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Abstract. Sensitivity analysis is routinely performed on simplified surrogate models as the cost
of such analysis on the original model may be prohibitive. Little is known in general about the
induced bias on the sensitivity results. Within the framework of chemical kinetics, we provide a full
justification of the above approach in the case of variance based methods provided the surrogate model
results from the original one through the thermodynamic limit. In particular, we analyze convergence
of the Sobol’ indices for observables in a stochastic chemical system to the corresponding Sobol’
indices from the system in the thermodynamic limit. We provide illustrative numerical examples in
the context of a Michaelis—Menten system and a biochemical reaction network describing a genetic
oscillator.
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1. Introduction. Striking a balance between accuracy and cost is one of the
core challenges of scientific computing. A high fidelity, high cost model g is thus often
replaced in practice by a lower cost model g, of (usually) lower fidelity, to enable
the analysis of the application under study. The techniques to develop and construct
surrogate models are many and range from approximation theory to physics [14]. The
analysis of the original model g is then replaced by the analysis of a surrogate g with
the implicit assumption that

(1.1) if g = g, then Z(g) =~ Z(g),

where Z represents some operation on g. The extent to which (1.1) is satisfied clearly
depends on Z and on the relationship between g and §. This paper is a first step
toward the justification of (1.1) when Z stands for the sensitivity of the model to its
input parameters. We restrict our attention to an important family of physically based
surrogates corresponding to g being the thermodynamic limit of g and take chemical
reaction networks as a motivating application. Recent results about approximation
based—rather than physically based—surrogates can be found in [18].

Consider thus the evolution of a system of chemically reacting molecules; molec-
ular dynamics simulation is the most faithful way of modeling such a system. There,
each individual molecule and corresponding species population are tracked and chem-
ical reactions are modeled as distinct events. Due to quantum effects and since such
systems are typically not isolated, molecular populations are integer variables which
evolve stochastically [8]. In spite of this, chemical kinetics is often analyzed using
real—as opposed to integer—variables which evolve deterministically; that this is the
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case is a testimony to the appeal of simplified low-cost models. Stochastic chemical
kinetics is however necessary to the study of many cellular systems in biology where
the relatively small molecular populations may preclude the use of simplified models
obtained through the thermodynamic limit, i.e., in the limit of large volumes, and
may require a stochastic rather than deterministic model.

Assume we have both a high-cost stochastic model g and a low-cost deterministic
surrogate g such that

(1.2) g=g9k,w), ¢=g(k), and g~ g in some sense,

where the outcome w corresponds to the intrinsic stochasticity of the model g, and
g and ¢ are the respective quantities of interest (Qols); here k = (ky,...,kp) is a
list of shared uncertain parameters. As shown below, the field of chemical kinetics
falls under this framework. A fundamental assumption we make in the present work
is that the intrinsic model stochasticity is independent of the randomness in the
uncertain parameters. This assumption, which also appears in related works [16, 17],
is a natural one from the point of view of modeling under uncertainty: in the present
setting, parametric uncertainty is due to lack of knowledge, i.e., it is epistemic, whereas
model stochasticity is inherent to the system and aleatoric in nature.

Global sensitivity analysis (GSA) aims to quantify the relative importance of
uncertain model parameters in determining the Qol [12, 13, 22, 26]. We analyze
whether GSA can be performed on the surrogate g rather than g and still yield
information on the original model g. In other words, we are asking when the diagram
in Figure 1.1 is commutative.

GS
0= g(k,w) S (T},
limiting process llimiting process

T _GSA | s
q=g(k) == {L;}jL,

F1a. 1.1. Schematic representation of the question considered in this paper: For what type of
limiting process is the diagram commutative? The model g is expensive to evaluate and stochastic,
while the surrogate model g is deterministic and cheap. We show that the diagram is commutative
if the limiting process is the thermodynamic limit.

In Figure 1.1, Z and Z refer to importance indices from some GSA method;
presumably, when applied to stochastic models, the GSA approach yields indices
which themselves are random variables. This is, for instance, the case for variance
based methods and Sobol” indices, which we use in this paper; see [10] and section 4.
For chemical kinetics, the limiting process in the above diagram is the thermodynamic
limit; see section 2. The above diagram does not in general commute; see [10] for
simple analytical examples of noncommutativity when the limiting process linking
the stochastic model to its surrogate is the expectation or some other w-moment.

2. Chemical kinetics models. We consider chemical systems with IV reacting
species. We let X(t) be the state vector of a chemical system, where X;(t), the
ith component of X(t), corresponds to the number of molecules of the ith species,
i=1,...,N, at time t.
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2.1. The RTC representation. To guide our discussion, consider the simple
case of one reaction and three species S1, Sz, and Ss,

(2.1) S1+ 52 — 53,

where one molecule of S7 and one molecule of Sy combine to produce one molecule of
S3. The evolution of the state X(t) = [X1(f) Xa(t) Xg(t)]T takes the form

(2.2) X(t) = X(0) + vR(t),

where v = [-1 -1 1]T is the stoichiometric vector of that reaction (S; and S,
lose one molecule and S5 gains one) while R(t) is the number of times the reaction
takes place between time 0 and ¢. It is intuitive, and has been justified on physical
grounds [8, 11], that the probability of the reaction occurring between time ¢ and
t + dt is proportional to X;(t), Xs(t), and dt, which suggests the model [2, 6]

(2.3) R() =Y ( /O X (5)Xa(s) ds) ,

where ¢ is a proportionality constant with dimension 1/time and Y is a unit-rate
Poisson process: Y (0) = 0, Y has independent increments, and Y (¢ +s) — Y (s) has a
Poisson distribution with parameter ¢ for all ¢,s > 0, i.e., P(Y(t+s) — Y(s) =n) =
et /nl.

