (e.g., array-based grouping schemes [26]). While such schemes
may be more complicated to implement, they have the potential to outperform Dorfman testing
schemes, and the complexity versus benefit trade-off needs to be studied. Another important di-
rection is to determine an optimal batch size, which was considered exogeneous in our models,
considering the trade-off between fixed costs and the delay in obtaining test outcomes. Finally, a
promising research direction is to utilize group testing for the purpose of risk estimation, where
important research questions arise on how the population should be clustered into different risk
groups (sub-populations) and what risk value should be assigned to each of these sub-populations.

We hope that this work, which indicates that the benefits of static risk-based group testing
schemes can be substantial, encourages academicians and practitioners to further study static risk-
based testing schemes.
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A Mathematical Proofs

Proof of Lemma 1. Consider the EM objective function, given by:

g∑︂
i=1

EP̃

[︃
EΞ

[︂
λ1E[FNi(Ωi)|Ξ, P̃ ] + λ2E[FPi(Ωi)|Ξ, P̃ ] + (1− λ1 − λ2)E[Ti(Ωi)|Ξ, P̃ ]

]︂]︃
.

Next, we show that each term in the objective function reduces to the case when Ξ = 0.

EΞ

[︂
E[FNi(Ωi)|Ξ, P̃ ]

]︂
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− Se)

∑︂
m∈Ωi

EΞm

[︂
t
(︁
P̃ (m),Ξm

)︁]︂
, if ni = 1,

(1− Se2)
∑︂
m∈Ωi

EΞm

[︂
t
(︁
P̃ (m),Ξm

)︁]︂
, otherwise,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1− Se)

∑︂
m∈Ωi

P̃ (m), if ni = 1
(︂
by assumption that EΞm

[︁
t
(︁
P̃m,Ξm

)︁]︁
= P̃m

)︂
,

(1− Se2)
∑︂
m∈Ωi

P̃ (m), otherwise,

=E[FNi(Ωi)|Ξ = 0, P̃ ],

EΞ

[︂
E[FPi(Ωi)|Ξ, P̃ ]

]︂
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1− Sp)
∑︂
m∈Ωi

(︂
1−EΞm

[︂
t
(︁
P̃ (m),Ξm

)︁]︂)︂
, if ni = 1,

(1− Sp)Se
∑︂
m∈Ωi

(︂
1−EΞm

[︂
t
(︁
P̃ (m),Ξm

)︁]︂)︂
−ni(1− Sp)(Se+ Sp− 1)EΞm

[︂∏︁
m∈Ωi

(︂
1− t

(︁
P̃ (m),Ξm

)︁)︂]︂
, otherwise.

Noting that random variables Ξm, m = 1, · · · , N , are iid, and that EΞm

[︁
t
(︁
P̃m,Ξm

)︁]︁
= P̃m, we can

write:

EΞ

[︂
E[FPi(Ωi)|Ξ, P̃ ]

]︂
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1− Sp)
∑︂

m∈Ωi

(︂
1− P̃ (m)

)︂
, if ni = 1,

(1− Sp)Se
∑︂

m∈Ωi

(︁
1− P̃ (m))︁− ni(1− Sp)(Se+ Sp− 1)

∏︂
m∈Ωi

(︁
1− P̃ (m))︁, otherwise.

=E[FPi(Ωi)|Ξ = 0, P̃ ].

Following a similar logic, it can be shown that EΞ

[︂
E[Ti(Ωi)|Ξ, P̃ ]

]︂
= E[Ti(Ωi)|Ξ = 0, P̃ ], thus

concluding the proof.

Proof of Theorem 1. Part 1.) Suppose, to the contrary, that in an optimal solution to (9), denoted
by ξ∗, there exists a subject, denoted by m, in group i, such that −δ < ξm∗ < δ. In what follows,
we show that one can always improve the objective function value to (9) by either increasing ξm∗ to
δ or decreasing ξm∗ to −δ. Towards this end, consider an alternative solution, denoted by ξ̃, which
is identical to ξ∗, with the only exception that ξ̃m = ξm∗ + ε, for some |ε| > 0.

Case I: ni = 1
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By using the expressions in Section 3.2, the contribution of group i to the objective function in (9)
is given by:

Qi(ξ
∗) =t

(︁
P̃ (m), ξm∗)︁[︁λ1(1− Se)− λ2(1− Sp)

]︁
+ 1− λ1 − λ2 + λ2(1− Sp),

Qi(ξ̃) =t
(︁
P̃ (m), ξ̃m

)︁[︁
λ1(1− Se)− λ2(1− Sp)

]︁
+ 1− λ1 − λ2 + λ2(1− Sp).

⇒ Qi(ξ̃)−Qi(ξ
∗) =

[︂
t
(︁
P̃ (m), ξ̃m

)︁
− t
(︁
P̃ (m), ξm∗)︁]︂[︁λ1(1− Se)− λ2(1− Sp)

]︁
.

Sub-case I: λ1(1− Se) ≥ λ2(1− Sp)

Let ε = δ − ξm∗ > 0 ⇒ ξ̃m = δ, and hence we get that:

Qi(ξ̃)−Qi(ξ
∗) =

[︂
t
(︁
P̃ (m), δ

)︁
− t
(︁
P̃ (m), ξm∗)︁]︂[︁λ1(1− Se)− λ2(1− Sp)

]︁
≥ 0,

since λ1(1− Se)− λ2(1− Sp) ≥ 0, ξm∗ < δ, and t(p̃, ξ) is increasing in ξ by assumption.

