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Abstract. Sensitivity analysis is routinely performed on simplified surrogate models as the cost
of such analysis on the original model may be prohibitive. Little is known in general about the
induced bias on the sensitivity results. Within the framework of chemical kinetics, we provide a full
justification of the above approach in the case of variance based methods provided the surrogate model
results from the original one through the thermodynamic limit. In particular, we analyze convergence
of the Sobol' indices for observables in a stochastic chemical system to the corresponding Sobol'
indices from the system in the thermodynamic limit. We provide illustrative numerical examples in
the context of a Michaelis--Menten system and a biochemical reaction network describing a genetic
oscillator.
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1. Introduction. Striking a balance between accuracy and cost is one of the
core challenges of scientific computing. A high fidelity, high cost model g is thus often
replaced in practice by a lower cost model \~g, of (usually) lower fidelity, to enable
the analysis of the application under study. The techniques to develop and construct
surrogate models are many and range from approximation theory to physics [14]. The
analysis of the original model g is then replaced by the analysis of a surrogate \~g with
the implicit assumption that

if g \approx \~g, then \scrI (g) \approx \scrI (\~g),(1.1)

where \scrI represents some operation on g. The extent to which (1.1) is satisfied clearly
depends on \scrI and on the relationship between g and \~g. This paper is a first step
toward the justification of (1.1) when \scrI stands for the sensitivity of the model to its
input parameters. We restrict our attention to an important family of physically based
surrogates corresponding to \~g being the thermodynamic limit of g and take chemical
reaction networks as a motivating application. Recent results about approximation
based---rather than physically based---surrogates can be found in [18].

Consider thus the evolution of a system of chemically reacting molecules; molec-
ular dynamics simulation is the most faithful way of modeling such a system. There,
each individual molecule and corresponding species population are tracked and chem-
ical reactions are modeled as distinct events. Due to quantum effects and since such
systems are typically not isolated, molecular populations are integer variables which
evolve stochastically [8]. In spite of this, chemical kinetics is often analyzed using
real---as opposed to integer---variables which evolve deterministically; that this is the
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case is a testimony to the appeal of simplified low-cost models. Stochastic chemical
kinetics is however necessary to the study of many cellular systems in biology where
the relatively small molecular populations may preclude the use of simplified models
obtained through the thermodynamic limit, i.e., in the limit of large volumes, and
may require a stochastic rather than deterministic model.

Assume we have both a high-cost stochastic model g and a low-cost deterministic
surrogate \~g such that

q = g(k, \omega ), \~q = \~g(k), and q \approx \~q in some sense,(1.2)

where the outcome \omega corresponds to the intrinsic stochasticity of the model g, and
q and \~q are the respective quantities of interest (QoIs); here k = (k1, . . . , kM ) is a
list of shared uncertain parameters. As shown below, the field of chemical kinetics
falls under this framework. A fundamental assumption we make in the present work
is that the intrinsic model stochasticity is independent of the randomness in the
uncertain parameters. This assumption, which also appears in related works [16, 17],
is a natural one from the point of view of modeling under uncertainty: in the present
setting, parametric uncertainty is due to lack of knowledge, i.e., it is epistemic, whereas
model stochasticity is inherent to the system and aleatoric in nature.

Global sensitivity analysis (GSA) aims to quantify the relative importance of
uncertain model parameters in determining the QoI [12, 13, 22, 26]. We analyze
whether GSA can be performed on the surrogate \~g rather than g and still yield
information on the original model g. In other words, we are asking when the diagram
in Figure 1.1 is commutative.

q = g(k, \omega ) \{ \scrI j(\omega )\} Mj=1

\~q = \~g(k) \{ \~\scrI j\} Mj=1

GSA

limiting process limiting process

GSA

Fig. 1.1. Schematic representation of the question considered in this paper: For what type of
limiting process is the diagram commutative? The model g is expensive to evaluate and stochastic,
while the surrogate model \~g is deterministic and cheap. We show that the diagram is commutative
if the limiting process is the thermodynamic limit.

In Figure 1.1, \scrI and \~\scrI refer to importance indices from some GSA method;
presumably, when applied to stochastic models, the GSA approach yields indices
which themselves are random variables. This is, for instance, the case for variance
based methods and Sobol' indices, which we use in this paper; see [10] and section 4.
For chemical kinetics, the limiting process in the above diagram is the thermodynamic
limit; see section 2. The above diagram does not in general commute; see [10] for
simple analytical examples of noncommutativity when the limiting process linking
the stochastic model to its surrogate is the expectation or some other \omega -moment.

2. Chemical kinetics models. We consider chemical systems with N reacting
species. We let X(t) be the state vector of a chemical system, where Xi(t), the
ith component of X(t), corresponds to the number of molecules of the ith species,
i = 1, . . . , N , at time t.
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2.1. The RTC representation. To guide our discussion, consider the simple
case of one reaction and three species S1, S2, and S3,

S1 + S2 \rightarrow S3,(2.1)

where one molecule of S1 and one molecule of S2 combine to produce one molecule of

S3. The evolution of the state X(t) =
\bigl[ 
X1(t) X2(t) X3(t)

\bigr] \top 
takes the form

X(t) = X(0) + \bfitnu R(t),(2.2)

where \bfitnu =
\bigl[ 
 - 1  - 1 1

\bigr] \top 
is the stoichiometric vector of that reaction (S1 and S2

lose one molecule and S3 gains one) while R(t) is the number of times the reaction
takes place between time 0 and t. It is intuitive, and has been justified on physical
grounds [8, 11], that the probability of the reaction occurring between time t and
t+ dt is proportional to X1(t), X2(t), and dt, which suggests the model [2, 6]

R(t) = Y

\biggl( \int t

0

cX1(s)X2(s) ds

\biggr) 
,(2.3)

where c is a proportionality constant with dimension 1/time and Y is a unit-rate
Poisson process: Y (0) = 0, Y has independent increments, and Y (t+ s) - Y (s) has a
Poisson distribution with parameter t for all t, s \geq 0, i.e., \BbbP 

\bigl( 
Y (t+ s) - Y (s) = n

\bigr) 
=

e - ttn/n!.
More generally, the evolution of a system with N species and M reactions is

governed by the propensity functions aj , j = 1, . . . ,M , where aj(X(t)) dt represents
the probability that the jth reaction occurs during the time interval [t, t + dt). For
instance, in the case of (2.1), the propensity function is a(X(t)) = cX1(t)X2(t).
The resulting evolution equation, often referred to as the random time change (RTC)
representation [1, 2, 4, 6], is then

X(t) = X(0) +

M\sum 
j=1

\bfitnu jYj

\bigl( 
\tau j(t)

\bigr) 
,(2.4)

\tau j(t) =

\int t

0

aj(X(s)) ds, j = 1, . . . ,M,(2.5)

where \bfitnu j is the stoichiometric vector of the jth reaction and the Yj 's are independent
unit-rate Poisson processes. We follow [7] and define in (2.5) an internal time \tau j for
each reaction; as the aj 's have dimension 1/time, the \tau j 's are dimensionless.