More generally, the evolution of a system with N species and M reactions is
governed by the propensity functions a;, j = 1,..., M, where a;(X(t)) dt represents
the probability that the jth reaction occurs during the time interval [¢, ¢t + dt). For
instance, in the case of (2.1), the propensity function is a(X(t)) = ¢X;(t)X2(t).
The resulting evolution equation, often referred to as the random time change (RTC)
representation [1, 2, 4, 6], is then

M
(2.4) X(t) = X(0) + Z v;Y;(r; (1)),
(2.5) () :/0 a(X(s))ds,  j=1,....M,

where v; is the stoichiometric vector of the jth reaction and the Y;’s are independent
unit-rate Poisson processes. We follow [7] and define in (2.5) an internal time 7; for
each reaction; as the a;’s have dimension 1/time, the 7;’s are dimensionless.

The Law of Mass Action [2] leads to the propensity functions for the three main
types of reactions:

(2.6) Sm  — something = a;(X(t)) = ¢; X (1),
(2.7)  Sm+S, — something = q;(X(t)) =c¢;Xn(t)X,(t) ifm#n,

(2.8) Sym+Sn — something = a;(X(t)) =c¢jzXm(t)(Xm(t) —1).

DN | =

The reactions (2.6), (2.7), and (2.8) are known as first order, second order, and dimer-
ization reactions, respectively. The form of the propensity functions for other common
reaction types can be found, for example, in [9].
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2.2. The thermodynamic limit. In our analysis, we consider the limiting
behavior of chemical systems as the system size approaches infinity. For example, as
the system size increases, the likelihood of a particular reaction to fire may change
in the event that certain molecules must interact. To this end, we aim to update the
propensity functions by introducing a system size parameter V given by the product
of the system volume and the Avogadro number n4. As is common in the study of
chemical systems, we write the stoichiometric vectors as follows:

/ 11 -
vi=v;—-v;, j=1,...,M,

where the entries of v/} and v} are the number of molecules of system species that
are created and consumed in the jth reaction, respectively. Following the notation
of [29], we define the V-dependent propensity functions as follows:

Vi ki Tr(® _ M
aj(x)*WH o i =1 M,
i=1 \Vij

where the k;’s are reaction rate constants. The V-dependent system trajectory is
described by the RT'C representation,

(2.9) XV (t) = Vxo + ij:quj (/Ot ay (XY (s)) ds) :

Here we have let XV (0) = Vxg, where xo € RY is a fixed vector. Throughout we
will work with a sequence of V' values such that Vxq is in Z]>VO. Ensuring existence
of such a sequence requires some assumptions on Xo and the nominal (initial) system
volume. Specifically, in our study of limiting behavior of systems, we may assume
that the system’s nominal volume Vo and xg are such that ViomXg = VaemM aXo 1S
a vector in ZJ>V0. We then consider a sequence of system sizes given by V,,, = mVjom,
m=1,2,....

Notice that the RTC formulation (2.9) is a restatement of (2.4), except with the
dependence on system size made precise. For instance, considering the system at its
nominal volume Vyom, X(0) in (2.4) is given by

X(O) = XVnom (O) = VhomX0 = VaomMAXo.
Next, we define the limiting propensity functions [29],

a;(x) = lim o) (Vx)/V, j=1,...,M.

V—o00
For example, if the jth reaction is as in (2.7),

k.
a}/(x) = ijmxn and  @;(x) = k;TmTn.
One the other hand, if the jth reaction is of the form (2.8),

kj

1
al (x) = me(zm —1) and a;(x)= iijfn

To describe the thermodynamic limit, we consider the concentration-based state vec-
tor ZV(t) = XV/V. In the limit as V — oo, Z"(t) approaches, almost surely, a
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deterministic function Z(t) that is obtained by solving a system of ODEs known as
the system of reaction rate equations (RREs). The theoretical result underpinning
this is given in [6, Theorem 2.1 in Chapter 11]. Below, we follow the form of this
result as presented in [29]. We also point the reader to [28, Chapter 2] for a detailed
exposition of this result.