Sub-case II: λ1(1− Se) < λ2(1− Sp)

Let ε = −δ − ξm∗ < 0 ⇒ ξ̃m = −δ, and hence we get that:

Qi(ξ̃)−Qi(ξ
∗) =

[︂
t
(︁
P̃ (m),−δ

)︁
− t
(︁
P̃ (m), ξm∗)︁]︂[︁λ1(1− Se)− λ2(1− Sp)

]︁
≥ 0,

since λ1(1− Se)− λ2(1− Sp) < 0, ξm∗ > −δ, and t(p̃, ξ) is increasing in ξ by assumption.

Case II: ni > 1

Similarly, by using the expressions in Section 3.2, the contribution of group i to the objective
function in (9) is given by:

Qi(ξ
∗) =

[︂
λ2(1− Sp)Se− λ1

(︁
1− Se2

)︁]︂∑︂
l∈Ωi

(︂
1− t

(︁
P̃ (l), ξl∗

)︁)︂
− ni(Se+ Sp− 1)

[︁
1− λ1 − λ2 + λ2(1− Sp)

]︁ ∏︂
l∈Ωi

(︂
1− t

(︁
P̃ (l), ξl∗

)︁)︂
+ (1− λ1 − λ2)(1 + niSe) + λ1(1− Se2)ni,

Qi(ξ̃) =
[︂
λ2(1− Sp)Se− λ1

(︁
1− Se2

)︁]︂∑︂
l∈Ωi

(︂
1− t

(︁
P̃ (l), ξ̃l

)︁)︂
− ni(Se+ Sp− 1)

[︁
1− λ1 − λ2 + λ2(1− Sp)

]︁ ∏︂
l∈Ωi

(︂
1− t

(︁
P̃ (l), ξ̃l

)︁)︂
+ (1− λ1 − λ2)(1 + niSe) + λ1(1− Se2)ni.

⇒ Qi(ξ̃)−Qi(ξ
∗) =h

(︁
ξ∗, ξ̃

)︁ [︂
t
(︁
P̃ (m), ξm∗)︁− t

(︁
P̃ (m), ξ̃m

)︁]︂
,

where

h
(︁
ξ∗, ξ̃

)︁
= λ2(1−Sp)Se−λ1

(︁
1−Se2

)︁
−ni(Se+Sp−1)

[︁
1−λ1−λ2+λ2(1−Sp)

]︁ ∏︂
l∈Ωi
l ̸=m

(︂
1−t

(︁
P̃ (l), ξ̃l

)︁)︂
.
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Note that h
(︁
ξ∗, ξ̃

)︁
is independent of both ξm∗ and ξ̃m.

Sub-case I: h
(︁
ξ∗, ξ̃

)︁
≤ 0

Let ε = δ − ξm∗ > 0 ⇒ ξ̃m = δ, and hence we get that:

Qi(ξ̃)−Qi(ξ
∗) = h

(︁
ξ∗, ξ̃

)︁ [︂
t
(︁
P̃ (m), ξm∗)︁− t

(︁
P̃ (m), δ

)︁]︂
≥ 0,

since h
(︁
ξ∗, ξ̃

)︁
≤ 0, ξm∗ < δ, and t(p̃, ξ) is increasing in ξ by assumption.

Sub-case II: h
(︁
ξ∗, ξ̃

)︁
> 0

Let ε = −δ − ξm∗ < 0 ⇒ ξ̃m = −δ, and hence we get that:

Qi(ξ̃)−Qi(ξ
∗) = h

(︁
ξ∗, ξ̃

)︁ [︂
t
(︁
P̃ (m), ξm∗)︁− t

(︁
P̃ (m),−δ

)︁]︂
≥ 0,

since h
(︁
ξ∗, ξ̃

)︁
> 0, ξm∗ > −δ, and t(p̃, ξ) is increasing in ξ by assumption.

Hence, in all possible cases, the objective function has been maintained or improved, thus
concluding the proof.

Proof of Theorem 1. Part 2.) The proof follows similarly to that of part 1.). However, notice that
if λ1(1 − Se) ≥ λ2(1 − Sp), then, when ni = 1, Sub-case I is satisfied and the optimal solution is
attained at δ. On the other hand, if ni > 1, we have that:

λ2(1− Sp)Se− λ1

(︁
1− Se2

)︁
= λ2(1− Sp)Se− λ1(1− Se)(1 + Se)

≤ λ2(1− Sp)Se− λ1(1− Se)Se

=
[︁
λ2(1− Sp)− λ1(1− Se)

]︁
Se ≤ 0,

and since
ni(Se+ Sp− 1)

[︁
1− λ1 − λ2 + λ2(1− Sp)

]︁ ∏︂
l∈Ωi
l ̸=m

(︂
1− t

(︁
P (l), ξ̃l

)︁)︂
≥ 0,

we get that h
(︁
ξ∗, ξ̃

)︁
≤ 0. Hence, Sub-case I is satisfied and the optimal solution is attained at δ,

concluding the proof.

