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Abstract

We provide a novel regret-based robust formulation of the Dorfman group size problem
considering the realistic setting where the prevalence rate is uncertain, establish key structural
properties of the optimal solution; and provide an exact algorithm. Our analysis also leads
to exact closed-form expressions for the optimal Dorfman group size under a deterministic
prevalence rate, which is the problem studied in the extant literature. Thus, our structural
results not only unify existing, and mostly empirical, results on the Dorfman group size problem
under a deterministic prevalence rate, but, more importantly, enable us to efficiently solve
the robust version of this problem to optimality. We demonstrate the value of robust testing
schemes with a case study on disease screening using realistic data. Our case study indicates that
robust testing schemes can significantly outperform their deterministic counterparts, by not only
substantially reducing the maximum regret value, but, in the majority of the cases, reducing
testing costs as well. Our findings have important implications on public health screening
practices.
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1 Introduction and Motivation

Screening populations to classify individual subjects as positive or negative for a binary character-

istic (e.g., the presence of an infectious disease or a genetic disorder) is essential in many settings.

The most straightforward approach to this classification problem is to test each subject individually.

However, for large populations and under limited resources, individual testing is often too costly.

Consequently, testing facilities often use group testing in which specimens (e.g., blood, urine) col-

lected from multiple subjects are grouped together and tested via a single test. We use the terms

“specimen" and “subject," interchangeably, to refer to both the specimen collected for testing pur-

poses and the corresponding subject. Group testing was first proposed by Dorfman [14] in the 1940’s

to screen military inductees for syphilis in an economical manner. Dorfman testing scheme has two

stages: in the first stage, subjects are tested in groups; if the test outcome for a group is negative,

then testing stops and all subjects in the group are classified as negative; if, on the other hand,

the test outcome for a group is positive, indicating the presence of at least one positive subject in

the group, then testing proceeds to the second stage, in which all subjects in the group are tested

individually and classified based on their individual test outcome. A specimen typically contains

sufficient material for multiple tests, therefore, such multi-stage testing schemes are possible. The

choice of group size (i.e., the number of specimens in each group), which we refer to as the Dorfman

group size problem, has a large impact on the efficiency and accuracy of Dorfman testing.

Since Dorfman’s seminal work, various group testing schemes have been studied, ranging from

multi-stage hierarchical group testing schemes, to array-based group testing schemes that take

advantage of overlapping groups (e.g., [7, 24, 25]). For example, one multi-stage hierarchical group

testing scheme divides each positive-testing group in half and tests the new, smaller groups, until

either individual testing is reached, or a group tests negative (e.g., [7]). However, such complex

multi-stage schemes can be difficult to implement, especially for high volume screening. Therefore,

Dorfman testing scheme remains one of the most utilized group testing schemes, mainly because of

its simplicity, efficiency, and effectiveness. For instance, an important application of group testing

arises in public health screening, and two-stage Dorfman testing schemes are commonly used in this

context. The American Red Cross uses Dorfman testing schemes, in groups of size 16, for screening

the donated blood for HIV, hepatitis viruses B and C, and West Nile virus (WNV), all of which
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can be transmitted through transfusion [12]. Many state public health laboratories utilize Dorfman

testing schemes to screen higher risk populations for various infectious diseases. Group testing is

also used in other fields; for example, in multi-access communication networks, to minimize conflict

resolution time [3]; in industrial quality control, to identify defective products [39]; and in software

testing, to detect software bugs or maleware [8]. Consequently, in this paper, we study the two-stage

Dorfman testing scheme, as our goal is to provide models and actionable guidelines for practitioners.

As discussed above, group testing is used to increase efficiency; thus, maximizing efficiency, or

equivalently minimizing the expected number of tests, is integral to Dorfman testing design. Yet

accuracy is still important, and a misclassification, in the form of a false negative classification (i.e.,

a true positive subject classified as negative) or a false positive classification (i.e., a true negative

subject classified as positive), has undesirable consequences. For example, a false negative outcome

in donated blood screening results in a potential infection in the transfusion recipient, while leading

to a missed diagnosis (and hence to poor health outcomes and higher healthcare expenditures) in

infectious disease screening. On the other hand, in many settings, including the examples discussed

here, subjects classified as positive through screening are referred for confirmatory testing conducted

via gold standard diagnostic tests (which are too costly to be used for screening) that typically

correct the false positive outcomes. Thus, a false positive outcome contributes to the overall testing

cost, but is less consequential than a false negative outcome. The relative importance of efficiency

and accuracy metrics, and how they are modeled, depend on the setting. For example, for screening

tests that are highly accurate (having almost perfect sensitivity, i.e., true positive probability, and

specificity, i.e., true negative probability, i.e., perfect tests), group testing can maintain high levels

of classification accuracy, while reducing testing costs substantially [28]. This is the main reason

the efficiency of the Dorfman group size problem has received much attention in the literature

(e.g., [14,22,24,28,36,37]). Conversely, for tests that are not highly accurate, a focus on classification

accuracy may be appropriate, but this aspect has received very limited attention in the literature.

Further, in a setting where a “hard" constraint on the testing budget exists (e.g., an annual screening

budget), the objective of maximizing classification accuracy needs to be attained under a testing

budget constraint, that is, the efficiency of the testing scheme restricts the accuracy of testing.

The prevalence rate of the binary characteristic (e.g., disease) in question is an important input
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for the Dorfman group size problem. However, prevalence rates of many diseases are uncertain,

and their estimates are often highly unreliable due to dynamically varying disease patterns (e.g.,

seasonal, vector-borne diseases, e.g., WNV, babesiosis, Lyme disease, Zika virus [16]), regional

variations (e.g., the rate of HIV, per 100,000, in the United States (US) can vary anywhere from

1.8 to 54.4, depending on the state [19]), and surveillance studies that are often limited to small

samples due to resource constraints [15, 26, 40]. Consider, for example, the case where prevalence

rates vary dynamically over time. In response to such variation, testing facilities can, for instance,

modify the testing scheme on a frequent basis, in an attempt to capture the current behavior

of the disease. In other words, the testing facility can choose to solve the deterministic group size

problem, i.e., under the assumption of a deterministic and known prevalence rate, every period (e.g.,

weekly or monthly). However, if the duration of the chosen period is small, then the testing facility

must modify the scheme frequently, which may be infeasible or highly costly due to operational

challenges and high set-up costs/time. On the other hand, if the duration of the period is large,

then the prevalence rate during that period of time may vary substantially, and hence implementing

a deterministic approach may be limiting. Therefore, a robust Dorfman testing design, which can

take into account the variation in the prevalence rate, becomes important, as this can provide a

single robust testing scheme that works well for a range of prevalence rate values, instead of just a

point estimate.

Unfortunately, the robust version of the Dorfman group size problem is substantially more

difficult than its deterministic counterpart, and to our knowledge, has not been studied in the

literature. While a vast literature has studied the deterministic problem and its variations (e.g.,

[2, 14, 21, 22, 28, 37, 39]), this literature fails to provide structural properties of, and exact closed-

form expressions for, the optimal deterministic Dorfman group size. Consequently, most of the

extant literature solves the deterministic Dorfman group size problem through either enumeration

or approximations, and does not offer insight on how the group size should be modified in response

to prevalence rate uncertainty. As a note, an interesting variation of the deterministic Dorfman

group size problem occurs in a heterogeneous population, i.e., subjects have potentially different

risk (probability of positivity), and the tester needs to not only determine a set of Dorfman group

sizes, but also assign the subjects to these groups based on their risk; this is the problem studied in a

number of papers, e.g., [2,22,28,37], but these analyses still rely on the assumption of a deterministic
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and known prevalence rate.

Motivated by these gaps in the literature, we study both the deterministic and robust versions

of the Dorfman group size problem, under both efficiency- and accuracy-based objectives. From

this perspective, our research is also related to the robust optimization literature, which typically

considers mini-max type of objective functions (in our setting, this implies minimizing the maximum

expected number of tests, over all possible prevalence rate realizations) to produce robust solutions,

but this type of objective can produce highly conservative solutions that deviate substantially from

the expected value minimizing solutions, potentially leading to a high price of robustness [4, 5, 15].

Regret (see Section 4 for a formal definition) is an abstract construct that is designed to produce

robust solutions that are not overly conservative, and mini-max regret objectives have been utilized

in the Operations Research literature in many contexts, including inventory, revenue management,

resource allocation, and online decision-making problems, e.g., [15,32], but to our knowledge, it has

not been used in the group testing literature. Both the traditional mini-max objective and the mini-

max regret objective are desirable from a practitioner’s perspective, because they are distribution-

free, that is, they do not require any distribution or moment information for the unknown random

variable (in our case, the prevalence rate); all that is required is an uncertainty set (support) of the

random variable, which is easier to estimate than its distribution or moments.

Our contributions in this paper correspond to both methodological and application aspects of

the Dorfman group size problem. First, we establish key structural properties of the deterministic

Dorfman group size problem that minimizes the expected number of tests, show that it follows a

threshold policy, and provide exact closed-form expressions on the optimal group size as a function

of key problem parameters. To our knowledge, this is the first analytical characterization of the

optimal Dorfman group size under a deterministic prevalence rate. We then discuss how various

empirical findings from the literature can be explained by our analytical characterization, and show

that a commonly utilized approximation [36] corresponds to the first-order Taylor series expansion

of our optimal solution. Thus, our analytical results unify and extend existing, and mostly empirical,

results. While these results contribute to the literature, and are important in their own right, they

are also essential for our study of the aforementioned novel variations of the Dorfman group size

problem that consider classification accuracy or prevalence rate uncertainty. In our robust Dorfman
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group size problem, we consider a mini-max regret objective, which leads to robust solutions with a

low price of robustness, while requiring only minimal information on the unknown prevalence rate.

We complement our analytical results with a case study on disease screening under dynamically

varying prevalence rates. Our case study indicates that in more than 50% of all possible realizations

of the prevalence rate, the robust model not only substantially reduces the maximum regret value

over the deterministic model, but it also reduces the expected number of tests. In particular,

when compared to the deterministic model that relies on an expected prevalence rate, the robust

model is 28% more accurate, 16% less costly, and 71% more robust. In addition, the robust model

reduces the expected number of tests and improves robustness over current screening practices.

Such results demonstrate that robust testing schemes can offer strong protection against variations

in the prevalence rate, and also have the potential to reduce testing costs.

Our characterization of the optimal Dorfman scheme, in both the deterministic and robust

settings, should spur new analytical research. Further, our results have the potential to alter

current screening practices. As discussed above, group testing is commonly utilized in public health

screening. Consider, for example, chlamydia and gonorrhea, whose prevalence rates are on the rise

in the US [10]: while several states test for these diseases in Dorfman groups of size four (e.g.,

Iowa and Idaho [27]), other states perform individual testing, but only on a small subset of the

state’s adult population (e.g., North Carolina [30]), and there are no guidelines on how the group

size should be selected for these screening effort. Consequently, our results can guide screening

practices in public policy and other industrial settings. The robust solution aspect is especially

relevant in practice, as prevalence rates are often uncertain in many of the settings discussed above.

Further, the mini-max regret objective used in our robust formulation can be applied to the group

size problem for other group testing schemes, providing a promising future research avenue.

The remainder of this paper is organized as follows. In Section 2, we introduce the notation

and the decision problem. Then in Sections 3 and 4, we respectively study the deterministic and

robust versions of the Dorfman group size problem, and in Section 5, we discuss our case study.

We conclude, in Section 6, with a summary of our findings and directions for future research. For

a concise presentation, all proofs are relegated to the online supplementary material.
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2 The Notation, Assumptions, and the Decision Problem

Recall that the Dorfman testing scheme has two stages: in the first stage, subjects are tested in

groups of size n; if the test outcome for a group is negative, then testing stops and all subjects

in the group are classified as negative for the binary characteristic; if, on the other hand, the test

outcome for a group is positive, then testing proceeds to the second stage, in which all subjects in

the group are tested individually and classified based on their individual test outcome.

Throughout, we use the terms positive and negative to refer both to the true status of a subject

(i.e., the presence or absence of the binary characteristic) and to the test’s outcome that classifies

the subject in regard to the binary characteristic. In what follows, we assume that test outcomes

are binary. While in some settings the test may measure a continuous-valued marker (e.g., the

viral load in blood), continuous test outcomes are typically converted to binary outcomes via the

use of predefined testing thresholds (cutoffs). In settings where the testing threshold is a constant,

or cannot be modified by the testing facility, the assumption of a binary test outcome is a good

modeling choice, and the analyses and results developed in this paper would hold. If, on the other

hand, the testing facility can modify the testing threshold, then one must determine not only the

optimal group sizes, but also optimal testing thresholds. This is an interesting research direction,

but is beyond the scope of the present paper, and we discuss this extension in Section 6.