The concentration vector Z" follows the RTC representation [29]

M t
v = X v VY, ay Vis))ds ) .
(2.10) ZV(t) = 0+; ;V 39(/0 Yz ())d)

The corresponding system of RREs is described by

dZ
(2.11) i F(Z(t)), tel0,T),
Z(0) = xo,

where F(z) = Zj\il v;a;(z) and [0, T] is the maximal interval of existence of solution
for (2.11). The result given in [6, Theorem 2.1 in Chapter 11] (see also [29]), which
covers more general classes of Markov processes, states that if for all compact K C RV

M
> llvjli sup a;(z) < oo, and
J=1 zeK

(2.12)
F is Lipschitz on K,
then
(2.13) lim sup ||ZY(s) — Z(s)[| =0 almost surely.
V—oo s<T
Note that here || - || denotes the Euclidean norm. Therefore, we know that in the

limit, as V' — oo, the stochastic solutions obtained from (2.10) will converge almost
surely to the solution of the ODE system (2.11). Note also that both of the conditions
in (2.12) hold for the chemical systems under study, because a;’s are polynomials.

3. The Next Reaction Method. Several algorithms have been developed for
simulating the dynamics of a stochastic chemical reaction network; these include
Gillespie’s stochastic simulation algorithm (SSA) [8, 11] as well as the Next Reac-
tion Method (NRM) of Gibson and Bruck [7] and its variants [3, 15, 17]. The NRM
approach has a number of advantages over the SSA (see [3, section 1] and [20, section
IT1.B|, among others): (i) it is cheaper to simulate than the SSA in terms of random
numbers generated per iteration; and (ii) it has the ability to handle time-dependent
propensity functions and reactions that exhibit delays between initiation and com-
pletion. The variant of the NRM that we use below is developed by Anderson in [3],
where it is referred to as the modified next reaction method.

The NRM simulates RTC dynamics by treating each reaction as an independent
stochastic process: indeed, (2.4), (2.5) correspond to a linear combination of Poisson
processes with different internal times 7;, 7 = 1,...,M. The approach is then to
track the firing of each reaction in terms of these internal times. Given the “current”
internal time 7;, j = 1,..., M, we denote by Tf the internal time at which reaction j
fires next. At each iteration, the vectors [Tl Tg -e- TM]T and [7’1+ 7'2+ e TZJV}]T
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Algorithm 3.1 Modified Next Reaction Method [3].

Input: Initial state X, final simulation time 7', stoichiometric matrix v, and propen-
sity functions, {a;(-)}}L,.
Output: A realization of X(¢,w).
1: % initialization %
2: forj=1,...,M do
3:  Generate random number r; ~ U(0, 1)
4 ’TjZO, Tf:—ln(rj)
5: end for
6: t =0, X(0) =Xy
7: % simulation loop %
8: while t < T do
9 for j=1,...,M do .
10: Evaluate a;(X(t)) and At; = %
11:  end for
12 Setl= argr_nin{Atj}inl

J
13: X(t+ At) « X(t) + vy {Update state vector}
4:  t+t+Af {Update global time}
15 forj=1,...,M do

16: Tj T + a; At {Update internal times of each reaction}

17 end for
18:  Generate random number r; ~ U(0,1)
190 7«7 —In(r) {Update next reaction time for reaction {}

20: end while

store the current internal time and the next internal time for each reaction. Given
these two vectors, one can determine how much physical or global time will elapse
before reaction j fires again by considering

A= T
TTaX@) T

This is a direct consequence of (2.5) and the assumption that a; remains constant in
the interval [¢,¢ + At) with At = max; At;. The index of the next reaction to fire is
then [ = argmin(At;), from which the system state and propensities may be updated
and the global time incremented by At;. The next internal time for reaction [ to fire
is then computed as Tl+ = Tl+ + &, where € represents the duration between events in a
Poisson process; the latter implies £ is exponentially distributed. Each 7; where j # [,
corresponding to an internal time that has not reached firing, is given the approximate
update, 7; = 7; + a;At;, which is discussed in detail in [3, section 4]. An outline of
the full NRM algorithm for a general reaction network is given in Algorithm 3.1. We
note that —In(r;) is exponentially distributed given that r; is uniformly distributed
in the interval [0, 1].

4. Global sensitivity analysis for stochastic models. In this section, we
study convergence of sensitivity indices corresponding to stochastic models to their
deterministic counterparts. In section 4.1, we describe the underlying probabilistic
setup and global sensitivity analysis via Sobol’ indices. In section 4.2, we present
a generic result regarding convergence of the Sobol’ indices of a family of random
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processes. Then, in section 4.3, we show how the generic convergence result can be
applied to stochastic chemical systems.

4.1. The basic setup. Stochastic models with uncertain parameters present
two sources of uncertainties: intrinsic uncertainty due to stochasticity of the system
and uncertainty in model parameters. We denote the probability space carrying in-
trinsic stochasticity of the system by (€, F,v), where 2 is the sample space equipped
with a sigma-algebra F and a probability measure v. In stochastic chemical systems,
the uncertain model parameters of interest are the reaction rate constants, k1,...,ka;.
We model these as independent uniformly distributed random variables. Following
common practice, we parameterize the uncertainty in the k;’s using a random vec-

tor @ = [6y,...,0)]  whose entries are independent U(—1,1) random variables. For
example, if kl ~ U(ai, bz), then kZ(GZ) = %((Ll + bz) + %(bl - al)GZ
The uncertain parameter vector 8 takes values in © = [—1,1]*. It is convenient

to work with the probability space (©, &, \) for the uncertain parameters, where & is
the Borel sigma-algebra on © and ) is the law of 8, A\(d) = 2=Md@. The present
setup can be easily extended to cases where the 6;’s are independent random vari-
ables belonging to other suitably chosen distributions. Note also that one can have
additional uncertain parameters in a chemical system.