Proof of Theorem 2. We prove the result by showing that for any risk vector realization, any un-
ordered testing scheme can be converted into an ordered testing scheme while reducing or maintain-
ing the values of all three performance measures in the objective function. We only prove the result
for Problem EM, as the proof for Problem RM follows similarly, with the only difference being
that the entire risk vector is multiplied by 1+δ. Towards this end, consider an estimated risk vector
realization, p̃, and suppose, to the contrary, that the optimal testing scheme, Ω∗ = {Ω∗

1, · · · ,Ω∗
g},

for some g = 2, · · · , N 5, is not an ordered testing scheme. Then, there must exist two groups, Ω∗
i

and Ω∗
j , i, j = 1, · · · , g : i ̸= j, such that:

(i) min
m∈Ω∗

i

p̃m < max
m∈Ω∗

j

p̃m, and (ii) max
m∈Ω∗

i

p̃m > min
m∈Ω∗

j

p̃m.

Assume, without loss of generality, that ni ≤ nj .
5If g = 1, then all subjects are in one group, and hence it is an ordered testing scheme.
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Case I: ni = 1:

Since ni = 1, then it must be true that nj > 16. Due to conditions (i) and (ii) the single subject
in group Ω∗

i , denoted with index ki, has a lower risk than the subject with the maximum risk in
group Ω∗

j , denoted with index kj (i.e., p̃ki < p̃kj ). Let Ψi = {ki} and let Ψj = {kj}, and define a
new testing scheme, Ω̂ = {Ω̂1, · · · , Ω̂g}, where subjects in Ψi are interchanged with subjects in Ψj ,
that is, Ω̂i = (Ω∗

i \ Ψi) ∪ Ψj , Ω̂j = (Ω∗
j \ Ψj) ∪ Ψi, and Ω̂l = Ω∗

l for all l = 1, · · · , g : l ̸= i, j. As
such, we have that:∏︂

m∈Ω∗
j

(1− p̃m) <
∏︂

m∈Ω̂j

(1− p̃m) ⇒ nj

∏︂
m∈Ω∗

j

(1− p̃m) < nj

∏︂
m∈Ω̂j

(1− p̃m).

In what follows, we will show that Ω̂ reduces or maintains the value of all performance measures.

(a) Expected number of false negatives

We have that:

E[FN(Ω∗)] =
∑︂
l:l ̸=i,j

E[FNl] + (1− Se)p̃ki + (1− Se2)
∑︂
m∈Ω∗

j

p̃m, and

E[FN(Ω̂)] =
∑︂
l:l ̸=i,j

E[FNl] + (1− Se)p̃kj + (1− Se2)
∑︂
m∈Ω̂j

p̃m.

⇒ E[FN(Ω∗)]−E[FN(Ω̂)] = −(1− Se)(p̃kj − p̃ki) + (1− Se2)(p̃kj − p̃ki)

= Se(1− Se)(p̃kj − p̃ki) ≥ 0.

As such, E[FN(Ω̂)] ≤ E[FN(Ω∗)].

6If both groups are of size 1, then they will follow an ordered testing scheme.
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(b) Expected number of false positives

We have that:

E[FP (Ω∗)] =
∑︂
l:l ̸=i,j

E[FPl] + (1− Sp)(1− p̃ki)

+ (1− Sp)Se
∑︂
m∈Ω∗

j

(1− p̃m)− nj(1− Sp)(Se+ Sp− 1)
∏︂

m∈Ω∗
j

(1− p̃m), and

E[FP (Ω̂)] =
∑︂
l:l ̸=i,j

E[FPl] + (1− Sp)(1− p̃kj )

+ (1− Sp)Se
∑︂
m∈Ω̂j

(1− p̃m)− nj(1− Sp)(Se+ Sp− 1)
∏︂

m∈Ω̂j

(1− p̃m).

⇒ E[FP (Ω∗)]−E[FP (Ω̂)] =(1− Sp)(1− Se)(p̃kj − p̃ki)

+ nj(1− Sp)(Se+ Sp− 1)

⎡⎣ ∏︂
m∈Ω̂j

(1− p̃m)−
∏︂

m∈Ω∗
j

(1− p̃m)

⎤⎦ > 0.

As such, E[FP (Ω̂)] ≤ E[FP (Ω∗)].

(c) Expected number of tests

We have that:

E[T (Ω∗)] =
∑︂
l:l ̸=i,j

E[Tl] + 2 + nj

(︂
Se− (Se+ Sp− 1)

∏︂
m∈Ω∗

j

(1− p̃m)
)︂
, and

E[T (Ω̂)] =
∑︂
l:l ̸=i,j

E[Tl] + 2 + nj

(︂
Se− (Se+ Sp− 1)

∏︂
m∈Ω̂j

(1− p̃m)
)︂
.

⇒ E[T (Ω∗)]−E[T (Ω̂)] =nj(Se+ Sp− 1)

⎡⎣ ∏︂
m∈Ω̂j

(1− p̃m)−
∏︂

m∈Ω∗
j

(1− p̃m)

⎤⎦ > 0.

As such, E[T (Ω̂)] ≤ E[T (Ω∗)].

Thus, by converting groups i and j into an ordered testing scheme, all measures are either maintained
or reduced, implying that there exists an optimal partition, which is ordered.

