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1. Introduction

As an extension to the singular Dirac delta distribution, Huynh [1,2] has introduced an elegant polynomial representation
of an approximate delta function (ADF) in one-dimensional space. This ADF holds identical integral properties to those of a
Dirac delta distribution when applied to a finite-order polynomial integrand over a finite domain. Along similar lines, Xuan
and Majdalani [3] have examined and extended the ADF specification by allowing it to accommodate an arbitrary number of
auxiliary coefficients while introducing, in the same context, an ADF derivative weight function that can be used to extract
any order derivative of a finite-order polynomial at an arbitrary point.

Accordingly, an ADF can be used to represent the values and successive derivatives of finite-order polynomials at certain
points through the use of straightforward integration over finite domains. Moreover, an ADF can be used as an effective tool
to recover, extend, and construct high-order schemes in several computational fluid dynamics (CFD) applications.

Following this line of inquiry, Xuan and Majdalani [3] have managed to recover both Taylor-based and nodal-based
Discontinuous Galerkin (DG) methods [4] as well as the flux reconstruction method (FR) [5,6,1] using ADF as a vehicle. Fur-
thermore, by leveraging ADF properties, Xuan and Majdalani [3] have introduced a compact high-order point-value enhanced
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finite volume (PFV) method in one-dimensional space that has proven to be both stable and accurate. For this reason, the
present study aims at extending the PFV approach to a two-dimensional setting, specifically by redesigning the framework
presented in Ref. [3] to the general solution of the conservation equations.

Traditionally, low-order methods are preferred in computational fluid dynamics applications because of their simplicity
and suitability to tackle a large array of phenomenological problems. The alternative is to employ high-order methods,
which have the potential to produce more accurate solutions, although the increase in precision is usually offset by elevated
degrees of complexity and reduced robustness. The effort to improve the accuracy of high-order methods while sustaining
their stability and performance characteristics can thus be viewed as a vital and recurring research topic.

For example, the favorable attributes associated with the Discontinuous Galerkin (DG) method have expedited its ac-
ceptance as one of the most ubiquitously used high-order methods in the treatment of the Navier-Stokes equations. After
being implemented in the formulation of a neutron transport problem by Reed and Hill [4], it has been further explored by
LaSaint and Raviart [7] and then generalized in the context of computational fluid mechanics by Cockburn [8,9], Shu [10],
Bassi [11,12], and others. At a fundamental level, the DG method provides approximations of the Galerkin type to partial
differential equations (PDEs) that are applicable to a finite element; it then transforms the ensuing equations into a set of
ordinary differential equations (ODEs) that are amenable to numerical integration.

Fundamentally, several other methods that are based on differential discretization schemes have been developed with
the aim of achieving high-order accuracy. Amongst them, it may be worth noting the staggered-grid spectral technique [13],
the spectral difference technique [14,15], and the spectral volume technique [16]. One may also cite the method of flux
reconstruction (FR) [5,6,1], which has later morphed into the correction procedure via reconstruction (CPR) [17-19].

In related work, a constrained interpolation profile (CIP) with multi-moment finite volume (MFV) method has been
judiciously formulated by Xiao et al. [20]. In addition to its ability to store the cell-averaged value of a given element
as traditionally performed, MFV may be noted for allowing the incorporation of extra degrees of freedom (DOFs) that
can be distributed, rather unconventionally, on the element’s edge and nodal points. By specifically sharing this additional
information with neighboring cells, the MFV framework may be perceived as an efficient scheme for reducing the number
of DOFs relative to other high-order schemes exhibiting similar error margins. Moreover, the ability of MFV to share extra
DOFs while securing mass conservation has been shown to enhance the scheme’s robustness. In similar context, it may
be worth mentioning the Active Flux (AF) method [21,22], which treats the unknown values at edge-based flux points as
independent DOFs that can be refreshed while marching in time.

Bearing these efforts in mind, the cell-averaged value of each element in Ref. [3] are stored along with multiple DOFs
that comprise both values and derivatives at cell interfaces. In fact, a general DOF setting for storing multiple DOFs on an
element and its interfaces is presented quite elegantly by Huynh [23] for the linear, one-dimensional wave equation.

In two-dimensional space, it may be recognized that cell vertices are shared by more elements than edges, and are
therefore subject to a higher sharing frequency than any other spatial position or interface. Consequently, it may be posited
that placing all additional DOFs on vertices will give rise to an efficient platform to enhance element-to-element commu-
nication while increasing the amount of data shared. As demonstrated previously in Ref. [3], it is possible to increase the
amount of information being shared all the while leveraging the benefits of both MFV and AF techniques by placing, not
only the unknown point values, but also the values of the derivatives, at the vertices themselves. Furthermore, updating
the cell-averaged values in a manner that is identical to that used by the finite volume (FV) approach can be adopted to
ensure the physical conservation of the scheme. Finally, by realizing that the accuracy of the scheme only increases with
the amount of data stored at optimally chosen points, the present technique may be coined, consistently with Ref. [3], a
“point-value enhanced finite volume (PFV)” method.

To be more specific, the scheme that we pursue here will be denoted as P,FV (n € N) when the coefficients of an nth-
order polynomial are stored on the vertex. The scheme is further designated as P,FV,;, (m € N) when the unknown function
is approximated by an mth-order polynomial in each element, with a practical choice of m > n. In fact, if more DOFs are
assigned to an element, as in the DG case, then the scheme can be further extended using the PnDG’r‘n (k € N) notation,
where the coefficients of a kth-order polynomial are stored inside the element, while practically keeping k < m. This point
is further elaborated by Huynh [23] in his treatment of the linear, one-dimensional wave equation. As such, and in the
remainder of this study, the characterization of the P,FV,;, scheme, which restores the P, DG,?1 scheme as a special case, will
constitute our main focus. From a practical standpoint, the implementation of additional DOFs to increase the amount of
element-wise information in the context of a P,FV,, formulation has the potential to be more effective than in the PnDG’,;
framework for k > 0.

To further elaborate, we remark that the manner by which the updating of additional information is achieved on nodal
points and edges constitutes, perhaps, the most essential aspect of the MFV and AF schemes. For example, the use of the
characteristic solution of the linear wave equation in Ref. [23] is implemented in accordance with the AF scheme. In the
present work, we implement the ADF procedure developed in Ref. [3] and set the integral domain to encompass all of the
elements surrounding the vertex in question. Moreover, by increasing the radius of influence that accompanies each update,
the stability of the scheme is systematically enhanced. As for the temporal updating of the ODEs associated with each DOF,
a conventional third-order total variation diminishing (TVD) Runge-Kutta scheme will be used [24].

It may be instructive to note, at the outset, that although the PFV and Huynh's Pulv (u, v € N) methods [23] share the
same DOF setting, they are different in two particular aspects:

1. The underlining approximate solution in the Pplv method remains continuous across the interface of each element. In
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the PFV method, the underlining approximation is always discontinuous at all interfaces. Consequently, it is possible to use
the Riemann flux, which is known to enhance the stability of the scheme both locally and globally, for either linear or
nonlinear equations.

2. The Pulv method relies on the characteristic solution of the linear wave equation to update the interfacial DOFs. In
the PFV method, the ADF procedure is adopted, thus granting it broader versatility and selectivity in manipulating the
conservation equations, especially for nonlinear equations in multi-dimensional space.