The Law of Mass Action [2] leads to the propensity functions for the three main
types of reactions:

Sm \rightarrow something \Rightarrow aj(X(t)) = cjXm(t),(2.6)

Sm + Sn \rightarrow something \Rightarrow aj(X(t)) = cjXm(t)Xn(t) if m \not = n,(2.7)

Sm + Sm \rightarrow something \Rightarrow aj(X(t)) = cj
1

2
Xm(t)(Xm(t) - 1).(2.8)

The reactions (2.6), (2.7), and (2.8) are known as first order, second order, and dimer-
ization reactions, respectively. The form of the propensity functions for other common
reaction types can be found, for example, in [9].
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2.2. The thermodynamic limit. In our analysis, we consider the limiting
behavior of chemical systems as the system size approaches infinity. For example, as
the system size increases, the likelihood of a particular reaction to fire may change
in the event that certain molecules must interact. To this end, we aim to update the
propensity functions by introducing a system size parameter V given by the product
of the system volume and the Avogadro number nA. As is common in the study of
chemical systems, we write the stoichiometric vectors as follows:

\bfitnu j = \bfitnu \prime 
j  - \bfitnu \prime \prime 

j , j = 1, . . . ,M,

where the entries of \bfitnu \prime 
j and \bfitnu \prime \prime 

j are the number of molecules of system species that
are created and consumed in the jth reaction, respectively. Following the notation
of [29], we define the V -dependent propensity functions as follows:

aVj (x) =
kj

V \| \nu \prime \prime 
j \|  - 1

N\prod 
i=1

\biggl( 
xi

\nu \prime \prime ij

\biggr) 
, j = 1, . . . ,M,

where the kj 's are reaction rate constants. The V -dependent system trajectory is
described by the RTC representation,

(2.9) XV (t) = V x0 +

M\sum 
j=1

\bfitnu jYj

\biggl( \int t

0

aVj (X
V (s)) ds

\biggr) 
.

Here we have let XV (0) = V x0, where x0 \in \BbbR N
\geq 0 is a fixed vector. Throughout we

will work with a sequence of V values such that V x0 is in \BbbZ N
\geq 0. Ensuring existence

of such a sequence requires some assumptions on x0 and the nominal (initial) system
volume. Specifically, in our study of limiting behavior of systems, we may assume
that the system's nominal volume \scrV \mathrm{n}\mathrm{o}\mathrm{m} and x0 are such that V\mathrm{n}\mathrm{o}\mathrm{m}x0 = \scrV \mathrm{n}\mathrm{o}\mathrm{m}nAx0 is
a vector in \BbbZ N

\geq 0. We then consider a sequence of system sizes given by Vm = mV\mathrm{n}\mathrm{o}\mathrm{m},
m = 1, 2, . . . .

Notice that the RTC formulation (2.9) is a restatement of (2.4), except with the
dependence on system size made precise. For instance, considering the system at its
nominal volume \scrV \mathrm{n}\mathrm{o}\mathrm{m}, X(0) in (2.4) is given by

X(0) = XV\mathrm{n}\mathrm{o}\mathrm{m}(0) = V\mathrm{n}\mathrm{o}\mathrm{m}x0 = \scrV \mathrm{n}\mathrm{o}\mathrm{m}nAx0.

Next, we define the limiting propensity functions [29],

\=aj(x) = lim
V\rightarrow \infty 

aVj (V x)/V, j = 1, . . . ,M.

For example, if the jth reaction is as in (2.7),

aVj (x) =
kj
V
xmxn and \=aj(x) = kjxmxn.

One the other hand, if the jth reaction is of the form (2.8),

aVj (x) =
kj
2V

xm(xm  - 1) and \=aj(x) =
1

2
kjx

2
m.

To describe the thermodynamic limit, we consider the concentration-based state vec-
tor ZV (t) = XV /V . In the limit as V \rightarrow \infty , ZV (t) approaches, almost surely, a
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deterministic function Z(t) that is obtained by solving a system of ODEs known as
the system of reaction rate equations (RREs). The theoretical result underpinning
this is given in [6, Theorem 2.1 in Chapter 11]. Below, we follow the form of this
result as presented in [29]. We also point the reader to [28, Chapter 2] for a detailed
exposition of this result.

The concentration vector ZV follows the RTC representation [29]

(2.10) ZV (t) = x0 +

M\sum 
j=1

\bfitnu jV
 - 1Yj

\biggl( \int t

0

aVj (V ZV (s))ds

\biggr) 
.

The corresponding system of RREs is described by

(2.11)

dZ

dt
= F (Z(t)), t \in [0, T ],

Z(0) = x0,

where F (z) =
\sum M

j=1 \bfitnu j\=aj(z) and [0, T ] is the maximal interval of existence of solution
for (2.11). The result given in [6, Theorem 2.1 in Chapter 11] (see also [29]), which
covers more general classes of Markov processes, states that if for all compact K \subset \BbbR N

(2.12)

M\sum 
j=1

\| \bfitnu j\| sup
\bfz \in K

\=aj(z) <\infty , and

F is Lipschitz on K,

then

(2.13) lim
V\rightarrow \infty 

sup
s\leq T
\| ZV (s) - Z(s)\| = 0 almost surely.