Case II: ni > 1

Note that when the two group sizes are greater than one, the expected number of false negatives
resulting from these groups is constant. As such, one can convert any unordered testing scheme into
an ordered one without impacting the expected number of false negatives. Thus, we proceed by
showing that the remaining performance measures (i.e., E[FP ] and E[T ]) are reduced or maintained.
By conditions (i) and (ii), there exist ∅ ⊂ Ψi ⊆ Ω∗

i and ∅ ⊂ Ψj ⊆ Ω∗
j such that |Ψi| = |Ψj | and

when Ψi and Ψj are interchanged the resulting set of groups will follow an ordered testing scheme
in which the group with the smaller size contains the lowest risk subjects, while the group with the
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larger size contains the highest risk subjects. We have that:∏︂
m∈Ψj

(1− p̃m)−
∏︂

m∈Ψi

(1− p̃m) > 0 (17)

Sub-case I: ni

∏︂
m∈Ωi\Ψi

(1− p̃m) > nj

∏︂
m∈Ωj\Ψj

(1− p̃m)

Define a new testing scheme, Ω̂ = {Ω̂1, · · · , Ω̂g}, where subjects in Ψi are interchanged with subjects
in Ψj , that is, Ω̂i = (Ω∗

i \Ψi) ∪Ψj , Ω̂j = (Ω∗
j \Ψj) ∪Ψi, and Ω̂l = Ω∗

l for all l = 1, · · · , g : l ̸= i, j.
In what follows, we will show that partition Ω̂ reduces or maintains the value of all performance
measures. Multiplying the condition imposed in the sub-case, i.e.,

ni

∏︂
m∈Ωi\Ψi

(1− p̃m) > nj

∏︂
m∈Ωj\Ψj

(1− p̃m),

by Eq. (17), and expanding and rearranging gives:

ni

∏︂
m∈Ω̂i

(1− p̃m) + nj

∏︂
m∈Ω̂j

(1− p̃m) > ni

∏︂
m∈Ω∗

i

(1− p̃m) + nj

∏︂
m∈Ω∗

j

(1− p̃m).

(a) Expected number of false positives (E[FP ]):

We have that:

E[FP (Ω∗)] =
∑︂
l:l ̸=i,j

E[FPl] + (1− Sp)Se
∑︂
m∈Ω∗

i

(1− p̃m)− ni(1− Sp)(Se+ Sp− 1)
∏︂

m∈Ω∗
i

(1− p̃m)

+ (1− Sp)Se
∑︂
m∈Ω∗

j

(1− p̃m)− nj(1− Sp)(Se+ Sp− 1)
∏︂

m∈Ω∗
j

(1− p̃m), and

E[FP (Ω̂)] =
∑︂
l:l ̸=i,j

E[FPl] + (1− Sp)Se
∑︂
m∈Ω̂i

(1− p̃m)− ni(1− Sp)(Se+ Sp− 1)
∏︂

m∈Ω̂i

(1− p̃m)

+ (1− Sp)Se
∑︂
m∈Ω̂j

(1− p̃m)− nj(1− Sp)(Se+ Sp− 1)
∏︂

m∈Ω̂j

(1− p̃m).

Noting that, ∑︂
m∈Ω∗

i∪Ω∗
j

(1− p̃m) =
∑︂

m∈Ω̂i∪Ω̂j

(1− p̃m),

and subtracting the two gives:

E[FP (Ω∗)]−E[FP (Ω̂)]

(1− Sp)(Se+ Sp− 1)
=ni

∏︂
m∈Ω̂i

(1− p̃m) + nj

∏︂
m∈Ω̂j

(1− p̃m)− ni

∏︂
m∈Ω∗

i

(1− p̃m)− nj

∏︂
m∈Ω∗

j

(1− p̃m) > 0.

As such, E[FP (Ω̂)] ≤ E[FP (Ω∗)].

(b) Expected number of tests (E[T ]):
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We have that:

E[T (Ω∗)] =
∑︂
l:l ̸=i,j

E[Tl] + 2 + ni

(︂
Se− (Se+ Sp− 1)

∏︂
m∈Ω∗

i

(1− p̃m)
)︂

+ nj

(︂
Se− (Se+ Sp− 1)

∏︂
m∈Ω∗

j

(1− p̃m)
)︂
, and

E[T (Ω̂)] =
∑︂
l:l ̸=i,j

E[Tl] + 2 + ni

(︂
Se− (Se+ Sp− 1)

∏︂
m∈Ω̂i

(1− p̃m)
)︂

+ nj

(︂
Se− (Se+ Sp− 1)

∏︂
m∈Ω̂j

(1− p̃m)
)︂
.

Subtracting the two gives:

E[T (Ω∗)]−E[T (Ω̂)]

(Se+ Sp− 1)
=ni

∏︂
m∈Ω̂i

(1− p̃m) + nj

∏︂
m∈Ω̂j

(1− p̃m)− ni

∏︂
m∈Ω∗

i

(1− p̃m)− nj

∏︂
m∈Ω∗

j

(1− p̃m) > 0.

As such, E[T (Ω̂)] ≤ E[T (Ω∗)].

Thus, by converting groups i and j into an ordered testing scheme, all measures are either maintained
or reduced, implying that there exists an optimal partition, which is ordered.