This essential sequel is organized as follows. The definition of a multi-dimensional approximate delta function is first
introduced in Section 2. This is followed by Section 3, which details the formulation of the ADF polynomials in two-
dimensional space. By leveraging the two-dimensional ADF concept, the construction of the PFV method is presented in
Section 4 and then illustrated in Section 5, where its performance and effectiveness in resolving several benchmark prob-
lems, such as the two-dimensional linear wave and Euler equations, with specific applications to an assortment of classical
examples, are systematically described. The ensuing simulations help to verify the accuracy and stability associated with
the PFV technique based on its maximum CFL values and error convergence rates with successive mesh refinements. The
ability of the PFV scheme to rely on a small number of DOFs relative to the DG method of the same order is discussed in
Section 6. Lastly, several concluding remarks are offered in Section 7.

2. Approximate delta function (ADF) in multi-dimensional space

As described in Ref. [3], the Nth-order ADF polynomial in multiple dimensions may be defined as

f PN ()N (%, 2) dx = PN(2), (1)
Q

where x, z € RY, “d” being the number of spatial dimensions, and Py (x) stands for an arbitrary Nth-order polynomial. At
the outset, Syjm (X, z) can be used to designate an (N + M)th-order polynomial that satisfies

f PN(®)3n M (X, 2) dX = Py (2), (2)
Q
where, as shown in Ref. [3], the total number of arbitrary coefficients, N¢, that can be accommodated by equation (2) is
(N+d+M)! (N+d)!
TN+ Md N
Note that for M = 0, one recovers SMO(X, z)= SN (x, 2).

With the above definition in hand, the (N 4+ M)th-order ADF polynomial derivative weight function that is needed to
calculate the nth-order derivative of Py(z) with respect to {z1, z2, - - -} may be written as

I"Sn M (X, 2) 3"Pn(2)
Q/PN(X) 82’1”‘8222 = azjt oz ®)
where n=ny+ny+---.
3. ADF representation in two spatial dimensions
In a given domain €2, one may define the operator
(p.q) =/pqudy, (4)

Q

which appears in textbooks on quantum mechanics (e.g., Sakurai [25]), and is commonly used in the description of the DG
method [10]. Denoting a vector ¥ = (x, y) in two-dimensional space, in order to evaluate 8o (X, Xp), 61(X, Xp), and 82(x, Xp),
one may specify the point x, = (xp, y,) at the origin of the coordinate system. In what follows, the zeroth, first, and
second-order ADF representations are described along with the ADF’s piecewise polynomial representation.
3.1. Zeroth-order ADF formulation
For the zeroth-order polynomial &y(x, 0), we have
- - 1
(00(%,0),1) =1 or 5o(x,0) = —, (5)
Agq

where Aq represents the surface area of the domain under consideration, 2.
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3.2. First-order ADF formulation

For Pq(x) =r10,0 +71,0X + 70,1y, we can take 51(x,0) = ap,0 + ai,0x + ap,1y. Subsequently, the definition of &1, namely,

(51(%,0), P1(x)) = P1(0) =100 (6)
leads to
(51(x,0),1) =1, (§1(x,0),x) =0, (§1(x.0),y) =0 (7)
or
Aa=1, (8)
where
(L1) x1) (y.1)
A= (Lx) xx) (y.x) ], 9)
(Ly) &y ¥,y
a:(ao,o,al,o,ao,l)T and 1 =(1,0,0)7. (10)

The coefficients of the ADF polyqomial are thus at hand. Similarly, by taking the ADF derivative weight function as a two-
variable polynomial of the form SQ‘x(x, 0) =bo,0 + b1,0x + bo,1y, we may specify it as

N 3P
(51,X(X,0),P1(X))=a— =T1,0. (11)
X lp

By substituting the polynomial expression into the above expression, g; +(%,0) can be determined from following linear
system

Ab =1, (12)
where
b= (bo.o,b1,0,b0,1)" and L =(0,1,0)". (13)

For the y-derivative, we may equivalently assume an ADF derivative weight function of the form Sgyy(x, 0) = co,0 +
€1,0X + co,1y. As before, we get

Ac=1s, (14)
where
c= (Co,o,Cl,o,Co,l)T and I5=(0,0,1)7. (15)

3.3. Second-order ADF formulation

At this stage, our two-variable polynomial representation can be written as
82(%,0) =ap,0 +a1,0X + o1y + a2,0%° +a1,1Xy + o 2Y°,
8) «(%,0) =bo o + b1,0x+ bo.1y + b2,0x* + b1,1Xy + bo 27, (16)
gé,y(& 0) = Co.0 + C1,0X+ Co.1Y + C2.0X% + €1.1XY + Co.2Y>.

The same approach described above yields the multi-dimensional matrix equalities,

Aa=11, Ab=12,AC=l3, (]7)
where I; = (1,0,0,0,0,0)7, I, = (0,1,0,0,0,0)7, Is = (0,0, 1,0,0,0)7, and

(1,1)  ®1) (1) 1) &y, 1) (y31)

(Lx)  xx)  (y.x) (X  (xy,x)  (y%x)
a_| Ty xy) by Py vy Ry) (18)
T LK) kX (kB (XY (xy, k) (¥R xP)

(Lxy) (x.xy) (y.xy) (2. xy) (xy,xy) (¥* xy)

Ly xyh  y%) *y% kv, y?) (A )
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This assortment. of three equations enables us to solve for the coefficients of §, and the two first-order derivative weight
functions (82 © 05 y) namely,
T
a= (ao,o ai,o do,1 42,0 d1,1 ao,z) )
T
b = (bo,o b1,0 bo,1 b2,0 b1,1 bo2) (19)
T

c= (Co,o €1,0 €Co,1 €2,0 C1,1 Co,z)

Although it is equally straightforward to evaluate the ADF weight functions for the second-order derivatives 82 o 85 Xy @ and
85’ vy they are omitted here because they will not affect the numerical scheme at the order to be presently explored.

3.4. Derivation of ADF polynomials for special cases

In the interest of clarity, we now illustrate step-by-step the manner by which ADF polynomials can be generated for
several particular cases. We start with a square domain, which is demarcated by four vertices (-1, —1), (1, —1), (1, 1), and
(—=1,1); in this case, one finds Ag =4 and then use (5) to evaluate &g. For higher-order ADFs, one computes the following
volume integrals on the square domain:

m o ny _ m.n _ [1_(_1)m+1][1_(_1)n+1] _
(x™M, y >_/x y'dv = mIhaED , nnm=0,1,2,--- (20)

Q

This enables us to determine the components of the coefficient matrix A, which is given by (9) for the first-order ADF and
(18) for the second-order ADF. The linear equations (17) corresponding to each ADF polynomial can then be solved, thus
leading to,

5o®, 0 =510 =1 5x0=5x0=1-1 (X +y )
5 (21)
a2, 0) = 5k [ 486 — 1350 (2 + y?) + 945 (¢ + y*) + 900422
and
5l ®.0) =5 (x.0)=Fx. §,(x,0) =5 ,(x.0)= (6 752 — 3y ) (22)

Then taking advantage of the problem’s inherent symmetry, we can deduce Sf’y by swapping x and y in Sf’x.