Note that here \| \cdot \| denotes the Euclidean norm. Therefore, we know that in the
limit, as V \rightarrow \infty , the stochastic solutions obtained from (2.10) will converge almost
surely to the solution of the ODE system (2.11). Note also that both of the conditions
in (2.12) hold for the chemical systems under study, because \=aj 's are polynomials.

3. The Next Reaction Method. Several algorithms have been developed for
simulating the dynamics of a stochastic chemical reaction network; these include
Gillespie's stochastic simulation algorithm (SSA) [8, 11] as well as the Next Reac-
tion Method (NRM) of Gibson and Bruck [7] and its variants [3, 15, 17]. The NRM
approach has a number of advantages over the SSA (see [3, section 1] and [20, section
III.B], among others): (i) it is cheaper to simulate than the SSA in terms of random
numbers generated per iteration; and (ii) it has the ability to handle time-dependent
propensity functions and reactions that exhibit delays between initiation and com-
pletion. The variant of the NRM that we use below is developed by Anderson in [3],
where it is referred to as the modified next reaction method.

The NRM simulates RTC dynamics by treating each reaction as an independent
stochastic process: indeed, (2.4), (2.5) correspond to a linear combination of Poisson
processes with different internal times \tau j , j = 1, . . . ,M . The approach is then to
track the firing of each reaction in terms of these internal times. Given the ``current""
internal time \tau j , j = 1, . . . ,M , we denote by \tau +j the internal time at which reaction j

fires next. At each iteration, the vectors
\bigl[ 
\tau 1 \tau 2 \cdot \cdot \cdot \tau M

\bigr] \top 
and

\bigl[ 
\tau +1 \tau +2 \cdot \cdot \cdot \tau +M

\bigr] \top 
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Algorithm 3.1 Modified Next Reaction Method [3].

Input: Initial stateX0, final simulation time T , stoichiometric matrix \bfitnu , and propen-
sity functions, \{ aj(\cdot )\} Mj=1.

Output: A realization of X(t, \omega ).
1: \% \tti \ttn \tti \ttt \tti \tta \ttl \tti \ttz \tta \ttt \tti \tto \ttn \%

2: for j = 1, . . . ,M do
3: Generate random number rj \sim U(0, 1)
4: \tau j = 0, \tau +j =  - ln(rj)
5: end for
6: t = 0, X(0) = X0

7: \% \tts \tti \ttm \ttu \ttl \tta \ttt \tti \tto \ttn \ttl \tto \tto \ttp \%

8: while t < T do
9: for j = 1, . . . ,M do

10: Evaluate aj(X(t)) and \Delta tj =
\tau +
j  - \tau j

aj(\bfX (t))

11: end for
12: Set l = argmin

j
\{ \Delta tj\} Mj=1

13: X(t+\Delta tl)\leftarrow X(t) + \bfitnu l \{ Update state vector\} 
14: t\leftarrow t+\Delta tl \{ Update global time\} 
15: for j = 1, . . . ,M do
16: \tau j \leftarrow \tau j + aj\Delta tl \{ Update internal times of each reaction\} 
17: end for
18: Generate random number rl \sim U(0, 1)
19: \tau +l \leftarrow \tau +l  - ln(rl) \{ Update next reaction time for reaction l\} 
20: end while

store the current internal time and the next internal time for each reaction. Given
these two vectors, one can determine how much physical or global time will elapse
before reaction j fires again by considering

\Delta tj =
\tau +j  - \tau j

aj(X(t))
, j = 1, . . . ,M.

This is a direct consequence of (2.5) and the assumption that aj remains constant in
the interval [t, t+\Delta t) with \Delta t = maxj \Delta tj . The index of the next reaction to fire is
then l = argmin(\Delta tj), from which the system state and propensities may be updated
and the global time incremented by \Delta tl. The next internal time for reaction l to fire
is then computed as \tau +l = \tau +l +\xi , where \xi represents the duration between events in a
Poisson process; the latter implies \xi is exponentially distributed. Each \tau j where j \not = l,
corresponding to an internal time that has not reached firing, is given the approximate
update, \tau j = \tau j + aj\Delta tl, which is discussed in detail in [3, section 4]. An outline of
the full NRM algorithm for a general reaction network is given in Algorithm 3.1. We
note that  - ln(rl) is exponentially distributed given that rl is uniformly distributed
in the interval [0, 1].

4. Global sensitivity analysis for stochastic models. In this section, we
study convergence of sensitivity indices corresponding to stochastic models to their
deterministic counterparts. In section 4.1, we describe the underlying probabilistic
setup and global sensitivity analysis via Sobol' indices. In section 4.2, we present
a generic result regarding convergence of the Sobol' indices of a family of random
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processes. Then, in section 4.3, we show how the generic convergence result can be
applied to stochastic chemical systems.

4.1. The basic setup. Stochastic models with uncertain parameters present
two sources of uncertainties: intrinsic uncertainty due to stochasticity of the system
and uncertainty in model parameters. We denote the probability space carrying in-
trinsic stochasticity of the system by (\Omega ,\scrF , \nu ), where \Omega is the sample space equipped
with a sigma-algebra \scrF and a probability measure \nu . In stochastic chemical systems,
the uncertain model parameters of interest are the reaction rate constants, k1, . . . , kM .
We model these as independent uniformly distributed random variables. Following
common practice, we parameterize the uncertainty in the ki's using a random vec-
tor \bfittheta = [\theta 1, . . . , \theta M ]

\top 
whose entries are independent U( - 1, 1) random variables. For

example, if ki \sim U(ai, bi), then ki(\theta i) =
1
2 (ai + bi) +

1
2 (bi  - ai)\theta i.

The uncertain parameter vector \bfittheta takes values in \Theta = [ - 1, 1]M . It is convenient
to work with the probability space (\Theta , \scrE , \lambda ) for the uncertain parameters, where \scrE is
the Borel sigma-algebra on \Theta and \lambda is the law of \bfittheta , \lambda (d\bfittheta ) = 2 - Md\bfittheta . The present
setup can be easily extended to cases where the \theta i's are independent random vari-
ables belonging to other suitably chosen distributions. Note also that one can have
additional uncertain parameters in a chemical system.