We use Sobol” indices [21, 25, 26] to characterize the sensitivity of a quantity of
interest (Qol) to input parameter uncertainties. For example, let f(0) be a scalar-
valued Qol defined in terms of the solution of the RREs corresponding to a chemical
system. The first order Sobol’ indices corresponding to f(8) are

VIE[f(6) | 6]
v

These indices quantify the proportion of the Qol variance due to the jth input pa-
rameter. Here E[f(0) | 6;] indicates conditional expectation, and V[f] denotes the
variance of f. For further details on theory and computation methods for Sobol’
indices we refer the reader to [21, 24, 25, 26].

(4.1) Si(f) = j=1,...,M.

4.2. Convergence of stochastic Sobol’ indices. We consider a family of
stochastic processes {fy (8, w)}y>o with

fr(@,w):©xQ =R,

which, as discussed below, are assumed to admit a deterministic limit as V' — oo.
The Sobol’ indices corresponding to fi(6,w) are

(4.2) Si(fy(nw)) == V[E%[f[;ée(g”i)]ej”, j=1,...,M.

The following result concerns the convergence of these indices in the limit as V' — oo.

THEOREM 4.1. Assume the following.
1. There exists f € L?(0,E,\) such that, for almost all w € 2,

(4.3) fv(@,w) — f(0), asV — o0, forall@cO.

2. For almost all w € Q, fy(0,-) is E-measurable, and there exists ¢, (0) €
L?(©,&,)\) such that for all 0 € O,

(4.4) 1fv(0,w)] < ¢ (0) for all V> 0.
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Then the stochastic Sobol’ indices satisfy
Si(fv(,w)) = S;(f), asV — o0, v-almost surely.

Proof. By the assumptions of the theorem, there exists a set F' € F with v(F) =1
such that the conditions (4.3) and (4.4) hold for every w € F. By (4.4), we observe
that fy(0,w) € L*(©,&,)) for every w € F and V > 0. Thus, we can define the
stochastic Sobol” indices (4.2) for {fy (-,w)}vso, for every w € F.

To show that fi(8,w) — f(0) in L?*(©,&,)\), we note that for every w € F
|fv(0,w) — f(8)|> = 0 pointwise in © and

[fv(8,w) = ()] < 4p.,(0)* € L1(O,E,N).

Therefore, invoking the Lebesgue dominated convergence theorem, we have that for
allw e F, [o|fv(0,w) — f(0)°A(d@) — 0, and thus for every w € F

lim [fV(O,w)]T)\(dO):/[f(O)]TA(dO), r=1,2.

The convergence of the first and second moments of fy (-,w) clearly implies
Jim V(fy (@) = V() forallwe F
To finish the proof of the theorem, we need to show
‘}ErlmV{E(fv(-,w)\Gj)} =V{E(f(-)|0;)} forallwe F,j=1,...,M.
Using the reverse triangle inequality and Jensen’s inequality, we observe

By (@)l L2 @) = IE(FOI0) 2oy | < IE(fv (-, w)l6;) = E(f()I0)] L2(0)
= [E(fv (-, w) = F()105)l L2(e)
< v (@) = FOlle2 o),

and thus, for all w € F
Hm IE(fv (- w)l0)l20) = IE(f()10;)]lL2(0)-
Since

V{E(fv (w)16;)} = E{E(fv (-,w)|6;)*} — E{E(fv (-,w)|6;)}?
= [E(fv (- @)|0))lIZ20) — E{fr (-,w)}?,

we have, for all w € F,
(45)  lim V{E(fv(,w)|0;)} = IE(f()I0;)]|z2(0) — B{F()}* = V{E(F(-)10)}
This, along with the convergence of the (unconditional) variance implies

VIE(fv(0,w)[6;)} _ V{E(f(9)6;)}

forallwe F,j=1,..., M. 0
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Remark 4.2. A slight modification of the proof of Theorem 4.1 leads to a more
general result: namely, we can obtain almost sure convergence of the indices,

(4.6) Su(fo(w)) = VIE[fv(0,w) | 0UH7

Vifv(6,w)]
where U = {j1,j2,...,7sr € {1,2,...,M} and 6y = [Hj 05, - HjS]T, to
Su(f())-
We recall the total Sobol’ indices [21]
(4.7) Ti(fv(w) =Y Sulfr(w), j=1,...,M.
U3j

These indices quantify the relative contribution of §; by itself, and through its in-
teractions with the other coordinates of 8, to the variance of fy (-,w). In view of
Remark 4.2, under the conditions of Theorem 4.1

Vlim T;(fv(,w)) =T;(f(-)) foralmostallweQ, j=1,..., M.
— 00

4.3. Application to stochastic chemical kinetics. Counsider the (concentra-
tion based) state vector ZV (t,0,w) of a stochastic chemical system and its determin-
istic counterpart Z(t, @), corresponding the thermodynamic limit. Recall that 6 € ©
parameterizes the uncertainty in reaction rate constants. In the present work, we
focus on a scalar time-independent Qol G(ZV (t,0,w)) and its deterministic counter-
part G(Z(t,0)). Specifically, G takes a vector function z(¢) and returns a scalar Qol.
Examples include

(4.8a) G(z(t)) = z(t*) for fixed t* € [0,T] and i € {1,...,N}, or
(4.8b) G(z(t)) = ;/T zi(t)dt for a fixed i € {1,...,N}.
0

In general, we assume G : L>=([0, T];R"Y) — R to be a continuous function. Note that
L>=([0,T]); RY) is equipped with norm || || given by ||z]|e = supyepo, 7 [12(1)], where
as before || - || denotes the Euclidean vector norm.