Our next example is a triangular domain that is prescribed by three vertices (—1/3, —1/3), (2/3, —1/3), and (—1/3, 2/3).
Following the same approach, we proceed by calculating the coefficients of matrix A and then solve the linear system (17)
to determine the ADFs for point 0 = (0, 0). We get

30(x,0) =8, (x,0) =2, &(x,0)=33(x,0)=12 —40 (x2 +xy +y2),
84(x,0) =820 _ 380 (x +xy+ Y2+ X2y +xy ) (23)

+ 1400 [x 22Xy (2 + y?) + 3x y2+y4].
5 ((%,0) =48x + 24y, ) ,(x,0) = 240xy + 120y + 80x + 40y,
85 (x,0) = 19992 4 y) — 280 [8 [x3 +3xy(x+y) + y3] +2xy + yz} ,
5 o(%,0) = B2 2x 4 ) — 2800 [2xy(6x2 +9xy +4y?) + y4] (24)
+ 1120 {ny +y2-12 [2x3 +3xy(x+y) + y3]} .
Again a swapping of x and y in qux enables us to specify Sf,y.

3.5. Piecewise polynomial ADF formulation

So far, the ADF formulation has consisted of finite-order polynomials. In practice, it is also possible to represent the ADF
as a piecewise polynomial. For example, we have the ability to define at a given vertex p,

S[(Vp)(x, Xp) = Z wkgfvp")(x, Xp), Wi >0, Z wi=1, (25)
k k
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(a) Triangular (b) Quadrilateral

Fig. 1. Setting of DOFs for triangular and quadrilateral elements. Here the symbol [J denotes a cell-averaged value while O refers to a solution point DOF.

H o

Fig. 2. Integral domain of an ADF on a triangular mesh where the SP is assigned to different key locations: (a) central region SP, (b) boundary vertex SP,
(c) external boundary edge SP, and (d) internal boundary edge SP. Here the thick black line is used to demarcate the edge of the boundary.

where vap")(x, Xp) denotes a finite-order ADF polynomial defined on each of the elements € sharing the same vertex p,
and which can then vanish on the rest of the elements according to

SN(x,Xp) X

2(Pr)
Iy (%, xp) = ,
N P 0 xeQ\

(26)

where the © = [ J, Qr domain encompasses all of the surrounding elements that share the same vertex p.

To make further headway, and for simplicity’s sake, only equal weights such as wi; = wy = --- will be selected from
this point forward. Subsequently, owing in large part to a wide range of preliminary numerical simulations, we are able
to confirm that the discontinuous piecewise polynomial formulation leads to greater accuracy than the single continuous
polynomial representation. For this reason, only the discontinuous piecewise polynomial formulation will be considered in
the remainder of this study. The discussion of continuous polynomial representations will be relegated to a separate study.

4. Point-value enhanced finite volume (PFV) method

As a direct extension of the PFV method in one-dimensional space [3], we distribute the DOFs on the mesh according
to Fig. 1, where circles depict values recorded on the vertex, and squares refer to cell-averaged values at the center of the
element. In what follows, each circular point is coined a solution point (SP). As indicated previously, we use PgFV to denote
the method when only a value is saved on the SP. Similarly, we call it P;FV when a value and two derivatives are recorded.
In like manner, the designation P,FV is used when the coefficients of an nth-order polynomial are stored. Presently, the
emphasis will be placed on the behavior of PoFV and P{FV to better understand their characteristics before venturing into
even higher-order schemes.

To derive the updating ODEs for the SP values and derivatives (whenever inclusion of such derivatives is necessary),
we use the ADF procedure and allow the integral domain to encompass all of the elements surrounding the SP, as shown
in Fig. 2(a) for a central region element. In this case, the integral domain incorporates all elements swept by the curved
line. For a boundary element, the integral domain illustrated in Fig. 2(b) annexes the adjacent elements that are delimited
by the thick line at the domain’s boundary. In fact, our numerical simulations show that, for an element with a boundary
edge, an extra SP on the face of the element is sometimes required to stabilize the scheme at the third order. As for the
integral domain associated with an edge located SP, it is shown in Figs. 2(c) and (d) for both external and internal boundary
edges. It can thus be seen that the application of ADF tools enables us to position the SP at flexible locations, particularly,
at sites that can be used to enhance the scheme’s stability as well as its accuracy in a manner that is compatible with the
requirements associated with a given problem.

To illustrate the construction of the PFV method at different orders, we now proceed to consider the scalar conservation
equation,

au

o TV Fw=0. (27)
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i3

1 19
(a) (b)

Fig. 3. lllustration of (a) the reconstruction stencil and (b) interfacial flux computation terminology.

This form can be used to reproduce several classical equations in mechanics and physics. For example, by taking F(u) =
%(uz,uz), this equation returns Burgers’ equation in two-dimensional space; similarly, by setting F(u) = (au, bu), with
constant a and b, we recover the linear wave equation. In what follows, each step needed to construct the PFV framework
is sequentially described.

4.1. PoFV development

4.1.1. Reconstruction steps
In the PoFV formulation, it is only necessary to record the value of the unknown function, up, on the SP. The solution

in each element can be reconstructed as a first-order polynomial using the least-squares method based on the SP values
assigned to the vertex of each element. The approximate solution in the element may be written as

- - X — Xc; Y —Ye

Uj=1u;+a& +bn, E=—= and =—

i i S n, & Ax: n Ay

where u; denotes the cell-averaged value, the (x, y.;) pair specifies the coordinates at the center of the element, and
(AXx;, Ay;) represent the geometrical length scales of element i in the x and y directions; these may be specified as

(28)

AXi = max IXi; — Xi [, Ayi =n}a}<XIy,-j = Vi, (29)

where i; and i, stand for the indices of any two vertex points in Fig. 3(a). We further introduce &; = (x;, — X;)/Ax; and
Ni, = (Vi, — Y¢;)/Ayi. Consequently, the information on the SP of a triangular element may be expressed as

&, i a Ui — U
éiz 7’1’2 (b) = uiz - Eli . (30)
iz Mis Uiy — Uj
Equation (30) leads to an overdetermined system that can be solved straightforwardly using the normal equation method,
i.e.,, by minimizing the sum of the square differences between the left and right-hand sides.

4.1.2. Updating ODEs
The half-discretized ODEs for the updating of u; can be taken to mirror the finite volume procedure by setting

du; & I .r

E_—/n-F(u)dSN—/F(n,u,u)dS, 31)
0 02

where the face integral is calculated by Gaussian quadrature of the facial Riemann flux, F(n,u',u"; the latter is evaluated

at the Gaussian point based on the values interpolated from the left and right elements, as shown in Fig. 3(b). These are
given by

I e Xg B xCi Yg - yCi
Uy = Uj +a; +b;

g 1 1 AXI 1 Ay;
Xg — Xc; Ve — Ve

g Cj + b] g Cj )

AXx; Ay;

Here the coordinates (xg, y¢) locate each Gaussian point on the face of the element. A Riemann flux can be subsequently
used to compute the numerical flux at each Gaussian point simply from

)

(32)

r

Uy =1Uj+aj

Fng=F(n ug. up). (33)
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In this vein, the updating ODEs for SP values may be retrieved from

dup—/aué(xx)dv— fv F(u)dq(x,x,)dV
dr = ot 1(&, &p = 1%, &p
Q Q
:/F(u)~V§1(x,xp)dV—/n~F§1(x,xp)dS (34)
Q Q2
~/F(u)-v(§1(x,xp)dV—/ﬁ(n, ul,u")d; (x, xp) dS,
Q Q2

where the Q = J,,, 2 domain comprises all of the elements surrounding the SP, and 92 encompasses all of the edges on
Qm; in the above, §; (x, Xp) represents the first-order ADF for the SP defined on .