We use Sobol' indices [21, 25, 26] to characterize the sensitivity of a quantity of
interest (QoI) to input parameter uncertainties. For example, let f(\bfittheta ) be a scalar-
valued QoI defined in terms of the solution of the RREs corresponding to a chemical
system. The first order Sobol' indices corresponding to f(\bfittheta ) are

(4.1) Sj(f) :=
\BbbV [\BbbE [f(\bfittheta ) | \theta j ]]

\BbbV [f ]
, j = 1, . . . ,M.

These indices quantify the proportion of the QoI variance due to the jth input pa-
rameter. Here \BbbE [f(\bfittheta ) | \theta j ] indicates conditional expectation, and \BbbV [f ] denotes the
variance of f . For further details on theory and computation methods for Sobol'
indices we refer the reader to [21, 24, 25, 26].

4.2. Convergence of stochastic Sobol' indices. We consider a family of
stochastic processes \{ fV (\bfittheta , \omega )\} V >0 with

fV (\bfittheta , \omega ) : \Theta \times \Omega \rightarrow \BbbR ,

which, as discussed below, are assumed to admit a deterministic limit as V \rightarrow \infty .
The Sobol' indices corresponding to fV (\bfittheta , \omega ) are

(4.2) Sj(fV (\cdot , \omega )) :=
\BbbV [\BbbE [fV (\bfittheta , \omega ) | \theta j ]]

\BbbV [fV (\bfittheta , \omega )]
, j = 1, . . . ,M.

The following result concerns the convergence of these indices in the limit as V \rightarrow \infty .

Theorem 4.1. Assume the following.
1. There exists f \in L2(\Theta , \scrE , \lambda ) such that, for almost all \omega \in \Omega ,

(4.3) fV (\bfittheta , \omega )\rightarrow f(\bfittheta ), as V \rightarrow \infty , for all \bfittheta \in \Theta .

2. For almost all \omega \in \Omega , fV (\bfittheta , \cdot ) is \scrE -measurable, and there exists \varphi \omega (\bfittheta ) \in 
L2(\Theta , \scrE , \lambda ) such that for all \bfittheta \in \Theta ,

(4.4) | fV (\bfittheta , \omega )| \leq \varphi \omega (\bfittheta ) for all V > 0.
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Then the stochastic Sobol' indices satisfy

Sj(fV (\cdot , \omega ))\rightarrow Sj(f), as V \rightarrow \infty , \nu -almost surely.

Proof. By the assumptions of the theorem, there exists a set F \in \scrF with \nu (F ) = 1
such that the conditions (4.3) and (4.4) hold for every \omega \in F . By (4.4), we observe
that fV (\bfittheta , \omega ) \in L2(\Theta , \scrE , \lambda ) for every \omega \in F and V > 0. Thus, we can define the
stochastic Sobol' indices (4.2) for \{ fV (\cdot , \omega )\} V >0, for every \omega \in F .

To show that fV (\bfittheta , \omega ) \rightarrow f(\bfittheta ) in L2(\Theta , \scrE , \lambda ), we note that for every \omega \in F
| fV (\bfittheta , \omega ) - f(\bfittheta )| 2 \rightarrow 0 pointwise in \Theta and

| fV (\bfittheta , \omega ) - f(\bfittheta )| 2 \leq 4\varphi \omega (\bfittheta )
2 \in L1(\Theta , \scrE , \lambda ).

Therefore, invoking the Lebesgue dominated convergence theorem, we have that for
all \omega \in F ,

\int 
\Theta 
| fV (\bfittheta , \omega ) - f(\bfittheta )| 2\lambda (d\bfittheta )\rightarrow 0, and thus for every \omega \in F

lim
V\rightarrow \infty 

\int 
\Theta 

[fV (\bfittheta , \omega )]
r\lambda (d\bfittheta ) =

\int 
\Theta 

[f(\bfittheta )]r\lambda (d\bfittheta ), r = 1, 2.

The convergence of the first and second moments of fV (\cdot , \omega ) clearly implies

lim
V\rightarrow \infty 

\BbbV (fV (\cdot , \omega )) = \BbbV (f(\cdot )) for all \omega \in F.

To finish the proof of the theorem, we need to show

lim
V\rightarrow \infty 

\BbbV \{ \BbbE (fV (\cdot , \omega )| \theta j)\} = \BbbV \{ \BbbE (f(\cdot )| \theta j)\} for all \omega \in F, j = 1, . . . ,M.

Using the reverse triangle inequality and Jensen's inequality, we observe\bigm| \bigm| \| \BbbE (fV (\cdot , \omega )| \theta j)\| L2(\Theta )  - \| \BbbE (f(\cdot )| \theta j)\| L2(\Theta )

\bigm| \bigm| \leq \| \BbbE (fV (\cdot , \omega )| \theta j) - \BbbE (f(\cdot )| \theta j)\| L2(\Theta )

= \| \BbbE (fV (\cdot , \omega ) - f(\cdot )| \theta j)\| L2(\Theta )

\leq \| fV (\cdot , \omega ) - f(\cdot )\| L2(\Theta ),

and thus, for all \omega \in F

lim
V\rightarrow \infty 

\| \BbbE (fV (\cdot , \omega )| \theta j)\| L2(\Theta ) = \| \BbbE (f(\cdot )| \theta j)\| L2(\Theta ).

Since

\BbbV \{ \BbbE (fV (\cdot , \omega )| \theta j)\} = \BbbE \{ \BbbE (fV (\cdot , \omega )| \theta j)2\}  - \BbbE \{ \BbbE (fV (\cdot , \omega )| \theta j)\} 2

= \| \BbbE (fV (\cdot , \omega )| \theta j)\| 2L2(\Theta )  - \BbbE \{ fV (\cdot , \omega )\} 2,

we have, for all \omega \in F ,

(4.5) lim
V\rightarrow \infty 

\BbbV \{ \BbbE (fV (\cdot , \omega )| \theta j)\} = \| \BbbE (f(\cdot )| \theta j)\| L2(\Theta )  - \BbbE \{ f(\cdot )\} 2 = \BbbV \{ \BbbE (f(\cdot )| \theta j)\} .