Let Se and Sp respectively denote the test’s sensitivity (true positive probability) and specificity

(true negative probability). We assume, without loss of generality, that the test’s true negative

probability is higher than its false negative probability, i.e., Sp/(1−Se) ≥ 1.1 Then, Se+Sp− 1 ∈

[0, 1]. We assume that the test sensitivity and specificity are constants that are independent of

group size. As discussed in Section 1, for certain tests, the sensitivity of group testing may start

deteriorating once the group becomes “too large," due to what is known as the dilution effect of

grouping, that is, the marker concentration from true positive subjects is diluted by the true negative

subjects in the group. In such cases, test sensitivity values may depend on the group size. However,

various studies indicate that the dilution effect is typically negligible when group sizes are within

a certain limit [28, 38]. As such, towards the end of Section 3, we also examine the case where the
1Any test not satisfying this assumption can be transformed into one that satisfies it by interpreting the test

outcome in the opposite way.
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group size is restricted by an upper limit. Let P ∈ (0, 1) denote the prevalence rate of the the binary

characteristic under consideration. In the deterministic Dorfman group size problem (Section 3), we

use p to denote the known and deterministic prevalence rate, and in the robust Dorfman group size

problem (Section 4), we use P to denote the random prevalence rate. Finally, we let the random

variable T (n) denote the per subject number of tests for a Dorfman testing scheme with a group of

size n ≥ 1.

In the deterministic problem, the objective is to determine the group size, n ∈ Z+, that minimizes

the per subject expected number of tests, that is, the objective is to minimize E[T (n)]. On the

other hand, in the robust problem, the objective is to minimize a regret-based function of the same

objective function, as discussed subsequently. In the following, we first develop structural properties

and closed-form expressions of an optimal solution in the deterministic problem (Section 3), and

then study the robust problem (Section 4), which, without the results of Section 3, proves to be

intractable.

3 The Deterministic Group Testing Problem

In the deterministic group testing problem, we assume that the prevalence rate is known with

certainty and is a constant. As such, throughout this section, we set the prevalence rate to p, and,

to simplify the subsequent notation, drop the conditioning on P . As mentioned in Section 2, the

objective in the deterministic case is to determine an optimal group size, n∗
d, that minimizes the

per subject expected number of tests (the extension to a classification accuracy based objective is

discussed at the end of this section), that is, n∗
d ≡ argminn≥1{E[T (n)]}, where E[T (n)], for a given

prevalence rate p, is given by:

E[T (n)] =E
[︁
T (n)|N+(n) = 0

]︁
P
(︁
N+(n) = 0

)︁
+ E

[︁
T (n)|N+(n) > 0

]︁ [︁
1− P

(︁
N+(n) = 0

)︁]︁
=

(︃
1

n
Sp+

1 + n

n
(1− Sp)

)︃
(1− p)n +

(︃
1

n
(1− Se) +

1 + n

n
Se

)︃
[1− (1− p)n]

=
1 + n [Se− (Se+ Sp− 1)(1− p)n]

n
, (1)

where N+(n) ∼ Binomial(n, p) denotes the random number of true positive subjects in a group of

size n for a prevalence rate of p. Observe that the expected number of tests for a group of n subjects,
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given in the numerator of Eq. (1), is either 1, corresponding to the first test applied to the group in

the first stage; or, if the group test outcome is positive, i.e., with probability Se−(Se+Sp−1)(1−p)n,

then the group test is augmented by n individual tests, one for each subject in the group, hence

the multiplication of this probability with n (see the remaining part of the numerator). Lastly,

the entire term (the expected number of tests for a group of n subjects) is divided by the group

size, n, to determine the per subject expected number of tests. In what follows, we first study the

properties of E[T (n)] and of its minimizer n∗
d, under the relaxation of the integrality constraint on

n. These properties allow us to: (i) analytically characterize the optimal Dorfman group size, and

(ii) identify the conditions under which Dorfman testing outperforms individual testing. From that

perspective, the analytical results in this section provide a contribution to the extensive literature on

Dorfman testing, which resorts to either enumeration or approximations to determine the optimal

group size that minimizes the per subject expected number of tests. Towards this end, we first

define the threshold points p and p̄, and the group sizes n0 and n−1, which will be important in the

subsequent analysis:

p ≡ 1− e−(Se+Sp−1)e−1
, (2)

p̄ ≡ 1− e−4(Se+Sp−1)e−2
, (3)

and

n0 ≡
2

ln(1− p)
W0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ , (4)

n−1 ≡
2

ln(1− p)
W−1

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ , (5)

where p ≤ p̄ for all Se, Sp ∈ [0, 1]:Se + Sp − 1 ∈ [0, 1], and W (·) is the Lambert W function,

with W0(·) denoting the principle Lambert branch, and W−1(·) denoting the secondary Lambert

branch [11].2 The Lambert W function, W (x), is defined by the following equation:

x = W (x)eW (x), ∀x ∈ R. (6)
2Our notation, n0 and n−1, follows the commonly used notation for the Lambert W function.
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In what follows, we review some properties of the Lambert W function that are utilized in the

subsequent analysis; we refer the interested reader to [11] for a detailed discussion of the Lambert

W function.

Property 1 (From [11]).

1. For x < −1/e, Eq. (6) does not have any real roots;

2. For x ∈ (−1/e, 0), Eq. (6) has two real roots, given by W0(x) and W−1(x); and

3. For x ≥ 0, Eq. (6) has only one real root, given by W0(x).

For reasons that will become clear in the sequel, we are mainly interested in the properties of

function W (x) when x < 0, summarized in the following result.

Property 2 (From [11]). For all x ∈ [−1/e, 0], W0(x) ∈ [−1, 0] is increasing in x, while W−1(x) ∈

[−1,−∞] is decreasing in x, where W0(x) ≥ W−1(x), with the equality attained at −1/e.

The following set of results characterize the optimal group size, and show how it critically

depends on key problem parameters. In particular, we show that how function E[T (n)] (Eq. (1))

behaves in group size, n, depends on the prevalence rate, and therefore analyze this function in

three mutually exclusive regions of the prevalence rate: p ∈ (0, p], p ∈ (p, p̄), and p ∈ [p̄, 1); and

demonstrate our findings in Figure 1. To demonstrate how the behavior of function E[T (n)], hence

the characteristics of an optimal group size, varies with the prevalence rate, consider first the case

when the prevalence rate is low; smaller groups most likely contain no true positive subjects, but

lead to higher testing costs. However, the probability of having at least one true positive subject

in the group grows exponentially with group size, and hence it is not desirable to make the groups

“too large." This behavior can be observed in Eq. (1) by setting (1 − p)n ≈ 1 − np, yielding

E[T (n)] = 1/n+Se− (Se+Sp− 1)(1− np), which is unimodal in n. On the other hand, when the

prevalence rate is high, the probability that the group contains at least one true positive subject

becomes high, making it likely that the group will test positive and hence individual testing will be

required; as a result, making the group as large as possible reduces the per subject expected number

of tests. We observe this behavior in Eq. (1) by setting (1− p)n ≈ 0, yielding E[T (n)] = 1/n+ Se,

which is decreasing in n. Because of such drastic differences in the behavior of E[T (n)], our analysis

requires considering three mutually exclusive regions: (i) low prevalence rate, i.e., (0, p], (ii) high
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prevalence rate, i.e., [p̄, 1), and (iii) all other cases, with a moderate prevalence rate, i.e., (p, p̄).

Lemma 1. If p < p̄, then E[T (n)] has exactly two stationary points, given by n0 and n−1, where

n0 is a local minimum and n−1 is a local maximum of E[T (n)], and n0 < n−1.

Lemma 1 provides exact analytical expressions for the unique local minimum and unique local

maximum of the E[T (n)] function when p < p̄. Next, we fully characterize the optimal solution. In

the following, we use the notation Se+ to correspond to the limit approaching Se from above.

Theorem 1. The optimal solution that minimizes E[T (n)] follows a threshold policy, with the fol-

lowing three cases fully characterizing the optimal solution:

(i) If p ≥ p̄, then E[T (n)] is non-increasing in n for all n > 0. In this case, n∗
d → ∞, with

limn→∞ E[T (n)] → Se+.

(ii) If p < p < p̄, then n0 is a local minimum, but not a global minimum, of E[T (n)], and the

global minimum is attained at n∗
d → ∞, with limn→∞ E[T (n)] → Se+.

(iii) If p ≤ p, then n0 is a global minimum of E[T (n)], that is, n∗
d = n0.

Theorem 1 leads to several interesting insights, as we discuss below. For example, according to

the first part of the theorem (part (i)), if the prevalence rate is sufficiently high, i.e., p ≥ p̄, then

E[T (n)] is minimized by placing all the testing population into a single group; see Figure 1c. The

following remark links this result to the empirical observations in the literature.

Remark 1. Theorem 1, part (i) provides an analytical justification for prior empirical work that

states that for prevalence rates greater than 0.41, the per subject expected number of tests for a

perfect test (i.e., Se = Sp = 1) is decreasing in n, e.g., [36]; this number can be obtained by setting

Se = Sp = 1 in Eq. (3), leading to p̄ = 1− e−4e−2 ≈ 0.418.

By parts (i) and (ii) of Theorem 1, when p > p, E[T (n)] is minimized by placing all the testing

population in a single group; see Figures 1b and 1c. Thus, part (ii) of the theorem expands the set

of prevalence rates needed for the optimality of an infinite group size, from {p ≥ p̄} to {p > p}.

Part (iii) of Theorem 1 provides the necessary condition, i.e., p ≤ p, for the local minimum n0 to

correspond to the global minimum. In fact, in most realistic settings, the prevalence rate is expected

to satisfy this necessary condition, as the value of p is relatively high. In particular, while p is

decreasing in each of Se and Sp, the condition, p ≤ p, is typically satisfied for realistic test efficacy
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Figure 1: E[T (n)] as a function of group size, n, for different ranges of the prevalence rate, when
Se = Sp = 0.9
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(b) p < p < p̄
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(c) p ≥ p̄
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values, e.g., when Se = Sp = 0.95, p = 1−e−(Se+Sp−1)e−1 ≈ 28% (see Eq. (2)). To put this condition

into perspective, consider the prevalence rates of HIV, hepatitis viruses B and C, and WNV in the

US, which respectively lie in the intervals [0.500%, 1.000%], [0.250%, 0.440%], [1.300%, 1.900%], and

[0.008%, 1.100%] [15, 33]. Notice that the prevalence rates of all these infections are much smaller

than p ≈ 0.28. Consequently, part (iii) of Theorem 1 is significant, because it provides the global

optimal solution for a vast majority of realistic cases, without the need to solve an optimization

problem. Interestingly, part (iii) also helps retrieve a commonly used approximation on the optimal

group size for perfect tests.

Remark 2. The first-order Taylor series expansion of n0(p) around zero is given by:

n0(p) ≈

√︄
1

p(Se+ Sp− 1)
, (7)

which, for the special case of perfect tests (Se = 1, Sp = 1), further reduces to 1/
√
p, a commonly

utilized approximation in the literature, e.g., [36].

While the common approximation, 1/√p, works relatively well when p is sufficiently small, its

performance deteriorates quite rapidly as p becomes larger. For example, when Se = Sp = 1, the

group size obtained by using the approximation, 1/√p, can deviate from the optimal group size,

n0(p), by as much as 32%, that is, the relative error, given by |1/√p − n0(p)|/n0(p), can be as
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high as 32%. More importantly, Theorem 1, and especially part (iii), removes the need for all such

approximations, and provides the exact optimal solution for realistic values of p without the need

to resort to enumeration. Such closed-form expressions also enable us to provide valuable insights

on the characteristics of an optimal solution, as we discuss below.

Lemma 2. If p ≤ p, then the following properties hold:

(i) The global minimizer of E[T (n)], n0(p), is decreasing in both p and Se+ Sp.

(ii) The optimal objective function value, E[T (n0(p))], is increasing in p.

Lemma 2 states that: (a) for a given test, the optimal group size is smaller for “riskier” popula-

tions, i.e., populations with higher prevalence rate values; (b) for a given prevalence rate value, the

optimal group size is smaller for more accurate tests; and (c) as the prevalence rate increases, the

benefits of group testing are reduced, that is, the reductions in E[T (n)] are less drastic for riskier

populations. More importantly, Lemma 2 leads to the following observation.

Corollary 1. For all p ∈ (0, 1) and Se, Sp ∈ [0, 1]:Se + Sp − 1 ∈ [0, 1], the optimal group size to

the deterministic group size problem, n∗
d, satisfies the following condition:

n∗
d ≥ e

Se+ Sp− 1
. (8)

Corollary 1 is important, as it provides a global lower bound on the optimal group size for any

prevalence rate value. Moreover, since Se + Sp − 1 ∈ [0, 1], then the condition in Corollary 1 can

also be represented as n∗
d ≥ e ≈ 2.72, implying that for any test and for any prevalence rate value,

a group of size one or two will never be optimal.

Our characterization of the optimal group size under deterministic p trivially extends to the

case where there is an upper limit on group size, which may arise due to technological limitations,

or due to the dilution effect, as discussed in Section 1, e.g., [1, 41].