Sub-case II: ni

∏︂
m∈Ωi\Ψi

(1− p̃m) ≤ nj

∏︂
m∈Ωj\Ψj

(1− p̃m)

Due to conditions (i) and (ii), there exist ∅ ⊂ Zi ⊆ Ωi and ∅ ⊂ Zj ⊆ Ωj such that |Zi| = |Zj |, and
when Zi and Zj are interchanged the resulting set of groups will follow an ordered testing scheme
in which the group with the smaller size contains the highest risk subjects, while the group with the
larger size contains the lowest risk subjects. Define a new testing scheme, Ω̃ = {Ω̃1, · · · , Ω̃g}, where
subjects in Zi are interchanged with subjects in Zj , that is, Ω̃i = (Ω∗

i \Zi)∪Zj , Ω̃j = (Ω∗
j \Zj)∪Zi,

and Ω̃l = Ω∗
l for all l = 1, · · · , g : l ̸= i, j. In what follows, we will show that partition Ω̃ reduces or

maintains the value of all performance measures. By the condition imposed in the sub-case, i.e.,

ni

∏︂
m∈Ωi\Ψi

(1− p̃m) ≤ nj

∏︂
m∈Ωj\Ψj

(1− p̃m),

and Eq. (17) we get:
ni

∏︂
m∈Ωi

(1− p̃m) ≤ nj

∏︂
m∈Ωj

(1− p̃m). (18)

By definitions of Zi and Zj , we have that:∏︂
m∈Zi

(1− p̃m)−
∏︂

m∈Zj

(1− p̃m) > 0. (19)

From Eq. (18) we have that:

ni

∏︂
m∈Ωi\Zi

(1− p̃m)
∏︂

m∈Zi

(1− p̃m) ≤ nj

∏︂
m∈Ωj\Zj

(1− p̃m)
∏︂

m∈Zj

(1− p̃m). (20)
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Then, by Eq.s (19) and (20), it must be true that:

ni

∏︂
m∈Ωi\Zi

(1− p̃m) < nj

∏︂
m∈Ωj\Zj

(1− p̃m). (21)

Multiplying Eq. (21) by Eq. (19), expanding and rearranging gives:

ni

∏︂
m∈Ω̃i

(1− p̃m) + nj

∏︂
m∈Ω̃j

(1− p̃m) > ni

∏︂
m∈Ωi

(1− p̃m) + nj

∏︂
m∈Ωj

(1− p̃m).

Following a similar methodology to that of Sub-case I, one can show that E[FP (Ω̃)] ≤ E[FP (Ω∗)]
and E[T (Ω̃)] ≤ E[T (Ω∗)]. As such, for all cases, we are always able to construct an ordered testing
scheme that reduces or maintains the values of all performance measures, concluding the proof.

Proof of Lemma 2. We have that:

E

[︄
j∏︂

m=i

g
(︁
X(m))︁]︄ =

∫︂ b

a

∫︂ xj

a

E
[︁
g(X(i)) · · · g(X(j))|X(i) = xi, X(j) = xj]︁fX(i),X(j)(x

i, xj)dxidxj

=

∫︂ b

a

∫︂ xj

a

g(xi)g(xj)E
[︁
g(X(i+1)) · · · g(X(j−1))|X(i) = xi, X(j) = xj]︁fX(i),X(j)(x

i, xj)dxidxj , (22)

where

E
[︁
g(X(i+1)) · · · g(X(j−1))|X(i) = xi, X(j) = xj]︁ =∫︂ xj

xi

∫︂ xj

xi+1

· · ·
∫︂ xj

xj−2

g(xi+1) · · · g(xj−1)fX(i+1),··· ,X(j−1)|X(i)=xi,X(j)=xj (x
i+1, · · · , xj−1)dxj−1 · · · dxi+2dxi+1, (23)

where

fX(i+1),··· ,X(j−1)|X(i)=xi,X(j)=xj (xi+1, · · · , xj−1) =
fX(i),··· ,X(j)(xi, · · · , xj)

fX(i),X(j)(xi, xj)
.

From [33], we have that:

fX(i),··· ,X(j)(xi, · · · , xj) =
N !

(i− 1)!(N − j)!
FX(xi)i−1fX(xi) · · · fX(xj)

(︁
1− FX(xj)

)︁N−j
,

and

fX(i),X(j)(xi, xj) =
N !

(i− 1)!(j − i− 1)!(N − j)!
fX(xi)fX(xj)FX(xi)i−1

(︁
FX(xj)−FX(xi)

)︁j−i−1(︁
1−FX(xj)

)︁N−j
.

As such,we have that:

fX(i+1),··· ,X(j−1)|X(i)=xi,X(j)=xj (xi+1, · · · , xj−1) = (j − i− 1)!
fX(xi+1) · · · fX(xj−1)(︁
FX(xj)− FX(xi)

)︁j−i−1
. (24)

Substituting Eq. (24) into Eq. (23) gives:

E
[︁
g(X(i+1)) · · · g(X(j−1))|X(i) = xi, X(j) = xj

]︁
=

(j − i− 1)!

(FX(xj)− FX(xi)
)︁j−i−1

∫︂ xj

xi

∫︂ xj

xi+1

· · ·
∫︂ xj

xj−2

g(xi+1) · · · g(xj−1)fX(xi+1) · · · fX(xj−1)dxj−1 · · · dxi+2dxi+1.
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Define h(t) by:

h(t) ≡
∫︂ xj

t
g(x)fX(x)dx.

Note that h(t) exists since g(x) and fX(x) are both continuous (imposed in the theorem), and
h(xj) = 0 and dh(t) = −g(t)fX(t)dt. Then Eq. (23) can be written as:

E
[︁
g(X(i+1)) · · · g(X(j−1))|X(i) = xi, X(j) = xj]︁ =

(j − i− 1)!

(FX(xj)− FX(xi)
)︁j−i−1

∫︂ xj

xi

· · ·
∫︂ xj

xj−3

[︄∫︂ xj

xj−2

g(xj−1)fX(xj−1)dxj−1

]︄
g(xi+1) · · · g(xj−2)fX(xi+1) · · · fX(xj−2)dxj−2 · · · dxi+1

(j − i− 1)!