This, along with the convergence of the (unconditional) variance implies

lim
V\rightarrow \infty 

Sj(fV (\cdot , \omega )) = lim
V\rightarrow \infty 

\BbbV \{ \BbbE (fV (\bfittheta , \omega )| \theta j)\} 
\BbbV \{ fV (\bfittheta , \omega )\} 

=
\BbbV \{ \BbbE (f(\bfittheta )| \theta j)\} 

\BbbV \{ f\} 
= Sj(f)

for all \omega \in F , j = 1, . . . ,M .
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Remark 4.2. A slight modification of the proof of Theorem 4.1 leads to a more
general result: namely, we can obtain almost sure convergence of the indices,

(4.6) SU (fV (\cdot , \omega )) :=
\BbbV [\BbbE [fV (\bfittheta , \omega ) | \bfittheta U ]]

\BbbV [fV (\bfittheta , \omega )]
,

where U = \{ j1, j2, . . . , js\} \subseteq \{ 1, 2, . . . ,M\} and \bfittheta U =
\bigl[ 
\theta j1 \theta j2 \cdot \cdot \cdot \theta js

\bigr] \top 
, to

SU (f(\cdot )).
We recall the total Sobol' indices [21]

(4.7) Tj(fV (\cdot , \omega )) :=
\sum 
U\ni j

SU (fV (\cdot , \omega )), j = 1, . . . ,M.

These indices quantify the relative contribution of \theta j by itself, and through its in-
teractions with the other coordinates of \bfittheta , to the variance of fV (\cdot , \omega ). In view of
Remark 4.2, under the conditions of Theorem 4.1

lim
V\rightarrow \infty 

Tj(fV (\cdot , \omega )) = Tj(f(\cdot )) for almost all \omega \in \Omega , j = 1, . . . ,M.

4.3. Application to stochastic chemical kinetics. Consider the (concentra-
tion based) state vector ZV (t,\bfittheta , \omega ) of a stochastic chemical system and its determin-
istic counterpart Z(t,\bfittheta ), corresponding the thermodynamic limit. Recall that \bfittheta \in \Theta 
parameterizes the uncertainty in reaction rate constants. In the present work, we
focus on a scalar time-independent QoI G(ZV (t,\bfittheta , \omega )) and its deterministic counter-
part G(Z(t,\bfittheta )). Specifically, G takes a vector function z(t) and returns a scalar QoI.
Examples include

G(z(t)) = zi(t
\ast ) for fixed t\ast \in [0, T ] and i \in \{ 1, . . . , N\} , or(4.8a)

G(z(t)) =
1

T

\int T

0

zi(t) dt for a fixed i \in \{ 1, . . . , N\} .(4.8b)

In general, we assume G : L\infty ([0, T ];\BbbR N )\rightarrow \BbbR to be a continuous function. Note that
L\infty ([0, T ];\BbbR N ) is equipped with norm \| \cdot \| \infty given by \| z\| \infty = supt\in [0,T ] \| z(t)\| , where
as before \| \cdot \| denotes the Euclidean vector norm.

To put things in the notation of the previous subsection, we consider

fV (\bfittheta , \omega ) = G(ZV (t,\bfittheta , \omega )), \bfittheta \in \Theta , \omega \in \Omega ,

and the corresponding limiting (deterministic) quantity, f(\bfittheta ) = G(Z(t,\bfittheta )). Note that
by (2.13), for fixed \bfittheta \in \Theta , as V \rightarrow \infty 

\| ZV (\cdot ,\bfittheta , \omega ) - Z(\cdot ,\bfittheta )\| \infty \rightarrow 0 for almost all \omega \in \Omega .

Therefore, by the continuous mapping theorem (see, e.g., [5]), for each \bfittheta \in \Theta ,

(4.9) fV (\bfittheta , \omega )\rightarrow f(\bfittheta ), almost surely,

as V \rightarrow \infty . We consider the convergence of the stochastic Sobol' indices Sj(fV (\cdot , \omega ))
to their deterministic counterparts Sj(f(\cdot )), j = 1, . . . ,M , as V \rightarrow \infty , i.e., in the
thermodynamic limit. Here we discuss how things can be put in the framework of
Theorem 4.1, which would then imply almost sure convergence of the stochastic Sobol'
indices to their limiting deterministic counterparts.
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Theorem 4.1 requires existence of a set of full measure in \Omega such that the conver-
gence in (4.9) holds. To ensure this, we consider a modification of fV (\bfittheta , \omega ) as follows.
We know that for each \bfittheta \in \Theta , there exists a set of full measure F\theta \subseteq \Omega for which the
convergence (4.9) holds. Define

\~fV (\bfittheta , \omega ) =

\Biggl\{ 
fV (\bfittheta , \omega ) if \omega \in F\theta ,

f(\bfittheta ) otherwise.

Note that we have \nu (\{ \omega \in \Omega : \~fV (\bfittheta , \cdot ) = fV (\bfittheta , \omega )\} ) = 1 for every \bfittheta \in \Theta . That
is, \~fV (\bfittheta , \cdot ) is a modification of fV (\bfittheta , \cdot ). Note that this modification satisfies the
following: for every \omega \in \Omega , \~fV (\bfittheta , \omega ) \rightarrow f(\bfittheta ) for all \bfittheta \in \Theta . With a slight abuse of
notation, we will denote this modification by fV (\bfittheta , \omega ) from this point on. To ensure
that Theorem 4.1 applies, we also need the boundedness assumption (4.4).

To discuss the boundedness assumption (4.4), we take a step back and first discuss
conditions ensuring boundedness of the stochastic system trajectory \{ ZV (t,\bfittheta , \omega )\} V >0.
Consider the state vector XV (t). Nonnegativity of this state vector requires the
propensity functions to be proper [19]: for j = 1, . . . ,M , we assume, for all x \in \BbbZ N

+ ,
if x + \bfitnu j /\in \BbbZ N

+ , then aVj (x) = 0. Boundedness of components of XV (t) requires
further (mild) assumptions, as formalized in [19, Theorem 2.8 and 2.11]. Interestingly,
the only requirements concern the stoichiometric matrix \bfitnu . Namely, assuming the
existence of a vector \bfitalpha \in \BbbZ N

\geq 0 such that \bfitalpha \top \bfitnu \leq 0 and \alpha i > 0 is necessary and

sufficient for boundedness of XV
i (t). Specifically, if such an \bfitalpha exists, \bfitalpha \top XV (t) =

\bfitalpha \top (XV (0) + \bfitnu R(t)) \leq \bfitalpha \top XV (0). Therefore,

XV
i (t) \leq (1/\alpha i)\bfitalpha 

\top XV (0) = (V/\alpha i)\bfitalpha 
\top x0.