To put things in the notation of the previous subsection, we consider

fr(0,w)=G(Z"(t,0,w)), 6cO,wec,

and the corresponding limiting (deterministic) quantity, f(6) = G(Z(t,0)). Note that
by (2.13), for fixed 8 € ©, as V — o

1ZY(-,0,w) — Z(-,0)]l0c — 0 for almost all w € Q.
Therefore, by the continuous mapping theorem (see, e.g., [5]), for each 8 € ©,
(4.9) fv(0,w) — f(0), almost surely,

as V' — co. We consider the convergence of the stochastic Sobol’ indices S;(fv (-, w))
to their deterministic counterparts S;(f(-)), j = 1,...,M, as V — oo, i.e., in the
thermodynamic limit. Here we discuss how things can be put in the framework of
Theorem 4.1, which would then imply almost sure convergence of the stochastic Sobol’
indices to their limiting deterministic counterparts.
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Theorem 4.1 requires existence of a set of full measure in €2 such that the conver-
gence in (4.9) holds. To ensure this, we consider a modification of fi(8,w) as follows.
We know that for each @ € O, there exists a set of full measure Fy C Q for which the
convergence (4.9) holds. Define

Fr(0.w) = {fV(H,w) ifc.u € Fy,

f(8) otherwise.
Note that we have v({w € Q : fy(8,-) = fy(8,w)}) = 1 for every @ € ©. That
is, fv(e, -) is a modification of fy(0,-). Note that this modification satisfies the
following: for every w € €, fv(&w) — f(0) for all @ € ©. With a slight abuse of
notation, we will denote this modification by fy (0, w) from this point on. To ensure
that Theorem 4.1 applies, we also need the boundedness assumption (4.4).

To discuss the boundedness assumption (4.4), we take a step back and first discuss
conditions ensuring boundedness of the stochastic system trajectory {ZV (¢, 8, w)}v 0.
Consider the state vector XV (t). Nonnegativity of this state vector requires the
propensity functions to be proper [19]: for j = 1,..., M, we assume, for all x € Zf,
if x +v; ¢ ZY, then a) (x) = 0. Boundedness of components of X" (¢) requires
further (mild) assumptions, as formalized in [19, Theorem 2.8 and 2.11]. Interestingly,
the only requirements concern the stoichiometric matrix v. Namely, assuming the
existence of a vector ¢ € Zgo such that a'v < 0 and o; > 0 is necessary and

sufficient for boundedness of XY (t). Specifically, if such an «a exists, o' XV (t) =
a’ (XV(0) +vR(t)) < a"XY(0). Therefore,

XV () < (1/a)a" XV (0) = (V/ay)a " xo.
Thus, in terms of concentrations
ZV () =X /V < (1/a;)a xo.

Therefore, we have that the ith component of Z" remains uniformly bounded by
(l/ai)a—'—xo. Moreover, this bound is independent of the reaction rate constants,
i.e., independent of 8. Thus, if a vector a satisfying the aforementioned properties
exists for all the components of the state vector, then the concentration based state
vector ZV remains uniformly bounded by a constant. In fact, we need to only ensure
boundedness of the components of ZY that appear in definition of G. Given the
function G, which defines the Qol, is sufficiently well behaved, one may argue that
fv inherits the boundedness necessary to satisfy (4.4). For example, if G is defined
as in (4.8), then establishing boundedness of {ZY (t,0,w)}y o is sufficient to satisfy
(4.4) for the Qol, fy.

5. Numerical results. In light of the convergence properties exhibited by sto-
chastic chemical reaction systems, we aim to demonstrate numerically the results of
Theorem 4.1. Convergence results will be presented first for the Michaelis—Menten
reaction system, followed by an application of Theorem 4.1 to the task of dimension
reduction, considering a higher-dimensional example arising from the study of genetic
networks. Attention will also be devoted to the computation of Sobol” indices and
the random sampling necessary to compute the stochastic Sobol’ indices introduced
in section 4.
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5.1. The Michaelis—Menten system. The Michaelis-Menten reaction is the
most well-known example of enzymatic catalysis in the chemical kinetics literature
[2, 11, 15]:

s+Er
(5.1) c 5+ B,
ct,pyE

In (5.1), the substrate S binds to the enzyme E to form the complex C. The complex
may either dissociate back into the substrate and enzyme or dissociate into the enzyme
and a product P. Figure 5.1 depicts 25 realizations of the reaction dynamics using the
NRM algorithm with a final time of 7" = 50. The parameters, corresponding to the
rate constants in the propensity functions, are fixed to the nominal values k; = 10°,
ky = 107*, and k3 = 0.1 provided in [30]. Figure 5.1 depicts concentrations of each
species for a system size of Viom = 1.4 Vaom, where the nominal volume of the reaction
system is Vyom = 10715 m3.

x 1077

concentration

time

Fic. 5.1. 25 realizations of Michaelis—Menten trajectories computed via NRM with nominal
parameters, varying w.