(FX(xj)− FX(xi)
)︁j−i−1

∫︂ xj

xi

· · ·
∫︂ xj

xj−3

h(xj−2)g(xi+1) · · · g(xj−2)fX(xi+1) · · · fX(xj−2)dxj−2 · · · dxi+1

(j − i− 1)!

(FX(xj)− FX(xi)
)︁j−i−1

∫︂ xj

xi

· · ·
∫︂ xj

xj−4

[︄∫︂ xj

xj−3

g(xj−2)fX(xj−2)h(xj−2)dxj−2

]︄
g(xi+1) · · · g(xj−3)fX(xi+1) · · · fX(xj−3)dxj−3 · · · dxi+1

For the integral in brackets, we perform a change of variable u = h(xj−2) with du = −g(xj−2)fX(xj−2)dxj−2,
this gives:

E
[︁
g(X(i+1)) · · · g(X(j−1))|X(i) = xi, X(j) = xj]︁ =

(j − i− 1)!

(FX(xj)− FX(xi)
)︁j−i−1

∫︂ xj

xi

· · ·
∫︂ xi

xj−5

[︄∫︂ xj

xj−4

g(xj−3)fX(xj−3)
h(xj−3)2

2
dxj−3

]︄
g(xi+1) · · · g(xj−4)fX(xi+1) · · · fX(xj−4)dxj−4 · · · dxi+1.

Continuing in this manner gives:

E
[︁
g(X(i+1)) · · · g(X(j−1))|X(i) = xi, X(j) = xj

]︁
=

(j − i− 1)!

(FX(xj)− FX(xi)
)︁j−i−1

h(xi)j−i−1

(j − i− 1)!

=

[︄∫︂ xj

xi

g(x)fX(x)dx

FX(xj)− FX(xi)

]︄j−i−1

.

Substituting the latter in Eq.(22) provides the result.

Proof of Lemma 3. The result follows by Remark 2, which states that for a given vector y, Problem
CM reduces to an SP Problem, for which the constraint set possesses the total unimodularity
property. As such, the optimal solution, corresponding to the specific y, will be integral, and hence
integrality constraints are not required for the x variables.

Proof of Theorem 3. The result directly follows from Theorem 2 and Remark 2, which state that
the partitioning problem of CM reduces to a constrained shortest path problem.

B Derivation of Performance Measures

All the subsequent derivations primarily rely on two assumptions: (i) Subjects are assumed to be
independent of one another, i.e., knowledge of the true status of one subject does not impact the
risk of another, and (ii) the test efficacy values (Se and Sp) are independent of the group size.
Throughout, let Dm denote the indicator random variable corresponding to the true positive status
of subject m ∈ S, and let N+

i (Ωi) denote the number of true positive subjects in group i that is
comprised of subjects belonging in Ωi, i.e., N+

i (Ωi) =
∑︁

m∈Ωi
Dm.
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B.1 False Negative Classifications

Conditioned on the estimated risk vector, P̃ , and the perturbation vector, Ξ, we can write, for a
given subject m ∈ {1, 2, · · · , N} and Ω:

E[FNm|Ξ, P̃ ] =E[FNm|Dm = 1,Ξ, P̃ ]P (Dm = 1|Ξ, P̃ ) +E[FNm|Dm = 0,Ξ, P̃ ]P (Dm = 0|Ξ, P̃ )

=

{︄
(1− Se)t(P̃ (m),Ξm) + 0, if m is individually tested,(︂
Se(1− Se) + (1− Se)

)︂
t(P̃ (m),Ξm) + 0, otherwise,

leading to: E[FNm|Ξ, P̃ ] =

{︄
(1− Se)t(P̃ (m),Ξm), if m is individually tested,
(1− Se2)t(P̃ (m),Ξm), otherwise.

Then, the expected number of false negative classifications for group i is given by:

E[FNi(Ωi)|Ξ, P̃ ] =

{︄
(1− Se)

∑︁
m∈Ωi

t(P̃ (m),Ξm), if ni = 1,

(1− Se2)
∑︁

m∈Ωi
t(P̃ (m),Ξm), otherwise,

and the expected number of false negative classifications for all subjects in set S is given by:

E[FN(Ω)|Ξ, P̃ ] =

g∑︂
i=1

E[FNi(Ωi)|Ξ, P̃ ].

B.2 False Positive Classifications

Conditioned on the estimated risk vector, P̃ , and the perturbation vector, Ξ, we can write, for a
given Ω and a subject m that is individually tested:

E[FPm|Ξ, P̃ ] =E[FPm|Dm = 1,Ξ, P̃ ]P (Dm = 1|Ξ, P̃ ) +E[FPm|Dm = 0,Ξ, P̃ ]P (Dm = 0,Ξ, P̃ )

=0 + (1− Sp)(1− t(P̃ (m),Ξm)),

and for any subject m ∈ ΩG grouped in some set Ωi:ni > 1, i ∈ {1, · · · , g}, i.e., m ∈ Ωi, we have:

E[FPm|Ξ, P̃ ] =E[FPm|Dm = 1,Ξ, P̃ ]P (Dm = 1|Ξ, P̃ ) +E[FPm|Dm = 0,Ξ, P̃ ]P (Dm = 0|Ξ, P̃ )