Corollary 2. Let M ∈ Z+ denote the upper limit on group size, that is, n ≤ M . Then, from

Theorem 1, we have the following:

1. If p ≤ p, then n∗
d = min{n0,M}.

2. If p < p < p̄, then n∗
d = min{argmin

{︁
E[T (n0)],E[T (M)]

}︁
,M}.
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3. If p ≥ p̄, then n∗
d = M .

So far, we have determined the optimal Dorfman group size under the relaxation of the integrality

constraint on n. However, using the structural properties of the relaxed problem, one can determine

the optimal integral group size, as stated in the following result, which is an extension of Corollary

2.

Corollary 3. By Theorem 1, the optimal integral group size, n∗
d, can be obtained as follows:

1. If p ≤ p̄, n∗
d = min

{︂
argmin

{︂
E
[︁
T (⌊n0⌋)

]︁
,E
[︁
T (⌈n0⌉)

]︁
,E[T (M)

]︁}︂
,M
}︂

.

2. If p > p̄, n∗
d = M .

If one is interested in the integral solution without an upper limit on group size, then setting

M to infinity in Corollary 3 achieves this outcome. Moreover, Corollary 1 can be generalized to

include both the integrality constraint and an upper limit on the group size. In such a case, the

global lower bound will be given by the minimum of the floor of the right hand side of Eq. (8) and

M , that is, n∗
d ≥ min{⌊e/(Se+ Sp− 1)⌋,M}.

Next, we turn our attention to a much-discussed question in the literature, of when Dorfman

testing outperforms individual testing, i.e., with one test per subject and without utilizing group

testing. Our analytical results developed in this section enable us to answer this question, and,

not surprisingly, the answer depends on the problem parameters, as we discuss in the subsequent

analysis. Observe that in individual testing, the per subject expected number of tests is a constant,

equal to 1, independent of the test outcome.

Lemma 3. When Se < 1, there always exists a group size, n > 1, such that E[T (n)] < 1 ∀p ∈ (0, 1).

Thus, when the test sensitivity is imperfect, one can always find a group size that makes Dorf-

man testing more efficient than individual testing. Interestingly, this result is independent of the

prevalence rate, implying that group testing can offer savings even when the prevalence rate is high.

Corollary 4. When Se = 1, group testing outperforms individual testing if and only if p ≤ p (see

Theorem 1).

Lemma 3 and Corollary 4 fully characterize the behavior of Dorfman group testing when com-

pared to an individual testing strategy. In general, whether or not group testing outperforms
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individual testing heavily depends on the test efficacy values, Se and Sp, and the prevalence rate,

p. Moreover, Corollary 4 links our findings to the empirical observations in the literature, as stated

in the following remark.

Remark 3. Corollary 4 provides an analytical justification for Dorfman’s empirical observations,

which indicate that for a perfect test (Se = Sp = 1), group testing outperforms individual testing, in

terms of per subject expected number of tests, if and only if p ≤ 0.3 [14]. According to Corollary 4,

when Se = 1, group testing outperforms individual testing if and only if p ≤ p. Setting Se = Sp = 1

in Eq. (2), leads to p = 1− e−e−1 ≈ 0.308, coinciding with Dorfman’s empirical observations.

Model extensions to consider classification accuracy

So far, we have focused on minimizing the per subject expected number of tests, i.e., maximizing

the efficiency of testing. As discussed in Section 1, however, both classification accuracy and testing

efficiency may be important metrics in classification problems. Therefore, we next discuss a variation

of the deterministic Dorfman group size problem that considers both metrics.

Towards this end, let E[FN(n)] and E[FP (n)] respectively denote the per subject expected

number of false negatives (true positive subjects falsely classified as negative), and the per subject

expected number of false positives (true negative subjects falsely classified as positive), when the

group size is n. The expressions for E[FN(n)] and E[FP (n)] are given below (see the online

supplementary material for derivations):

E[FN(n)] =(1− Se2)p,

E[FP (n)] =Se(1− Sp)(1− p)− (1− Sp)(Se+ Sp− 1)(1− p)n.

Thus, the per subject expected number of false negatives, E[FN(n)], is independent of the group

size, n, and hence, does not need to be considered for determining the optimal group size. This

follows because the test sensitivity (Se) remains constant in group size (see Section 1); thus, the

probability of a positive test outcome for a group containing at least one positive subject does

not depend on the group size, leading to a constant E[FN(n)]. As discussed in Sections 1 and 2,
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from a classification accuracy perspective, practitioners are mainly concerned with false negatives,

which represent the true positive subjects not detected by screening, and hence, can lead to severe

consequences (e.g., potential infection in blood transfusion recipients, missed diagnosis). When the

group size becomes “too large," the sensitivity of group testing may deteriorate due to the dilution

effect; in this case, one can either restrict the group size to an upper limit (see Corollary 2), or model

the dilution effect of grouping and incorporate it in the optimization model, which is an interesting

direction for future research (see Section 6).

In contrast, the per subject expected number of false positives, E[FP (n)], does depend on the

group size, and is monotone increasing in n. To explain this result, consider a true negative subject,

which is grouped with other subjects in the first stage of Dorfman. If the group size is small, then

it is likely that the group will contain all true negative subjects and test negative, terminating the

testing for all subjects in the group and classifying them as negative. On the other hand, the larger

the first stage group size is, the larger the likelihood that the group will contain at least one true

positive subject, and hence the larger the likelihood that the group will test positive in the first

stage, leading to additional (individual) testing for each subject in the group, effectively giving each

true negative subject another chance to (falsely) test positive. Thus, the false positive rate increases

in group size. While the consequences of a false positive outcome (e.g., further confirmatory testing

to resolve the false positive outcome) are much less severe than those of a false negative (see Section

1), the tester may still want to consider the false positives, in conjunction with the number of

tests, for determining an optimal group size. The characterization of the structural properties of

the E[T (n)] function, and of its optimal solution, discussed in the first part of this section, proves

to be essential for various formulations that incorporate classification accuracy. To illustrate this

point, we briefly discuss two relevant formulations that consider classification accuracy (i.e., false

positives). The first model determines the group size that leads to the most accurate Dorfman

testing scheme (i.e., minimum expected number of false positives), under a given testing budget,

B, and may apply, for example, in a setting where the testing laboratory has a limited budget for

screening efforts, but confirmatory testing, needed for all subjects classified as positive by screening,

is conducted elsewhere and/or paid by another payer. On the other hand, the second formulation

determines the group size that minimizes a weighted sum of the per subject expected number of false

positives and the expected number of tests (based on the normalizes weights wFP and wT = 1−wFP ,
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respectively), and may apply, for example, in a setting where the testing laboratory is responsible

for (pays for) both screening and confirmatory testing.

minimize
n

E[FP (n)]

subject to E[T (n)] ≤ B.
(9) minimize

n
wFPE[FP (n)] + wTE[T (n)] (10)

The results provided in this section can be readily adopted to determine the optimal solutions to

both formulations, as we briefly discuss next (the details can be found in the online supplementary

material). For example, for Model (9), it follows, by Theorem 1, that if p ≤ 1 − e−(Se+Sp−1)e−1

and E[T (n0(p))] ≤ B ≤ Se, then the equation, E[T (n)] = B, has exactly two solutions, and the

interval between these two solutions represents the feasible region of (9). Moreover, the optimal

solution will be attained at the lower bound of this interval, as E[FP (n)] is increasing in n. A

similar analysis of Model (9) can be performed for all other regions of p; see Table 2 in the online

supplementary material. On the other hand, Model (10) can be solved by adopting straightforward

modifications to the results obtained in this section. Specifically, the behavior of the new objective

function, which is a weighted combination of the per subject expected number of false positives and

number of tests, is similar to that of the per subject expected number of tests. Then, by following

steps similar to the proof of Theorem 1(i), one can show that the optimal solution to Model (10) also

follows a threshold policy and that the objective function can have at most two stationary points;

see the online supplementary material for closed-form expressions for these new threshold values

and stationary points (analogous to Eq.s (2)-(5)). By utilizing such properties, many of the results

developed in this section can be extended to also consider the expected number of false positives.

4 The Robust Group Testing Problem

In this section, we study the robust Dorfman group testing problem and discuss how the analytical

solution to the deterministic problem (Section 3) can be utilized to obtain an optimal robust group

size. In many settings, not only are prevalence rates uncertain, but their estimates are often highly

unreliable, as discussed in Section 1. As such, determining robust testing schemes, i.e., testing

schemes that work well under prevalence rate uncertainty, becomes important. Towards this end, we
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formulate and study a maximum regret minimization problem, where regret, following the literature

(e.g., [15, 29, 32]), corresponds to the deviation of the selected solution from the optimal solution

had one known the true prevalence rate. More formally, the Regret function, for a given n ≥ 1 and

p ∈ (0, 1), is given by:

Regret(n|P = p) = E
[︁
T (n)|P = p

]︁
− E

[︁
T
(︁
n∗
d(p)

)︁
|P = p

]︁
, (11)

where n∗
d(p) is the optimal group size to the deterministic problem (Section 3) for a given p. The

mini-max regret function is developed in the literature as an alternative to the traditional mini-

max type of objective functions commonly used in robust optimization (in our setting, this implies

minimizing the maximum per subject expected number of tests, over all possible prevalence rate

realizations), which can be overly conservative, leading to a high price of robustness, i.e., the relative

change in the objective function value under the optimal robust solution compared to its expectation-

based deterministic counterpart [5,15,32]. The related literature indicates that the mini-max regret

objective can produce robust solutions, while reducing the price of robustness; as a result, mini-max

regret objective has been utilized in many contexts, as discussed in Section 1, but to our knowledge,

it has not been used in the group testing literature. A main motivation for choosing a mini-max

type regret objective (over, for example, an expected regret type objective) is that it is distribution-

free, that is, it only requires the range of values that the prevalence rate can take (also referred

to as the uncertainty set in the robust optimization literature [4]), and does not require either the

distribution or the moments of the unknown prevalence rate, which can be very difficult to estimate

accurately. This is in direct contrast with other objectives, such as the minimization of an expected

regret, that may require the distribution of the unknown prevalence rate. The use of a mini-max

regret objective is not common within a healthcare setting (except for [15], which considers the

blood screening setting), and one of our goals in this paper is to demonstrate the value of robust

optimization in the group design setting under prevalence rate uncertainty.

We model the uncertainty around the unknown prevalence rate P using an interval type un-

certainty set, i.e., P ∈ [a, b], where 0 < a < b < 1, similar to many studies, e.g., [4]. An interval

type uncertainty set fits especially well with the epidemiology literature that reports prevalence

rates of infectious or genetic diseases in terms of confidence intervals. Then, the objective in the
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robust formulation is to find a group size, n∗
r , that minimizes the maximum regret over all possible

realizations of the prevalence rate, P :

minimize
n≥1

max
p∈[a,b]

{Regret(n|P = p)}.

This problem is difficult because for any given n, the maximum value of the inner problem, i.e.,

maxp∈[a,b]{Regret(n|P = p)}, is not necessarily attained at a boundary point, i.e., a or b. (See

the online supplementary material for an example.) As such, one needs to solve the deterministic

group size problem an infinite number of times, i.e., for all p ∈ [a, b], in order to solve the robust

group size problem, and without the closed-form expressions developed in Section 3, this problem

becomes intractable. Therefore, in the following, we utilize the results of Section 3 and characterize

key structural properties of the Regret function that enable us to optimally solve the inner problem.

Lemma 4. The maximum value of the Regret function can be represented as:

max
p∈[a,b]

{Regret(n|P = p)} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

max
p∈[a,b]

{︁
E
[︁
T (n)|P = p

]︁
− E

[︁
T
(︁
n0(p)

)︁
|P = p

]︁}︁
, if b ≤ p,

max

{︄
max

p∈[a,p]

{︁
E
[︁
T (n)|P = p

]︁
− E

[︁
T
(︁
n0(p)

)︁
|P = p

]︁}︁
,
1

n
− (Se+ Sp− 1)(1− b)n

}︄
, if a ≤ p < b,

1

n
− (Se+ Sp− 1)(1− b)n, if a > p,

where p is as defined in Eq. (2).

Corollary 5. When a > p, the optimal robust solution that minimizes the maximum regret always

coincides with its deterministic counterpart for all p ∈ [a, b], that is, the optimal maximum regret

is equal to zero.

Corollary 5 directly follows from Lemma 4, because when a > p, the group size that minimizes

the per subject expected number of tests is equal to infinity for all p ∈ [a, b] (see Theorem 1,

parts (i) and (ii)). Hence, the optimal robust solution that minimizes the maximum regret is also

equal to infinity, with the optimal maximum regret equal to zero, that is, in this case there is no

regret, as the robust solution always coincides with its deterministic counterpart for all p ∈ [a, b].

However, the case considered in Corollary 5, i.e., a > p, is unrealistic, as the lower estimate of

the prevalence rate, a, is typically much lower than p. As such, in what follows, we analyze the

robust group testing problem when a ≤ p. Moreover, by Lemma 4, in all the remaining cases
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(i.e., for all values of the parameters a and b such that a ≤ p), one needs to solve the problem:

max
p∈
[︁
a,min{b,p}

]︁ {︁E[︁T (n)|P = p
]︁
− E

[︁
T
(︁
n∗
d(p)

)︁
|P = p

]︁}︁
. Hence, in what follows, we focus on the

case when a < b ≤ p, and provide important structural properties of the Regret(n|P = p) function.