In Figure 5.2 we illustrate convergence of the RTC trajectories to the RRE tra-
jectories as the system size increases. We hold the parameters fixed to their nominal
values and plot 25 realizations of the product PV (t,w) = Z} (t,w) along with the
corresponding RRE trajectory. As the system size increases, the ensemble of RTC
trajectories converges to the RRE trajectory. In Figure 5.2, the quantity m denotes
the multiplicative factor by which the system size is varied. For the purpose of the
simulation, m is related to the system size by the relation V = mVom.

5.1.1. The Qol. In the present study we focus on the stochastic Qol

T
fr(0,w) = l/ ZY (t;0,w) dt,
T 0
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FIG. 5.2. Convergence of the product PV (t,w) to the corresponding RRE solution at the nominal
parameter values plotted as system size grows.

where Z" is the solution of the RT'C representation. The corresponding deterministic
Qol is

T
10)= 7 [ zio)an

where Z is computed by solving the accompanying RRE. To get a sense of the statis-
tical properties of the Qol, we sample fy and f over the uncertain parameter domain
given by © = [—1,1]3, and with the uncertain rate constants defined as

k‘i(ei) = ];52 + (O.l/%i)ei, 1=1,2,3,

where k;’s are the nominal reaction rate constants as defined above. Figure 5.3 shows
probability density functions (PDFs) of f sampled in O, fy sampled in © x Q, and
fv sampled in € while using nominal parameters. All samples of fy used in Figure
5.3 use the V = Vyom-

5.1.2. Global sensitivity analysis. In this section, we turn to estimating
Sobol’ indices in both the stochastic and deterministic settings. For the purpose of
this study, we focus on the computation and convergence of the total Sobol’” indices.
The method detailed below can be applied to Sobol’ indices of any order.

Sobol’ indices measure the relative contribution of a subset of uncertain parame-
ters to the variance of some Qol. Consequently, it is natural to consider Qols that are
deterministic functions of these uncertain parameters, without any additional variance
contributed by a secondary source. When modeling chemical systems using stochas-
tic processes, such as the RTC representation, the model parameters and internal
stochasticity both provide sources of uncertainty, which must be accounted for sep-
arately. We summarize the process of estimating Sobol” indices in the deterministic
and stochastic cases in the Algorithm 5.1, where the number of uncertain parameters
is denoted p. Note that it is not always the case that p = M, the number of reactions.

In the stochastic setting, fixing a particular w; turns fy into a deterministic
function of the uncertain parameters. From that point, the process of estimating
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x10°

——RRE PDF in ©
8 RTC PDF in Q ]

—RTC PDF in © x Q
6 ]
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2+ ]
0 . 1 1 1

1.2 1.3 14 1.5 1.6
Qol sample values x107°

Fic. 5.3. Estimated PDFs of fy sampled over Q and © X Q and f sampled over ©, respectively.

Algorithm 5.1 Sobol’ indices for a chemical system with fixed system size.

Input: Method of evaluating fy (0,w) and f(0), Ns: number of parameter samples,
set of M, random seeds {& }5, system size V.
Output: Total Sobol’ indices: {T} (w;), ..., T (wi)}Me and {Ty,...,T,}.
1: Draw N,(p + 2) samples uniformly in © {see [24] for details}
2: % stochastic indices 7%
3: fori=1,..., M, do
4:  Seed random number generator with &;, corresponding to realization w;
5. forj=1,...,Ng(p+2) do
6 Evaluate and store fy(0;,w;) samples
7. end for
8:  Using fy samples, estimate Sobol” indices: {1} (w;), ..., T, (w;)}
9: end for
10: % deterministic indices %
11: for j=1,...,Ns(p+2) do
12:  Evaluate and store f(0;) samples
13: end for
14: Using f samples, estimate Sobol’ indices: {T1,...,T,}

Sobol’ indices is identical to the deterministic case. We estimate Sobol’ indices using
Monte Carlo integration; see [21, 24] or [22, section 4.5] for details. In Algorithm 5.1,
the cost of estimating first order and total indices for each fixed w; is Ng(p + 2)
evaluations of the Qol, where N, is user-defined.

The realizations of the stochastic indices correspond to w; € Q, ¢ = 1,..., M,
prescribed by the choice of random seed. We also note that the stochastic indices are
functions of the given system size, while the deterministic indices do not depend on
V' and should not be recomputed each time V is changed. For a fixed V, we may
compare the distribution of each T\ with the deterministic value of T;.
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Returning to the Michaelis-Menten example, in Figure 5.4 we plot the PDFs of
the stochastic total indices corresponding to the default V', where m = 1.