Then given the element-wise reconstructed ii;(x, y), the domain integral can be carried out using a Gaussian quadrature
in each element pursuant to

fF(u)~V§1(x)dV:ngF(ug)-V§1(xg), (35)

Qi g

where ug =u; +a;j(xg — X¢;)/AX; + bi(yg — ¥¢;)/Ayi, and wy is the Gaussian weight. One can then write

/F(u)-VSﬂx)dV:Z/ F(u) V8 (x)dV, (36)
m Om

Q

where the all-inclusive | J,, @m domain incorporates all of the elements surrounding the SP. Note that the domain integrals
remain unchanged for all of the forthcoming PFV construction effort except for the expression needed to calculate the value
on the Gaussian point, ug; the latter can be obtained using the reconstructed polynomial approximation, i;(x, y), which
is specific to each PFV order. For this reason, the detailed description of the domain integrals will not be repeated in the
remainder of this work.

4.2. P1FVq development

4.2.1. Reconstruction steps
In the P1FV design, the information saved on the SP can be written as

(Up,u1,p, Uz p) = Up,AXpaﬂsAJ’paﬂ s (37)
’ ’ ax ay

where (Axp, Ayp) denote the length scales on the SP, which can be calculated from the average of the lengths (Axy, Ayn)
of the surrounding elements. Here a weighted least-squares reconstruction is used to build a first-order polynomial on each
element. This is accomplished by defining

AX; AX; AX;
S e O & om0 & & O
B = . 0 Ay,-l ) 0 AYiz . 0 Ayi3 (38)
Niy 2y ay; s Ay
W =diag{l,w,w,1,w,w,1,w,wl(w>0), a=(b),
- - - - T
and = (uj, — Uj, uniy. Unyip, Uiy — Ui, U1 iy, U2 iy, Uiy — Ui, Ut iy, U is)
In this context, the linear system’s vector a that determines the solution coefficients may be deduced from
BWB a=BWi. (39)

It may be readily confirmed that when w = 0, the reconstruction degenerates to the one associated with PoFVj.

4.2.2. Updating ODEs
The updating ODEs for the cell-averaged and nodal values remain identical to those developed for PyFV;. Here two
additional equations are required to capture the evolution of nodal derivatives. These are

du1,p N

@ fF(u)~VS§’X(x,xp)dV —ff-‘(n, ul, u"d ,(x,xp) dS, (40)

Q Q2
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and

duz’p
dt

m/F(u).VSQ’y(x,xp)dV—/ﬁ(n, ul u")8] (%, xp)dS. (41)
Q Q2

where g;yx(x, xp) = Axpd} (x,%p) and §ny(x, xp) = Aypd) ,(*.Xp).
4.3. P1FV, development

4.3.1. Reconstruction steps
As the order is increased, the weighted least-squares may be used again to reconstruct a second-order polynomial from
the information available at the center of the element and its nodes. We now set

i=0;+a&+bn+cE —r)+dEn—r2) +em? —13), 11 =E2, ry =En, 13 =12,

where X refers to the cell average of x on element i. We also define p;, = Ax;, /Ax;, qi, = Ayi,/AYi,

&y Piy 0 &iy pi, 0 &is Di; 0
Niy 0 qi, Ni, 0 qi, Nis 0 qi3
B=| &-n 2pi& O g - 2p& 0 g -rn 2pipE; 0

My — T2 PiyMiy Qi &y SiuMiy, — T2 DPiMiy  Gidiy Sisis — T2 DPisNis  Gissis
n —r3 0 2qim;, LT3 0 2q,m, n5-T3 0 2qi3mis

and a = (a,b,c,d,e)T. We thus arrive at the same linear system expressed in equation (39), which can be used to extract
the solution for a.

4.3.2. Updating ODEs
At this order, the left and right approximations of the Gaussian points may be calculated from

ulg =1 +ai€g i +bingi + Ci(ng,,- —r1,i) +diEgingi —T2,i) +ei(Ngi —T13),
Wy =Uj+ajEg j+bjngj+cjGg ;=) +djEg ngj—12) +ej(lgj—T3)),
where &g i = (Xg — X¢;)/ AXi, Ng.i = (Vg — Ye;)/ AVi, &g.j = (Xg — X¢;)/Axj, and g j = (Vg — Yc;)/AYj.

While the updating ODEs remain precisely the same as in P{FV{, we now gain the alternative choice of using &, (x, xp),
Séyx(x, Xp), and S/Z.y(x, Xp) to replace S1(x, Xp), S;yx(x, Xp), and S;,y(x, xp) for the nodal evolution. Nonetheless, our numerical
experiments, which are detailed in forthcoming sections, show that when the second-order ADF is used, the scheme can
become unstable. To avoid this situation, it is possible to replace the second-order ADF by the first-order ADF in P;FV, in a
manner to preserve the scheme’s targeted third-order accuracy. Although an appropriate choice of four auxiliary coefficients
in ADF’s 8j3(x, Xp) is likely to overcome the stability issue, work in this direction is beyond the scope of this study.

At this juncture, it may be instructive to note that the extension of the foregoing analysis of the scalar conservation
equation to Euler’s equation can be achieved straightforwardly by replacing the scalar flux computation with the Riemann
flux vector for Euler’s equation in both interfacial and domain integrals.

4.4. Curved element treatment

For problems involving curved boundaries, it is sometimes necessary to capture the curved edges as precisely as possible
to achieve the desired accuracy while maintaining the stability of the high-order scheme. In such a situation, a uniformly
second-order mesh may be used, where all of the elements in the mesh are transformed to standard linear elements using
a second-order polynomial transformation, as shown in Fig. 4. The (¢, v) variables featured here represent the transformed
coordinates.

4.5. Temporal evolution scheme
In all of the upcoming numerical experiments, the treatment of time evolution is implemented as follows: for steady
problems, we find it sufficient to use a second-order TVD Runge-Kutta scheme. However, for unsteady problems, we find it

necessary to employ a third-order TVD Runge-Kutta time marching scheme.

9
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O-D

T,y (¢, )

Fig. 4. Using a P2 polynomial to transform a curved triangular element to a standard linear element.

(a) Case I (b) Case II

Fig. 5. Solution contours for u(x, y, 0) corresponding to the initial spatial distributions for cases I (sinusoid) and II (Gaussian bump).

5. Numerical verification

In order to test the accuracy and stability of the PFV scheme, two benchmark cases are considered: (1) the linear wave
equation and (2) Euler’s nonlinear equation. These fundamental equations are often considered and discussed in textbooks
on computational physics (e.g., Landau et al. [26]). To simplify the underlying notation, we use P,FV,-8; to notate the
scheme where mth-order polynomial coefficients are recorded on the SP, an nth-order polynomial approximation is used to
reconstruct the solution in each element, and the updating ODEs for SP DOFs are derived using kth-order ADF integration.

5.1. Verification based on the two-dimensional wave equation

The accuracy and stability of the PFV scheme at different orders is first tested in conjunction with the two-dimensional
linear wave equation
au ou ou
— 4+ ay— +a,— =0; ay=1,ay,=0andu(x, y,t =0) =ug(x, y). 42
ot Xy y ay X y x,y ) o(X,y) (42)
A classical solution to equation (42) is given by u(x, y,t) = ug(x — axt, y — ayt). To make further headway, we explore two
cases of initial and boundary conditions that are illustrated in Fig. 5. These correspond to:
(I) up =sin 2mx) sin 2w y) with (x, y) € [0,1] x [0, 1] and periodic boundary conditions in both x- and y-directions. The
ensuing computations are carried out over one period of time up to T =1.