These properties enable us to find the global optimal solution to the maximum regret problem (the

inner problem). To this end, we define:

h(p) ≡ n+
1

2 ln(1− p)

⎛⎝1 +W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
(Se+Sp−1)

)︄1/2
⎞⎠⎞⎠ ,

with root p̃(n), that is, h(p̃(n)) = 0.

Lemma 5. For a given n, if b ≤ p, then:

1. if h(a)h(b) > 0, then Regret(n|P = p) has at most one stationary point with respect to p; and

2. if h(a)h(b) ≤ 0, then Regret(n|P = p) has at most two stationary points with respect to p.

Lemma 6. For a given n, if p̃(n) exists, then it is unique.

Recall that by Lemma 4, it is sufficient to analyze the Regret function in the range b ≤ p, as we

do in Lemma 7.

Lemma 7. For a given n, the following implications hold for all b ≤ p:

(i) If p̃(n) ∈ [a, b] and ∂Regret(n|P=p)
∂p

⃓⃓⃓⃓
⃓
p=p̃(n)

< 0, then ∂Regret(n|P=p)
∂p < 0 for all p ∈ [a, b].

(ii) If ∂Regret(n|P=p)
∂p

⃓⃓⃓⃓
⃓
p=a

> 0 and ∂Regret(n|P=p)
∂p

⃓⃓⃓⃓
⃓
p=b

> 0, then ∂Regret(n|P=p)
∂p > 0 for all p ∈ [a, b].

Lemmas 5–7 enable us to construct an algorithm, which we refer to as Regret Root-finding

Algorithm (RRA), that finds all the stationary points, with respect to p, of the Regret(n|P = p)

function for each given n in a given interval of p, leading to the global maximum of the Regret(n|P =

p) function.

Theorem 2. Algorithm RRA finds all stationary points of the Regret(n|P = p) function with

respect to p, for each given n.
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Algorithm 1: Regret Root-finding Algorithm (RRA)
Input : Se, Sp, a, b, n
Output: All stationary points of Regret(n|P = p) (if any) with respect to p in [a, b]

if h(a)h(b) > 0 then
if (∂Regret(n|P = p)/∂p|p=a)(∂Regret(n|P = p)/∂p|p=b) > 0 then

No stationary points in [a, b], STOP;
else

One stationary point in [a, b]. Use a root-finding method to identify it, STOP;
end

else
Use a root-finding method to identify the single root of h(p) in [a, b], denoted by p̃(n); if
∂Regret(n|P = p)/∂p|p=p̃(n) < 0 then

No stationary points in [a, b], STOP;
end
if ∂Regret(n|P = p)/∂p|p=p̃(n) = 0 then

if (∂Regret(n|P = p)/∂p|p=a)(∂Regret(n|P = p)/∂p|p=p̃(n)−) ≤ 0 then
Two stationary points in [a, b], with one equal to p̃(n) and the other in [a, p̃(n)). Use a
root-finding method to identify it, STOP;

else
if (∂Regret(n|P = p)/∂p|p=p̃(n)+)(∂Regret(n|P = p)/∂p|p=b) ≤ 0 then

Two stationary points in [a, b], with one equal to p̃(n) and the other in (p̃(n), b]. Use
a root-finding method to identify it, STOP;

else
One stationary point in [a,b] equal to p̃(n), STOP;

end
end

end
if ∂Regret(n|P = p)/∂p|p=a > 0 and ∂Regret(n|P = p)/∂p|p=b > 0 then

No stationary points in [a, b], STOP;
else

if ∂Regret(n|P = p)/∂p|p=a ≤ 0 then
A stationary point exists in [a, p̃(n)], denoted by p∗1. Use a root-finding method to
identify it;

else
A stationary point exists in [p̃(n), b], denoted by p∗1. Use a root-finding method to
identify it;

end
if (∂Regret(n|P = p)/∂p|p=a)(∂Regret(n|P = p)/∂p|p=p∗1−) ≤ 0 then

Two stationary points in [a, b], with one equal to p∗1 and the other in [a, p∗1). Use a
root-finding method to identify it, STOP;

else
if (∂Regret(n|P = p)/∂p|p=p∗1+)(∂Regret(n|P = p)/∂p|p=b) ≤ 0 then

Two stationary points in [a, b], with one equal to p∗1 and the other in (p∗1, b]. Use a
root-finding method to identify it, STOP;

else
One stationary point in [a, b] equal to p∗1, STOP;

end
end

end
end
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We note that Algorithm RRA can utilize any root finding algorithm, such as the bisection

method [9] that we utilize in our case study; and its time complexity is equivalent to the time

complexity of the utilized root finding algorithm.

Having developed an algorithm that solves the inner problem to optimality, we next discuss the

problem of determining the group size n ∈ Z+ that minimizes the maximum Regret function without

resorting to an exhaustive enumeration on all possible values of the group size, which is simply

infeasible if there is no upper bound on the group size. To this end, in what follows, we establish

key structural properties of the maximum Regret function that guarantees global optimality.

Theorem 3. If a ≤ p, then:

(i) n∗
r ≥ n0

(︁
min{p̄, b}

)︁
, where n0(·) is given by Eq. (4).

(ii) The maximum Regret function, i.e., maxp∈[a,b]{Regret(n|P = p)}, is decreasing in n for all

n ≥ n−1(a), where n−1(·) is given by Eq. (5), with limn→∞maxp∈[a,b]{Regret(n|P = p)} →

(Se+ Sp− 1)(1− a)n
∗
d(a) − 1/n∗

d(a).

In light of Theorem 3, when a ≤ p, it is sufficient to enumerate over the set
{︁
⌈n0

(︁
min{p̄, b}

)︁
⌉,

⌈n0

(︁
min{p̄, b}

)︁
⌉ + 1, · · · , ⌈n−1(a)⌉

}︁
, to determine the global optimal solution to the robust group

testing problem. To this end, let n̂ denote the group size that minimizes the maximum regret over

this set.

Corollary 6. The global optimal solution to the robust group testing problem, n∗
r , is given by:

n∗
r =

⎧⎪⎪⎨⎪⎪⎩
n̂, if a ≤ p and maxp∈[a,b]{Regret(n̂|P = p)} ≤ (Se+ Sp− 1)(1− a)n

∗
d(a) − 1/n∗

d(a),

∞, otherwise.

To explain the result in Corollary 6, we note that when a > p, by Corollary 5, n∗
r is infinity. On

the other hand, if a ≤ p and maxp∈[a,b]{Regret(n̂|P = p)} > (Se + Sp − 1)(1 − a)n
∗
d(a) − 1/n∗

d(a),

then, by Theorem 3, the optimal solution is infinity. Lastly, if a ≤ p and maxp∈[a,b]{Regret(n̂|P =

p)} ≤ (Se + Sp − 1)(1 − a)n
∗
d(a) − 1/n∗

d(a), then by Theorem 3, it must be true that n∗
r = n̂. As

such, while Lemmas 5–7 enable us to solve the inner problem to optimality, Theorem 3 enables us
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to determine the global minimizer of the maximum Regret function by enumerating over a finite

and countable domain.

5 Case Study

In this section, we conduct a case study on disease screening under dynamically changing prevalence

rates, i.e., the prevalence rate is not a constant but rather varies with time. This case study aims

to demonstrate the versatility and effectiveness of robust models, and illustrate how they can be

utilized in various settings that go beyond uncertainty in prevalence rates.

Diseases with dynamically changing prevalence rates are common in practice. Consider, for

example, vector-borne diseases, which are diseases transmitted by the bite of arthropod vectors,

such as bloodsucking insects (e.g., ticks and mosquitoes). Arthropods are exceptionally sensitive

to climate variations, and in turn the rates of vector-borne diseases are highly seasonal and vary,

sometimes substantially, throughout the year [20]. Vector-borne diseases account for more than 17%

of all infectious diseases, and lead to more than 700,000 deaths annually [31]. As such, constructing

testing schemes that take into account seasonal variations of the rate of the disease is of utmost im-

portance. Towards this end, in our case study we consider screening for West Nile virus (WNV), the

leading cause of mosquito-borne diseases in the US [17]. Currently, the American Red Cross screens

all donated blood for WNV, which can be transmitted through blood transfusion [12]. However,

to be able to screen a high volume of blood units (around four million blood units annually), the

American Red Cross uses Dorfman testing to drastically reduce screening costs [35]. Consequently,

determining optimal testing schemes for WNV, as we do in this case study, is of great relevance.

On average, around 230,000 cases of WNV infections are estimated to occur in the US each

year [33], and data reveals that the number of reported cases varies substantially throughout the

year, as shown in Figure 2, which plots the number of reported cases of WNV, by month, in the US

from 1997 till 2017 [18]. Because of this high seasonality, estimates for the rate of WNV vary widely,

e.g., [33] reports the rate of the disease to range from 8 to 1,100 cases per 100,000. As such, in this

case study we set, a to 0.008% and b to 1.10%. Such a wide range makes the task of developing

optimal testing schemes difficult, as the optimal group size is highly sensitive to prevalence rate

variations, as shown in Section 3. For example, when Se = Sp = 0.95, which represent realistic test
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Figure 2: Number of reported cases of WNV, by month, in the US, 1997-2017 [18]
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efficacy values for WNV screening [13], the optimal group size varies from 118, when p = a, to 11,

when p = b.

Our objectives in this case study are two-fold: First, we wish to study the sensitivity of the

optimal robust solution to variations in the test efficacy values, i.e., Se and Sp. In reality, the

testing facility may have several tests to select from, and each of these tests can potentially have

different test efficacy values. Thus, a sensitivity analysis on Se and Sp will shed important light on

this aspect. Second, and more importantly, we want to compare the performance of robust testing

schemes to their deterministic counterparts, and quantify the trade-offs involved. Specifically, we

are interested in quantifying the extent to which robust testing schemes improve the maximum

regret over their deterministic counterpart, and the price of robustness, i.e., the relative change in

the objective function value under the optimal robust solution compared to its expectation-based

deterministic counterpart.

5.1 Sensitivity Analysis on Se and Sp

Towards the first objective, we conduct a two-way sensitivity analysis, and explore a wide range

of values for the test efficacy values, Se and Sp, in {0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95,

1.00}. These represent realistic ranges, as several tests for the screening of WNV fall within these

ranges (e.g., [6,13,34]). We note that for all possible pairs of (Se, Sp) considered in this case study,

the condition b ≤ p is satisfied. Table 1 reports the optimal robust group size, n∗
r , and maximum

Regret function value (in parenthesis), maxp∈[a,b]{Regret(n∗
r |P = p)}, for the different cases of Se

23



and Sp. Our results indicate that n∗
r is quite sensitive to the test efficacy values, with n∗

r ranging

from 19 (corresponding to the most accurate test) to 73 (corresponding to the least accurate test).

Interestingly, our results reveal that n∗
r is decreasing in both Se and Sp, implying that smaller group

sizes ought to be used when utilizing more accurate tests. One possible explanation for this behavior

is that this monotonicity property is also observed in the deterministic model (see Lemma 2 ), which

states that for all p ∈ [a, b], the use of more accurate tests reduces the optimal deterministic group

size, n∗
d. As such, one would expect n∗

r to also reduce, as in the robust model we are attempting

to find a group size that works well for all p ∈ [a, b]. Analyzing the maximum regret value, we also

find that it is sensitive to variations in Se and Sp, but, interestingly, our results reveal that the

maximum regret value is increasing in both Se and Sp. To explain this behavior, we note that the

cross-partial derivative of E[T (n)], with respect to p and Se+ Sp, is always non-negative. As such,

for more accurate tests, E[T (n)] is more sensitive to variations in p, implying that the maximum

regret value is expected to increase.

Current screening practices for WNV use group sizes of either 6 or 16 [35]. Based on our analysis

in Table 1, all situations considered led to an optimal group size of 19 or greater. In fact, using

Se = Sp = 0.95, which represent realistic test efficacy values for the screening of WNV [13], the

optimal robust group size is equal to 20 (see Table 1). If a group of size 16 is used instead of 20,

then the per subject expected number of tests is slightly reduced (by an average of 2.5%), but the

maximum regret value is substantially increased (by 35%). This may be an undesirable outcome,

especially in settings in which prevalence rates are highly variable. On the other hand, a group of

size 6 significantly increases both the per subject expected number of tests and maximum regret,

by an average of 27% and 333%, respectively, over the proposed robust model.