. . T v 14
EETFTC hist 5000 B TSTC hist || B77C hist '
— TFTC PDF —TRIC PDF| 12 —THIC PDF| !
__ TIRRE © o TZRRE ol T:,”RE '
i
i
|

30 i 8

20

0
0.05 0.1 0.15 0.75 0.8 0.85 0.9 0.95

0.2 0.3 0.4 0.5

FiG. 5.4. Histogram and PDF estimates for the total Sobol’ indices for ki, k2, and k3, respec-
tively. Black dashed lines indicate the deterministic value of the RRE total indices.

The deterministic indices, estimated with N, = 107 samples, are T} ~ 1.5 x 1071,
Tp = 1.2 x 1077, and T3 ~ 8.5 x 107!, indicating that the third reaction, where the
complex dissociates into the enzyme and the product, is the most important, and the
second reaction, where the complex dissociates into the enzyme and substrate, is the
least important, contributing almost no variance.

5.1.3. Convergence of Sobol’ indices. One may verify that the conditions
on the Qol necessary for Theorem 4.1 to hold are satisfied in the present case. Thus
we demonstrate numerically the convergence of the stochastic Sobol” indices to the
stated deterministic values. After we have computed multiple realizations of the
stochastic indices at increasing, discrete values of V', we examine the evolution of
their distribution as V' increases.

0.45
—+RIC|| (08 —-RTC —-RTC
0.4 — -RRE : - -RRE 0.92 — -RRE
0.9
0.06

e
@
=

0.88

0.04 0.86

total index
<

o ©
St e

0.84

0.02 0.82
_________ —.— L 0.8
0 a

10° 10! 10? 10° 10! 10* 10° 10 10°
m m m

1ot
o

=
i
@

Fic. 5.5. Convergence of the mean total Sobol’ index as a function of V' for parameters ki, ka,
and ks, respectively. Note that the vertical azes of each figure are not over the same range. The
lower and upper bounds of the error bars indicate the 5th and 95th percentiles, respectively.

Figure 5.5 demonstrates the convergence of IE[TiVm (w)] for i = 1,2, 3, for increasing
values of system size V,, = mVuom, m = 1,...,200. The error bars represent the 5th
and 95th percentiles of the distribution of stochastic indices at a particular system
size, where My = 100 different values of w are sampled to construct the distribution
for each discrete value of V. Figure 5.5 suggests the convergence of the PDF for each
TY (w) to a Dirac distribution centered at the deterministic value of the Sobol’ index
corresponding to the RRE. This sort of convergence may also be demonstrated for
lower order Sobol’ indices, as addressed in Remark 4.2.

Figure 5.6 gives a three-dimensional view of the convergence in Figure 5.5. We
plot a series of normalized histograms at specific values of m, converging to Dirac
distributions centered at the RRE total indices. These histograms, even for two
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orders of magnitude difference in V', show a clear trend towards the limiting values
given by the RRE.

L 80 1000
S =
£ 60 g 800-
g &
& & 600 -
< 40 H
Z £ 400-
=20 =
B <200 A
0L

01 4.

= D o
[=} (=} f=}
! !
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(=}
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F1G. 5.6. Histograms at discrete V' wvalues of the total Sobol’ indices for k1, k2, and k3, respec-
tively. The vertical axes represent the relative frequency of the indices due to normalized histograms.

Figures 5.5 and 5.6 can perhaps most naturally be understood as illustrating the
convergence in distribution of the RTC Sobol’ indices, an implication of the pointwise
convergence of the PDF. In this case, T} (w) is the random variable that converges in
distribution for each ¢ = 1,2,3 as V approaches infinity.

While the analysis of convergence rates is beyond the scope of the present paper,
Figure 5.7 provides a preliminary result in that direction by displaying the variance
of the stochastic total Sobol’ indices for increasing values of m. As Figures 5.5 and
5.6 indicate, the variance of the total indices approaches zero as the system size
approaches infinity. Figure 5.7 indicates that this convergence occurs with a rate of
O(1/V'). Here the sample variance is estimated with 100 realizations of the stochastic
total Sobol’ indices. We hypothesize that the faster decay of the variance of Th(w) is
due to its small size in the thermodynamic limit.

5.2. The genetic oscillator system. Returning to the original question illus-
trated in Figure 1.1, we aim to use the sensitivity information from a deterministic
chemical model to infer the sensitivities of its stochastic counterpart. The goal is to
perform well-informed dimension reduction on the expensive stochastic model, while
only requiring samples from the cheaper deterministic model. To perform meaningful
dimension reduction, here we consider a higher dimensional model than previously
considered. We consider the genetic oscillator system presented in [27], which models
the evolution of activator and repressor proteins that govern the circadian clocks of
a wide variety of organisms. The system consists of nine species, including genes,
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Fi1c. 5.7. Log-log plot of the rate of convergence of the second moment for each total index.

TABLE 5.1
Genetic oscillator reactions, propensity functions, and nominal parameter values; see [23].