(I1) up = e~0L*=057+=0.5%] and (x, y) e [0,1.5] x [0, 1]. Horizontally, the values on left and right boundaries of this
Gaussian bump, x =0 and x = 1.5, are set equal to 0. Vertically, at y =0 and y =1, we set g—; =0. Here the computations
are performed up to T = 0.5 in order to keep the main distribution confined within the computational domain.

Note that the geometric configuration and spatial distributions of the initial conditions chosen for case Il minimize
the effects of edge treatment on the accuracy of the ADF formulation. Because the values are zero along the boundaries,
the errors that can accumulate in conjunction with the use of a boundary vertex SP, as depicted in Fig. 2(b), become

inconsequential compared to the errors that accrue in the central portion of the domain.
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Fig. 6. Quadrilateral and triangular meshes used in the square computational domain of size [0, 1] x [0, 1].
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(a) Quadrilateral mesh (b) Triangular mesh

Fig. 7. Quadrilateral and triangular meshes used in the rectangular computational domain of size [0, 1.5] x [0, 1].

To demonstrate the convergence of the error, five successively refined meshes are used for both quadrilateral and trian-
gular elements using cell sizes of h = %, %, 11—6, 31—2 and 61—4. Meanwhile, Figs. 6 and 7 illustrate the meshes used for cases I

and II, respectively.

In our effort to characterize the error convergence rate, the accuracy of the numerical simulation is measured using the
standard L, functional error,

L= / [Unum (X, ¥) — Uexact (x, ¥)12dV,
Q

where upym refers to the reconstructed numerical approximation and uexact represents the theoretical solution given by

u(x,y,t) =sin[2mw (x — t)]sin 2w y) (case 1),
—50[(x—t—0.5)2+(y—0.5)?]

ux,y,ty=e (case 1II).

The error convergence behavior of different order PFVs as well as their slopes for cases I and I is captured in Figs. 8 and
9, respectively. The convergence rates, which are specified on the legends by the graphical slopes, are calculated from the
errors on grid sizes of h =1/16 and 1/64.

In exploring the behavior of the PgFV; approximation, two different orders of ADF polynomials are tested, i.e., 5 and 3
in the updating of the DOFs on the SPs. The simulations are thus intended to investigate the influence of the different order
ADFs on the accuracy of the scheme for a fixed cell reconstruction and DOF arrangement. Note that the P1FV,-§, scheme is
not examined here. It is found to be unstable and thus requiring a particularly dedicated treatment that must be deferred
to a separate study.

For case I, the errors on the quadrilateral mesh show that, on the one hand, the PgFV1-8¢ achieves second-order precision
(with a slope of 2.12), and yet remains less accurate than PgFV1-8; because of its larger L, error magnitude. On the other
hand, PgFV1-81 exhibits a lower convergence rate (with a slope of 1.83), and yet is accompanied by a lower L, error.

11
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Fig. 8. Error convergence behavior of different order PFVs for the linear wave equation with case I simulated on a [0, 1] x [0, 1] spatial domain and a
runtime interval of T =1.
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Fig. 9. Error convergence behavior of different order PFVs for the linear wave equation with case Il simulated on a [0, 1.5] x [0, 1] spatial domain and a
runtime interval of T =0.5.

However, when we consider the behavior of these two schemes on a triangular mesh, both PyFV{-8y and PgFV-81 produce
similar convergence rates of 1.94 and 1.92 with PgFV;-8; showing slightly better error performance.

As for the second-order P1FV{-8; approximation, the scheme leads to slightly better than expected design order, namely,
of 2.24 and 2.2 for the quadrilateral and triangular meshes, respectively. Conversely, the third-order P{FV,-8; scheme
exhibits slightly lower convergence rate than its design order on both quadrilateral and triangular meshes. It may be specu-
lated that the slight decline in convergence rate in this case may be caused by the use of 81, instead of &, for updating the
DOFs on the SPs.

For the Gaussian bump distribution function of case II, similar convergence characteristics are observed. In this case, the
error on the boundary appears to be trivial and negligible compared to the errors evolving in the central region of the
solution domain. The most notable differences in the results include significant improvements in the P;FV{-§; and P;FV3-§;
convergence rates using the triangular mesh, namely, 2.53 and 3.57, which exceed the corresponding design orders of 2 and
3, respectively.

Finally, in order to evaluate the robustness of the scheme in resolving the wave equation, we conservatively use case |
on the quadrilateral mesh to test the stability of the different PFVs. Using the square mesh with a grid size of h = 1/16,
our simulations are carried out to a very long time of T = 200. The evolution of the maximum value of u in the entire
computational domain is subsequently used to evaluate the stability of the ongoing computations. In this process, the
maximum stable CFLs are calculated and reported in Table 1.
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Table 1
Maximum stable CFL computed at different PFV orders using the two ADF polynomials 5 and ;.
PoFV1-8¢ PoFV1-81 P1FVi-81 P1FV3-8;
CFL 1.20 0.67 0.70 0.71

Forthwith, it may be important to note the surprising stability characteristics displayed by the PFV scheme at increasing
orders, where even a third-order scheme is capable of achieving a maximum CFL of 0.71. More specifically, the maxi-
mum stable CFL decreases only slightly (or does not decrease at all) with successive increases in the order. Such behavior
makes this approach manifestly promising for later extensions to higher orders. It also stands in sharp contrast to the CFL
performance associated with most compact high-order schemes, such as the DG method, where the maximum stable CFL
decreases precipitously when the order is increased.

5.2. Verification based on the two-dimensional Euler equation

Euler’s equation for unsteady compressible inviscid motion can be expressed in conservative form as
oU dF;U)
T

0, 43
at BX]' (43)

which is defined on R?, with d denoting the number of spatial dimensions, and where the conservative state vector U and
flux vector F are specified as
T .
U= (p,puj,pe)’, Fj=(puj, pujuj+ psij,uj(pe+p)) ; i, j=1,2,---.d. (44)
In the above, the summation convention is used and p, p, and e denote the density, pressure, and specific total energy of
the fluid, respectively; moreover, u; refers to the velocity of the flow in the coordinate direction x;. In conjunction with (43),
the state relation for a perfect gas may be written as

p= —Dp(e—ujuj), (45)
where y is the ratio of the specific heats, which we take to be 1.4 unless specified differently.
In this work, the cell edge Riemann flux function is estimated using the Harten-Lax-van Leer Contact (HLLC) approximate
Riemann flux [27], which has been successfully used to resolve compressible flows on unstructured grids [28] in both
laminar and turbulent regimes [29-31].

5.2.1. Study based on the isentropic vortex propagation problem

In this section, the convection of the two-dimensional inviscid isentropic vortex, which is illustrated in Fig. 10, is used
to test the accuracy of the PFV scheme. The analytical solution to this problem, at any time t, may be deduced from the
advection of the initial motion, which consists of a linear superposition of a uniform flow, Uy = (000, Uso, Veos Poo) =
(1,1,0, 1), and a perturbation of the velocity components, U and V, entropy S, and temperature T. These are given by

- 2
U\ _ € osa-)(Yo=¥V) s_go §- (d-y)e RE (46)
v 27 X=X 8y 2

where 1% = (x — x9)2 + (¥ — yo)? and the (xg, yo) coordinates specify the vortex center. As for €, it stands for the vortex
strength. The initial values for this problem can be readily expressed as

1 - -
p=Tos+ TV, pU=pUs+0), pV=pVe+V),
e= Bt hUP 4V and p=p.