5.2 Comparison of the Robust and Deterministic Models

In this section, we compare the performance of the robust and deterministic models. To achieve

this, one needs to select a prevalence rate for the deterministic model, which we denote as pd. To

gain insight, we perform this comparison for all possible values of pd ∈ [a, b], specifically for each

pd-value we determine the optimal deterministic group size, given by n∗
d(pd), and then evaluate the

maximum regret value for this group size, i.e., maxpd∈[a,b]{Regret(n∗
d(pd)|P = pd)}. Of course, the
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Table 1: Optimal robust group size, n∗
r , and maximum regret value (in parenthesis),

maxp∈[a,b]{Regret(n∗
r |P = p)}, for the robust group size problem for various test efficacy values

(Se, Sp)

H
HHHHSe

Sp 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.55 73
(0.0087)

56
(0.0116)

47
(0.0141)

41
(0.0163)

37
(0.0183)

34
(0.0204)

31
(0.0220)

29
(0.0236)

27
(0.0255)

26
(0.0264)

0.60 56
(0.0116)

47
(0.0141)

41
(0.0163)

37
(0.0183)

34
(0.0204)

31
(0.0220)

29
(0.0236)

27
(0.0255)

26
(0.0264)

25
(0.0277)

0.65 47
(0.0141)

41
(0.0163)

37
(0.0183)

34
(0.0204)

31
(0.0220)

29
(0.0236)

27
(0.0255)

26
(0.0264)

25
(0.0277)

24
(0.0293)

0.70 41
(0.0163)

37
(0.0183)

34
(0.0204)

31
(0.0220)

29
(0.0236)

27
(0.0255)

26
(0.0264)

25
(0.0277)

24
(0.0293)

23
(0.0304)

0.75 37
(0.0183)

34
(0.0204)

31
(0.0220)

29
(0.0236)

27
(0.0255)

26
(0.0264)

25
(0.0277)

24
(0.0293)

23
(0.0304)

22
(0.0313)

0.80 34
(0.0204)

31
(0.0220)

29
(0.0236)

27
(0.0255)

26
(0.0264)

25
(0.0277)

24
(0.0293)

23
(0.0304)

22
(0.0313)

21
(0.0330)

0.85 31
(0.0220)

29
(0.0236)

27
(0.0255)

26
(0.0264)

25
(0.0277)

24
(0.0293)

23
(0.0304)

22
(0.0313)

21
(0.0330)

20
(0.0349)

0.90 29
(0.0236)

27
(0.0255)

26
(0.0264)

25
(0.0277)

24
(0.0293)

23
(0.0304)

22
(0.0313)

21
(0.0330)

20
(0.0349)

20
(0.0347)

0.95 27
(0.0255)

26
(0.0264)

25
(0.0277)

24
(0.0293)

23
(0.0304)

22
(0.0313)

21
(0.0330)

20
(0.0349)

20
(0.0347)

19
(0.0367)

1.00 26
(0.0264)

25
(0.0277)

24
(0.0293)

23
(0.0304)

22
(0.0313)

21
(0.0330)

20
(0.0349)

20
(0.0347)

19
(0.0367)

19
(0.0375)

robust solution is not a function of pd; Figure 3a shows the maximum regret for the deterministic

model as a function of pd, and compares it to the maximum regret of the robust model. These

results are for (Se, Sp) = (0.95, 0.95), where the maximum regret of the robust model is 0.0347

(see Table 1). Figure 3b provides a histogram of the percent reduction in the maximum regret of

the robust solution over the deterministic solution. The figure reveals that for 74% of pd values,

the maximum regret is reduced by at least 30%. In particular, if one sets pd to the average yearly

WNV prevalence rate (equal to 0.10% [33]), which is a reasonable and commonly used choice, the

robust model reduces the maximum regret over the deterministic model by an average 71%. Such

substantial reductions in the maximum regret value, which occur for a wide range of pd-values,

underscore the importance and value of robust testing schemes.

Having compared the maximum regret value, we now focus on the per subject expected number of

tests, i.e., E[T (n)], for the robust and deterministic solutions so as to quantify the price of robustness,
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Figure 3: Performance comparison of the robust and deterministic models, in terms of maximum
regret value, when (Se, Sp) = (0.95, 0.95). The figures demonstrate the substantial reductions
observed for a wide choice of prevalence rates used in the deterministic model
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Figure 4: Performance comparison of the robust and deterministic models, in terms of E[T (n)],
when (Se, Sp) = (0.95, 0.95). The figures demonstrate that in the majority of the scenarios, i.e.,
a combination of po and pd, the robust model outperforms the deterministic model in both the
maximum regret and per subject expected number of tests
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i.e., the relative change in the per subject expected number of tests under the optimal robust solution

compared to its deterministic counterpart [5]. For this purpose, we evaluate E[T (n)] for each solution

as a function of the observed prevalence rate value, denoted by po, i.e., the prevalence rate value

that the testing facility encounters upon testing. In particular, for the robust solution, we plot

E[T (n)] corresponding to the robust solution, n∗
r , at each observed prevalence rate value, po, that

is, E
[︁
T (n∗

r)|P = po
]︁
. The deterministic model, on the other hand, is more involved, as one needs

to take into account the point estimate of the prevalence rate chosen in the deterministic model,

i.e., pd. Therefore, for each po, we derive E
[︁
T (n∗

d(pd))|P = po
]︁
, for all pd ∈ [a, b], thus leading to a

range of objective function values, each of which represents a different point estimate (pd) used in

the deterministic model.
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Figure 4a displays E[T (n)] for the case of (Se, Sp) = (0.95, 0.95). Specifically, for the robust

model, the plot represents the function E
[︁
T (n∗

r = 20)|P = po
]︁

(see Table 1, the case of (Se, Sp) =

(0.95, 0.95)); for the deterministic model, each po value gives rise to a range of objective function

values, each of which corresponding to a different prevalence rate used in the deterministic model

(pd). As expected, when the observed prevalence rate is perfectly aligned with the prevalence rate

used in the deterministic model, i.e., po = pd, the deterministic model outperforms the robust model

in terms of E[T (n)], and there is a price of robustness associated with the robust solution. This

can be seen in Figure 4a by the lower bound of the shaded region, as the gap between this lower

bound and the black solid line of the robust model represents the price of robustness. Interestingly,

however, in the majority of the cases (i.e., when the point estimate used in the deterministic model

is not accurate), the robust model provides a lower per subject expected number of tests than the

deterministic model. This is depicted in Figure 4a by the large gap between the upper bound of the

shaded region and the black solid line of the robust model, as well as Figure 4b, which displays the

histogram for the price of robustness values obtained from all scenarios: In more than 50% of the

scenarios, the robust model reduces E[T (n)] over the deterministic model. We note that a scenario

in this case is characterized by a combination of the observed prevalence rate, po, and the prevalence

rate used in the deterministic model, pd. While both parameters have continuous sample spaces,

in our numerical experiments we uniformly discretize this space into 101 components, leading to a

total of 10, 201 = 101 × 101 (po, pd) scenarios. Thus, in 50% of the scenarios, not only does the

robust model substantially reduce the maximum regret value (see Figure 3a), but it also reduces

E[T (n)] due to forecast error in the deterministic model. Figure 4b also shows that only 0.5%

of the cases report a price of robustness larger than 15%. Cases with a high price of robustness

correspond to scenarios in which the point estimate used in the deterministic model is close to the

actual realization, i.e., pd ≈ pd. While such scenarios can occur, in reality the probability of po being

close to pd is quite low, especially for emerging or seasonal diseases, such as the WNV considered

in our study. Further, setting pd to the average yearly WNV prevalence rate (equal to 0.10% [33]),

leads to the robust model reducing the per subject expected number of tests by an average of 16%

over the deterministic model.
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Figure 5: Performance comparison of the robust and deterministic models, in terms of misclassi-
fication, when (Se, Sp) = (0.95, 0.95). The figures demonstrate that the robust model can lead
to substantial reductions in total misclassification over the deterministic model, but, on average,
increase the total misclassification over the deterministic model
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5.3 Comparison of Expected Misclassification

In this section, we compare the accuracy of robust testing schemes to their deterministic coun-

terparts. While the main objective of this paper is to minimize the per subject expected number

of tests, one cannot ignore the importance of classification accuracy, especially within the context

of public health screening (see the end of Section 3 for a discussion). In what follows, we con-

duct a similar comparison to that of the per subject expected number of tests, i.e., we evaluate

E[FN(n)] + E[FP (n)] for each solution as a function of the observed prevalence rate value, po,

with the deterministic solution leading to a range of values, each of which representing a different

point estimate (pd) used in the deterministic model. Figure 5a displays E[FN(n)] + E[FP (n)] for

the case of (Se, Sp) = (0.95, 0.95), and it reveals that the robust model can, in some cases, offer

substantial reductions in the total number of misclassifications over the deterministic model. This

is depicted in Figure 5a by the large region of space between the upper bound of the shaded region

and the black solid line. However, Figure 5b, which displays the histogram for the percent change

in total misclassification obtained from all scenarios, reveals that the robust model leads to a lower

total misclassification in only 27% of the cases. Consequently, the robust model increases the total

misclassification by an average of 10% over the deterministic model. To explain this phenomenon,

we note that 74% of pd choices lead to robust group sizes that are larger than that of the deter-
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ministic model3. This, in turn, leads to a higher total misclassification, as E[FP ] is increasing in n

(see the last part of Section 3). Such an increase in misclassification is an undesirable outcome, but

if classification accuracy is of major concern, then the decision-maker should adopt a formulation

that incorporates an accuracy metric into the framework (such as Models (9) and (10) discussed in

Section 3).

Interestingly, if one sets pd to the average yearly WNV prevalence rate equal to 0.10% [33], which

is a common and sensible choice for pd, then the robust model reduces the total misclassification by

an average of 28%, the maximum regret by 71%, and the per subject expected number of tests by

an average of 16%. Consequently, in such a setting, the robust model significantly outperforms the

deterministic model with respect to all three measures.

In summary, this case study demonstrates the substantial benefits of robust testing schemes

under uncertainty; robust testing schemes significantly reduce the maximum regret value, and, in

the majority of the cases, they can also reduce testing costs. Such results underscore the importance

and value of considering robust models when designing group testing schemes, especially in settings

in which prevalence rate values are either uncertain or dynamically changing.

6 Conclusions

In this paper, we formulate and study a novel regret-based robust formulation of the Dorfman group

size problem under prevalence rate uncertainty. By analyzing a robust version of the Dorfman group

size problem, we also characterize key structural properties of the deterministic group size problem,

and show that the group size that minimizes the per subject expected number of tests follows

a threshold policy. These new results allow us to provide exact closed-form expressions for the

optimal group size in the deterministic setting, as a function of key problem parameters. We also

discuss how our analytical results unify the existing, mostly empirical, results on the deterministic

Dorfman group size problem. Our results on the deterministic problem enable us to efficiently solve

the robust problem to optimality, which, without the results on the deterministic setting, proves to

be intractable. Our case study on the screening of diseases with dynamically changing prevalence
3Specifically, in this example, the robust model leads to larger group sizes if and only if pd > 0.294%. Because

pd ∈ [0.008%, 1.10%], the proportion of pd values that satisfy this condition is given by (1.10%− 0.294%)/(1.10%−
0.008%) ≈ 74%.
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rates demonstrates that robust testing schemes have the potential to significantly outperform their

deterministic counterparts, by not only significantly reducing the maximum regret value, but, in the

majority of the cases, reducing testing costs as well, especially when the prevalence rate estimate

in the deterministic model does not coincide with the true prevalence rate value. Such results

underscore the importance of taking into account prevalence rate uncertainty or variation into the

modeling framework.

This work can be expanded in several ways. An important research direction is to explicitly

model the dilution effect of grouping. In some settings, the test sensitivity may deteriorate for

larger groups (see Section 1). One approach to mitigate the effect of dilution is to set appropriate

limits on group size, as discussed in Section 3. A more accurate approach, however, is to model

the test sensitivity value as a function of group size, but such functional forms of test sensitivity

versus group size are not readily available in the literature for most tests; further, this approach

may complicate the analysis considerably. Our analysis also restricts the study to a single test; in

reality, multiple tests may be available for a certain disease, with varying efficacy and cost values.

Therefore, an interesting future research direction is to consider multiple tests, and let the opti-

mization model select the optimal set of test(s) to administer. Yet another important consideration

is to relax the assumption of a binary test outcome. In reality, test outcomes need not be binary,

e.g., the test may measure the viral load of an infection. However, continuous test outcomes are

typically converted into binary outcomes via the use of predefined testing thresholds. If the testing

facility has no control over the testing threshold, then the assumption of a binary test outcome is

not limiting, and the results developed in this paper would hold. However, in settings where the

testing facility can modify the testing threshold, relaxing this assumption, and allowing the tester

to determine both the optimal group size and the optimal testing threshold, would be a worthwhile

extension of the models studied in this paper. The testing threshold impacts both the classification

accuracy and the testing efficiency, and determining the optimal threshold becomes an important

component of a screening scheme. We hope that our work drives future research in the aforemen-

tioned directions, motivates practitioners to consider implementing robust group testing schemes

over their deterministic counterparts, and leads to policy changes to improve screening outcomes.
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A Mathematical Proofs

Lemma 8 (Supporting Lemma). If p < p̄, then: (i) ∂E[T (n)]/∂n has exactly two stationary points;
and (ii) ∂E[T (n)]/∂n > 0 for all n ∈ (n0, n−1).