Thus, in terms of concentrations

ZV
i (t) = XV

i /V \leq (1/\alpha i)\bfitalpha 
\top x0.

Therefore, we have that the ith component of ZV remains uniformly bounded by
(1/\alpha i)\bfitalpha 

\top x0. Moreover, this bound is independent of the reaction rate constants,
i.e., independent of \bfittheta . Thus, if a vector \bfitalpha satisfying the aforementioned properties
exists for all the components of the state vector, then the concentration based state
vector ZV remains uniformly bounded by a constant. In fact, we need to only ensure
boundedness of the components of ZV that appear in definition of G. Given the
function G, which defines the QoI, is sufficiently well behaved, one may argue that
fV inherits the boundedness necessary to satisfy (4.4). For example, if G is defined
as in (4.8), then establishing boundedness of \{ ZV

i (t,\bfittheta , \omega )\} V >0 is sufficient to satisfy
(4.4) for the QoI, fV .

5. Numerical results. In light of the convergence properties exhibited by sto-
chastic chemical reaction systems, we aim to demonstrate numerically the results of
Theorem 4.1. Convergence results will be presented first for the Michaelis--Menten
reaction system, followed by an application of Theorem 4.1 to the task of dimension
reduction, considering a higher-dimensional example arising from the study of genetic
networks. Attention will also be devoted to the computation of Sobol' indices and
the random sampling necessary to compute the stochastic Sobol' indices introduced
in section 4.
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5.1. The Michaelis--Menten system. The Michaelis--Menten reaction is the
most well-known example of enzymatic catalysis in the chemical kinetics literature
[2, 11, 15]:

S + E
k1 - \rightarrow C,

C
k2 - \rightarrow S + E,(5.1)

C
k3 - \rightarrow P + E.

In (5.1), the substrate S binds to the enzyme E to form the complex C. The complex
may either dissociate back into the substrate and enzyme or dissociate into the enzyme
and a product P . Figure 5.1 depicts 25 realizations of the reaction dynamics using the
NRM algorithm with a final time of T = 50. The parameters, corresponding to the
rate constants in the propensity functions, are fixed to the nominal values \=k1 = 106,
\=k2 = 10 - 4, and \=k3 = 0.1 provided in [30]. Figure 5.1 depicts concentrations of each
species for a system size of V\mathrm{n}\mathrm{o}\mathrm{m} = nA\scrV \mathrm{n}\mathrm{o}\mathrm{m}, where the nominal volume of the reaction
system is \scrV \mathrm{n}\mathrm{o}\mathrm{m} = 10 - 15 m3.

Fig. 5.1. 25 realizations of Michaelis--Menten trajectories computed via NRM with nominal
parameters, varying \omega .

In Figure 5.2 we illustrate convergence of the RTC trajectories to the RRE tra-
jectories as the system size increases. We hold the parameters fixed to their nominal
values and plot 25 realizations of the product PV (t, \omega ) = ZV

4 (t, \omega ) along with the
corresponding RRE trajectory. As the system size increases, the ensemble of RTC
trajectories converges to the RRE trajectory. In Figure 5.2, the quantity m denotes
the multiplicative factor by which the system size is varied. For the purpose of the
simulation, m is related to the system size by the relation V = mV\mathrm{n}\mathrm{o}\mathrm{m}.

5.1.1. The QoI. In the present study we focus on the stochastic QoI

fV (\bfittheta , \omega ) =
1

T

\int T

0

ZV
4 (t;\bfittheta , \omega ) dt,
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Fig. 5.2. Convergence of the product PV (t, \omega ) to the corresponding RRE solution at the nominal
parameter values plotted as system size grows.

where ZV is the solution of the RTC representation. The corresponding deterministic
QoI is

f(\bfittheta ) =
1

T

\int T

0

Z4(t;\bfittheta ) dt,

where Z is computed by solving the accompanying RRE. To get a sense of the statis-
tical properties of the QoI, we sample fV and f over the uncertain parameter domain
given by \Theta = [ - 1, 1]3, and with the uncertain rate constants defined as

ki(\theta i) = \=ki + (0.1\=ki)\theta i, i = 1, 2, 3,

where \=ki's are the nominal reaction rate constants as defined above. Figure 5.3 shows
probability density functions (PDFs) of f sampled in \Theta , fV sampled in \Theta \times \Omega , and
fV sampled in \Omega while using nominal parameters. All samples of fV used in Figure
5.3 use the V = V\mathrm{n}\mathrm{o}\mathrm{m}.

5.1.2. Global sensitivity analysis. In this section, we turn to estimating
Sobol' indices in both the stochastic and deterministic settings. For the purpose of
this study, we focus on the computation and convergence of the total Sobol' indices.
The method detailed below can be applied to Sobol' indices of any order.

Sobol' indices measure the relative contribution of a subset of uncertain parame-
ters to the variance of some QoI. Consequently, it is natural to consider QoIs that are
deterministic functions of these uncertain parameters, without any additional variance
contributed by a secondary source. When modeling chemical systems using stochas-
tic processes, such as the RTC representation, the model parameters and internal
stochasticity both provide sources of uncertainty, which must be accounted for sep-
arately. We summarize the process of estimating Sobol' indices in the deterministic
and stochastic cases in the Algorithm 5.1, where the number of uncertain parameters
is denoted p. Note that it is not always the case that p = M , the number of reactions.

In the stochastic setting, fixing a particular \omega i turns fV into a deterministic
function of the uncertain parameters. From that point, the process of estimating
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Fig. 5.3. Estimated PDFs of fV sampled over \Omega and \Theta \times \Omega and f sampled over \Theta , respectively.

Algorithm 5.1 Sobol' indices for a chemical system with fixed system size.