(47)

For the sake of illustration, we set the vortex strength at € =5 and position the center of the vortex at (5, 5). A suitable
computational domain 2 is chosen to extend over (x, ¥) € [0, 15] x [0, 10]. In this manner, a Dirichlet boundary condition of
U = U, may be imposed at all four boundaries where the freestream velocity is recovered. Our computations are carried
out up to time T =5 while the errors accrued in the results are measured by the L; error in the density calculation, namely,

Ly = || pnum (X, ¥) — Pexact X, VL, 0) = /[pnum(x’ ¥) — Pexact(X, .V)]z v, (48)
Q

where pnum (X, y) corresponds to the reconstructed numerical approximation and pexact(X, y) refers to the exact solution.
Five successively refined meshes with grid sizes of h = 12,10 18 10 "and 19 are sequentially used to verify the error

816 32
convergence order.
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Fig. 11. Error convergence of different order PFVs for the isentropic vortex propagation problem simulated on a spatial domain of size [0, 15] x [0, 10] and
a runtime interval of T =5.

Fig. 11 displays the error convergence behavior of the PFV method at different orders on both quadrilateral and triangular
meshes. The slopes are computed from the errors accrued using the last three meshes of h = %, %, and g.

A cursory examination of the error slopes helps to confirm that all of their design orders are well achieved with the
exception of the PgFV1-8; scheme. Having error slopes of 1.69 and 1.76 on the quadrilateral and triangular meshes, this
scheme falls slightly short of its designated second-order convergence rate despite its lower error magnitude than PoFV1-8p.

Conversely, with slopes of 2.47 and 2.41 on quadrilateral and triangular meshes, we find P;FV{-§; to be more accurate
in both error magnitude and convergence rate than its PgFV{-89 counterpart. It also exceeds its intended second order. The
same may be said of the third-order P1FV,-§1, which converges more rapidly than its design order by achieving rates of
3.12 and 3.59 on the quadrilateral and triangular meshes, respectively.

5.2.2. Study based on the flow through a channel with a Gaussian bump

Let us now consider the internal flow problem in a channel with a height of 0.8 and a length of 3, thus requiring a
computational domain that extends over (x, y) € [—1.5,1.5] x [0, 0.8]. As shown in Fig. 12, the bump on the lower wall is
prescribed by y = 0.0625¢~25%_ On the left side of the domain, the inflow Mach number is taken to be 0.5 at a zero angle
of attack. Moreover, the total pressure and temperature are imposed as inflow boundary conditions at the left boundary,
while a constant static pressure is specified at the outflow boundary. Finally, the upper and lower walls are designated as
slip walls.

In order to characterize the error response to grid refinement, two sets of unstructured second-order quadrilateral (9-
point) and triangular (6-point) meshes, shown in Fig. 12, are selected and successively refined to coarse, medium, and fine

14
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Fig. 12. Medium-size quadrilateral and triangular meshes used in the simulation of the Gaussian bump channel flow problem.
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Fig. 13. Error convergence of different order PFVs for the Gaussian bump channel flow problem simulated on a spatial domain of size [—1.5,1.5] x [0, 0.8],
My = 0.5, and a suitably long runtime interval.

meshes, thus helping to validate the error convergence rate at different PFV orders. In this process, the error is measured
using the Lp-norm of relative entropy increase, specifically

y 2
L= l/[i (&w) _1] v (49)
v 2 Do \ P

Our simulations are run continuously until the L, error has converged to a constant value. Error results are then extracted
and displayed in Fig. 13, where the convergence characteristics of different order PFVs are captured on quadrilateral and
triangular meshes. The error slopes reported on the legends are calculated based on the errors corresponding to the medium
and fine meshes.

Graphically, it may be seen that the error entailed in the PoFV{-§p simulation continues to converge consistently with a
second-order scheme, albeit slightly reduced to a slope of 1.15 on a quadrilateral mesh, and slightly accelerated to a slope
of 1.72 on a triangular mesh. As for the errors in PgFV{-8; and P1FV;-81, they are found to be nearly indiscernible on the
quadrilateral mesh, with convergence rates of 1.85 and 1.89, respectively. On the triangular mesh, P1FV{-§; converges at
a rate of 2.58, which is slightly faster than the 2.29 rate accrued by PgFV;-8;. As such, it may be safely stated that both
schemes achieve their intended second order. As for the third-order P1FV,-8; formulation, it appears to be substantially
more accurate and faster converging on both quadrilateral and triangular meshes where its error decreases at a whopping
3.17 and 3.13 rates.
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Fig. 14. Medium-size quadrilateral and triangular meshes used in the simulation of the flow past a cylinder problem.
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Fig. 15. Error convergence of different order PFVs for the flow past a cylinder problem simulated using M, = 0.38.

5.2.3. Study based on the flow past a cylinder
This simulation considers the well-known test case of a subsonic flow past a circular cylinder at a Mach number of

Moo = 0.38. A typical computational domain consists of a circular region having a radius of R = 12 that wraps around a
smooth cylinder with a radius of a = 0.5. As usual, a Dirichlet boundary condition may be imposed along the outer circle
representing the farfield boundary edge while a slip condition may be permitted along the circumferential wall of the
cylinder.

In our effort to capture the curved wall accurately throughout the computational domain, we use quadratic quadrilateral
(9-point) and triangular (6-point) meshes, which are successively refined to coarse, medium, fine, and very fine sizes. For
the reader’s convenience, the medium quadrilateral and triangular meshes are shown in Fig. 14.

As in the problem corresponding to an internal channel flow with a Gaussian bump, we measure the error using the
L,-norm of relative entropy increase given by (49). Subsequently, the simulations are carried out until such time when the
residual has dropped to 1.0 x 10~8 and the L, error has converged to a constant value.

At this juncture, the convergence characteristics of different order PFVs may be extracted and illustrated in Fig. 15 using
either quadrilateral or triangular meshes. We start with the performance of PyFV1-8p, which leads to convergence rates of
1.5 and 1.7 on the quadrilateral and triangular meshes, respectively. In both cases, the error falls slightly below its quadratic
design order.

On the quadrilateral mesh, it is interesting that the errors attributed to PyFV{-8; resemble those of the P1FV{-§; so
closely that their convergence rates of 2.58 cannot be graphically distinguished in Fig. 15(a). More importantly, we note
that, irrespective of the mesh used, both P{FV{-§; and P;FV,-8; converge faster than their design orders of 2 and 3 by
achieving rates of (2.58, 2.55) and (4.05, 3.41) using quads and triangles. In fact, P{FV,-8; may be seen to super-converge
to the fourth order on a quadrilateral mesh.
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Fig. 16. Simulated density contours containing 16 levels between 0.76 and 1.06 on quadrilateral medium, fine, and very fine meshes using PoFV{-3¢ (top),
P1FV1-81 (middle), and P1FV;-8; (bottom) for the flow past a cylinder with M, = 0.38.

Moving on to the triangular mesh results depicted in Fig. 15(b), we note that P;FV{-§; remains more accurate than
PoFV1-81 despite its convergence rate of 2.55 being slightly lower than the 2.60 rate achieved by PoFVi-81. Nonetheless,
both schemes converge faster than their quadratic design order.