Proof of Lemma 8(i). To prove the result of the lemma, we show that when p < p̄ the second
derivative of the per subject expected number of tests has exactly two roots. The second derivative
of the per subject expected number of tests is given by:

∂E[T (n)]2

∂n2
=

2

n3
− (Se+ Sp− 1)[ln(1− p)]2(1− p)n.

Setting the second derivative to zero, and after some algebraic manipulations, we get:

n ln(1− p)

3
e

n ln(1−p)
3 =

1

3

[︃
2 ln(1− p)

Se+ Sp− 1

]︃ 1
3

. (12)

According to [11], Eq. (12) has exactly two real solutions if and only if:

1

3

[︃
2 ln(1− p)

Se+ Sp− 1

]︃ 1
3

> −1

e
⇔ p < 1− e−

27
2
(Se+Sp−1)e−3

.

Since p < p̄ ≤ 1−e−
27
2
(Se+Sp−1)e−3

for all Se+Sp−1 ∈ [0, 1], then this condition is satisfied, hence,
for all p < p̄, ∂E[T (n)]/∂n has exactly two stationary points, completing the proof.

Proof of Lemma 8(ii). We first note that ∂E[T (n)]/∂n does not have any roots between n0 and
n−1, hence for all n ∈ (n0, n−1), ∂E[T (n)]/∂n is of a constant sign. Suppose, by contradiction, that
there exists p < p̄ such that ∂E[T (n)]/∂n < 0 for all n ∈ (n0, n−1). Since ∂E[T (n)]/∂n is negative
as n approaches zero or infinity, then ∂E[T (n)]/∂n ≤ 0 for all n > 0, with zero attained twice at n0

and n−1. The following conclusions can be made:

• ∂E[T (n)]/∂n must increase in n for some interval in [0, n0] in order to attain a zero at n0

(since ∂E[T (n)]/∂n < 0 for all n < n0 and E[T (n)]/∂n|n=n0 = 0).

• ∂E[T (n)]/∂n must decrease after n0 (since, by contradiction assumption, ∂E[T (n)]/∂n < 0 for
all n ∈ (n0, n−1)). However, since ∂E[T (n)]/∂n is zero at n−1, then it must start increasing
before n−1 to attain zero at n−1.
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• ∂E[T (n)]/∂n must decrease after n−1 (since ∂E[T (n)]/∂n < 0 for all n > n−1).

Based on the above observations, one can conclude that ∂E[T (n)]/∂n must have at least three
stationary points, which is a contraction, as we showed in Lemma 8(i) that it has exactly two
stationary points. Hence, it must be true that for all p < p̄, ∂E[T (n)]/∂n > 0 for all n ∈ (n0, n−1),
completing the proof.

Proof of Lemma 1. Since p < p̄, then, Eq. (13) will have two real roots, which are given by the
principle and secondary Lambert W functions [11]. The two solutions, n0 and n−1, are given by:

n0 ln(1− p)

2
= W0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ ,

n−1 ln(1− p)

2
= W−1

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ .

Solving for n0 and n−1 leads to the expressions provided in the theorem. To show that n0 < n−1,
we note that W0(x) > W−1(x), for all x ∈ (−1/e, 0) [11]. Since the following equivalence holds:

0 < p < p̄ ⇔ −1

e
< −1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2

< 0,

then one can conclude that n0 < n−1.
To show that n0 (n−1) is a local minimum (maximum), we note that ∂E[T (n)]/∂n is negative

as n approaches zero or infinity. Hence, for all n ≤ n0 and n ≥ n−1, E[T (n)] is decreasing in n.
Moreover, for all n ∈ (n0, n−1), ∂E[T (n)]/∂n is positive (see Lemma 8). As such, one can conclude
that n0 is a local minimum and n−1 is a local maximum.

Proof of Theorem 1(i). Taking the derivative of Eq. (1) with respect to n gives:

∂E[T (n)]
∂n

= − 1

n2
− (Se+ Sp− 1) ln(1− p)(1− p)n.

Setting the derivative to zero, i.e., ∂E[T (n)]/∂n = 0, and after some algebraic manipulations, we
get:

n ln(1− p)

2
en ln(1−p)/2 = ±1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2

.

Since p ∈ (0, 1), we have that:
n ln(1− p)

2
en ln(1−p)/2 ≤ 0,

hence it is sufficient to consider the case where

n ln(1− p)

2
en ln(1−p)/2 = −1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2

. (13)
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Case I: p = p̄

In this case, Eq. (13) has exactly one root [11], denoted by n∗, which is given by:

n∗ =
−2

ln(1− p)
.

We note that ∂E[T (n)]/∂n is negative as n approaches zero or infinity. Hence, one can conclude
that ∂E[T (n)]/∂n ≤ 0 for all n > 0.
Case II: p > p̄

From [11], Eq. (13) does not have real solutions if:

−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2

< −1

e
⇔ p > p̄.

Hence, in this case the derivative does not have real roots, implying that the sign of the derivative
is of a constant sign. Noting that

lim
n→0

∂E[T (n)]
∂n

= −∞ < 0, ∀ p ∈ (0, 1),

we can conclude that the derivative is always negative for all n > 0, completing the proof.

Proof of Theorem 1(ii). Solving for E[T (n0)] > Se gives:

⇔ 1

n0
+ Se− (Se+ Sp− 1)(1− p)n0 > Se,

⇔ 1

n0
> (Se+ Sp− 1)(1− p)n0 .

Substituting n0 from Eq. (4) gives:

⇔ ln(1− p)

2W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠ > (Se+ Sp− 1)(1− p)

2
ln(1−p)

W0

⎛⎝− 1
2

(︄
ln( 1

1−p)
Se+Sp−1

)︄1/2
⎞⎠
,

⇔ ln(1− p)

2(Se+ Sp− 1)
< W0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ e

2W0

⎛⎝− 1
2

(︄
ln( 1

1−p)
Se+Sp−1

)︄1/2
⎞⎠
. (14)

From the definition of the Lambert W function, we have that:

W0(x)
2e2W0(x) = x2 ⇔ W0(x)e

2W0(x) =
x2

W0(x)
. (15)
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Substituting Eq. (15) into Eq. (14) gives:

W0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ < −1

2
.

Since W0(x) is increasing in x for all x ∈ (−1/e, 0) [11], then:

−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2

< W−1
0

(︃
−1

2

)︃
= −1

2
e−1/2,

⇔ p > 1− e−(Se+Sp−1)e−1
= p.

Also, since 4e−2 > e−1, then p ≤ p̄. Hence, for all p ∈ (p, p̄), n0 is a local minimum with E[T (n0)] >
Se. Since n0 is the only local minimum, and limn→∞ E[T (n)] = Se, then the group size that
minimizes E[T (n)] is ∞, concluding the proof.

Proof of Theorem 1(iii). From the proof of Theorem 1(ii), the following equivalence holds:

if p ≤ p ⇔ E[T (n0)] ≤ Se.

As such, since limn→0 E[T (n)] = ∞ and limn→∞ E[T (n)] = Se+, one can conclude that the local
minimum n0 is also a global minimum, completing the proof.

Proof of Remark 2. The Taylor series expansion of W0(x) around zero is given by:

W0(x) = W0(0) +
∞∑︂
i=1

W
(i)
0 (0)xi

i!
.

We note that W0(0) = 0, and from [23], we have that W
(i)
0 (0) = (−i)i−1, which, upon substituting

in the previous equation, gives:

W0(x) =
∞∑︂
i=1

(−i)i−1xi

i!
.

Then, the first order approximation of n0(p) around zero is given by:

n0(p) ≈
1√︁

[− ln(1− p)] (Se+ Sp+ 1)
.

Noting that the first order Taylor series expansion of ln(1− p) is −p provides the expression in the
remark, completing the proof.
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Proof of Lemma 2(i). Taking the derivative of n0(p) with respect to pgives:

∂n0(p)

∂p
=

W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠⎡⎣1 + 2W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠⎤⎦

(1− p)[ln(1− p)]2

⎡⎣1 +W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠⎤⎦ .

Note that if p < p, then ∂n0(p)/∂p ≤ 0 (see proof of Lemma 5). On the other hand, taking the
derivative of n0(p) with respect to Se+ Sp gives:

∂n0(p)

∂(Se+ Sp)
= −

W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠

ln(1− p)(Se+ Sp− 1)

⎡⎣1 +W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠⎤⎦ .

Noting that W0(x) ∈ [−1, 0] when x ∈ [−1/e, 0], then ∂n0(p)/∂(Se+ Sp) ≤ 0

Proof of Lemma 2(ii). For a given prevalence rate value p ≤ p, the per subject expected number
of tests at the optimal solution, equal to n0(p) (since Theorem 1(iii)), is given by:

E[T (n0(p)|P = p] =
1

n0(p)
+ Se− (Se+ Sp− 1)(1− p)n0(p).

Taking the derivative with respect to p gives:

∂E[T (n0(p)|P = p]

∂p
= − 1

2(1− p)W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠ ≥ 0,

completing the proof.

Proof of Lemma 3. For a group size of 1, the per subject expected number of tests is equal to:

E[T (1)] = 1 + Se− (Se+ Sp− 1)(1− p).

Since Sp ≤ 1, then Se ≥ Se+ Sp− 1 ≥ (Se+ Sp− 1)(1− p), and hence E[T (1)] ≥ 1. Also, notice
that:

lim
n→∞

E[T (n)] = Se+ < 1.

Since E[T (n)] is continuous in n (for the relaxed problem), then, by the intermediate value theorem,
there must exist n > 1 such that E[T (n)] < 1, completing the proof.

Proof of Lemma 4. We prove the result for each case separately.
Case I: b ≤ p

In this case, the optimal group size that minimizes the per subject expected number of tests is
equal to n0, that is, n∗

d = n0 (see Theorem 1(iii)). Then, by the definition of the Regret function
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(see Eq. (11)), the Regret(n, p) function is equal to:

Regret(n, p) =E[T (n)]− E[T (n∗
d(p))],

=E[T (n)]− E[T (n0(p))].

Hence, the maximum Regret function is given by:

max
p∈[a,b]

{Regret(n, p)} = max
p∈[a,b]

{E[T (n)]− E[T (n0(p))]} ,

completing the proof for this case.
Case II: b > p and a ≤ p

In this case, the maximum Regret function is given by:

max
p∈[a,b]

{Regret(n, p)} = max

{︄
max
p∈[a,p]

{E[T (n)]− E[T (n∗
d(p))]} , max

p∈(p,b]
{E[T (n)]− E[T (n∗

d(p))]}

}︄
.

When p ∈
[︁
a, p
]︁
, the optimal group size, n∗

d, is equal to n0(p) (see Theorem 1(iii)), and when
p ∈

(︁
p, b
]︁

the optimal group size, n∗
d, is equal to ∞ (see Theorems 1(ii) and 1(ii)). As such, the

maximum Regret function is given by:

max
p∈[a,b]

{Regret(n, p)} = max

{︄
max
p∈[a,p]

{E[T (n)]− E[T (n0(p))]} , max
p∈(p,b]

{E[T (n)]− E[T (∞)]}

}︄
.

When p ∈
(︁
p, b
]︁
, the Regret(n, p) function is given by:

Regret(n, p) = E[T (n)]− E[T (∞)]

=
1

n
− (Se+ Sp− 1)(1− p)n,

with
∂Regret(n, p)

∂p
= n(Se+ Sp− 1)(1− p)n−1.

Note that, for all (Se + Sp − 1) ∈ [0, 1], and for all p ∈ (0, 1), ∂Regret(n, p)/∂p ≥ 0. Hence, for
this case, the Regret(n, p) function is increasing in p, and the maximum regret is attained at p = b,
leading to:

max
p∈(p,b]

{E[T (n)]− E[T (∞)]} =
1

n
− (Se+ Sp− 1)(1− b)n,

completing the proof for this case.
Case III: a > p

In this case, the condition p > p is satisfied for all p ∈ [a, b]. Hence, by Theorems 1(i) and 1(ii),
the optimal group size for all p ∈ [a, b] is equal to infinity, and the Regret(n, p) function is thus
given by:

Regret(n, p) = E[T (n)]− E[T (∞)]

=
1

n
− (Se+ Sp− 1)(1− p)n.
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Using the results of Case II, one can conclude that :

max
p∈(p,b]

{E[T (n)]− E[T (∞)]} =
1

n
− (Se+ Sp− 1)(1− b)n, for all p ∈ [a, b],

completing the proof.

Proof of Lemma 5. Since, b ≤ p, then the condition p ≤ p is satisfied for all p ∈ [a, b]. As such,
by Theorem 1(iii), n∗

d(p) = n0(p), and Regret(n, p) is given by:

Regret(n, p) = E[T (n)]− E[T (n0(p)].

The derivative of Regret(n, p) with respect to p is given by:

∂Regret(n, p)

∂p
= n(Se+ Sp− 1)(1− p)n−1 +

1

2(1− p)W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠ .

Setting the derivative to zero gives the following equation:

(1− p)nW0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ =

−1

2n(Se+ Sp− 1)
. (16)

Note that for a given n, the right hand side of Eq. (16) is a constant. The roots of the derivative
are the points in which the left hand side of Eq. (16) intersects the constant right hand side term
of Eq. (16). In what follows, we show that the left hand side of Eq. (16) can have at most one
stationary point, which implies that it can intersect the constant right hand side term of Eq. (16)
at most twice, meaning that the derivative can have at most two roots. Towards this end, we define
f(p) as:

f(p) ≡ (1− p)nW0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ .

The derivative of f(p) with respect to p is given by:

∂f(p)

∂p
= (1− p)n−1W0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠
⎡⎢⎢⎢⎢⎣−n− 1

2 ln(1− p)

(︄
1 +W0

(︄
− 1

2

(︃
ln( 1

1−p )
Se+Sp−1

)︃1/2
)︄)︄

⎤⎥⎥⎥⎥⎦ .

Since p ∈ (0, 1), then the derivative of f(p) can only attain zero when h(p) = 0, where

h(p) ≡ −n− 1

2 ln(1− p)

⎛⎝1 +W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠⎞⎠ .
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h(p) = 0 can be equivalently written as:

− ln(1− p)

⎛⎜⎝1 +W0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠
⎞⎟⎠ =

1

2n
. (17)

Note that the right hand side of Eq. (17) is a constant, and the solutions to Eq. (17) are the
intersections of the left hand side of Eq. (17) with the constant right hand side term. In what
follows, we show that the left hand side of Eq. (17) is monotone in p, implying that the left hand
side of Eq. (17) can intersect the constant right hand side of Eq. (17) at most once. Towards this
end, we define g(p) as:

g(p) ≡ − ln(1− p)

⎛⎜⎝1 +W0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠
⎞⎟⎠ .

The derivative of g(p) is given by:

∂g(p)

∂p
=

1

1− p

[︃
1 +W0(x) +

W0(x)

2(1 +W0(x))

]︃
,

where

x ≡ −1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2

.

Next, we show that for all p ≤ p, the following identity holds:

1 +W0(x) +
W0(x)

2(1 +W0(x))
≥ 0.

To show this, we first solve the following equation:

1 +W0(x) +
W0(x)

2(1 +W0(x))
= 0,

which can be equivalently written as a quadratic equation in W (x) as follows:

2 [W0(x)]
2 + 5W0(x) + 2 = 0.

The two solutions to this quadratic equation are given by:

W0(x) = −0.5 and W0(x) = −2,

but W0(x) ∈ [−1, 0] if x ≤ 0 (which is true in our case) [11], hence we only consider the solution
W0(x) = −0.5. From this, we can conclude that for all W0(x) ≥ −0.5, the following identity holds:

2 [W0(x)]
2 + 5W0(x) + 2 ≥ 0,
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which, since 1 +W0(x) > 0 for x < 0 [11], implies that:

1 +W0(x) +
W0(x)

2(1 +W0(x))
≥ 0.

However, we have that:
W0(x) ≥ −0.5 ⇔ p ≤ p,

which is satisfied, as it is a condition specified in the lemma. Hence, for all p ≤ p, ∂f(p)/∂p has at
most one root.
Case I: h(a)h(b) > 0

In this case, h(p) does not have a root in the interval [a, b], hence ∂f(p)/∂p does not have a root,
which means that ∂f(p)/∂p is of constant sign. As such, f(p) is monotone in p and Eq. (16) can
have at most one solution, which implies that Regret(n, p) can have at most one stationary point
with respect to p.
Case II: h(a)h(b) ≤ 0

In this case, h(p) has a single root in the interval [a, b], hence ∂f(p)/∂p has exactly one root,
which means that Eq. (16) can have at most two solutions, which implies that Regret(n, p) can
have at most two stationary points with respect to p.

Notice that if h(p) has a root in the interval [a, b], denoted by p̃(n), then, for all p > p̃(n),
h(p) > 0, and, for all p < p̃(n), h(p) < 0. As such, for all p > p̃(n), f(p) < 0, while for all
p < p̃(n), f(p) > 0. Thus, p̃(n) is a global minimum for f(p), that is, if b < p, then for all p ∈ [a, b],
f(p̃(n)) ≤ f(p). Moreover, if b ≤ p, then the global maximum of f(p) is a boundary point, that is,
max{f(a), f(b)} ≥ f(p) for all p ∈ [a, b].

Proof of Lemma 6. The result directly follows from the proof of Lemma 5.

Proof of Lemma 7(i). Assume that p̃(n) exists and belongs to the interval [a, b]. Then, for a
given group size n, the derivative of Regret(n, p) with respect to p is given by:

∂Regret(n, p)

∂p
=

(1− p)n−1

2

⎡⎢⎢⎢⎢⎢⎢⎣2n(Se+ Sp− 1) +
1

(1− p)nW0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦ .

Let:

f(p) ≡ (1− p)nW0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ .

From the proof of Lemma 5, p̃(n) is a global minimum for f(p), that is, for all p ∈ [a, b] f(p̃(n)) ≤
f(p). Then, for all p ∈ [a, b], we have that:

2n(Se+ Sp− 1) +
1

f(p)
≤ 2n(Se+ Sp− 1) +

1

f(p̃(n))
.

9



Now, suppose that
∂Regret(n, p)

∂p

⃓⃓⃓⃓
⃓
p=p̃(n)

< 0,

then, since p ∈ (0, 1), we have that:

2n(Se+ Sp− 1) +
1

f(p̃(n))
< 0,

which directly implies that for all p ∈ [a, b]

2n(Se+ Sp− 1) +
1

f(p)
< 0,

multiplying the latter by (1− p)n−1/2 > 0, we get that, for all p ∈ [a, b]:

∂Regret(n, p)

∂p
< 0,

completing the proof.

Proof of Lemma 7(ii). The derivative of Regret(n, p) with respect to p is given by:

∂Regret(n, p)

∂p
=

(1− p)n−1

2

⎡⎢⎢⎢⎢⎢⎢⎣2n(Se+ Sp− 1) +
1

(1− p)nW0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦ .

Let:

f(p) ≡ (1− p)nW0

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ .

From the proof of Lemma 5, we have that max{f(a), f(b)} ≥ f(p) for all p ∈ [a, b]. A such, the
following holds:

2n(Se+ Sp− 1) +
1

max{f(a), f(b)}
≤ 2n(Se+ Sp− 1) +

1

f(p)
, for all p ∈ [a, b].

By the condition imposed in the lemma, the following holds:

∂Regret(n, p)

∂p

⃓⃓⃓⃓
⃓
p=a

> 0 and
∂Regret(n, p)

∂p

⃓⃓⃓⃓
⃓
p=b

> 0 =⇒ 2n(Se+Sp−1)+
1

max{f(a), f(b)}
> 0.

Hence, from the previous two equations, we have:

2n(Se+ Sp− 1) +
1

f(p)
> 0, for all p ∈ [a, b],

10



multiplying the latter by (1− p)n−1/2 > 0, we get that, for all p ∈ [a, b] :

∂Regret(n, p)

∂p
> 0,

completing the proof.

Proof of Theorem 2. We prove that Algorithm RRA identifies all the stationary points of Regret(n, p)
with respect to the prevalence rate, p, for a given group size, n, by investigating each case separately.
Case I: h(a)h(b) > 0

By Lemma 5(i), Regret(n, p) has at most one stationary point. Hence, if:

(∂Regret(n, p)/∂p|p=a)(∂Regret(n, p)/∂p|p=b) > 0,

then one can conclude that ∂Regret(n, p)/∂p has no roots in [a, b], as it can have at most one root.
On the other hand, if:

(∂Regret(n, p)/∂p|p=a)(∂Regret(n, p)/∂p|p=b) ≤ 0,

then, by the intermediate value theorem and Lemma 5(i), ∂Regret(n, p)/∂p must have exactly one
root in [a, b], which can be identified by a root-finding method.
Case II: h(a)h(b) ≤ 0

By Lemma 5(ii), Regret(n, p) has at most two stationary points. Moreover, h(p) must have a root
in [a, b], p̃(n), which is unique (see Lemma 6).

• If ∂Regret(n, p)/∂p|p=p̃(n) < 0, then, by Lemma 7(i), ∂Regret(n, p)/∂p < 0 for all p ∈ [a, b].
Thus, ∂Regret(n, p)/∂p has no roots.

• If ∂Regret(n, p)/∂p|p=p̃(n) = 0, then p̃(n) is a stationary point. Another stationary point may
exist in either [a, p̃(n)] or (p̃(n), b]. Check the boundary values to reach a conclusion. If second
stationary point exists, then it can be identified by a root-finding method.

• If ∂Regret(n, p)/∂p|p=a > 0 and ∂Regret(n, p)/∂p|p=b > 0, then, by Lemma 7(ii), ∂Regret(n, p)/∂p >
0 for all p ∈ [a, b]. Thus, ∂Regret(n, p)/∂p has no roots.

• If ∂Regret(n, p)/∂p|p=a ≤ 0 or ∂Regret(n, p)/∂p|p=b ≤ 0, then, by noting that ∂Regret(n, p)/∂p|p=p̃(n) >
0 (since otherwise the algorithm would have terminated) and that at most two stationary
points are possible, using the three points a, p̃(n), and b to identify all stationary points (if
any) in the interval [a, b] by using a root-finding method.

Proof of Theorem 3(i). We prove the result of each case separately.
Case I: b ≤ p

In this case, the Regret function is given by:

Regret(n, p) = E[T (n)]− E[T (n0(p)].

The derivative of Regret(n, p) with respect to p is given by:

∂Regret(n, p)

∂p
= n(Se+ Sp− 1)(1− p)n−1 +

1

2(1− p)W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠ .
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Setting the derivative to be less than or equal to zero, and after some algebraic manipulations,
gives the condition n ≤ n0(p). If the latter condition is satisfied, then Regret(n, p) is decreasing in
p (note that this is an implication and not an equivalence statement). Noting that since n0(p) is
decreasing in p (see Lemma 2), then n ≤ n0(b) =⇒ n ≤ n0(p) for all p ∈ [a, b].

We are now ready to prove the result of the theorem. Suppose, by contradiction, that n∗
r < n0(b),

then there exists ñr such that n∗
r < ñr < n0(b). In what follows, we show that ñr improves the

objective function value. To this end, since n∗
r , ñr < n0(b), then the Regret function is decreasing

in p for all p ∈ [a, b]. As such, the following holds:

max
p∈[a,b]

{Regret(ñr|P = p)} − max
p∈[a,b]

{Regret(n∗
r |P = p)} =Regret(ñr|P = a)−Regret(n∗

r |P = a)

=E[T (ñr)|P = a]− E[T (n∗
r)|P = a].

Note that by Lemma 1 , if n < n0(a) then E[T (n)|P = a] is strictly decreasing in n. Thus, since
n∗
r < ñr < n0(b) ≤ n0(a), we have that E[T (ñr)|P = a] < E[T (n∗

r)|P = a], implying that:

max
p∈[a,b]

{Regret(ñr|P = p)} − max
p∈[a,b]

{Regret(n∗
r |P = p)} < 0.

As a result, own can conclude that ñr improves the objective function value, which a contradic-
tion, and hence completing the proof.
Case II: p ≤ b < p̄

In this case, the maximum Regret function is given by:

max
p∈[a,b]

{Regret(n, p)} = max

{︄
max
p∈[a,p]

{E[T (n)]− E[T (n0(p))]} ,
1

n
− (Se+ Sp− 1)(1− b)n

}︄
.

Suppose, by contradiction, that n∗
r < n0(b), then there exists ñr such that n∗

r < ñr < n0(b). In Case
I of this proof, we showed that the first term of the max, i.e., maxp∈[a,p] {E[T (n)]− E[T (n0(p))]},
is deceasing in n for all n ≤ n0(p). Since n∗

r < ñr < n0(b) ≤ n0(p), then ñr will reduce the first
term of the max over n∗

r . Next, we show that ñr also reduces the second term of the max, i.e.,
1/n − (Se + Sp − 1)(1 − b)n. Note that, by Lemma 1, the second term of the max is decreasing
in n if n < n0(b). Since n∗

r < ñr < n0(b), then ñr reduces the second term of the max over n∗
r ,

completing the proof.
Case III: b ≥ p̄ In this case, the maximum Regret function is given by:

max
p∈[a,b]

{Regret(n, p)} = max

{︄
max
p∈[a,p]

{E[T (n)]− E[T (n0(p))]} ,
1

n
− (Se+ Sp− 1)(1− b)n

}︄
.

Suppose, by contradiction, that n∗
r < n0(p̄), then there exists ñr such that n∗

r < ñr < n0(p̄). In Case
I of this proof, we showed that the first term of the max, i.e., maxp∈[a,p] {E[T (n)]− E[T (n0(p))]},
is deceasing in n for all n ≤ n0(p). Since n∗

r < ñr < n0(p̄) ≤ n0(p), then ñr will reduce the first
term of the max over n∗

r . Next, we show that ñr also reduces the second term of the max, i.e.,
1/n− (Se+ Sp− 1)(1− b)n. Note that, since b ≥ p̄, then, by Theorem 1(i), the second term of the
max is decreasing in n for all n. As such, ñr reduces the second term of the max over n∗

r , completing
the proof.