Input: Method of evaluating fV (\bfittheta , \omega ) and f(\bfittheta ), Ns: number of parameter samples,
set of Ms random seeds \{ \xi i\} Ms

i=1, system size V .

Output: Total Sobol' indices: \{ TV
1 (\omega i), . . . , T

V
p (\omega i)\} Ms

i=1 and \{ T1, . . . , Tp\} .
1: Draw Ns(p+ 2) samples uniformly in \Theta \{ see [24] for details\} 
2: \% \tts \ttt \tto \ttc \tth \tta \tts \ttt \tti \ttc \tti \ttn \ttd \tti \ttc \tte \tts \%

3: for i = 1, . . . ,Ms do
4: Seed random number generator with \xi i, corresponding to realization \omega i

5: for j = 1, . . . , Ns(p+ 2) do
6: Evaluate and store fV (\bfittheta j , \omega i) samples
7: end for
8: Using fV samples, estimate Sobol' indices: \{ TV

1 (\omega i), . . . , T
V
p (\omega i)\} 

9: end for
10: \% \ttd \tte \ttt \tte \ttr \ttm \tti \ttn \tti \tts \ttt \tti \ttc \tti \ttn \ttd \tti \ttc \tte \tts \%

11: for j = 1, . . . , Ns(p+ 2) do
12: Evaluate and store f(\bfittheta j) samples
13: end for
14: Using f samples, estimate Sobol' indices: \{ T1, . . . , Tp\} 

Sobol' indices is identical to the deterministic case. We estimate Sobol' indices using
Monte Carlo integration; see [21, 24] or [22, section 4.5] for details. In Algorithm 5.1,
the cost of estimating first order and total indices for each fixed \omega i is Ns(p + 2)
evaluations of the QoI, where Ns is user-defined.

The realizations of the stochastic indices correspond to \omega i \in \Omega , i = 1, . . . ,Ms,
prescribed by the choice of random seed. We also note that the stochastic indices are
functions of the given system size, while the deterministic indices do not depend on
V and should not be recomputed each time V is changed. For a fixed V , we may
compare the distribution of each TV

i with the deterministic value of Ti.
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Returning to the Michaelis--Menten example, in Figure 5.4 we plot the PDFs of
the stochastic total indices corresponding to the default V , where m = 1.

Fig. 5.4. Histogram and PDF estimates for the total Sobol' indices for k1, k2, and k3, respec-
tively. Black dashed lines indicate the deterministic value of the RRE total indices.

The deterministic indices, estimated with Ns = 107 samples, are T1 \approx 1.5\times 10 - 1,
T2 \approx 1.2 \times 10 - 7, and T3 \approx 8.5 \times 10 - 1, indicating that the third reaction, where the
complex dissociates into the enzyme and the product, is the most important, and the
second reaction, where the complex dissociates into the enzyme and substrate, is the
least important, contributing almost no variance.

5.1.3. Convergence of Sobol' indices. One may verify that the conditions
on the QoI necessary for Theorem 4.1 to hold are satisfied in the present case. Thus
we demonstrate numerically the convergence of the stochastic Sobol' indices to the
stated deterministic values. After we have computed multiple realizations of the
stochastic indices at increasing, discrete values of V , we examine the evolution of
their distribution as V increases.

Fig. 5.5. Convergence of the mean total Sobol' index as a function of V for parameters k1, k2,
and k3, respectively. Note that the vertical axes of each figure are not over the same range. The
lower and upper bounds of the error bars indicate the 5th and 95th percentiles, respectively.

Figure 5.5 demonstrates the convergence of \BbbE [TVm
i (\omega )] for i = 1, 2, 3, for increasing

values of system size Vm = mV\mathrm{n}\mathrm{o}\mathrm{m}, m = 1, . . . , 200. The error bars represent the 5th
and 95th percentiles of the distribution of stochastic indices at a particular system
size, where Ms = 100 different values of \omega are sampled to construct the distribution
for each discrete value of V . Figure 5.5 suggests the convergence of the PDF for each
TV
i (\omega ) to a Dirac distribution centered at the deterministic value of the Sobol' index

corresponding to the RRE. This sort of convergence may also be demonstrated for
lower order Sobol' indices, as addressed in Remark 4.2.

Figure 5.6 gives a three-dimensional view of the convergence in Figure 5.5. We
plot a series of normalized histograms at specific values of m, converging to Dirac
distributions centered at the RRE total indices. These histograms, even for two
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orders of magnitude difference in V , show a clear trend towards the limiting values
given by the RRE.

Fig. 5.6. Histograms at discrete V values of the total Sobol' indices for k1, k2, and k3, respec-
tively. The vertical axes represent the relative frequency of the indices due to normalized histograms.

Figures 5.5 and 5.6 can perhaps most naturally be understood as illustrating the
convergence in distribution of the RTC Sobol' indices, an implication of the pointwise
convergence of the PDF. In this case, TV

i (\omega ) is the random variable that converges in
distribution for each i = 1, 2, 3 as V approaches infinity.

While the analysis of convergence rates is beyond the scope of the present paper,
Figure 5.7 provides a preliminary result in that direction by displaying the variance
of the stochastic total Sobol' indices for increasing values of m. As Figures 5.5 and
5.6 indicate, the variance of the total indices approaches zero as the system size
approaches infinity. Figure 5.7 indicates that this convergence occurs with a rate of
O(1/V ). Here the sample variance is estimated with 100 realizations of the stochastic
total Sobol' indices. We hypothesize that the faster decay of the variance of T2(\omega ) is
due to its small size in the thermodynamic limit.

5.2. The genetic oscillator system. Returning to the original question illus-
trated in Figure 1.1, we aim to use the sensitivity information from a deterministic
chemical model to infer the sensitivities of its stochastic counterpart. The goal is to
perform well-informed dimension reduction on the expensive stochastic model, while
only requiring samples from the cheaper deterministic model. To perform meaningful
dimension reduction, here we consider a higher dimensional model than previously
considered. We consider the genetic oscillator system presented in [27], which models
the evolution of activator and repressor proteins that govern the circadian clocks of
a wide variety of organisms. The system consists of nine species, including genes,
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Fig. 5.7. Log-log plot of the rate of convergence of the second moment for each total index.