To better illustrate how the error reduction rate affects the quality of the simulation results, we use Figs. 16 and 17
to display the density contours predicted by PoFVi-89, P1FV1-81, and P1FV,-8; on quadrilateral and triangular meshes,
respectively. On quadrilateral meshes, both the error and density contours show that P;FV;-§1, which is characterized by a
convergence rate of 4.05, is substantially more accurate than P1FV;-8; on a finer mesh. This can be seen by contrasting the
contours of Fig. 16(f) to those in (h), where the symmetry of the contours is already well established. Upon closer scrutiny,
it may be graphically verified that using the high-order P1FV,-8; method on a fine mesh in (h) leads to better symmetry
and therefore more accuracy than using P1FV; on a very fine mesh in (f). This observation is, in fact, corroborated by the
error magnitudes provided in Fig. 15, i.e., where the second triangular symbol from the far left, which denotes P1FV,-§1 on
a fine mesh, is noticeably lower than the cross symbol that appears at the far left, thus representing P;FV; on a very fine
mesh. The benefits of using a high-order method are thereby confirmed.
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Fig. 17. Simulated density contours containing 16 levels between 0.76 and 1.06 on triangular medium, fine, and very fine meshes using PoFV;-§op (top),
P1FV1-81 (middle), and P;FV,-8; (bottom) for the flow past a cylinder with M, = 0.38.

As we turn our attention to the simulation results on a triangular mesh in Fig. 17, similar trends may be observed. In this
case, however, the error magnitude in the P1FV; scheme remains substantially lower than its counterpart on a quadrilateral
mesh, as per Fig. 15(b), despite its nearly identical convergence rate of 2.55. For this reason, the quality of the density
contours in Fig. 17(e) on a fine mesh are visually equivalent to those in (h) using the higher-order P1FV,-§; with a 3.41
convergence rate. A similar argument can be used to explain why the contours obtained using P1FV,-8; in (g) on a medium
mesh already exhibit a sufficient degree of symmetry despite their underlying coarseness. Although the 3.41 convergence
rate of P1FV;-§1 on a triangular grid appears to be lower than its 4.05 counterpart on a quadrilateral grid, the actual error
magnitudes entailed on a triangular grid remain much smaller in Fig. 15(b) for fine and very fine meshes. Here too, some
of the advantages of using a high-order method on a triangular mesh are confirmed.

In order to compare the CPU cost of different orders of PFV schemes in solving the problem at hand, we use Fig. 18 to
examine the convergence history of the relative residual of the continuity equation on a fine mesh; the latter is defined
relative to the initially computed time-rate of change of the density, namely,
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Fig. 18. The residual convergence history of different orders of PFV schemes for flow past a cylinder computed on a fine mesh using both (a) quadrilateral
and (b) triangular elements.

Table 2
CPU cost to perform 1000 steps by each of the PFV schemes while solving the flow past a cylinder on a fine mesh
using both quadrilateral and triangular elements. N, represents the total number of elements used.

Ne PoFV1-d0 PoFV1-61 P1FV1-6 P1FV3-4
Quadrilateral mesh 1024 3.64 s 465 s 480 s 795 s
Triangular mesh 2048 399 s 5.68 s 6.54 s 1116 s

/[, R2(x, t)dV
T (50)
[, R2(x,0)dV

where R(x,t) = dp/dt. Using both quadrilateral and triangular elements, it may be seen that the residuals associated with
different PFV orders converge at comparable speeds until the residual reaches approximately 107>-3, where the flow pattern
becomes essentially well established. This behavior is quite unique and different from the typical convergence character
of other techniques, such as the DG method, where the convergence rate has a tendency to decrease, often significantly,
with successive increases in the design order. Using a quadrilateral mesh in part (a) of the graph, it must be noted that,
after the residual error drops below the 107> value, the higher-order schemes begin to converge more slowly than their
lower-order counterparts, except for PoFV{-81. The latter tends to converge more slowly than P1FV{-41, albeit less accurate.

For the triangular mesh, the convergence rate of the higher-order schemes follows a similar trend as the relative residual
falls below the 107> mark in part (b) of the graph. This is true of all cases considered except for the third-order P;FV,-81,
which converges towards its final steady state more rapidly than both the second-order PoFV{-§; and P1FV{-67.

For added clarity, we use Table 2 to display the CPU times to perform 1000 steps by each of the foregoing PFV schemes.
As one would expect, the CPU time increases as the order of the scheme or its complexity is increased. Naturally, for the
same scheme, the CPU cost is lower on a quadrilateral mesh versus a triangular mesh, because the latter requires nearly
twice the number of elements to cover the same computational domain. To further support these observations, we note
that PoFV1-8¢ has no domain integral because V&g = 0, which makes it slightly faster-converging than PoFV{-8;.

Moving on to the second-order schemes, both PgFV{-8; and P;FV{-8; rely on the same number of Gaussian points.
However, P1FV1-8; requires two additional DOFs on the solution points, thus necessitating extra time for temporal matching.
For this reason, the run times for P1FV;-8; are slightly longer than those of PoFV1-§; on both meshes. In the same vein, the
third-order P1FV;-§7 is found to be about 66-70 percent more time consuming while being one order more precise than
the second-order P1FV1-§1.

Res, =

5.2.4. Study based on the simulated flow past a NACA0012 airfoil

The last test case involves an inviscid subsonic flow past a NACA0012 airfoil with a chord length of unity at a Mach
number of M, =0.63 and an angle of attack of o = 2°. The computational domain can be confined to a circular region of
radius R =20 and then discretized using a linear triangular mesh as shown in Fig. 19.

Different orders of PFVs are readily validated using this physical configuration, with all of the residuals being effectively
suppressed below 10710, Along the surface of the airfoil, the pressure coefficient and relative entropy error are calculated
from
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where s = pp~7 and Seo = PoopPoc’ - By Way of comparison, the pressure coefficient computed over the entire surface of the
airfoil as well as the entropy error, which is evaluated over the top surface of the airfoil, are shown in Fig. 20 at different
PFV orders. Consistently with the previous benchmark cases, both PgFV1-8; and P1FV1-81 are seen to display similar degrees
of precision, which are slightly higher than the predictive accuracy of PoFV{-8p. Unsurprisingly, P1FV,-8; proves to be the
most accurate scheme of those considered here.

Before leaving this section, we also compare the pressure and Mach number contours produced by P{FV{-8; and
P1FV,-81 in Fig. 21. Here too, the Mach number contours corresponding to P1FV,-§; are found to be the most precise.

6. On the reduced number of DOF requirements for the PFV method

One of the most distinctive features of the PFV method stands in its DOF setting, where the unknown value and possible
derivatives are recorded at the solution point (SP) which, in turn, coincides with the vertex of an interior element. This
DOF setting can naturally reduce the total number of DOFs and thus enhance the stability of the simulation by enabling
the user to impose additional constraints on the continuity, for example, which has been well vetted in previous numerical
simulation efforts.