Proof of Theorem 3(ii). We prove the result of each case separately.
Case I: b ≤ p

12



In this case, the Regret function is given by:

Regret(n, p) = E[T (n)]− E[T (n0(p)].

The derivative of Regret(n, p) with respect to p is given by:

∂Regret(n, p)

∂p
= n(Se+ Sp− 1)(1− p)n−1 +

1

2(1− p)W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠ .

Setting the derivative to be less than or equal to zero, and after some algebraic manipulations, gives
the following condition:

n ≥ 1

ln(1− p)
W−1

⎛⎜⎜⎜⎜⎜⎜⎝
− ln(1− p)

2(Se+ Sp− 1)W0

⎛⎝−1
2

(︄
ln
(︂

1
1−p

)︂
Se+Sp−1

)︄1/2
⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎠ . (18)

If Eq. (18) is satisfied then Regret(n, p) is decreasing in p (note that this is an implication and
not an equivalence statement). In what follows, we show that the right hand side of Eq. (18) is
decreasing in p. Towards this end, define x as:

x(p) ≡ −1

2

⎛⎝ ln
(︂

1
1−p

)︂
Se+ Sp− 1

⎞⎠1/2

.

Hence, Eq. (18) reduces to:

n ≤ 1

ln(1− p)
W−1

(︄
2
(︁
x(p)

)︁2
W0

(︁
x(p)

)︁)︄ .

Note that since b ≤ p, then p ≤ p for all p ∈ [a, b]. From the proof of Lemma 5, we have the that:

0 < p ≤ p ⇔ −1

2
≤ W0(x(p)) < 0.

Define g(p) as:

g(p) ≡
2
(︁
x(p)

)︁2
W0

(︁
x(p)

)︁ ,
then, the first derivative of g(p) is given by:

∂g(p)

∂p
=

∂g(p)

∂x(p)

∂x(p)

∂p
,

where
∂g(p)

∂x(p)
=

2x(p)
[︁
1 + 2W0

(︁
x(p)

)︁]︁
W0

(︁
x(p)

)︁ .

13



Since x(p) < 0, W0

(︁
x(p)

)︁
< 0, and W0

(︁
x(p)

)︁
≥ −1/2, then one can conclude that:

∂g(p)

∂x(p)
≥ 0, for all p ∈ [a, b].

On the other hand, we have that:

∂x

∂p
= − 1

4
√
Se+ Sp− 1

(︃
ln

(︃
1

1− p

)︃)︃−1/2 1

1− p
≤ 0, for all p ∈ [a, b].

As such, one can conclude that g(p) is decreasing in p for all p ∈ [a, b]. Now, consider p1, p2 ∈ [a, b] :
p1 ≥ p2, then, by the previous result, we have that:

g(p1) ≤ g(p2),

⇒ W−1 (g(p1)) ≥ W−1 (g(p2)) , since W−1(x) is decreasing in x [11],

⇒ 1

ln(1− p1)
W−1 (g(p1)) ≤

1

ln(1− p2)
W−1 (g(p2)) , since p1, p2 ∈ (0, 1) and p1 ≥ p2.

We have just shown that the right hand side of Eq. (18) is decreasing in p. Next, we show that
n−1(a) is greater than the right hand side of Eq. (18). To achieve this, we compare n−1(a) to the
right hand side of Eq. (18) at p = a, as the the right hand side is decreasing in p. We first note the
following:

0 < a ≤ p ⇔ −1

2
e−1/2 ≤ x(a) < 0.

Let t(x) ≡ W0(x)/x, it is easy to show that t(x) is decreasing in x for all x ∈ (−1/2e−1/2, 0). As
such, we have that:

t(x) ≤ t

(︃
−1

2
e−1/2

)︃
≈ 1.648 ≤ 2, for all x ∈

(︃
−1

2
e−1/2, 0

)︃
.

As such, for all x ∈ (−1/2e−1/2, 0), we have that:

t
(︁
x(a)

)︁
≤ 2,

⇒
W0

(︁
x(a)

)︁
x(a)

≤ 2,

⇒ 2x(a)−W0

(︁
x(a)

)︁
≤ 0,

⇒ x(a)(2x(a)−W0

(︁
x(a)

)︁
) ≥ 0,

⇒
2
(︁
x(a)

)︁2
W0

(︁
x(a)

)︁ ≤ x(a),

⇒ W−1

(︄
2
(︁
x(a)

)︁2
W0

(︁
x(a)

)︁)︄ ≥ W−1

(︁
x(a)

)︁
≥ 2W−1

(︁
x(a)

)︁
,

⇒ 1

ln(1− a)
W−1

(︄
2
(︁
x(a)

)︁2
W0

(︁
x(a)

)︁)︄ ≤ 2

ln(1− a)
W−1

(︁
x(a)

)︁
,

⇒ 1

ln(1− a)
W−1

(︄
2
(︁
x(a)

)︁2
W0

(︁
x(a)

)︁)︄ ≤ n−1(a).
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Hence, for all n ≥ n−1(a), the condition in Eq. (18) is satisfied and the Regret function is decreasing
in p for all p ∈ [a, b]. As a result, the maximum Regret function is given by:

max
p∈[a,b]

{Regret(n, p)} =
1

n
− (Se+ Sp− 1)(1− a)n − 1/n0(a) + (Se+ Sp− 1)(1− a)n0(a),

and the first derivative of the maximum Regret function with respect to n is given by:

∂

∂n
max
p∈[a,b]

{Regret(n, p)} = − 1

n2
− ln(1− a)(Se+ Sp− 1)(1− a)n,

which is decreasing in n when:

n ≥ 2

ln(1− a)
W−1

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−a

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ = n−1(a).

Thus, when n ≥ n−1(a), one can conclude that the maximum Regret function is decreasing in n,
completing the proof for this case.
Case II: b > p

In this case, the maximum Regret function is given by:

max
p∈[a,b]

{Regret(n, p)} = max

{︄
max
p∈[a,p]

{E[T (n)]− E[T (n0(p))]} ,
1

n
− (Se+ Sp− 1)(1− b)n

}︄
.

In Case I of this proof, we showed that first term of the max, i.e., maxp∈[a,p] {E[T (n)]− E[T (n0(p))]},
is deceasing in n for all n ≥ n−1(a). Next, we show that the second term of the max, i.e.,
1/n − (Se + Sp − 1)(1 − b)n is also decreasing in n. We note, from the proof of Theorem 1(i),
that if b ≥ p̄, then 1/n− (Se+ Sp− 1)(1− b)n is decreasing in n for all n > 0. As such, we are left
with proving that 1/n− (Se+Sp− 1)(1− b)n is decreasing in n when p < b < p̄ for all n ≥ n−1(a).
To this end, suppose p < b < p̄, then 1/n− (Se+ Sp− 1)(1− b)n is decreasing in n when:

n ≥ 2

ln(1− b)
W−1

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−b

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ . (19)

In what follows, we show that the right hand side of Eq. (19) is lower than nc. We note that a < b,
which gives:
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−1

2

⎛⎝ ln
(︂

1
1−a

)︂
Se+ Sp− 1

⎞⎠ ≥ −1

2

⎛⎝ ln
(︂

1
1−b

)︂
Se+ Sp− 1

⎞⎠1/2

,

⇒ W−1

⎛⎝−1

2

⎛⎝ ln
(︂

1
1−a

)︂
Se+ Sp− 1

⎞⎠⎞⎠ ≤ W−1

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−b

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ ,

⇒ n−1(a) =
2

ln(1− a)
W−1

⎛⎝−1

2

⎛⎝ ln
(︂

1
1−a

)︂
Se+ Sp− 1

⎞⎠⎞⎠ ≥ 2

ln(1− b)
W−1

⎛⎜⎝−1

2

⎛⎝ ln
(︂

1
1−b

)︂
Se+ Sp− 1

⎞⎠1/2
⎞⎟⎠ .

Hence, for all n ≥ n−1(a) Eq. (19) is satisfied, implying that 1/n−(Se+Sp−1)(1−b)n is decreasing
in n. Also, since the maximum Regret function is the max of two decreasing functions in n, this
means that the maximum Regret function is decreasing in n for all n ≥ n−1(a), completing the
proof.

B Details on Model Extensions to Consider Classification Accuracy

In this section, we fist derive expressions for the per subject expected number of false negatives,
E[FN(n)], and the per subject expected number of false positives, E[FP (n)], for a Dorfman testing
scheme with group size n ∈ Z+, conditioned on a given realization of the prevalence rate, p. Then,
we provide details on the analysis of Models (9) and (10). Towards this end, let (N+(n)|P =
p) ∼ Binomial(n, p) denote the random number of true positive subjects in a group of size n for a
prevalence rate realization of p. Then, we have:

E[FN(n)|P = p] =

n∑︂
k=1

E[FN(n)|N+(n) = k, P = p]P (N+(n) = k|P = p)

=

n∑︂
k=1

[︃
k(1− Se)Se+ k(1− Se)

n

]︃
P (N+(n) = k|P = p)

=(1− Se2)p, and

E[FP (n)|P = p] =

n−1∑︂
k=0

E[FP (n)|N+(n) = k, P = p]P (N+(n) = k|P = p)

=(1− Sp)2P (N+(n) = 0|P = p) +

n−1∑︂
k=1

(n− k)

n
(1− Sp)SeP (N+(n) = k|P = p)

=Se(1− Sp)(1− p)− (1− Sp)(Se+ Sp− 1)(1− p)n.

A complete characterization of the optimal group size for the budget-constrained model, i.e.,
Model (9), is detailed in Table 2. For Model (10), the corresponding threshold values are given in
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Table 2: The characterization of the optimal group size for Model (9)

p ≤ p

B < E[T (n0(p))] E[T (n0(p))] < B ≤ Se Se < B < E[T (n−1(p))] B > E[T (n−1(p))]

Infeasible

E[T (n)] = B has
exactly two solutions
(n1 < n2), with
[n1, n2] representing
the feasible region,
and n1 representing
the optimal solution.

E[T (n)] = B has exactly
three solutions (n1 <
n2 < n3), with [n1, n2]∪
[n3,∞] representing the
feasible region, and n1

representing the optimal
solution.

E[T (n)] = B has
exactly one solution
(n1 ), with [n1,∞]
representing the fea-
sible region, and n1

representing the op-
timal solution

p < p ≤ p̄

B ≤ Se Se < B < E[T (n0(p))] E[T (n0(p))] < B <
E[T (n−1(p))]

B > E[T (n−1(p))]

Infeasible

E[T (n)] = B has
exactly one solution
(n1), with [n1,∞] rep-
resenting the feasible
region, and n1 rep-
resenting the optimal
solution.

E[T (n)] = B has exactly
three solutions (n1 <
n2 < n3), with [n1, n2]∪
[n3,∞] representing the
feasible region, and n1

representing the optimal
solution.

E[T (n)] = B has
exactly one solution
(n1 ), with [n1,∞]
representing the fea-
sible region, and n1

representing the op-
timal solution

p > p̄

B ≤ Se B > Se

Infeasible
E[T (n)] = B has exactly one solution (n1),
with [n1,∞] representing the feasible region,
and n1 representing the optimal solution.

Eq.s (20) and (21):

p ≡ 1− e
− (1−wFP Sp)(Se+Sp−1)

1−wFP
e−1

, and (20)

p̄ ≡ 1− e
−4

(1−wFP Sp)(Se+Sp−1)

1−wFP
e−2

. (21)

Specifically, if p ≥ p then the objective function of Model (10) is non-increasing in n; and if p < p,
then its objective function has exactly two stationary points, given by Eq.s (22) and (23).

n0 ≡
2

ln(1− p)
W0

⎛⎜⎝−1

2

⎛⎝ (1− wFP ) ln
(︂

1
1−p

)︂
(1− wFPSp)(Se+ Sp− 1)

⎞⎠1/2
⎞⎟⎠ , (22)

n−1 ≡
2

ln(1− p)
W−1

⎛⎜⎝−1

2

⎛⎝ (1− wFP ) ln
(︂

1
1−p

)︂
(1− wFPSp)(Se+ Sp− 1)

⎞⎠1/2
⎞⎟⎠ , (23)

which are derived by adopting steps similar to that of the proof of Theorem 1(i).
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Figure 6: Regret(n, p) as a function of p in the interval [a, b], when Se = 0.967, Sp = 0.993,
a = 0.02, b = 0.26, and n = 6
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C Maximum Regret: Non-boundary Point Example

In this section, we provide an example that shows that the maximum value of the inner problem, i.e.,
maxp∈[a,b]{Regret(n, p)}, is not necessarily attained at a boundary point. Consider the following
problem instance, with Se = 0.967, Sp = 0.993, a = 0.02, b = 0.26, and n = 6. Figure 6 plots the
Regret(n, p) function as a function of the prevalence rate, p, for this problem instance. As can be
seen, the prevalence rate that maximizes the Regret(n, p) function is not at a boundary point, and
is equal to 0.206.
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