Table 5.1
Genetic oscillator reactions, propensity functions, and nominal parameter values; see [23].

Reaction Propensity function

Pa \rightarrow Pa +mRNAa \alpha APa

Pa - A \rightarrow Pa - A+mRNAa \alpha a\alpha APa - A
Pr \rightarrow PrmRNAr \alpha RPr

Pr - A \rightarrow Pr - A+mRNAr \alpha r\alpha RPr - A
mRNAa \rightarrow mRNAa +A \beta AmRNAa

mRNAr \rightarrow mRNAr +R \beta RmRNAr

A+R \rightarrow C \gamma CAR
Pa +A \rightarrow Pa - A \gamma APaA
Pa - A \rightarrow Pa +A \theta APa - A
Pr +A \rightarrow Pr - A \gamma RPrA
Pr - A \rightarrow Pr +A \theta RPr - A

A \rightarrow \emptyset \delta AA
R \rightarrow \emptyset \delta RR

mRNAa \rightarrow \emptyset \delta MAmRNAa

mRNAr \rightarrow \emptyset \delta MRmRNAr

C \rightarrow R \delta \prime AC

Parameter Value
\alpha A 50.0
\alpha R 0.01
\beta A 50.0
\beta R 5.0
\gamma C 20.0
\gamma A 1.0
\theta A 50.0
\gamma R 1.0
\theta R 1.0
\delta A 1.0
\delta R 0.2
\delta MA 10.0
\delta MR 0.5
\delta \prime A 1.0
\alpha a 10.0
\alpha r 5000

mRNAs, and the two proteins. We have M = 16 reactions and sixteen uncertain pa-
rameters. Following the form of the chemical system presented in [23], we provide the
reaction diagrams, propensity functions, and nominal parameter values in Table 5.1.

As with the Michaelis--Menten system, the RTC representation models the evolu-
tion of the stochastic system, and the RRE models the deterministic system, with the
two models linked by the thermodynamic limiting process. Figure 5.8 shows a sample
trajectory of the stochastic system, simulated via the NRM. In 5.8, all parameters
are set to nominal values and the only nonzero initial states are Pa and Pr, with
one molecule of each. We plot the activator protein A, the repressor protein R, and
the complex C up to final time T = 50. We then will use the sensitivity informa-
tion gained from the cheaper, deterministic model (RRE) to make conclusions about
parameter importance in the more expensive, stochastic model (RTC).

We define the stochastic and deterministic QoIs, respectively, as

fV (\bfittheta , \omega ) =
1

T

\int T

0

RV (t;\bfittheta , \omega ) dt and f(\bfittheta ) =
1

T

\int T

0

R(t;\bfittheta ) dt,
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Fig. 5.8. Trajectories of the three dominant species at nominal parameters via the NRM.

where RV is the concentration of the repressor computed via the NRM and R is the
concentration of the repressor computed as the solution to the accompanying RRE.
Using the Monte Carlo method presented in [21, 22], we then estimate the total Sobol'
indices for the deterministic model. Figure 5.9 shows the total Sobol' indices. It is
clear that \alpha A, \beta A, \delta MA, and \alpha a are the four most important parameters, capturing
over 50\% of the variance of the deterministic QoI.

Fig. 5.9. Estimated total Sobol' indices for the genetic oscillator RRE.

We can determine unimportant inputs by putting an importance threshold on
the total Sobol' indices; parameters whose Sobol' index falls below the threshold
will be considered unimportant. For instance, using 0.02 as a threshold, we identify
\gamma C , \gamma A, \theta A, \gamma R, \theta R, and \delta A as the six least important parameters, capturing less than
5\% of the variance of the deterministic QoI. We then propose a reduced-dimensional
model, where the six least important parameters are fixed at their nominal values,
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reducing the dimensionality from sixteen to ten. To verify that this lower-dimensional
model remains an accurate representation of the full model, we sample the stochastic
QoI and plot its PDF while fixing and varying the unimportant parameters; see
Figure 5.10. The red dashed line, corresponding to the reduced model with the
six least important parameters fixed, has a negligible difference with the PDF of
the full model. Increasing the threshold from 0.02 to 0.05 adds \delta R and \delta \prime A to the
unimportant category. However, as seen in Figure 5.10, the PDF of the resulting
reduced model (dashed green line), obtained by fixing now eight parameters, shows
a notable difference from the PDF of the full model. This illustrates the balance one
must strike between fixing unimportant parameters to reduce parameter dimension
and the loss of information that may result from using a cheaper model. Finally, we
illustrate the impact of fixing the four most important parameters (black dashed line
in Figure 5.10). This approach fixes every parameter with a total Sobol' index greater
than 0.15 (\alpha A, \beta A, \delta MA, and \alpha a). This results in a substantial underestimation of the
variance and a potential loss of valuable model information.

Fig. 5.10. PDFs of the stochastic QoI, fV , sampled while fixing the following parameters: Black
line (\alpha A, \beta A, \delta MA, \alpha a), green line (\gamma C , \gamma A, \theta A, \gamma R, \theta R, \delta A, \delta R, \delta \prime A), red line (\gamma C , \gamma A, \theta A, \gamma R, \theta R, \delta A),
black line without fixed parameters. Total index thresholds are provided for each PDF.

6. Conclusions. Sensitivity analysis is often performed on simplified surrogate
models with the hope that (1.1) holds, i.e., the hope, explicit or not, that the results
from the analysis of a surrogate model will hold for the full model. We have presented
here a partial result in that direction showing this assertion to be true for a specific
class of problems (chemical systems), a specific type of surrogate (obtained from the
thermodynamic limit), and a specific GSA approach (Sobol' indices). Our study not
only shows and justifies, in an arguably restricted framework, that GSA can sometimes
be done ``on the cheap;"" it also, we argue, reflects important properties of the GSA
methods themselves.

An immediate direction for future work is to complement the presented theo-
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retical framework by deriving results on the rate of convergence of the stochastic
indices to those of the RREs. Moreover, further study should consider other types
of limiting processes linking surrogates and full models such as homogenization of
differential equations, discretization, and projections, as well as more general types of
GSA methods.
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