To be more specific, the total number of degrees of freedom (NDOF) in the PFV method can be calculated from

NDOF = Ne + (Np + Npp)myp, (51)
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Fig. 21. Comparison of (a, c) pressure and (b, d) Mach number contours using (a, b) P1FV;-8; (top) and (c, d) P1FV,-8; (bottom) for the subsonic flow past
a NACA0012 airfoil at Moo = 0.63 and o = 2° angle of attack. Here the pressure contours contain 10 levels between 1.4 and 2.3 while the Mach contours
contain 13 levels between 0.1 and 0.9.

where N, represents the number of elements, N, denotes the number of vertices, Ny stands for the number of boundary
faces, and mp refers to the number of DOFs stored on each SP. As for the effective NDOF contribution, which takes into
account the order of the local polynomial reconstruction in each element (and thus determines the order of scheme), it can
be determined from

Neff = 1 + NyertMp, (52)

where nyert corresponds to the number of vertices in each element. For a boundary element, we have a slightly modified
count of

Neff = 1+ (Nyert + Npp)Mp, (53)

where ny¢ specifies the number of boundary faces in a boundary element.

Let us now compare the NDOF associated with the PFV and that of the Discontinuous Galerkin (DG) method in a two-
dimensional setting. For a triangular mesh with a large number of elements, we recall the well-known reduction in the
number of vertices, namely, N, ~ Ne/2. Using second and third-order PFV and DG schemes, the NDOF and Ne may be
evaluated on either triangular or quadrilateral meshes. In the interest of clarity, the results are cataloged in Table 3.

Using a triangular mesh, the comparison is compelling: The PFV method saves half or more of the total NDOF required
by the DG method of the same order. In fact, the effective NDOF on each element in P{FV, can be readily calculated to
be 1+ 3 x 3 =10, which is sufficient to construct a third-order polynomial capable of achieving a fourth-order scheme.
However, it also leads to a less sparse Jacobian matrix, which will be further discussed below.

For a quadrilateral mesh, we have Np & Ne. The results of Table 3 show that the PFV method saves 1/3 of the NDOF
required by the DG method of the same order. Moreover, the effective NDOF on each element in P1FV, can be determined
to be 1+ 4 x 3 =13, which is sufficient to construct a third-order polynomial capable of achieving a fourth-order scheme.
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Table 3
Comparison of the NDOF and effective NDOF for each element negs of the DG and PFV methods for two-
dimensional triangular and quadrilateral meshes.

Triangular Quadrilateral

2nd-order 3rd-order 2nd-order 3rd-order

DGD] P()FV1 DGDZ P] FV2 DGP1 PoFV] Dsz P] FVz
NDOF 3Ne 1.5Ne 6N, 2.5Ne 3Ne 2Ne 6N, 4N,
Neff 3 4 6 10 3 5 6 13

Table 4
Comparison of the NDOF and effective NDOF for each element negs of the DG and PFV methods for two-
dimensional triangular and quadrilateral meshes at higher orders.

Triangular Quadrilateral

4th-order 5th-order 4th-order 5th-order

DGD3 P] FV3 DGD4 P2 FV4 DG]J3 P1 FV3 DGD4 Pz FV4
NDOF 10Ne 2.5Ne 15N, 4N, 10Ne 4Ne 15N, 7Ne
Neff 10 10 15 19 10 13 15 25

Speculatively speaking, the effectiveness of the PFV framework and the computational advantages that it offers relative to
other compact methods are expected to only improve at higher orders, as projected in Table 4. The extension of the present
framework to orders higher than 3 will therefore require additional work.

To achieve a fourth-order DG scheme, for example, the total NDOF that is required jumps to 10Ne. In the PFV framework,
only 2.5N. NDOFs are needed to achieve the same order. Should one further explore the NDOF requirements to achieve a
fifth order, the ability of the PFV design to outperform its DG counterpart becomes even more visible (Table 4). While the
DG requirement increases to 15N., the PFV is capable of securing the same fifth order with only 4N, namely, with 73
percent fewer NDOFs.

7. Conclusion

This work extends the concept of a polynomial-based approximate delta function (ADF) to multiple spatial dimensions
while providing the detailed formulation of the corresponding two-dimensional ADF polynomials at the first and second
orders. Then the multi-dimensional ADF concept is judiciously adapted in the construction and design of a point-value
enhanced finite volume (PFV) method, which stores and updates the cell-averaged values along with the values and deriva-
tives of the unknown quantities at ideally located solution points (SPs). Away from the boundaries, the SPs are taken at the
vertices of each interior element. For boundary elements, the central points of the boundary faces are specified as the SPs.
Most importantly, the updating of the additional DOFs at the SPs takes advantage of the ADF properties, which enable us to
leverage the information provided on all of the elements surrounding the SP as part of the integration domain. As for the
updating of the cell-averaged values, we simply mimic the manner by which it is performed in the finite volume method
and thus ensure the conservation of the scheme.

In each element of the PFV framework, we recall that the unknown quantities are reconstructed using the entire body
of information available on the element and its vertices. Because nodal information can be effectively communicated with
all of the surrounding elements, the PFV scheme is shown to be efficient in saving the number of DOFs compared to other
compact methods that are developed to the same order. On a triangular mesh, for example, at least half of the DOFs are
saved compared to the DG method of the same order and, through preliminary studies, the savings are projected to further
improve at increasing orders. Moreover, in addition to the preservation of continuity, which is enhanced by the sharing of
nodal information, the updating of nodal quantities on multiple elements leads to a markedly more stable algorithm. In
the benchmark cases presented here, such as the linear wave equation, the CFL values are found to be at least three times
larger than those entailed in the DG method of the same order. Not only are the CFL values relatively large, they only
decrease slightly or do not decrease at all with successive increases in the design order. As such, it is speculated that the
PFV technique can be extended to high-order numerical schemes while improving their stability and accuracy.

In this work, detailed descriptions and formulations of PoFV{, P1FVy, and P{FV, are systematically carried out chiefly on
triangular and quadrilateral grids with several mesh sizes that range from medium to very fine. Throughout this process,
the error convergence rates associated with these methods are rigorously verified.

To be more specific, the PFV schemes and their convergence rates are verified using a suite of benchmark problems rang-
ing from the linear wave equation to the nonlinear Euler equation while revisiting six sub-problems. Test cases considered
include harmonically varying functions, internal and external channel flows with Gaussian bumps, isentropic vortex propa-
gation, and the subsonic motion past either a cylinder and a NACAQ012 airfoil. It is gratifying that the ensuing numerical
experiments readily confirm the stability and accuracy of the PFV schemes up to an effective fourth order, which is realized
on a quadrilateral mesh in the case of flow past a cylinder.
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Although the PFV method shows favorable stability and DOF saving characteristics in this two-dimensional exploratory
study, several tasks lie ahead, as the need to address some unresolved questions lingers. Among those open questions are
(a) the choices between piecewise and continuous ADF polynomials, (b) the most effective boundary solution points needed
to stabilize higher-order schemes, and (c) the optimal strategy to extend the PFV framework to viscous problems, where
derivatives of the unknown functions must be considered in the evaluation of fluxes. This can be especially important in the
implementation of implicit time matching, where the Jacobian matrix in the PFV scheme becomes less sparse than its DG
counterpart. Until such studies are performed, however, the question of whether the DOF savings in the PFV scheme will
outweigh the incurred costs relative to other compact methods will remain speculative at best. To overcome this deficiency,
a Jacobian-free approach will need to be implemented in conjunction with an implicit iterative formulation of the PFV
method to insure a favorable cost-benefit outcome. Efforts in this direction are presently underway.

In addition to the efforts to address these open questions, we hope that the extension of the two-dimensional PFV
method to the solution of the viscous Navier-Stokes equations and to three-dimensional settings will form the basis of
further inquiry.
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