=0 +

⎡⎣(1− Sp)2
∏︂

k∈Ωi\{m}

(1− t(P̃ (k),Ξk)) + Se(1− Sp)

⎛⎝1−
∏︂

k∈Ωi\{m}

(1− t(P̃ (k),Ξk))

⎞⎠⎤⎦ (1− t(P̃ (m),Ξm))

=(1− Sp)

⎡⎣Se− (Se+ Sp− 1)
∏︂

k∈Ωi\{m}

(1− t(P̃ (k),Ξk))

⎤⎦ (1− t(P̃ (m),Ξm))

=(1− Sp)Se(1− t(P̃ (m),Ξm))− (1− Sp)(Se+ Sp− 1)
∏︂
k∈Ωi

(1− t(P̃ (k),Ξk)),

leading to:

E[FPm|Ξ, P̃ ] =

{︄
(1− Sp)(1− t(P̃ (m),Ξm)), if m is individually tested,
(1− Sp)Se(1− t(P̃ (m),Ξm))− (1− Sp)(Se+ Sp− 1)

∏︁
k∈Ωi

(1− t(P̃ (k),Ξk)), otherwise.
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Then, the expected number of false positive classifications for group i is given by:

E[FPi(Ωi)|Ξ, P̃ ] =

{︄
(1− Sp)

∑︁
m∈Ωi

(1− t(P̃ (m),Ξm)), if ni = 1,

(1− Sp)Se
∑︁

m∈Ωi
(1− t(P̃ (m),Ξm))− ni(1− Sp)(Se+ Sp− 1)

∏︁
m∈Ωi

(1− t(P̃ (m),Ξm)), otherwise,

and the expected number of false positive classifications for all subjects in set S is given by
E[FP (Ω)|Ξ, P̃ ] =

∑︁g
i=1E[FPi(Ωi)|Ξ, P̃ ].

B.3 Number of Tests

Given a partition Ω, the expected number of tests for group i, i = {1, · · · , g}, is 1 if ni = 1 (i.e.,
individual testing). In contrast, if ni > 1, then, conditioned on the estimated risk vector, P̃ , and
the perturbation vector, Ξ, we can write:

E[Ti(Ωi)|Ξ, P̃ ] =

ni∑︂
k=0

E[Ti(Ωi)|N+
i (Ωi) = k,Ξ, P̃ ]P (N+

i (Ωi) = k|Ξ, P̃ )

=E[Ti(Ωi)|N+
i (Ωi) = 0,Ξ, P̃ ]P (N+

i (Ωi) = 0|Ξ, P̃ ) +

ni∑︂
k=1

E[Ti(Ωi)|N+
i (Ωi) = k,Ξ, P̃ ]P (N+

i (Ωi) = k|Ξ, P̃ )

=
(︁
Sp+ (1− Sp)(1 + ni)

)︁
P (N+

i (Ωi) = 0|Ξ, P̃ ) +

ni∑︂
k=1

(︁
1− Se+ Se(1 + ni)

)︁
P (N+

i (Ωi) = k|Ξ, P̃ )

=1 + ni

(︄
Se− (Se+ Sp− 1)

∏︂
m∈Ωi

(1− t(P̃ (m),Ξm))

)︄
.

Thus, E[Ti(Ωi)|Ξ, P̃ ] =

{︄
1, if ni = 1,

1 + ni

(︂
Se− (Se+ Sp− 1)

∏︁
m∈Ωi

(1− t(P̃ (m),Ξm))
)︂
, otherwise,

(25)

and the expected number of tests needed for all subjects in set S is given by E[T (Ω)|Ξ, P̃ ] =∑︁g
i=1E[Ti(Ωi)|Ξ, P̃ ].

C Case Study: Fitting Parameters of the Estimated Risk Distribu-
tion

As discussed in Section 5, the CDC data set reports the number of chlamydia cases diagnosed and
size of the corresponding population for the year 2014 for each combination of gender, age group,
and race/ethnicity group (two gender categories, seven age group categories, and five race/ethnicity
categories are considered in the data set, leading to 70 categories) [6]. Based on studies, we use an
under-reporting factor of 3 for chlamydia [20]. Figure 4 depicts the histogram of the estimated risk
obtained from this data set.

Let µ̂p, σ̂p, and ĈV respectively denote the mean, standard deviation, and coefficient of variation
of the estimated risk obtained from the data set. Our objective is to estimate the parameters of
the mixture distribution, w, β1, and β2, such that w ∈ [0, 1], β1 > 0, and β2 > 0 (see Eq. 16), by
matching the first two moments of the distribution to those of the data set so as to minimize the
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Figure 4: Histogram of the estimated risk based on the CDC data set in [6]
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Kolmogorov-Smirnov statistic [28], i.e., to minimize the maximum distance between the empirical
and the fitted cumulative distribution functions. Towards this end, we first solve the following
system of equations for a given w , i.e., derive expressions for parameters β1 and β2 as a function
of w:

w

β1
+

1− w

β2
= µ̂p, (26)

w

β2
1

+
1− w

β2
2

=
µ̂2
p + σ̂2

p

2
, (27)

where β1, β2 > 0. From Eq. (26), we have that:

1

β2
=

β1µ̂p − w

β1(1− w)
,

which, when substituted into Eq. (27), leads to the following quadratic equation:(︃
w

1− w

)︃(︃
1

β1

)︃2

−
(︃
2µ̂pw

1− w

)︃(︃
1

β1

)︃
+

(︄
µ̂2
p

1− w
−

µ̂2
p + σ̂2

p

2

)︄
= 0. (28)

There are three cases:

Case I: ĈV < 1:

In this case, Eq. (28) has no real root. This implies that a mixture distribution, comprised of two
exponential distributions, is not a good representation of a data set having a coefficient of variation
less than one, as one cannot match both the mean and the standard deviation to the data set.