Reaction Propensity function Parameter  Value
P, — Py + mRNA, aaPg QA 50.0
P, A— P,_A+mRNA, agaa Py A apR 0.01
P, - PrmRNA, arPr Ba 50.0
P._A— P._A+mRNA, arapPr_ A Br 5.0
mRNA, - mRNA, + A BamRN A, Yo 20.0
mRNA, - mRNA, + R BrmRNA, YA 1.0
A4+ R—>C YyoAR 0 50.0
P,+A— P,_A yaPo A YR 1.0
P, A—P,+ A OaP,— A Or 1.0
P-+A—P._A YrPrA da 1.0
PrfA—> PT—FA QRPrfA 6R 0.2
A—0 04A M A 10.0
R—10 SrR OMR 0.5
mRNA, — 0 dpmamRNAq 514 1.0
mRNA, — 0 5MRmRNAT Qg 10.0
C—R (SAC ar 5000

mRNAs, and the two proteins. We have M = 16 reactions and sixteen uncertain pa-
rameters. Following the form of the chemical system presented in [23], we provide the
reaction diagrams, propensity functions, and nominal parameter values in Table 5.1.

As with the Michaelis—Menten system, the RT'C representation models the evolu-
tion of the stochastic system, and the RRE models the deterministic system, with the
two models linked by the thermodynamic limiting process. Figure 5.8 shows a sample
trajectory of the stochastic system, simulated via the NRM. In 5.8, all parameters
are set to nominal values and the only nonzero initial states are P, and P,, with
one molecule of each. We plot the activator protein A, the repressor protein R, and
the complex C up to final time T" = 50. We then will use the sensitivity informa-
tion gained from the cheaper, deterministic model (RRE) to make conclusions about
parameter importance in the more expensive, stochastic model (RTC).

We define the stochastic and deterministic Qols, respectively, as

T T
fr(0,w) = %/ RY(t;0,w) dt and f(6) = %/ R(t; 0) dt,
0 0
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Fic. 5.8. Trajectories of the three dominant species at nominal parameters via the NRM.

where RV is the concentration of the repressor computed via the NRM and R is the
concentration of the repressor computed as the solution to the accompanying RRE.
Using the Monte Carlo method presented in [21, 22], we then estimate the total Sobol’
indices for the deterministic model. Figure 5.9 shows the total Sobol’ indices. It is
clear that a4,84,0p4, and , are the four most important parameters, capturing
over 50% of the variance of the deterministic Qol.

0.15

0.1

total indices

0.05

ay ar Ba Br Yo ¥4 04 YR Or 64 Or Onadur Oy 4 o

Fi1G. 5.9. Estimated total Sobol’ indices for the genetic oscillator RRE.

We can determine unimportant inputs by putting an importance threshold on
the total Sobol’ indices; parameters whose Sobol’ index falls below the threshold
will be considered unimportant. For instance, using 0.02 as a threshold, we identify
Yo,vA,04,VR,0R, and 04 as the six least important parameters, capturing less than
5% of the variance of the deterministic Qol. We then propose a reduced-dimensional
model, where the six least important parameters are fixed at their nominal values,
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reducing the dimensionality from sixteen to ten. To verify that this lower-dimensional
model remains an accurate representation of the full model, we sample the stochastic
Qol and plot its PDF while fixing and varying the unimportant parameters; see
Figure 5.10. The red dashed line, corresponding to the reduced model with the
six least important parameters fixed, has a negligible difference with the PDF of
the full model. Increasing the threshold from 0.02 to 0.05 adds g and ¢’y to the
unimportant category. However, as seen in Figure 5.10, the PDF of the resulting
reduced model (dashed green line), obtained by fixing now eight parameters, shows
a notable difference from the PDF of the full model. This illustrates the balance one
must strike between fixing unimportant parameters to reduce parameter dimension
and the loss of information that may result from using a cheaper model. Finally, we
illustrate the impact of fixing the four most important parameters (black dashed line
in Figure 5.10). This approach fixes every parameter with a total Sobol’ index greater
than 0.15 («a, B84,0m a4, and «). This results in a substantial underestimation of the
variance and a potential loss of valuable model information.

x10~4
I'\\ ——fixed: none
1.5+ I ‘\ - = fixed: T; < .02
! \ fixed: T; < .05
,’ \ - - fixed: T; > .15
1
[
1L J
0.5+ J
0 L
4
x10*

Fic. 5.10. PDFs of the stochastic Qol, fy, sampled while fixzing the following parameters: Black

line (A, Ba,00MA,xa), green line (Yo, vA,04,YR,0R,04,0R,0"), red line (vo,v4,04,7R,0R,04),
black line without fixed parameters. Total index thresholds are provided for each PDEF.

6. Conclusions. Sensitivity analysis is often performed on simplified surrogate
models with the hope that (1.1) holds, i.e., the hope, explicit or not, that the results
from the analysis of a surrogate model will hold for the full model. We have presented
here a partial result in that direction showing this assertion to be true for a specific
class of problems (chemical systems), a specific type of surrogate (obtained from the
thermodynamic limit), and a specific GSA approach (Sobol’ indices). Our study not
only shows and justifies, in an arguably restricted framework, that GSA can sometimes
be done “on the cheap;” it also, we argue, reflects important properties of the GSA
methods themselves.

An immediate direction for future work is to complement the presented theo-
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retical framework by deriving results on the rate of convergence of the stochastic
indices to those of the RREs. Moreover, further study should consider other types
of limiting processes linking surrogates and full models such as homogenization of
differential equations, discretization, and projections, as well as more general types of
GSA methods.
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