Case II: 1 ≤ ĈV <
√
3:

In this case, the system of equations given in Eq.s (26)-(27) has two solutions for all w such that:

0 ≤ 1− 2

ĈV 2 + 1
< w <

2

ĈV 2 + 1
≤ 1. (29)

If w does not satisfy Eq. (29), then β1 or β2 will not be positive. For all w that satisfies Eq. (29),
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Figure 5: Kolmogorov-Smirnov test statistic as a function of w
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the two solutions are given by:

1

β1
=µ̂p

⎛⎝1 +

√︄
(ĈV 2 − 1)(1− w)

2w

⎞⎠ , or

1

β2
=µ̂p

⎛⎝1−

√︄
(ĈV 2 − 1)w

2(1− w)

⎞⎠ ,

1

β1
=µ̂p

⎛⎝1−

√︄
(ĈV 2 − 1)(1− w)

2w

⎞⎠ ,

1

β2
=µ̂p

⎛⎝1 +

√︄
(ĈV 2 − 1)w

2(1− w)

⎞⎠ .

Case III: ĈV ≥
√
3:

In this case, the system of equations given in Eq.s (26)-(27) has a unique solution for all w such
that:

w <
2

ĈV 2 + 1
or w > 1− 2

ĈV 2 + 1
. (30)

Note that due to the condition imposed in Case II, i.e., ĈV ≥
√
3, w can satisfy at most one of the

two inequalities in Eq. (30). If w does not satisfy any of the inequalities in Eq. (30), then β1 or β2
will not be positive. For all w that satisfies Eq. (30), the unique solution is given by:

1

β1
=

⎧⎪⎪⎨⎪⎪⎩
µ̂p

(︃
1 +

√︂
(ĈV 2−1)(1−w)

2w

)︃
, if w < 2

ĈV 2+1

µ̂p

(︃
1−

√︂
(ĈV 2−1)(1−w)

2w

)︃
, if w > 1− 2

ĈV 2+1

1

β2
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µ̂p

(︄
1−

√︃
(ĈV 2−1)w
2(1−w)

)︄
, if w < 2

ĈV 2+1

µ̂p

(︄
1 +

√︃
(ĈV 2−1)w
2(1−w)

)︄
, if w > 1− 2

ĈV 2+1

Due to symmetry, it is sufficient to study only one of these cases, as the other case can be obtained
by interchanging w and 1− w, and β1 and β2. As such, by limiting the case to:

w <
2

ĈV 2 + 1
,
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Figure 6: Empirical and fitted cumulative distribution functions (CDF), when w = 0.235, β1 =
25.708, and β2 = 1, 291.832
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the unique solution reduces to:

1

β1
=µ̂p

⎛⎝1 +

√︄
(ĈV 2 − 1)(1− w)

2w

⎞⎠ , (31)

1

β2
=µ̂p

⎛⎝1−

√︄
(ĈV 2 − 1)w

2(1− w)

⎞⎠ . (32)

The data set used in the case study in Section 5 has a mean of µ̂p = 0.0097 and a standard
deviation of σ̂p = 0.0248, leading to a coefficient of variation of ĈV ≈ 2.55 ≥

√
3. As such, by the

above analysis, for all w ∈ [0, 0.2659) β1 and β2 are obtained by Eq.s (31) and (32), respectively.

As mentioned above, w is chosen so as to minimize the Kolmogorov-Smirnov test statistic (KS)
[28], i.e., the maximum distance between the empirical and fitted cumulative distribution functions.
That is, w is the optimal solution to the following optimization problem:

minimize
w

KS(w)

subject to w ∈
[︃
0,

2

ĈV 2 + 1

)︃
.

Figure 5 plots KS(w) as a function of w for the data set used in the case study, and shows that
function KS(w) is unimodal in w, with a global minimizer, w = 0.235, leading to KS(0.235) =
0.125. Then, from Eq.s (31) and (32), we obtain β1 = 25.708 and β2 = 1, 291.832. Next, we study
the goodness of fit of this mixture distribution with these parameter values through statistical
hypothesis testing, with the following null and alternative hypotheses:

H0: The data follow a mixture distribution comprised of two exponential distributions with pa-
rameters w = 0.235, β1 = 25.708 and β2 = 1, 291.832.

Ha: The data do not follow a mixture distribution comprised of two exponential distributions with
parameters w = 0.235, β1 = 25.708 and β2 = 1, 291.832.
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Since we have 70 data points, the critical value for a significance level of α = 0.05 equals 0.163 [28],
and hence, KS(0.235) = 0.125 < 0.163, and we conclude that there is insufficient statistical evidence
to reject the null hypothesis.

Figure 6 plots both the empirical and fitted cumulative distribution functions, when w = 0.235,
β1 = 25.708, and β2 = 1, 291.832, further indicating that the fitted mixture distribution, comprised
of two exponential distributions, provides a good fit for the data set.

D The Effect of Dilution

Figure 7: Fitted linear sensitivity function versus empirical results [39] as a function of group size
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